51
|
Martínez‐Molina N, Siponkoski S, Särkämö T. Cognitive efficacy and neural mechanisms of music-based neurological rehabilitation for traumatic brain injury. Ann N Y Acad Sci 2022; 1515:20-32. [PMID: 35676218 PMCID: PMC9796942 DOI: 10.1111/nyas.14800] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Traumatic brain injury (TBI) causes lifelong cognitive deficits, most often in executive function (EF). Both musical training and music-based rehabilitation have been shown to enhance EF and neuroplasticity. Thus far, however, there is little evidence for the potential rehabilitative effects of music for TBI. Here, we review the core findings from our recent cross-over randomized controlled trial in which a 10-week music-based neurological rehabilitation (MBNR) protocol was administered to 40 patients with moderate-to-severe TBI. Neuropsychological testing and structural/functional magnetic resonance imaging were collected at three time points (baseline, 3 months, and 6 months); one group received the MBNR between time points 1 and 2, while a second group received it between time points 2 and 3. We found that both general EF and set shifting improved after the intervention, and this effect was maintained long term. Morphometric analyses revealed therapy-induced gray matter volume changes most consistently in the right inferior frontal gyrus, changes that correlated with better outcomes in set shifting. Finally, we found changes in the between- and within-network functional connectivity of large-scale resting-state networks after MBNR, which also correlated with measures of EF. Taken together, the data provide evidence for concluding that MBNR improves EF in TBI; also, the data show that morphometric and resting-state functional connectivity are sensitive markers with which to monitor the neuroplasticity induced by the MBNR intervention.
Collapse
Affiliation(s)
- Noelia Martínez‐Molina
- Music, Ageing and Rehabilitation Team, Cognitive Brain Research Unit, Department of Psychology and LogopedicsUniversity of HelsinkiHelsinki FI‐00014Finland,Centre of Excellence in Music, Mind, Body and BrainUniversity of Jyväskylä & University of HelsinkiHelsinkiFinland
| | - Sini‐Tuuli Siponkoski
- Music, Ageing and Rehabilitation Team, Cognitive Brain Research Unit, Department of Psychology and LogopedicsUniversity of HelsinkiHelsinki FI‐00014Finland,Centre of Excellence in Music, Mind, Body and BrainUniversity of Jyväskylä & University of HelsinkiHelsinkiFinland
| | - Teppo Särkämö
- Music, Ageing and Rehabilitation Team, Cognitive Brain Research Unit, Department of Psychology and LogopedicsUniversity of HelsinkiHelsinki FI‐00014Finland,Centre of Excellence in Music, Mind, Body and BrainUniversity of Jyväskylä & University of HelsinkiHelsinkiFinland
| |
Collapse
|
52
|
Axonal injury is detected by βAPP immunohistochemistry in rapid death from head injury following road traffic collision. Int J Legal Med 2022; 136:1321-1339. [PMID: 35488928 PMCID: PMC9375765 DOI: 10.1007/s00414-022-02807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022]
Abstract
The accumulation of βAPP caused by axonal injury is an active energy-dependent process thought to require blood circulation; therefore, it is closely related to the post-injury survival time. Currently, the earliest reported time at which axonal injury can be detected in post-mortem traumatic brain injury (TBI) tissue by βAPP (Beta Amyloid Precursor Protein) immunohistochemistry is 35 min. The aim of this study is to investigate whether βAPP staining for axonal injury can be detected in patients who died rapidly after TBI in road traffic collision (RTC), in a period of less than 30 min. We retrospectively studied thirty-seven patients (group 1) died very rapidly at the scene; evidenced by forensic assessment of injuries short survival, four patients died after a survival period of between 31 min and 12 h (group 2) and eight patients between 2 and 31 days (group 3). The brains were comprehensively examined and sampled at the time of the autopsy, and βAPP immunohistochemistry carried out on sections from a number of brain areas. βAPP immunoreactivity was demonstrated in 35/37 brains in group 1, albeit with a low frequency and in a variable pattern, and with more intensity and frequency in all brains of group 2 and 7/8 brains from group 3, compared with no similar βAPP immunoreactivity in the control group. The results suggest axonal injury can be detected in those who died rapidly after RTC in a period of less than 30 min, which can help in the diagnosis of severe TBI with short survival time.
Collapse
|
53
|
Cai L, Gong Q, Qi L, Xu T, Suo Q, Li X, Wang W, Jing Y, Yang D, Xu Z, Yuan F, Tang Y, Yang G, Ding J, Chen H, Tian H. ACT001 attenuates microglia-mediated neuroinflammation after traumatic brain injury via inhibiting AKT/NFκB/NLRP3 pathway. Cell Commun Signal 2022; 20:56. [PMID: 35461293 PMCID: PMC9035258 DOI: 10.1186/s12964-022-00862-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/12/2022] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Microglia-mediated neuroinflammatory response following traumatic brain injury (TBI) is considered as a vital secondary injury factor, which drives trauma-induced neurodegeneration and is lack of efficient treatment. ACT001, a sesquiterpene lactone derivative, is reportedly involved in alleviation of inflammatory response. However, little is known regarding its function in regulating innate immune response of central nervous system (CNS) after TBI. This study aimed to investigate the role and underlying mechanism of ACT001 in TBI.
Methods
Controlled cortical impact (CCI) models were used to establish model of TBI. Cresyl violet staining, evans blue extravasation, neurobehavioral function assessments, immunofluorescence and transmission electron microscopy were used to evaluate therapeutic effects of ACT001 in vivo. Microglial depletion was induced by administering mice with colony stimulating factor 1 receptor (CSF1R) inhibitor, PLX5622. Cell-cell interaction models were established as co-culture system to simulate TBI conditions in vitro. Cytotoxic effect of ACT001 on cell viability was assessed by cell counting kit-8 and activation of microglia cells were induced by Lipopolysaccharides (LPS). Pro-inflammatory cytokines expression was determined by Real-time PCR and nitric oxide production. Apoptotic cells were detected by TUNEL and flow cytometry assays. Tube formation was performed to evaluate cellular angiogenic ability. ELISA and western blot experiments were used to determine proteins expression. Pull-down assay was used to analyze proteins that bound ACT001.
Results
ACT001 relieved the extent of blood-brain barrier integrity damage and alleviated motor function deficits after TBI via reducing trauma-induced activation of microglia cells. Delayed depletion of microglia with PLX5622 hindered therapeutic effect of ACT001. Furthermore, ACT001 alleviated LPS-induced activation in mouse and rat primary microglia cells. Besides, ACT001 was effective in suppressing LPS-induced pro-inflammatory cytokines production in BV2 cells, resulting in reduction of neuronal apoptosis in HT22 cells and improvement of tube formation in bEnd.3 cells. Mechanism by which ACT001 functioned was related to AKT/NFκB/NLRP3 pathway. ACT001 restrained NFκB nuclear translocation in microglia cells through inhibiting AKT phosphorylation, resulting in decrease of NLRP3 inflammasome activation, and finally down-regulated microglial neuroinflammatory response.
Conclusions
Our study indicated that ACT001 played critical role in microglia-mediated neuroinflammatory response and might be a novel potential chemotherapeutic drug for TBI.
Collapse
|
54
|
Current Clinical Trials in Traumatic Brain Injury. Brain Sci 2022; 12:brainsci12050527. [PMID: 35624914 PMCID: PMC9138587 DOI: 10.3390/brainsci12050527] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity, disability and mortality across all age groups globally. Currently, only palliative treatments exist, but these are suboptimal and do little to combat the progressive damage to the brain that occurs after a TBI. However, multiple experimental treatments are currently available that target the primary and secondary biochemical and cellular changes that occur after a TBI. Some of these drugs have progressed to clinical trials and are currently being evaluated for their therapeutic benefits in TBI patients. The aim of this study was to identify which drugs are currently being evaluated in clinical trials for TBI. A search of ClinicalTrials.gov was performed on 3 December 2021 and all clinical trials that mentioned “TBI” OR “traumatic brain injury” AND “drug” were searched, revealing 362 registered trials. Of the trials, 46 were excluded due to the drug not being mentioned, leaving 138 that were completed and 116 that were withdrawn. Although the studies included 267,298 TBI patients, the average number of patients per study was 865 with a range of 5–200,000. Of the completed studies, 125 different drugs were tested in TBI patients but only 7 drugs were used in more than three studies, including amantadine, botulinum toxin A and tranexamic acid (TXA). However, previous clinical studies using these seven drugs showed variable results. The current study concludes that clinical trials in TBI have to be carefully conducted so as to reduce variability across studies, since the severity of TBI and timing of therapeutic interventions were key aspects of trial success.
Collapse
|
55
|
Sharkey JM, Quarrington RD, Magarey CC, Jones CF. Center of mass and anatomical coordinate system definition for sheep head kinematics, with application to ovine models of traumatic brain injury. J Neurosci Res 2022; 100:1413-1421. [PMID: 35443082 PMCID: PMC9322267 DOI: 10.1002/jnr.25049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/19/2022] [Indexed: 11/07/2022]
Abstract
Pathological outcomes of traumatic brain injury (TBI), including diffuse axonal injury, are influenced by the direction, magnitude, and duration of head acceleration during the injury exposure. Ovine models have been used to study injury mechanics and pathological outcomes of TBI. To accurately describe the kinematics of the head during an injury exposure, and better facilitate comparison with human head kinematics, anatomical coordinate systems (ACS) with an origin at the head or brain center of mass (CoM), and axes that align with the ovine Frankfort plane equivalent, are required. The aim of this study was to determine the mass properties of the sheep head and brain, and define an ACSvirtual for the head and brain, using anatomical landmarks on the skull with the aforementioned origins and orientation. Three-dimensional models of 10 merino sheep heads were constructed from computed tomography images, and the coordinates of the head and brain CoMs, relative to a previously reported sheep head coordinate system (ACSphysical ), were determined using the Hounsfield unit-mass density relationship. The ACSphysical origin was 34.8 ± 3.1 mm posterosuperior of the head CoM and 43.7 ± 1.7 anteroinferior of the brain CoM. Prominent internal anatomical landmarks were then used to define a new ACS (ACSvirtual ) with axes aligned with the Frankfort plane equivalent and an origin 10.4 ± 3.2 mm from the head CoM. The CoM and ACSvirtual defined in this study will increase the potential for comparison of head kinematics between ovine models and humans, in the context of TBI.
Collapse
Affiliation(s)
- Jessica M Sharkey
- Translational Neuropathology Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ryan D Quarrington
- Adelaide Spinal Research Group, Centre for Orthopaedic & Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Charlie C Magarey
- Adelaide Spinal Research Group, Centre for Orthopaedic & Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,School of Mechanical Engineering, The University of Adelaide, Adelaide, South Australia, Australia
| | - Claire F Jones
- Adelaide Spinal Research Group, Centre for Orthopaedic & Trauma Research, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,School of Mechanical Engineering, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
56
|
Mohamed M, Alamri A, Mohamed M, Khalid N, O'Halloran P, Staartjes V, Uff C. Prognosticating outcome using magnetic resonance imaging in patients with moderate to severe traumatic brain injury: a machine learning approach. Brain Inj 2022; 36:353-358. [PMID: 35129403 DOI: 10.1080/02699052.2022.2034184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Over the last decade advancements in computer processing have enabled the application of machine learning (ML) to complex medical problems. Convolutional neural networks (CNN), a type of ML, have been used to interrogate medical images for variety of purposes. In this study, we aimed to investigate the potential application of CNN in prognosticating patients with traumatic brain injury (TBI). METHODS Patients with moderate to severe TBI and evidence of diffuse axonal injury (DAI) were selected retrospectively. A CNN model was developed using a training subgroup and a holdout subgroup was used as a testing dataset. We reported the model characteristics including area under the receiver operating characteristic curve (AUC). RESULTS We included a total of 38 patient, of which we generated 725 MRI sections. We developed a CNN model based on a modified AlexNet architecture that interpreted the brain stem injury to generate outcome predictions. The model was able to predict GOS outcomes with a specificity of 0.43 and a sensitivity of 0.997. It showed an AUC of 0.917. CONCLUSION The utilization of machine learning MRI analysis for prognosticating patients with TBI is a valued method that require further investigation. This will require multicentre collaboration to generate large datasets.
Collapse
Affiliation(s)
- Moumin Mohamed
- Department of Neurosurgery, Royal London Hospital, London, UK.,Neurosurgery Department, The London Neuro-Machine Learning Institute, Barts Health NHS Trust, London, UK
| | - A Alamri
- Department of Neurosurgery, Royal London Hospital, London, UK.,Neurosurgery Department, The London Neuro-Machine Learning Institute, Barts Health NHS Trust, London, UK
| | - M Mohamed
- Department of Neurosurgery, Royal London Hospital, London, UK.,Neurosurgery Department, The London Neuro-Machine Learning Institute, Barts Health NHS Trust, London, UK
| | - N Khalid
- Department of Neurosurgery, Royal London Hospital, London, UK
| | - Pj O'Halloran
- Department of Neurosurgery, Royal London Hospital, London, UK.,Neurosurgery Department, The London Neuro-Machine Learning Institute, Barts Health NHS Trust, London, UK.,Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Ireland
| | - Ve Staartjes
- Clinical Neuroscience Department, Machine Intelligence in Clinical Neuroscience (Micn) Laboratory, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - C Uff
- Department of Neurosurgery, Royal London Hospital, London, UK.,Neurosurgery Department, The London Neuro-Machine Learning Institute, Barts Health NHS Trust, London, UK
| |
Collapse
|
57
|
Hershkovitz Y, Kessel B, Dubose JJ, Peleg K, Zilbermints V, Jeroukhimov I, Givon A, Dudkiewicz M, Aranovich D. Is Diffuse Axonal Injury Different in Adults and Children? An Analysis of National Trauma Database. Pediatr Emerg Care 2022; 38:62-64. [PMID: 35100742 DOI: 10.1097/pec.0000000000002626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Diffuse axonal injury (DAI) is typically associated with significant mechanisms of injury and the effects of acceleration-deceleration forces on brain tissues. The prognosis of DAI remains a matter of active investigation, but little is known about outcome differences between adult and pediatric populations with DAI. METHODS We performed a retrospective cohort study involving blunt trauma patients with DAI between the years 1997 and 2018 from the Israeli National Trauma Registry. The patients were divided to pediatric (age <15 years) and adult (age >15 years) groups, with subsequent comparison of demographics and outcomes. RESULTS Diffuse axonal injury was identified in 1983 patients, including 469 pediatric victims (23.6%) and 1514 adults (76.4%). Adults had higher Injury Severity Score (20.5% vs 13.2%, P = 0.0004), increased mortality (17.7% vs 13.4%, P < 0.0001), longer hospitalizations (58.4% vs 44.4%, P < 0.001), and higher rehabilitation need rates (56.4% vs 41.8%, P < 0.0001). Associated extracranial injuries were also more common in adults, particularly to the chest. CONCLUSIONS Pediatric patients with DAI have improved outcomes and fewer associated injuries than adult counterparts.
Collapse
Affiliation(s)
- Yehuda Hershkovitz
- From the Department of Surgery, Shamir Medical Center, Zeriffin, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv
| | - Boris Kessel
- Surgical Division, Hillel Yaffe Medical Center, Hadera, affiliated with Rappoport Medical School, Technion, Haifa
| | - J J Dubose
- National Center for Trauma and Emergency Medicine Research, Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer, Israel
| | - Kobi Peleg
- University of Maryland School of Medicine, Baltimore, MD
| | - Viacheslav Zilbermints
- Surgical Division, Hillel Yaffe Medical Center, Hadera, affiliated with Rappoport Medical School, Technion, Haifa
| | - Igor Jeroukhimov
- From the Department of Surgery, Shamir Medical Center, Zeriffin, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv
| | - Adi Givon
- National Center for Trauma and Emergency Medicine Research, Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer, Israel
| | | | - David Aranovich
- Surgical Division, Hillel Yaffe Medical Center, Hadera, affiliated with Rappoport Medical School, Technion, Haifa
| |
Collapse
|
58
|
Bruijel J, Quaedflieg CWEM, Otto T, van de Ven V, Stapert SZ, van Heugten C, Vermeeren A. Task-induced subjective fatigue and resting-state striatal connectivity following traumatic brain injury. Neuroimage Clin 2022; 33:102936. [PMID: 35007852 PMCID: PMC8749448 DOI: 10.1016/j.nicl.2022.102936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 01/09/2023]
Abstract
Fatigue is a very frequent and disabling symptom in traumatic brain injury (TBI). Effects of task-induced fatigue on resting-state functional connectivity (rsFC). Striatal rsFC relates differently to subjective fatigue in TBI compared to controls. Default mode network rsFC relates similar to subjective fatigue in TBI and controls.
Background People with traumatic brain injury (TBI) often experience fatigue, but an understanding of the neural underpinnings of fatigue following TBI is still lacking. This study used resting-state functional magnetic resonance imaging (rs-fMRI) to examine associations between functional connectivity (FC) changes and task-induced changes in subjective fatigue in people with moderate-severe TBI. Methods Sixteen people with moderate-severe TBI and 17 matched healthy controls (HC) performed an adaptive N-back task (working memory task) to induce cognitive fatigue. Before and after the task they rated their state fatigue level and underwent rs-fMRI. Seed-to-voxel analyses with seeds in areas involved in cognitive fatigue, namely the striatum and default mode network (DMN) including, medial prefrontal cortex and posterior cingulate cortex, were performed. Results The adaptive N-back task was effective in inducing fatigue in both groups. Subjective task-induced fatigue was positively associated with FC between striatum and precuneus in people with TBI, while there was a negative association in HC. In contrast, subjective task-induced fatigue was negatively associated with FC between striatum and cerebellum in the TBI group, while there was no association in HC. Similar associations between task-induced subjective fatigue and DMN FC were found across the groups. Conclusions Our results suggest that the subjective experience of fatigue was linked to DMN connectivity in both groups and was differently associated with striatal connectivity in people with moderate-severe TBI compared to HC. Defining fatigue-induced neuronal network changes is pertinent to the development of treatments that target abnormal neuronal activity after TBI.
Collapse
Affiliation(s)
- J Bruijel
- Dept of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Limburg Brain Injury Centre, Limburg, the Netherlands.
| | - C W E M Quaedflieg
- Dept of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - T Otto
- Dept of Work and Social Psychology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - V van de Ven
- Dept of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - S Z Stapert
- Dept of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Limburg Brain Injury Centre, Limburg, the Netherlands; Dept of Medical Psychology, Zuyderland Medical Centre, Sittard-Geleen, the Netherlands
| | - C van Heugten
- Dept of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Limburg Brain Injury Centre, Limburg, the Netherlands; School for Mental Health and Neuroscience, Dept of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| | - A Vermeeren
- Dept of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
59
|
Vijayakumari AA, Parker D, Osmanlioglu Y, Alappatt JA, Whyte J, Diaz-Arrastia R, Kim JJ, Verma R. Free Water Volume Fraction: An Imaging Biomarker to Characterize Moderate-to-Severe Traumatic Brain Injury. J Neurotrauma 2021; 38:2698-2705. [PMID: 33913750 PMCID: PMC8590145 DOI: 10.1089/neu.2021.0057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) is a major clinical and public health problem with few therapeutic interventions successfully translated to the clinic. Identifying imaging-based biomarkers characterizing injury severity and predicting long-term functional and cognitive outcomes in TBI patients is crucial for treatment. TBI results in white matter (WM) injuries, which can be detected using diffusion tensor imaging (DTI). Trauma-induced pathologies lead to accumulation of free water (FW) in brain tissue, and standard DTI is susceptible to the confounding effects of FW. In this study, we applied FW DTI to estimate free water volume fraction (FW-VF) in patients with moderate-to-severe TBI and demonstrated its association with injury severity and long-term outcomes. DTI scans and neuropsychological assessments were obtained longitudinally at 3, 6, and 12 months post-injury for 34 patients and once in 35 matched healthy controls. We observed significantly elevated FW-VF in 85 of 90 WM regions in patients compared to healthy controls (p < 0.05). We then presented a patient-specific summary score of WM regions derived using Mahalanobis distance. We observed that MVF at 3 months significantly predicted functional outcome (p = 0.008), executive function (p = 0.005), and processing speed (p = 0.01) measured at 12 months and was significantly correlated with injury severity (p < 0.001). Our findings are an important step toward implementing MVF as a biomarker for personalized therapy and rehabilitation planning for TBI patients.
Collapse
Affiliation(s)
- Anupa Ambili Vijayakumari
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Drew Parker
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yusuf Osmanlioglu
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jacob A. Alappatt
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Whyte
- Moss Rehabilitation Research Institute, TBI Rehabilitation Research Laboratory, Einstein Medical Center Elkins Park, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Junghoon J. Kim
- Department of Molecular, Cellular, and Biomedical Sciences, CUNY School of Medicine, The City College of New York, New York, New York, USA
| | - Ragini Verma
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
60
|
Echlin HV, Rahimi A, Wojtowicz M. Systematic Review of the Long-Term Neuroimaging Correlates of Mild Traumatic Brain Injury and Repetitive Head Injuries. Front Neurol 2021; 12:726425. [PMID: 34659091 PMCID: PMC8514830 DOI: 10.3389/fneur.2021.726425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To systematically review the literature on the long-term neuroimaging findings (≥10 years from exposure) for exposure in adulthood to mild traumatic brain injury (mTBI) and repetitive head impacts (RHIs) using neuroimaging across all available populations. Data sources: Four electronic databases: MEDLINE, SPORTDiscus, PsycINFO, and EMBASE. Study selection: All articles were original research and published in English. Studies examined adults with remote exposure to mTBI and/or RHIs from ten or more years ago in addition to any associated neuroimaging findings. Data extraction: Parameters mainly included participants' population, age, years since head injury, race, sex, education level, and any neuroimaging findings. Scores for the level of evidence and risk of bias were calculated independently by two authors. Results: 5,521 studies were reviewed, of which 34 met inclusion criteria and were included in this study. The majority of adults in these studies showed positive neuroimaging findings one or more decades following mTBI/RHI exposure. This was consistent across study populations (i.e., veterans, athletes, and the general population). There was evidence for altered protein deposition patterns, micro- and macro-structural, functional, neurochemical, and blood flow-related differences in the brain for those with remote mTBI/RHI exposure. Conclusion: Findings from these studies suggest that past mTBI/RHI exposure may be associated with neuroimaging findings. However, given the methodological constraints related to relatively small sample sizes and the heterogeneity in injury types/exposure and imaging techniques used, conclusions drawn from this review are limited. Well-designed longitudinal studies with multimodal imaging and in-depth health and demographic information will be required to better understand the potential for having positive neuroimaging findings following remote mTBI/RHI.
Collapse
|
61
|
Graham NSN, Zimmerman KA, Moro F, Heslegrave A, Maillard SA, Bernini A, Miroz JP, Donat CK, Lopez MY, Bourke N, Jolly AE, Mallas EJ, Soreq E, Wilson MH, Fatania G, Roi D, Patel MC, Garbero E, Nattino G, Baciu C, Fainardi E, Chieregato A, Gradisek P, Magnoni S, Oddo M, Zetterberg H, Bertolini G, Sharp DJ. Axonal marker neurofilament light predicts long-term outcomes and progressive neurodegeneration after traumatic brain injury. Sci Transl Med 2021; 13:eabg9922. [PMID: 34586833 DOI: 10.1126/scitranslmed.abg9922] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Neil S N Graham
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London W12 0BZ, UK
| | - Karl A Zimmerman
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London W12 0BZ, UK
| | - Federico Moro
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo 24126, Italy.,Fondazione IRCCS, Ca' Granda Ospedale Maggiore Policlinico, Dipartimento di Anestesia e Rianimazione, 20122, Milan, Italy
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.,UK Dementia Research Institute at UCL, London WC1N 3BG, UK
| | - Samia Abed Maillard
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, CHUV Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Adriano Bernini
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, CHUV Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - John-Paul Miroz
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, CHUV Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Cornelius K Donat
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Maria Yanez Lopez
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Niall Bourke
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London W12 0BZ, UK
| | - Amy E Jolly
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London W12 0BZ, UK
| | - Emma-Jane Mallas
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London W12 0BZ, UK
| | - Eyal Soreq
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London W12 0BZ, UK
| | - Mark H Wilson
- Department of Neurosurgery, Imperial College Healthcare NHS Trust, London W6 8RF, UK.,Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Gavin Fatania
- Department of Imaging, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Dylan Roi
- Department of Imaging, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Maneesh C Patel
- Department of Imaging, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Elena Garbero
- Laboratory of Clinical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo 24126, Italy
| | - Giovanni Nattino
- Laboratory of Clinical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo 24126, Italy
| | - Camelia Baciu
- Neurorianimazione, ASST Grande Ospedale Metropolitano Niguarda, Milano 20162, Italy
| | - Enrico Fainardi
- Department of Experimental and Clinical Sciences, Careggi University Hospital, University of Firenze, Florence 50139, Italy
| | - Arturo Chieregato
- Neurorianimazione, ASST Grande Ospedale Metropolitano Niguarda, Milano 20162, Italy
| | - Primoz Gradisek
- Clinical Department of Anaesthesiology and Intensive Therapy, University Medical Center, Ljubljana 1000, Slovenia
| | - Sandra Magnoni
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, Trento 38122, Italy
| | - Mauro Oddo
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, CHUV Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland.,Medical Direction, CHUV Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal 431 41, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 41, Sweden
| | - Guido Bertolini
- Laboratory of Clinical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo 24126, Italy
| | - David J Sharp
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London W12 0BZ, UK.,Centre for Injury Studies, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
62
|
Zhao Y, Tan SW, Huang ZZ, Shan FB, Li P, Ning YL, Ye SY, Zhao ZA, Du H, Xiong RP, Yang N, Peng Y, Chen X, Zhou YG. NLRP3 Inflammasome-Dependent Increases in High Mobility Group Box 1 Involved in the Cognitive Dysfunction Caused by Tau-Overexpression. Front Aging Neurosci 2021; 13:721474. [PMID: 34539383 PMCID: PMC8446370 DOI: 10.3389/fnagi.2021.721474] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022] Open
Abstract
Tau hyperphosphorylation is a characteristic alteration present in a range of neurological conditions, such as traumatic brain injury (TBI) and neurodegenerative diseases. Treatments targeting high-mobility group box protein 1 (HMGB1) induce neuroprotective effects in these neuropathologic conditions. However, little is known about the interactions between hyperphosphorylated tau and HMGB1 in neuroinflammation. We established a model of TBI with controlled cortical impacts (CCIs) and a tau hyperphosphorylation model by injecting the virus encoding human P301S tau in mice, and immunofluorescence, western blotting analysis, and behavioral tests were performed to clarify the interaction between phosphorylated tau (p-tau) and HMGB1 levels. We demonstrated that p-tau and HMGB1 were elevated in the spatial memory-related brain regions in mice with TBI and tau-overexpression. Animals with tau-overexpression also had significantly increased nucleotide-binding oligomerization domain-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome activation, which manifested as increases in apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), activating caspase-1 and interleukin 1 beta (IL-1β) levels. In addition, NLRP3–/– mice and the HMGB1 inhibitor, glycyrrhizin, were used to explore therapeutic strategies for diseases with p-tau overexpression. Compared with wild-type (WT) mice with tau-overexpression, downregulation of p-tau and HMGB1 was observed in NLRP3–/– mice, indicating that HMGB1 alterations were NLRP3-dependent. Moreover, treatment with glycyrrhizin at a late stage markedly reduced p-tau levels and improved performance in the Y- and T-mazes and the ability of tau-overexpressing mice to build nests, which revealed improvements in spatial memory and advanced hippocampal function. The findings identified that p-tau has a triggering role in the modulation of neuroinflammation and spatial memory in an NLRP3-dependent manner, and suggest that treatment with HMGB1 inhibitors may be a better therapeutic strategy for tauopathies.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.,Institute of Brain and Intelligence, Army Medical University, Chongqing, China
| | - Si-Wei Tan
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhi-Zhong Huang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fa-Bo Shan
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ping Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.,Institute of Brain and Intelligence, Army Medical University, Chongqing, China
| | - Ya-Lei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.,Institute of Brain and Intelligence, Army Medical University, Chongqing, China
| | - Shi-Yang Ye
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zi-Ai Zhao
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Hao Du
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ren-Ping Xiong
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Nan Yang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yan Peng
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xing Chen
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.,Institute of Brain and Intelligence, Army Medical University, Chongqing, China
| |
Collapse
|
63
|
Gan S, Shi W, Wang S, Sun Y, Yin B, Bai G, Jia X, Sun C, Niu X, Wang Z, Jiang X, Liu J, Zhang M, Bai L. Accelerated Brain Aging in Mild Traumatic Brain Injury: Longitudinal Pattern Recognition with White Matter Integrity. J Neurotrauma 2021; 38:2549-2559. [PMID: 33863259 DOI: 10.1089/neu.2020.7551] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mild traumatic brain injury (mTBI) initiating long-term effects on white matter integrity resembles brain-aging changes, implying an aging process accelerated by mTBI. This longitudinal study aims to investigate the mTBI-induced acceleration of the brain-aging process by developing a neuroimaging model to predict brain age. The brain-age prediction model was defined using relevance vector regression based on fractional anisotropy from diffusion tensor imaging of 523 healthy individuals. The model was used to estimate the brain-predicted age difference (brain-PAD) between the chronological and estimated brain age in 116 acute mTBI patients and 63 healthy controls. Fifty patients were followed for 6 ∼ 12 months to evaluate the longitudinal changes in brain-PAD. We investigated whether brain-PAD was greater in patients of older age, post-concussion complaints, and apolipoprotein E (APOE) ɛ4 genotype, and whether it had the potential to predict neuropsychological outcomes. The brain-age prediction model predicted brain age accurately (r = 0.96). The brains of mTBI patients in the acute phase were estimated to be "older," with greater brain-PAD (2.59 ± 5.97 years) than the healthy controls (0.12 ± 3.19 years) (p < 0.05), and remained stable 6-12 month post-injury (2.50 ± 4.54 years). Patients who were older or who had post-concussion complaints, rather than APOE ɛ4 genotype, had greater brain-PADs (p < 0.001, p = 0.024). Additionally, brain-PAD in the acute phase predicted information processing speed at the 6 ∼ 12 month follow-up (r = -0.36, p = 0.01). In conclusion, mTBI accelerates the brain-aging process, and brain-PAD may be capable of evaluating aging-associated issues post-injury, such as increased risks of neurodegeneration.
Collapse
Affiliation(s)
- Shuoqiu Gan
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wen Shi
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Shan Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yingxiang Sun
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Yin
- Department of Neurosurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guanghui Bai
- Department of Radiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Jia
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Chuanzhu Sun
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xuan Niu
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhuonan Wang
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhang
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijun Bai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
64
|
Javeed F, Rehman L, Afzal A, Abbas A. Outcome of diffuse axonal injury in moderate and severe traumatic brain injury. Surg Neurol Int 2021; 12:384. [PMID: 34513151 PMCID: PMC8422474 DOI: 10.25259/sni_573_2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Diffuse axonal injury (DAI) is a common presentation in neurotrauma. Prognosis is variable but can be dependent on the initial presentation of the patient. In our study, we evaluated the outcome of diffuse axonal injury. Methods: This study was conducted at a tertiary care center from September 2018 to December 2019 and included 133 adult patients with moderate or severe head injury (GCS ≤ 12) diagnosed to have the DAI on the basis of MRI. At 3 months, the result was assessed using the Extended Glasgow Outcome Scale (GOS-E). Results: There were a total of 97 (72.9%) males and 36 (27.1%) females with an average age of 32.4 ± 10 years with a mean GCS of 9 at admission. The most common mode of head trauma was road traffic accidents (RTAs) in 51.9% of patients followed by fall from height in 27.1%. Most patients were admitted with moderate traumatic brain injury (64.7%) and suffered Grade I diffuse axonal injury (41.4%). The average hospital stay was 9 days but majority of patients stayed in hospital for ≤ 11 days. At 3 months, mortality rate was 25.6% and satisfactory outcome observed in 48.1% of patients. The highest mortality was observed in the Grade III DAI. Conclusion: We conclude that the severity of the traumatic head injury and the grade of the DAI impact the outcome. Survivors require long-term hospitalization and rehabilitation to improve their chances of recovery.
Collapse
Affiliation(s)
- Farrukh Javeed
- Department of Neurosurgery, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Lal Rehman
- Department of Neurosurgery, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Ali Afzal
- Department of Neurosurgery, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| | - Asad Abbas
- Department of Neurosurgery, Jinnah Postgraduate Medical Centre, Karachi, Pakistan
| |
Collapse
|
65
|
Smith DH, Kochanek PM, Rosi S, Meyer R, Ferland-Beckham C, Prager EM, Ahlers ST, Crawford F. Roadmap for Advancing Pre-Clinical Science in Traumatic Brain Injury. J Neurotrauma 2021; 38:3204-3221. [PMID: 34210174 PMCID: PMC8820284 DOI: 10.1089/neu.2021.0094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pre-clinical models of disease have long played important roles in the advancement of new treatments. However, in traumatic brain injury (TBI), despite the availability of numerous model systems, translation from bench to bedside remains elusive. Integrating clinical relevance into pre-clinical model development is a critical step toward advancing therapies for TBI patients across the spectrum of injury severity. Pre-clinical models include in vivo and ex vivo animal work-both small and large-and in vitro modeling. The wide range of pre-clinical models reflect substantial attempts to replicate multiple aspects of TBI sequelae in humans. Although these models reveal multiple putative mechanisms underlying TBI pathophysiology, failures to translate these findings into successful clinical trials call into question the clinical relevance and applicability of the models. Here, we address the promises and pitfalls of pre-clinical models with the goal of evolving frameworks that will advance translational TBI research across models, injury types, and the heterogenous etiology of pathology.
Collapse
Affiliation(s)
- Douglas H Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine; Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, Pittsburgh, Pennsylvania, USA
| | - Susanna Rosi
- Departments of Physical Therapy Rehabilitation Science, Neurological Surgery, Weill Institute for Neuroscience, University of California San Francisco, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Retsina Meyer
- Cohen Veterans Bioscience, New York, New York, USA.,Delix Therapeutics, Inc, Boston, Massachusetts, USA
| | | | | | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate Naval Medical Research Center, Silver Spring, Maryland, USA
| | | |
Collapse
|
66
|
Contraindications to the Initiation of Veno-Venous ECMO for Severe Acute Respiratory Failure in Adults: A Systematic Review and Practical Approach Based on the Current Literature. MEMBRANES 2021; 11:membranes11080584. [PMID: 34436348 PMCID: PMC8400963 DOI: 10.3390/membranes11080584] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022]
Abstract
(1) Background: Extracorporeal membrane oxygenation (ECMO) is increasingly used for acute respiratory failure with few absolute but many relative contraindications. The provider in charge often has a difficult time weighing indications and contraindications to anticipate if the patient will benefit from this treatment, a decision that often decides life and death for the patient. To assist in this process in coming to a good evidence-based decision, we reviewed the available literature. (2) Methods: We performed a systematic review through a literature search of the MEDLINE database of former and current absolute and relative contraindications to the initiation of ECMO treatment. (3) Results: The following relative and absolute contraindications were identified in the literature: absolute-refusal of the use of extracorporeal techniques by the patient, advanced stage of cancer, fatal intracerebral hemorrhage/cerebral herniation/intractable intracranial hypertension, irreversible destruction of the lung parenchyma without the possibility of transplantation, and contraindications to lung transplantation; relative-advanced age, immunosuppressed patients/pharmacological immunosuppression, injurious ventilator settings > 7 days, right-heart failure, hematologic malignancies, especially bone marrow transplantation and graft-versus-host disease, SAPS II score ≥ 60 points, SOFA score > 12 points, PRESERVE score ≥ 5 points, RESP score ≤ -2 points, PRESET score ≥ 6 points, and "do not attempt resuscitation" order (DN(A)R status). (4) Conclusions: We provide a simple-to-follow algorithm that incorporates absolute and relative contraindications to the initiation of ECMO treatment. This algorithm attempts to weigh pros and cons regarding the benefit for an individual patient and hopefully assists caregivers to make better, informed decisions.
Collapse
|
67
|
Pharmacotherapy for Treatment of Cognitive and Neuropsychiatric Symptoms After mTBI. J Head Trauma Rehabil 2021; 35:76-83. [PMID: 31834058 DOI: 10.1097/htr.0000000000000537] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Cognitive and neuropsychiatric symptoms are extremely common following mild traumatic brain injury (TBI), also known as concussion. Although most patients will recovery rapidly, a significant minority go on to experience persistent symptoms. There are currently no FDA-approved medications for treatment of cognitive and neuropsychiatric problems in the context of mild TBI, yet a number of agents are prescribed "off-label" for these complaints. Rigorous trials are lacking, but there are a number of open-label studies, and some small randomized controlled trials that support the safety and possible efficacy of pharmacotherapies in this population. Clinical trials conducted in samples with more severe brain injuries can also serve as a guide. METHODS Review of the literature. RESULTS & CONCLUSIONS There is the most support in the literature for the neurostimulant methylphenidate for treatment of mild TBI-related cognitive dysfunction, and the selective serotonin reuptake inhibitor, sertraline, for the treatment of postinjury depression. There is clearly a need for more well-designed studies to guide clinicians in selecting the appropriate medication and dose. Without clear guidance from the literature, a cautious approach of starting low and titrating slowly is recommended.
Collapse
|
68
|
Bohnert S, Wirth C, Schmitz W, Trella S, Monoranu CM, Ondruschka B, Bohnert M. Myelin basic protein and neurofilament H in postmortem cerebrospinal fluid as surrogate markers of fatal traumatic brain injury. Int J Legal Med 2021; 135:1525-1535. [PMID: 33895854 PMCID: PMC8205912 DOI: 10.1007/s00414-021-02606-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022]
Abstract
The aim of this study was to investigate if the biomarkers myelin basic protein (MBP) and neurofilament-H (NF-H) yielded informative value in forensic diagnostics when examining cadaveric cerebrospinal fluid (CSF) biochemically via an enzyme-linked immunosorbent assay (ELISA) and comparing the corresponding brain tissue in fatal traumatic brain injury (TBI) autopsy cases by immunocytochemistry versus immunohistochemistry. In 21 trauma and 19 control cases, CSF was collected semi-sterile after suboccipital puncture and brain specimens after preparation. The CSF MBP (p = 0.006) and NF-H (p = 0.0002) levels after TBI were significantly higher than those in cardiovascular controls. Immunohistochemical staining against MBP and against NF-H was performed on cortical and subcortical samples from also biochemically investigated cases (5 TBI cases/5 controls). Compared to the controls, the TBI cases showed a visually reduced staining reaction against MBP or repeatedly ruptured neurofilaments against NF-H. Immunocytochemical tests showed MBP-positive phagocytizing macrophages in CSF with a survival time of > 24 h. In addition, numerous TMEM119-positive microglia could be detected with different degrees of staining intensity in the CSF of trauma cases. As a result, we were able to document that elevated levels of MBP and NF-H in the CSF should be considered as useful neuroinjury biomarkers of traumatic brain injury.
Collapse
Affiliation(s)
- Simone Bohnert
- Institute of Forensic Medicine, University of Wuerzburg, Versbacher Str. 3, 97078, Wuerzburg, Germany.
| | - Christoph Wirth
- Institute of Forensic Medicine, University of Wuerzburg, Versbacher Str. 3, 97078, Wuerzburg, Germany
| | - Werner Schmitz
- Institute of Biochemistry and Molecular Biology I, Biozentrum - Am Hubland, 97074, Wuerzburg, Germany
| | - Stefanie Trella
- Institute of Forensic Medicine, University of Wuerzburg, Versbacher Str. 3, 97078, Wuerzburg, Germany
| | - Camelia-Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Wuerzburg, Josef-Schneider Str. 2, 97080, Wuerzburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529, Hamburg, Germany
| | - Michael Bohnert
- Institute of Forensic Medicine, University of Wuerzburg, Versbacher Str. 3, 97078, Wuerzburg, Germany
| |
Collapse
|
69
|
Gonzalez AC, Kim M, Keser Z, Ibrahim L, Singh SK, Ahmad MJ, Hasan O, Kamali A, Hasan KM, Schulz PE. Diffusion Tensor Imaging Correlates of Concussion Related Cognitive Impairment. Front Neurol 2021; 12:639179. [PMID: 34108926 PMCID: PMC8180854 DOI: 10.3389/fneur.2021.639179] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Cognitive impairment after concussion has been widely reported, but there is no reliable imaging biomarker that predicts the severity of cognitive decline post-concussion. This study tests the hypothesis that patients with a history of concussion and persistent cognitive impairment have fractional anisotropy (FA) and mean diffusivity (MD) values from diffusion tensor imaging (DTI) that are specifically associated with poor performance on the Montreal Cognitive Assessment (MoCA). Methods: Fifty-three subjects (19 females) with concussions and persistent cognitive symptoms had MR imaging and the MoCA. Imaging was analyzed by atlas-based, whole-brain DTI segmentation and FLAIR lesion segmentation. Then, we conducted a random forest-based recursive feature elimination (RFE) with 10-fold cross-validation on the entire dataset, and with partial correlation adjustment for age and lesion load. Results: RFE showed that 11 DTI variables were found to be important predictors of MoCA scores. Partial correlation analyses, corrected for age and lesion load, showed significant correlations between MoCA scores and right fronto-temporal regions: inferior temporal gyrus MD (r = -0.62, p = 0.00001), middle temporal gyrus MD (r = -0.54, p = 0.0001), angular gyrus MD (r = -0.48, p = 0.0008), and inferior frontal gyrus FA (r = 0.44, p = 0.002). Discussion: This is the first study to demonstrate a correlation between MoCA scores and DTI variables in patients with a history of concussion and persistent cognitive impairment. This kind of research will significantly increase our understanding of why certain persons have persistent cognitive changes after concussion which, in turn, may allow us to predict persistent impairment after concussion and suggest new interventions.
Collapse
Affiliation(s)
- Angelica C. Gonzalez
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, United States
| | - Minseon Kim
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, United States
| | - Zafer Keser
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, United States
| | - Lamya Ibrahim
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, United States
| | - Sonia K. Singh
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, United States
| | - Mohammed J. Ahmad
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, United States
| | - Omar Hasan
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, United States
| | - Arash Kamali
- Department of Diagnostic and Interventional Radiology, University of Texas McGovern Medical School, Houston, TX, United States
| | - Khader M. Hasan
- Department of Diagnostic and Interventional Radiology, University of Texas McGovern Medical School, Houston, TX, United States
| | - Paul E. Schulz
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|
70
|
Behnke JA, Ye C, Setty A, Moberg KH, Zheng JQ. Repetitive mild head trauma induces activity mediated lifelong brain deficits in a novel Drosophila model. Sci Rep 2021; 11:9738. [PMID: 33958652 PMCID: PMC8102574 DOI: 10.1038/s41598-021-89121-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/21/2021] [Indexed: 02/08/2023] Open
Abstract
Mild head trauma, including concussion, can lead to chronic brain dysfunction and degeneration but the underlying mechanisms remain poorly understood. Here, we developed a novel head impact system to investigate the long-term effects of mild head trauma on brain structure and function, as well as the underlying mechanisms in Drosophila melanogaster. We find that Drosophila subjected to repetitive head impacts develop long-term deficits, including impaired startle-induced climbing, progressive brain degeneration, and shortened lifespan, all of which are substantially exacerbated in female flies. Interestingly, head impacts elicit an elevation in neuronal activity and its acute suppression abrogates the detrimental effects in female flies. Together, our findings validate Drosophila as a suitable model system for investigating the long-term effects of mild head trauma, suggest an increased vulnerability to brain injury in female flies, and indicate that early altered neuronal excitability may be a key mechanism linking mild brain trauma to chronic degeneration.
Collapse
Affiliation(s)
- Joseph A Behnke
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Changtian Ye
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Aayush Setty
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - James Q Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
71
|
Elevated and Slowed EEG Oscillations in Patients with Post-Concussive Syndrome and Chronic Pain Following a Motor Vehicle Collision. Brain Sci 2021; 11:brainsci11050537. [PMID: 33923286 PMCID: PMC8145977 DOI: 10.3390/brainsci11050537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Mild traumatic brain injury produces significant changes in neurotransmission including brain oscillations. We investigated potential quantitative electroencephalography biomarkers in 57 patients with post-concussive syndrome and chronic pain following motor vehicle collision, and 54 healthy nearly age- and sex-matched controls. (2) Methods: Electroencephalography processing was completed in MATLAB, statistical modeling in SPSS, and machine learning modeling in Rapid Miner. Group differences were calculated using current-source density estimation, yielding whole-brain topographical distributions of absolute power, relative power and phase-locking functional connectivity. Groups were compared using independent sample Mann–Whitney U tests. Effect sizes and Pearson correlations were also computed. Machine learning analysis leveraged a post hoc supervised learning support vector non-probabilistic binary linear kernel classification to generate predictive models from the derived EEG signatures. (3) Results: Patients displayed significantly elevated and slowed power compared to controls: delta (p = 0.000000, r = 0.6) and theta power (p < 0.0001, r = 0.4), and relative delta power (p < 0.00001) and decreased relative alpha power (p < 0.001). Absolute delta and theta power together yielded the strongest machine learning classification accuracy (87.6%). Changes in absolute power were moderately correlated with duration and persistence of symptoms in the slow wave frequency spectrum (<15 Hz). (4) Conclusions: Distributed increases in slow wave oscillatory power are concurrent with post-concussive syndrome and chronic pain.
Collapse
|
72
|
Traumatic Brain Injury: Ultrastructural Features in Neuronal Ferroptosis, Glial Cell Activation and Polarization, and Blood-Brain Barrier Breakdown. Cells 2021; 10:cells10051009. [PMID: 33923370 PMCID: PMC8146242 DOI: 10.3390/cells10051009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
The secondary injury process after traumatic brain injury (TBI) results in motor dysfunction, cognitive and emotional impairment, and poor outcomes. These injury cascades include excitotoxic injury, mitochondrial dysfunction, oxidative stress, ion imbalance, inflammation, and increased vascular permeability. Electron microscopy is an irreplaceable tool to understand the complex pathogenesis of TBI as the secondary injury is usually accompanied by a series of pathologic changes at the ultra-micro level of the brain cells. These changes include the ultrastructural changes in different parts of the neurons (cell body, axon, and synapses), glial cells, and blood–brain barrier, etc. In view of the current difficulties in the treatment of TBI, identifying the changes in subcellular structures can help us better understand the complex pathologic cascade reactions after TBI and improve clinical diagnosis and treatment. The purpose of this review is to summarize and discuss the ultrastructural changes related to neurons (e.g., condensed mitochondrial membrane in ferroptosis), glial cells, and blood–brain barrier in the existing reports of TBI, to deepen the in-depth study of TBI pathomechanism, hoping to provide a future research direction of pathogenesis and treatment, with the ultimate aim of improving the prognosis of patients with TBI.
Collapse
|
73
|
Ryu J, Stone P, Lee S, Payne B, Gorse K, Lafrenaye A. Buprenorphine alters microglia and astrocytes acutely following diffuse traumatic brain injury. Sci Rep 2021; 11:8620. [PMID: 33883663 PMCID: PMC8060410 DOI: 10.1038/s41598-021-88030-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 02/02/2023] Open
Abstract
Traumatic brain injury (TBI) is a common phenomenon, accounting for significant cost and adverse health effects. While there is information about focal pathologies following TBI, knowledge of more diffuse processes is lacking, particularly regarding how analgesics affect this pathology. As buprenorphine is the most commonly used analgesic in experimental TBI models, this study investigated the acute effects of the opioid analgesic buprenorphine (Bup-SR-Lab) on diffuse neuronal/glial pathology, neuroinflammation, cell damage, and systemic physiology. We utilized a model of central fluid percussion injury (CFPI) in adult male rats treated with a single subcutaneous bolus of Bup-SR-Lab or saline 15 min post-injury. Microscopic assessments were performed at 1 day post-injury. Cell impermeable dextran was infused intraventricularly prior to sacrifice to assess neuronal membrane disruption. Axonal injury was assessed by investigating labeling of the anterogradely transported amyloid precursor protein. Neuroinflammation was assessed by analyzing Iba-1 + microglial and GFAP + astrocyte histological/morphological features as well as cytokine levels in both regions of interest (ROIs). Myelin pathology was assessed by evaluating the expression of myelin basic protein (MBP) and the propensity of MBP + myelin debris. Acute physiologic data showed no difference between groups except for reduction in weight loss following cFPI in Bup treated animals compared to saline. There were no discernable differences in axonal injury or membrane disruption between treatment groups. Cytokine levels were consistent between Bup and saline treated animals, however, microglia and astrocytes revealed region specific histological changes at 1d following Bup treatment. Myelin integrity and overall MBP expression showed no differences between Bup and saline treated animals, but there were significant regional differences in MBP expression between the cortex and thalamus. These data suggest effects of Bup treatment on weight following CFPI and potential regional specificity of Bup-associated microglial and astrocyte alterations, but very little change in other acute pathology at 1-day post-injury. Overall, this preliminary study indicates that use of Bup-SR-Lab in preclinical work does have effects on acute glial pathology, however, longer term studies will be needed to assess potential effects of Bup treatment on more chronic pathological progressions.
Collapse
Affiliation(s)
- Jane Ryu
- grid.224260.00000 0004 0458 8737Virginia Commonwealth University, 1101 E. Marshall St., Box 980709, Richmond, VA 23298 USA
| | - Phillip Stone
- grid.224260.00000 0004 0458 8737Virginia Commonwealth University, 1101 E. Marshall St., Box 980709, Richmond, VA 23298 USA
| | | | - Brighton Payne
- grid.266671.20000 0000 9565 4349University of Mary Washington, Fredericksburg, VA USA
| | - Karen Gorse
- grid.224260.00000 0004 0458 8737Virginia Commonwealth University, 1101 E. Marshall St., Box 980709, Richmond, VA 23298 USA
| | - Audrey Lafrenaye
- grid.224260.00000 0004 0458 8737Virginia Commonwealth University, 1101 E. Marshall St., Box 980709, Richmond, VA 23298 USA
| |
Collapse
|
74
|
Ghazi K, Wu S, Zhao W, Ji S. Instantaneous Whole-Brain Strain Estimation in Dynamic Head Impact. J Neurotrauma 2021; 38:1023-1035. [PMID: 33126836 PMCID: PMC8054523 DOI: 10.1089/neu.2020.7281] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Head injury models are notoriously time consuming and resource demanding in simulations, which prevents routine application. Here, we extend a convolutional neural network (CNN) to instantly estimate element-wise distribution of peak maximum principal strain (MPS) of the entire brain (>36 k speedup accomplished on a low-end computing platform). To achieve this, head impact rotational velocity and acceleration temporal profiles are combined into two-dimensional images to serve as CNN input for training and prediction of MPS. Compared with the directly simulated counterparts, the CNN-estimated responses (magnitude and distribution) are sufficiently accurate for 92.1% of the cases via 10-fold cross-validation using impacts drawn from the real world (n = 5661; range of peak rotational velocity in augmented data extended to 2-40 rad/sec). The success rate further improves to 97.1% for "in-range" impacts (n = 4298). When using the same CNN architecture to train (n = 3064) and test on an independent, reconstructed National Football League (NFL) impact dataset (n = 53; 20 concussions and 33 non-injuries), 51 out of 53, or 96.2% of the cases, are sufficiently accurate. The estimated responses also achieve virtually identical concussion prediction performances relative to the directly simulated counterparts, and they often outperform peak MPS of the whole brain (e.g., accuracy of 0.83 vs. 0.77 via leave-one-out cross-validation). These findings support the use of CNN for accurate and efficient estimation of spatially detailed brain strains across the vast majority of head impacts in contact sports. Our technique may hold the potential to transform traumatic brain injury (TBI) research and the design and testing standards of head protective gears by facilitating the transition from acceleration-based approximation to strain-based design and analysis. This would have broad implications in the TBI biomechanics field to accelerate new scientific discoveries. The pre-trained CNN is freely available online at https://github.com/Jilab-biomechanics/CNN-brain-strains.
Collapse
Affiliation(s)
- Kianoosh Ghazi
- Department of Biomedical Engineering and Worcester Polytechnic Institute, Worcester, Massachustts, USA
| | - Shaoju Wu
- Department of Biomedical Engineering and Worcester Polytechnic Institute, Worcester, Massachustts, USA
| | - Wei Zhao
- Department of Biomedical Engineering and Worcester Polytechnic Institute, Worcester, Massachustts, USA
| | - Songbai Ji
- Department of Biomedical Engineering and Worcester Polytechnic Institute, Worcester, Massachustts, USA
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachustts, USA
| |
Collapse
|
75
|
Safar K, Zhang J, Emami Z, Gharehgazlou A, Ibrahim G, Dunkley BT. Mild traumatic brain injury is associated with dysregulated neural network functioning in children and adolescents. Brain Commun 2021; 3:fcab044. [PMID: 34095832 PMCID: PMC8176148 DOI: 10.1093/braincomms/fcab044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
Mild traumatic brain injury is highly prevalent in paediatric populations, and can result in chronic physical, cognitive and emotional impairment, known as persistent post-concussive symptoms. Magnetoencephalography has been used to investigate neurophysiological dysregulation in mild traumatic brain injury in adults; however, whether neural dysrhythmia persists in chronic mild traumatic brain injury in children and adolescents is largely unknown. We predicted that children and adolescents would show similar dysfunction as adults, including pathological slow-wave oscillations and maladaptive, frequency-specific, alterations to neural connectivity. Using magnetoencephalography, we investigated regional oscillatory power and distributed brain-wide networks in a cross-sectional sample of children and adolescents in the chronic stages of mild traumatic brain injury. Additionally, we used a machine learning pipeline to identify the most relevant magnetoencephalography features for classifying mild traumatic brain injury and to test the relative classification performance of regional power versus functional coupling. Results revealed that the majority of participants with chronic mild traumatic brain injury reported persistent post-concussive symptoms. For neurophysiological imaging, we found increased regional power in the delta band in chronic mild traumatic brain injury, predominantly in bilateral occipital cortices and in the right inferior temporal gyrus. Those with chronic mild traumatic brain injury also showed dysregulated neuronal coupling, including decreased connectivity in the delta range, as well as hyper-connectivity in the theta, low gamma and high gamma bands, primarily involving frontal, temporal and occipital brain areas. Furthermore, our multivariate classification approach combined with functional connectivity data outperformed regional power in terms of between-group classification accuracy. For the first time, we establish that local and large-scale neural activity are altered in youth in the chronic phase of mild traumatic brain injury, with the majority presenting persistent post-concussive symptoms, and that dysregulated interregional neural communication is a reliable marker of lingering paediatric ‘mild’ traumatic brain injury.
Collapse
Affiliation(s)
- Kristina Safar
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4
| | - Jing Zhang
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4
| | - Zahra Emami
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4
| | - Avideh Gharehgazlou
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - George Ibrahim
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4.,Department of Surgery, University of Toronto, Toronto, ON, Canada M5T 1P5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9 Canada
| | - Benjamin T Dunkley
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada M5T 1W7
| |
Collapse
|
76
|
Postupna N, Rose SE, Gibbons LE, Coleman NM, Hellstern LL, Ritchie K, Wilson AM, Cudaback E, Li X, Melief EJ, Beller AE, Miller JA, Nolan AL, Marshall DA, Walker R, Montine TJ, Larson EB, Crane PK, Ellenbogen RG, Lein ES, Dams-O'Connor K, Keene CD. The Delayed Neuropathological Consequences of Traumatic Brain Injury in a Community-Based Sample. Front Neurol 2021; 12:624696. [PMID: 33796061 PMCID: PMC8008107 DOI: 10.3389/fneur.2021.624696] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
The late neuropathological effects of traumatic brain injury have yet to be fully elucidated, particularly with respect to community-based cohorts. To contribute to this critical gap in knowledge, we designed a multimodal neuropathological study, integrating traditional and quantitative approaches to detect pathologic changes in 532 consecutive brain autopsies from participants in the Adult Changes in Thought (ACT) study. Diagnostic evaluation including assessment for chronic traumatic encephalopathy (CTE) and quantitative immunoassay-based methods were deployed to examine levels of pathological (hyperphosphorylated) tau (pTau) and amyloid (A) β in brains from ACT participants with (n = 107) and without (n = 425) history of remote TBI with loss of consciousness (w/LOC). Further neuropathological assessments included immunohistochemistry for α-synuclein and phospho-TDP-43 pathology and astro- (GFAP) and micro- (Iba1) gliosis, mass spectrometry analysis of free radical injury, and gene expression evaluation (RNA sequencing) in a smaller sub-cohort of matched samples (49 cases with TBI and 49 non-exposed matched controls). Out of 532 cases, only 3 (0.6%-none with TBI w/LOC history) showed evidence of the neuropathologic signature of chronic traumatic encephalopathy (CTE). Across the entire cohort, the levels of pTau and Aβ showed expected differences for brain region (higher levels in temporal cortex), neuropathological diagnosis (higher in participants with Alzheimer's disease), and APOE genotype (higher in participants with one or more APOE ε4 allele). However, no differences in PHF-tau or Aβ1-42 were identified by Histelide with respect to the history of TBI w/LOC. In a subset of TBI cases with more carefully matched control samples and more extensive analysis, those with TBI w/LOC history had higher levels of hippocampal pTau but no significant differences in Aβ, α-synuclein, pTDP-43, GFAP, Iba1, or free radical injury. RNA-sequencing also did not reveal significant gene expression associated with any measure of TBI exposure. Combined, these findings suggest long term neuropathological changes associated with TBI w/LOC may be subtle, involve non-traditional pathways of neurotoxicity and neurodegeneration, and/or differ from those in autopsy cohorts specifically selected for neurotrauma exposure.
Collapse
Affiliation(s)
- Nadia Postupna
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Shannon E. Rose
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Laura E. Gibbons
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Natalie M. Coleman
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Leanne L. Hellstern
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Kayla Ritchie
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Angela M. Wilson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Eiron Cudaback
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Xianwu Li
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Erica J. Melief
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Allison E. Beller
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | | | - Amber L. Nolan
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Desiree A. Marshall
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| | - Rod Walker
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States
| | - Thomas J. Montine
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Eric B. Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States
| | - Paul K. Crane
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Richard G. Ellenbogen
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| | - Edward S. Lein
- Allen Institute for Brain Science, Seattle, WA, United States
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| | - Kristen Dams-O'Connor
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
77
|
Chen Y, Herrold AA, Walter AE, Reilly JL, Seidenberg PH, Nauman EA, Talavage T, Vandenbergh DJ, Slobounov SM, Breiter HC. Brain Perfusion Bridges Virtual-Reality Spatial Behavior to TPH2 Genotype for Head Acceleration Events. J Neurotrauma 2021; 38:1368-1376. [PMID: 33413020 DOI: 10.1089/neu.2020.7016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neuroimaging demonstrates that athletes of collision sports can suffer significant changes to their brain in the absence of concussion, attributable to head acceleration event (HAE) exposure. In a sample of 24 male Division I collegiate football players, we examine the relationships between tryptophan hydroxylase 2 (TPH2), a gene involved in neurovascular function, regional cerebral blood flow (rCBF) measured by arterial spin labeling, and virtual reality (VR) motor performance, both pre-season and across a single football season. For the pre-season, TPH2 T-carriers showed lower rCBF in two left hemisphere foci (fusiform gyrus/thalamus/hippocampus and cerebellum) in association with higher (better performance) VR Reaction Time, a dynamic measure of sensory-motor reactivity and efficiency of visual-spatial processing. For TPH2 CC homozygotes, higher pre-season rCBF in these foci was associated with better performance on VR Reaction Time. A similar relationship was observed across the season, where TPH2 T-carriers showed improved VR Reaction Time associated with decreases in rCBF in the right hippocampus/amygdala, left middle temporal lobe, and left insula/putamen/pallidum. In contrast, TPH2 CC homozygotes showed improved VR Reaction Time associated with increases in rCBF in the same three clusters. These findings show that TPH2 T-carriers have an abnormal relationship between rCBF and the efficiency of visual-spatial processing that is exacerbated after a season of high-impact sports in the absence of diagnosable concussion. Such gene-environment interactions associated with behavioral changes after exposure to repetitive HAEs have been unrecognized with current clinical analytical tools and warrant further investigation. Our results demonstrate the importance of considering neurovascular factors along with traumatic axonal injury to study long-term effects of repetitive HAEs.
Collapse
Affiliation(s)
- Yufen Chen
- Center for Translational Imaging, Department of Radiology, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Amy A Herrold
- Edward Hines Jr., VA Hospital, Research Service, Hines, Illinois, USA.,Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alexa E Walter
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - James L Reilly
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Peter H Seidenberg
- Departments of Orthopedics and Rehabilitation and Family and Community Medicine, College of Medicine, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Eric A Nauman
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA.,Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Thomas Talavage
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - David J Vandenbergh
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania, USA.,Penn State Neuroscience Institute, Pennsylvania State University, University Park, Pennsylvania, USA.,Molecular, Cellular, and Integrative Biosciences Program, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Semyon M Slobounov
- Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Hans C Breiter
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
78
|
Donat CK, Yanez Lopez M, Sastre M, Baxan N, Goldfinger M, Seeamber R, Müller F, Davies P, Hellyer P, Siegkas P, Gentleman S, Sharp DJ, Ghajari M. From biomechanics to pathology: predicting axonal injury from patterns of strain after traumatic brain injury. Brain 2021; 144:70-91. [PMID: 33454735 PMCID: PMC7990483 DOI: 10.1093/brain/awaa336] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
The relationship between biomechanical forces and neuropathology is key to understanding traumatic brain injury. White matter tracts are damaged by high shear forces during impact, resulting in axonal injury, a key determinant of long-term clinical outcomes. However, the relationship between biomechanical forces and patterns of white matter injuries, associated with persistent diffusion MRI abnormalities, is poorly understood. This limits the ability to predict the severity of head injuries and the design of appropriate protection. Our previously developed human finite element model of head injury predicted the location of post-traumatic neurodegeneration. A similar rat model now allows us to experimentally test whether strain patterns calculated by the model predicts in vivo MRI and histology changes. Using a controlled cortical impact, mild and moderate injuries (1 and 2 mm) were performed. Focal and axonal injuries were quantified with volumetric and diffusion 9.4 T MRI at 2 weeks post injury. Detailed analysis of the corpus callosum was conducted using multi-shell diffusion MRI and histopathology. Microglia and astrocyte density, including process parameters, along with white matter structural integrity and neurofilament expression were determined by quantitative immunohistochemistry. Linear mixed effects regression analyses for strain and strain rate with the employed outcome measures were used to ascertain how well immediate biomechanics could explain MRI and histology changes. The spatial pattern of mechanical strain and strain rate in the injured cortex shows good agreement with the probability maps of focal lesions derived from volumetric MRI. Diffusion metrics showed abnormalities in the corpus callosum, indicating white matter changes in the segments subjected to high strain, as predicted by the model. The same segments also exhibited a severity-dependent increase in glia cell density, white matter thinning and reduced neurofilament expression. Linear mixed effects regression analyses showed that mechanical strain and strain rate were significant predictors of in vivo MRI and histology changes. Specifically, strain and strain rate respectively explained 33% and 28% of the reduction in fractional anisotropy, 51% and 29% of the change in neurofilament expression and 51% and 30% of microglia density changes. The work provides evidence that strain and strain rate in the first milliseconds after injury are important factors in determining patterns of glial and axonal injury and serve as experimental validators of our computational model of traumatic brain injury. Our results provide support for the use of this model in understanding the relationship of biomechanics and neuropathology and can guide the development of head protection systems, such as airbags and helmets.
Collapse
Affiliation(s)
- Cornelius K Donat
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Royal British Legion Centre for Blast Injury Studies, Imperial College London, London, UK
| | - Maria Yanez Lopez
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Magdalena Sastre
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Nicoleta Baxan
- Biological Imaging Centre, Central Biomedical Services, Imperial College London, London, UK
| | - Marc Goldfinger
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Reneira Seeamber
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Franziska Müller
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Polly Davies
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Peter Hellyer
- Centre for Neuroimaging Sciences, King’s College London, London, UK
| | | | - Steve Gentleman
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - David J Sharp
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Royal British Legion Centre for Blast Injury Studies, Imperial College London, London, UK
- UK Dementia Research Institute, Care Research and Technology Centre; Imperial College London, London, UK
| | - Mazdak Ghajari
- Royal British Legion Centre for Blast Injury Studies, Imperial College London, London, UK
- Design Engineering, Imperial College London, UK
| |
Collapse
|
79
|
Adamovich-Zeitlin R, Wanda PA, Solomon E, Phan T, Lega B, Jobst BC, Gross RE, Ding K, Diaz-Arrastia R, Kahana MJ. Biomarkers of memory variability in traumatic brain injury. Brain Commun 2021; 3:fcaa202. [PMID: 33543140 PMCID: PMC7850041 DOI: 10.1093/braincomms/fcaa202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
Traumatic brain injury is a leading cause of cognitive disability and is often associated with significant impairment in episodic memory. In traumatic brain injury survivors, as in healthy controls, there is marked variability between individuals in memory ability. Using recordings from indwelling electrodes, we characterized and compared the oscillatory biomarkers of mnemonic variability in two cohorts of epilepsy patients: a group with a history of moderate-to-severe traumatic brain injury (n = 37) and a group of controls without traumatic brain injury (n = 111) closely matched for demographics and electrode coverage. Analysis of these recordings demonstrated that increased high-frequency power and decreased theta power across a broad set of brain regions mark periods of successful memory formation in both groups. As features in a logistic-regression classifier, spectral power biomarkers effectively predicted recall probability, with little difference between traumatic brain injury patients and controls. The two groups also displayed similar patterns of theta-frequency connectivity during successful encoding periods. These biomarkers of successful memory, highly conserved between traumatic brain injury patients and controls, could serve as the basis for novel therapies that target disordered memory across diverse forms of neurological disease.
Collapse
Affiliation(s)
| | - Paul A Wanda
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ethan Solomon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tung Phan
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Barbara C Jobst
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Hanover, NH 03766, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, GA 30322, USA
| | - Kan Ding
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
80
|
Karlsson M, Yang Z, Chawla S, Delso N, Pukenas B, Elmér E, Hugerth M, Margulies SS, Ehinger J, Hansson MJ, Wang KKW, Kilbaugh TJ. Evaluation of Diffusion Tensor Imaging and Fluid Based Biomarkers in a Large Animal Trial of Cyclosporine in Focal Traumatic Brain Injury. J Neurotrauma 2021; 38:1870-1878. [PMID: 33191835 DOI: 10.1089/neu.2020.7317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
All phase III trials evaluating medical treatments for traumatic brain injury (TBI), performed to date, have failed. To facilitate future success there is a need for novel outcome metrics that can bridge pre-clinical studies to clinical proof of concept trials. Our objective was to assess diffusion tensor imaging (DTI) and biofluid-based biomarkers as efficacy outcome metrics in a large animal study evaluating the efficacy of cyclosporine in TBI. This work builds on our previously published study that demonstrated a reduced volume of injury by 35% with cyclosporine treatment based on magnetic resonance imaging (MRI) results. A focal contusion injury was induced in piglets using a controlled cortical impact (CCI) device. Cyclosporine in a novel Cremophor/Kolliphor EL-free lipid emulsion, NeuroSTAT, was administered by continuous intravenous infusion for 5 days. The animals underwent DTI on day 5. Glial fibrillary acidic protein (GFAP), as a measure of astroglia injury, and neurofilament light (NF-L), as a measure of axonal injury, were measured in blood on days 1, 2, and 5, and in cerebrospinal fluid (CSF) on day 5 post-injury. Normalized fractional anisotropy (FA) was significantly (p = 0.027) higher in in the treatment group, indicating preserved tissue integrity with treatment. For the biomarkers, we observed a statistical trend of a decreased level of NF-L in CSF (p = 0.051), in the treatment group relative to placebo, indicating less axonal injury. Our findings suggest that DTI, and possibly CSF NF-L, may be feasible as translational end-points assessing neuroprotective drugs in TBI.
Collapse
Affiliation(s)
- Michael Karlsson
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark.,Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at University of Pennsylvania, Philadelphia, USA
| | - Nile Delso
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, USA
| | - Bryan Pukenas
- Department of Radiology, Perelman School of Medicine at University of Pennsylvania, Philadelphia, USA
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.,Abliva AB, Lund, Sweden
| | | | - Susan S Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Johannes Ehinger
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Magnus J Hansson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.,Abliva AB, Lund, Sweden
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
81
|
Lafrenaye A, Mondello S, Povlishock J, Gorse K, Walker S, Hayes R, Wang K, Kochanek PM. Operation Brain Trauma Therapy: An Exploratory Study of Levetiracetam Treatment Following Mild Traumatic Brain Injury in the Micro Pig. Front Neurol 2021; 11:586958. [PMID: 33584493 PMCID: PMC7874167 DOI: 10.3389/fneur.2020.586958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
Operation brain trauma therapy (OBTT) is a drug- and biomarker-screening consortium intended to improve the quality of preclinical studies and provide a rigorous framework to increase the translational potential of experimental traumatic brain injury (TBI) treatments. Levetiracetam (LEV) is an antiepileptic agent that was the fifth drug tested by OBTT in three independent rodent models of moderate to severe TBI. To date, LEV has been the most promising drug tested by OBTT and was therefore advanced to testing in the pig. Adult male micro pigs were subjected to a mild central fluid percussion brain injury followed by a post-injury intravenous infusion of either 170 mg/kg LEV or vehicle. Systemic physiology was assessed throughout the post-injury period. Serial serum samples were obtained pre-injury as well as at 1 min, 30 min, 1 h, 3 h, and 6 h post-injury for a detailed analysis of the astroglial biomarker glial fibrillary acidic protein (GFAP) and ubiquitin carboxy-terminal hydrolase L1. Tissue was collected 6 h following injury for histological assessment of diffuse axonal injury using antibodies against the amyloid precursor protein (APP). The animals showed significant increases in circulating GFAP levels from baseline to 6 h post-injury; however, LEV treatment was associated with greater GFAP increases compared to the vehicle. There were no differences in the numbers of APP+ axonal swellings within the pig thalamus with LEV treatment; however, significant alterations in the morphological properties of the APP+ axonal swellings, including reduced swelling area and increased swelling roundness, were observed. Additionally, expression of the neurite outgrowth marker, growth-associated protein 43, was reduced in axonal swellings following LEV treatment, suggesting potential effects on axonal outgrowth that warrant further investigation.
Collapse
Affiliation(s)
- Audrey Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - John Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Karen Gorse
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Susan Walker
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Ronald Hayes
- Banyan Biomarkers, Inc., Alachua, FL, United States
| | - Kevin Wang
- Departments of Psychiatry & Neuroscience, Center for Neuroproteomics & Biomarkers Research, University of Florida, Gainesville, FL, United States
| | - Patrick M Kochanek
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
82
|
Estrada JB, Cramer HC, Scimone MT, Buyukozturk S, Franck C. Neural cell injury pathology due to high-rate mechanical loading. BRAIN MULTIPHYSICS 2021. [DOI: 10.1016/j.brain.2021.100034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
83
|
Balasubramanian N, Sagarkar S, Jadhav M, Shahi N, Sirmaur R, Sakharkar AJ. Role for Histone Deacetylation in Traumatic Brain Injury-Induced Deficits in Neuropeptide Y in Arcuate Nucleus: Possible Implications in Feeding Behavior. Neuroendocrinology 2021; 111:1187-1200. [PMID: 33291119 DOI: 10.1159/000513638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Repeated traumatic events result in long-lasting neuropsychiatric ailments, including neuroendocrine imbalances. Neuropeptide Y (NPY) in the arcuate nucleus (Arc) is an important orexigenic peptide. However, the molecular underpinnings of its dysregulation owing to traumatic brain injury remain unknown. METHODS Rats were subjected to repeated mild traumatic brain injury (rMTBI) using the closed head weight-drop model. Feeding behavior and the regulatory epigenetic parameters of NPY expression were measured at 48 h and 30 days post-rMTBI. Further, sodium butyrate (SB), a pan-histone deacetylase (HDAC) inhibitor, was administered to examine whether histone deacetylation is involved in NPY expression post-rMTBI. RESULTS The rMTBI attenuated food intake, which was coincident with a decrease in NPY mRNA and protein levels in the Arc post-rMTBI. Further, rMTBI also reduced the mRNA levels of the cAMP response element-binding protein (CREB) and CREB-binding protein (CBP) and altered the mRNA levels of the various isoforms of the HDACs. Concurrently, the acetylated histone 3-lysine 9 (H3-K9) levels and the binding of CBP at the NPY promoter in the Arc of the rMTBI-exposed rats were reduced. However, the treatment with SB corrected the rMTBI-induced deficits in the H3-K9 acetylation levels and CBP occupancy at the NPY promoter, restoring both NPY expression and food intake. CONCLUSIONS These findings suggest that histone deacetylation at the NPY promoter persistently controls NPY function in the Arc after rMTBI. This study also demonstrates the efficacy of HDAC inhibitors in mitigating trauma-induced neuroendocrine maladaptations in the hypothalamus.
Collapse
Affiliation(s)
| | - Sneha Sagarkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Meha Jadhav
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Navneet Shahi
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Richa Sirmaur
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, India,
| |
Collapse
|
84
|
Eyolfson E, Carr T, Khan A, Wright DK, Mychasiuk R, Lohman AW. Repetitive Mild Traumatic Brain Injuries in Mice during Adolescence Cause Sexually Dimorphic Behavioral Deficits and Neuroinflammatory Dynamics. J Neurotrauma 2020; 37:2718-2732. [DOI: 10.1089/neu.2020.7195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Eric Eyolfson
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
| | - Thomas Carr
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
| | - Asher Khan
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
| | - David K. Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Alexander W. Lohman
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
85
|
Zhang Y, Li L, He L. Radiological-prognostic correlation of diffusion tensor imaging in a mild traumatic brain injury model. Exp Ther Med 2020; 20:256. [PMID: 33199982 DOI: 10.3892/etm.2020.9386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Diffusion tensor imaging (DTI) parameters can detect changes in the brain microstructure in mild traumatic brain injury (mTBI). Whether these parameter changes can predict neural functional recovery after mTBI is still relatively unknown. The present study aimed to investigate the radiological-prognostic correlation between these radiological parameters and learning and memory deficits using an in-house constructed rat model of mTBI. We established a rat model of diffuse axonal injury (DAI) at different injury levels, followed by magnetic resonance imaging at 6, 24, and 72 h, and 1, 2 weeks post injury, and randomly selected the rats for analysis of histopathology and learning and memory deficits. DTI parameters and β-amyloid precursor protein (β-APP) levels were obtained to estimate the extent of brain injury and the correlation with the times of crossing the safety platform as measured using a water maze test. The results revealed that fractional anisotropy (FA) was sensitive to axonal integrity. FA values of the corpus callosum in the injury groups decreased at all time points post injury, except in the mild injury group, which recovered to normal levels at 1 and 2 weeks post-injury. The neural function of the mild injury group recovered to normal compared with the normal control group. FA value, β-APP of corpus callosum in different groups at 24 h post injury showed obvious correlation with learning and memory deficits at the recovery stage (r=0.881, r=-0.931). In conclusion, DTI can reflect varying injury states of DAI over time with direct comparison to histopathology and could be used to predict the neural functional recovery at the early stage post-injury in a rat model.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Lusheng Li
- Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, P.R. China.,Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Ling He
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China.,Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, P.R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
86
|
Eyolfson E, Khan A, Mychasiuk R, Lohman AW. Microglia dynamics in adolescent traumatic brain injury. J Neuroinflammation 2020; 17:326. [PMID: 33121516 PMCID: PMC7597018 DOI: 10.1186/s12974-020-01994-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Repetitive, mild traumatic brain injuries (RmTBIs) are increasingly common in adolescents and encompass one of the largest neurological health concerns in the world. Adolescence is a critical period for brain development where RmTBIs can substantially impact neurodevelopmental trajectories and life-long neurological health. Our current understanding of RmTBI pathophysiology suggests key roles for neuroinflammation in negatively regulating neural health and function. Microglia, the brain’s resident immune population, play important roles in brain development by regulating neuronal number, and synapse formation and elimination. In response to injury, microglia activate to inflammatory phenotypes that may detract from these normal homeostatic, physiological, and developmental roles. To date, however, little is known regarding the impact of RmTBIs on microglia function during adolescent brain development. This review details key concepts surrounding RmTBI pathophysiology, adolescent brain development, and microglia dynamics in the developing brain and in response to injury, in an effort to formulate a hypothesis on how the intersection of these processes may modify long-term trajectories.
Collapse
Affiliation(s)
- Eric Eyolfson
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada
| | - Asher Khan
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N1N4, Canada.,Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada.,Department of Neuroscience, Monash University, 6th Floor, The Alfred Centre, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Alexander W Lohman
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, T2N4N1, Canada. .,Department of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.
| |
Collapse
|
87
|
Abstract
Several hypotheses have been put forth over time to explain how consciousness can be so rapidly lost, and then spontaneously regained, following mechanical head trauma. The knockout punch in boxing is a relatively homogenous form of traumatic brain injury and can thus be used to test the predictions of these hypotheses. While none of the hypotheses put forth can be considered fully verified, pore formation following stretching of the axonal cell membrane, mechanoporation, is a strong contender. We here argue that the theoretical foundation of mechanoporation can be strengthened by a comparison with the experimental method electroporation.
Collapse
Affiliation(s)
- Anders Hånell
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Elham Rostami
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Department of Neuroscience, Karolinska Institutet (KI), Stockholm, Sweden
| |
Collapse
|
88
|
Recent progress in therapeutic drug delivery systems for treatment of traumatic CNS injuries. Future Med Chem 2020; 12:1759-1778. [PMID: 33028091 DOI: 10.4155/fmc-2020-0178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Most therapeutics for the treatment of traumatic central nervous system injuries, such as traumatic brain injury and spinal cord injury, encounter various obstacles in reaching the target tissue and exerting pharmacological effects, including physiological barriers like the blood-brain barrier and blood-spinal cord barrier, instability rapid elimination from the injured tissue or cerebrospinal fluid and off-target toxicity. For central nervous system delivery, nano- and microdrug delivery systems are regarded as the most suitable and promising carriers. In this review, the pathophysiology and biomarkers of traumatic central nervous system injuries (traumatic brain injury and spinal cord injury) are introduced. Furthermore, various drug delivery systems, novel combinatorial therapies and advanced therapies for the treatment of traumatic brain injury and spinal cord injury are emphasized.
Collapse
|
89
|
Gabrieli D, Schumm SN, Vigilante NF, Parvesse B, Meaney DF. Neurodegeneration exposes firing rate dependent effects on oscillation dynamics in computational neural networks. PLoS One 2020; 15:e0234749. [PMID: 32966291 PMCID: PMC7510994 DOI: 10.1371/journal.pone.0234749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/01/2020] [Indexed: 12/26/2022] Open
Abstract
Traumatic brain injury (TBI) can lead to neurodegeneration in the injured circuitry, either through primary structural damage to the neuron or secondary effects that disrupt key cellular processes. Moreover, traumatic injuries can preferentially impact subpopulations of neurons, but the functional network effects of these targeted degeneration profiles remain unclear. Although isolating the consequences of complex injury dynamics and long-term recovery of the circuit can be difficult to control experimentally, computational networks can be a powerful tool to analyze the consequences of injury. Here, we use the Izhikevich spiking neuron model to create networks representative of cortical tissue. After an initial settling period with spike-timing-dependent plasticity (STDP), networks developed rhythmic oscillations similar to those seen in vivo. As neurons were sequentially removed from the network, population activity rate and oscillation dynamics were significantly reduced. In a successive period of network restructuring with STDP, network activity levels returned to baseline for some injury levels and oscillation dynamics significantly improved. We next explored the role that specific neurons have in the creation and termination of oscillation dynamics. We determined that oscillations initiate from activation of low firing rate neurons with limited structural inputs. To terminate oscillations, high activity excitatory neurons with strong input connectivity activate downstream inhibitory circuitry. Finally, we confirm the excitatory neuron population role through targeted neurodegeneration. These results suggest targeted neurodegeneration can play a key role in the oscillation dynamics after injury.
Collapse
Affiliation(s)
- David Gabrieli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Samantha N. Schumm
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nicholas F. Vigilante
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brandon Parvesse
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
90
|
Gupta PK, Arif M, Shaik L, Singh R, Shah K. Solitary Sign of Third Nerve Palsy in a Conscious Patient With Epidural Hemorrhage. Cureus 2020; 12:e10003. [PMID: 32983700 PMCID: PMC7515150 DOI: 10.7759/cureus.10003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Epidural hematoma is a life-threatening complication of head injury, which often occurs as a result of blunt trauma to the skull. Unregulated hematoma expansion in any setting results in elevated intracranial pressure and may contribute to the compression of the oculomotor nerve among several other adversities culminating in various long-lasting complications in the future. In this case report, we present the findings of a rare, insightful case of a 47-year-old Southeast Asian male with no established prior medical history apart from being a victim of blunt trauma attributable to a fall four days before presenting to the emergency department with abrupt onset of diplopia and drooping of the left eyelid. The initial physical examination helped to establish a diagnosis of third nerve palsy. A non-contrast CT of the head was conducted, and its findings revealed the presence of a right temporal-parietal-occipital epidural hemorrhage, with no mass impact on the cerebral hemisphere. The patient later underwent a successful left temporoparietal craniotomy, during which 100-125 ml of blood was drained out. Post-surgery, a near-full reduction of ptosis was recorded at the end of the first week. This case report summarizes this ingenious depiction of a partial third nerve palsy presenting as the sole sign of the epidural hemorrhage in a cognizant patient.
Collapse
Affiliation(s)
| | - Mohammad Arif
- Neurological Surgery, Jawaharlal Nehru Medical College, Ajmer, IND
| | - Likhita Shaik
- Internal Medicine, Ashwini Rural Medical College Hospital and Research Centre, Solapur, IND.,Medical Oncology, Mayo Clinic, Rochester, USA
| | - Romil Singh
- Internal Medicine, Metropolitan Hospital, Jaipur, IND
| | - Kaushal Shah
- Psychiatry, Griffin Memorial Hospital, Norman, USA
| |
Collapse
|
91
|
Saikumar J, Byrns CN, Hemphill M, Meaney DF, Bonini NM. Dynamic neural and glial responses of a head-specific model for traumatic brain injury in Drosophila. Proc Natl Acad Sci U S A 2020; 117:17269-17277. [PMID: 32611818 PMCID: PMC7382229 DOI: 10.1073/pnas.2003909117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is the strongest environmental risk factor for the accelerated development of neurodegenerative diseases. There are currently no therapeutics to address this due to lack of insight into mechanisms of injury progression, which are challenging to study in mammalian models. Here, we have developed and extensively characterized a head-specific approach to TBI in Drosophila, a powerful genetic system that shares many conserved genes and pathways with humans. The Drosophila TBI (dTBI) device inflicts mild, moderate, or severe brain trauma by precise compression of the head using a piezoelectric actuator. Head-injured animals display features characteristic of mammalian TBI, including severity-dependent ataxia, life span reduction, and brain degeneration. Severe dTBI is associated with cognitive decline and transient glial dysfunction, and stimulates antioxidant, proteasome, and chaperone activity. Moreover, genetic or environmental augmentation of the stress response protects from severe dTBI-induced brain degeneration and life span deficits. Together, these findings present a tunable, head-specific approach for TBI in Drosophila that recapitulates mammalian injury phenotypes and underscores the ability of the stress response to mitigate TBI-induced brain degeneration.
Collapse
Affiliation(s)
- Janani Saikumar
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - China N Byrns
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Matthew Hemphill
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104;
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
92
|
Cherry JD, Babcock KJ, Goldstein LE. Repetitive Head Trauma Induces Chronic Traumatic Encephalopathy by Multiple Mechanisms. Semin Neurol 2020; 40:430-438. [PMID: 32674181 DOI: 10.1055/s-0040-1713620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exposure to repetitive neurotrauma increases lifetime risk for developing progressive cognitive deficits, neurobehavioral abnormalities, and chronic traumatic encephalopathy (CTE). CTE is a tau protein neurodegenerative disease first identified in boxers and recently described in athletes participating in other contact sports (notably American football, ice hockey, rugby, and wrestling) and in military veterans with blast exposure. Currently, CTE can only be diagnosed by neuropathological examination of the brain after death. The defining diagnostic lesion of CTE consists of patchy perivascular accumulations of hyperphosphorylated tau protein that localize in the sulcal depths of the cerebral cortex. Neuronal abnormalities, axonopathy, neurovascular dysfunction, and neuroinflammation are triggered by repetitive head impacts (RHIs) and likely act as catalysts for CTE pathogenesis and progression. However, the specific mechanisms that link RHI to CTE are unknown. This review will explore two important areas of CTE pathobiology. First, we will review what is known about the biomechanical properties of RHI that initiate CTE-related pathologies. Second, we will provide an overview of key features of CTE neuropathology and how these contribute to abnormal tau hyperphosphorylation, accumulation, and spread.
Collapse
Affiliation(s)
- Jonathan D Cherry
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,VA Boston Healthcare System, Boston, Massachusetts
| | - Katharine J Babcock
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts.,VA Boston Healthcare System, Boston, Massachusetts.,Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | - Lee E Goldstein
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts.,Boston University College of Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
93
|
Moreira da Silva N, Cowie CJA, Blamire AM, Forsyth R, Taylor PN. Investigating Brain Network Changes and Their Association With Cognitive Recovery After Traumatic Brain Injury: A Longitudinal Analysis. Front Neurol 2020; 11:369. [PMID: 32581989 PMCID: PMC7296134 DOI: 10.3389/fneur.2020.00369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/14/2020] [Indexed: 01/25/2023] Open
Abstract
Traumatic brain injury (TBI) can result in acute cognitive deficits and diffuse axonal injury reflected in white matter brain network alterations, which may, or may not, later recover. Our objective is to first characterize the ways in which brain networks change after TBI and, second, investigate if those changes are associated with recovery of cognitive deficits. We aim to make initial progress in discerning the relationships between brain network changes, and their (dys)functional correlates. We analyze longitudinally acquired MRI from 23 TBI patients (two time points: 6 days, 12 months post-injury) and cross-sectional data from 28 controls to construct white matter brain networks. Cognitive assessment was also performed. Graph theory and regression analysis were applied to identify changed brain network metrics after injury that are associated with subsequent improvements in cognitive function. Sixteen brain network metrics were found to be discriminative of different post-injury phases. Eleven of those explain 90% (adjusted R 2) of the variability observed in cognitive recovery following TBI. Brain network metrics that had a high contribution to the explained variance were found in frontal and temporal cortex, additional to the anterior cingulate cortex. Our preliminary study suggests that network reorganization may be related to recovery of impaired cognitive function in the first year after a TBI.
Collapse
Affiliation(s)
- Nádia Moreira da Silva
- CNNP Lab, Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher J. A. Cowie
- Faculty of Medical Sciences, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Neurosurgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Andrew M. Blamire
- Institute of Cellular Medicine, Newcastle MR Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rob Forsyth
- Institute of Cellular Medicine, Newcastle MR Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Peter Neal Taylor
- CNNP Lab, Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
94
|
Sousa SC, Sousa MM. The cytoskeleton as a modulator of tension driven axon elongation. Dev Neurobiol 2020; 81:300-309. [PMID: 32302060 DOI: 10.1002/dneu.22747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/11/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Throughout development, neurons are capable of integrating external and internal signals leading to the morphological changes required for neuronal polarization and axon growth. The first phase of axon elongation occurs during neuronal polarization. At this stage, membrane remodeling and cytoskeleton dynamics are crucial for the growth cone to advance and guide axon elongation. When a target is recognized, the growth cone collapses to form the presynaptic terminal. Once a synapse is established, the growth of the organism results in an increased distance between the neuronal cell bodies and their targets. In this second phase of axon elongation, growth cone-independent molecular mechanisms and cytoskeleton changes must occur to enable axon growth to accompany the increase in body size. While the field has mainly focused on growth-cone mediated axon elongation during development, tension driven axon growth remains largely unexplored. In this review, we will discuss in a critical perspective the current knowledge on the mechanisms guiding axon growth following synaptogenesis, with a particular focus on the putative role played by the axonal cytoskeleton.
Collapse
Affiliation(s)
- Sara C Sousa
- Nerve Regeneration group, Instituto de Biologia Molecular e Celular - IBMC and i3S, Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal.,Doctoral Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar-ICBAS, University of Porto, Porto, Portugal
| | - Mónica M Sousa
- Nerve Regeneration group, Instituto de Biologia Molecular e Celular - IBMC and i3S, Instituto de Inovação e Investigação em Saúde, University of Porto, Porto, Portugal
| |
Collapse
|
95
|
Losurdo M, Davidsson J, Sköld MK. Diffuse Axonal Injury in the Rat Brain: Axonal Injury and Oligodendrocyte Activity Following Rotational Injury. Brain Sci 2020; 10:E229. [PMID: 32290212 PMCID: PMC7225974 DOI: 10.3390/brainsci10040229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) commonly results in primary diffuse axonal injury (DAI) and associated secondary injuries that evolve through a cascade of pathological mechanisms. We aim at assessing how myelin and oligodendrocytes react to head angular-acceleration-induced TBI in a previously described model. This model induces axonal injuries visible by amyloid precursor protein (APP) expression, predominantly in the corpus callosum and its borders. Brain tissue from a total of 27 adult rats was collected at 24 h, 72 h and 7 d post-injury. Coronal sections were prepared for immunohistochemistry and RNAscope® to investigate DAI and myelin changes (APP, MBP, Rip), oligodendrocyte lineage cell loss (Olig2), oligodendrocyte progenitor cells (OPCs) (NG2, PDGFRa) and neuronal stress (HSP70, ATF3). Oligodendrocytes and OPCs numbers (expressed as percentage of positive cells out of total number of cells) were measured in areas with high APP expression. Results showed non-statistically significant trends with a decrease in oligodendrocyte lineage cells and an increase in OPCs. Levels of myelination were mostly unaltered, although Rip expression differed significantly between sham and injured animals in the frontal brain. Neuronal stress markers were induced at the dorsal cortex and habenular nuclei. We conclude that rotational injury induces DAI and neuronal stress in specific areas. We noticed indications of oligodendrocyte death and regeneration without statistically significant changes at the timepoints measured, despite indications of axonal injuries and neuronal stress. This might suggest that oligodendrocytes are robust enough to withstand this kind of trauma, knowledge important for the understanding of thresholds for cell injury and post-traumatic recovery potential.
Collapse
Affiliation(s)
- Michela Losurdo
- Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden;
- Department of Molecular Medicine, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Johan Davidsson
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
| | - Mattias K. Sköld
- Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden;
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
96
|
Jak AJ, Jurick S, Hoffman S, Evangelista ND, Deford N, Keller A, Merritt VC, Sanderson-Cimino M, Sorg S, Delano-Wood L, Bangen KJ. PTSD, but not history of mTBI, is associated with altered myelin in combat-exposed Iraq and Afghanistan Veterans. Clin Neuropsychol 2020; 34:1070-1087. [PMID: 32176590 DOI: 10.1080/13854046.2020.1730975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the biological, cognitive, and psychological presentations of combat-exposed Veterans with a history of mild traumatic brain injury (mTBI) and/or posttraumatic stress disorder (PTSD) using a novel white matter imaging technique and comprehensive neuropsychological assessment. METHOD 74 Iraq and Afghanistan Veterans (mean age 33.89, 90.5% male) with history of mTBI (average 7.25 years since injury), PTSD, both, or neither underwent magnetic resonance imaging (MRI) exams including acquisition of a novel imaging technique, multicomponent-driven equilibrium single-pulse observation of T1/T2 (mcDESPOT) to quantify myelin water fraction (MWF), a surrogate measure of myelin content. Participants also underwent comprehensive neuropsychological assessment and three cognitive composite scores (memory, working memory/processing speed, and executive functioning) were created. RESULTS There were no significant group differences on the neuropsychological composite scores. ANCOVAs revealed a main effect of PTSD across all a priori regions of interest (ROI) in which PTSD was associated with higher MWF. There was no main effect of mTBI history or TBI by PTSD interaction on any ROI. Significant positive associations were observed between myelin and PTSD symptoms, but no significant associations were found between myelin and neurobehavioral symptoms. No significant associations were found between myelin in the a priori ROIs and the cognitive composite scores. CONCLUSION This study did not find neuropsychological or MWF differences in combat Veterans with a remote history of mTBI but did find myelin alterations related to PTSD. Psychological trauma should be a primary target for intervention in Veterans with comorbid PTSD and mTBI reporting subjective complaints, given its salience.
Collapse
Affiliation(s)
- Amy J Jak
- Veterans Affairs San Diego Healthcare System (VASDHS), San Diego, CA, USA.,VASDHS Center of Excellence for Stress and Mental Health (CESAMH), San Diego, CA, USA.,Department of Psychiatry, San Diego School of Medicine, University California, San Diego, CA, USA
| | - Sarah Jurick
- Veterans Affairs San Diego Healthcare System (VASDHS), San Diego, CA, USA.,VASDHS Center of Excellence for Stress and Mental Health (CESAMH), San Diego, CA, USA
| | - Samantha Hoffman
- Veterans Affairs San Diego Healthcare System (VASDHS), San Diego, CA, USA.,Department of Psychiatry, San Diego School of Medicine, University California, San Diego, CA, USA
| | - Nicole D Evangelista
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | | | - Amber Keller
- Veterans Affairs San Diego Healthcare System (VASDHS), San Diego, CA, USA
| | - Victoria C Merritt
- Veterans Affairs San Diego Healthcare System (VASDHS), San Diego, CA, USA
| | - Mark Sanderson-Cimino
- Department of Psychiatry, San Diego School of Medicine, University California, San Diego, CA, USA
| | - Scott Sorg
- Veterans Affairs San Diego Healthcare System (VASDHS), San Diego, CA, USA.,Department of Psychiatry, San Diego School of Medicine, University California, San Diego, CA, USA
| | - Lisa Delano-Wood
- Veterans Affairs San Diego Healthcare System (VASDHS), San Diego, CA, USA.,VASDHS Center of Excellence for Stress and Mental Health (CESAMH), San Diego, CA, USA.,Department of Psychiatry, San Diego School of Medicine, University California, San Diego, CA, USA
| | - Katherine J Bangen
- Veterans Affairs San Diego Healthcare System (VASDHS), San Diego, CA, USA.,Department of Psychiatry, San Diego School of Medicine, University California, San Diego, CA, USA
| |
Collapse
|
97
|
Diagnostic Problems in Diffuse Axonal Injury. Diagnostics (Basel) 2020; 10:diagnostics10020117. [PMID: 32098060 PMCID: PMC7168326 DOI: 10.3390/diagnostics10020117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 01/17/2023] Open
Abstract
In this study, three problems associated with diagnosing diffuse axonal injury (DAI) in patients with traumatic brain injury are reviewed: the shortage of scientific evidence supporting the 6-hour loss of consciousness (LOC) diagnostic criterion to discriminate concussion and DAI, the low sensitivity of conventional brain MRI in the detection of DAI lesions, and the inappropriateness of the term diffuse in DAI. Pathological study by brain biopsy is required to confirm DAI; however, performing a brain biopsy for the diagnosis of DAI in a living patient is impossible. Therefore, the diagnosis of DAI in a living patient is clinically determined based on the duration of LOC, clinical manifestations, and the results of conventional brain MRI. There is a shortage of scientific evidence supporting the use of the 6-hour LOC criterion to distinguish DAI from concussion, and axonal injuries have been detected in many concussion cases with a less than 6-hour LOC. Moreover, due to the low sensitivity of conventional brain MRI, which can only detect DAI lesions in approximately half of DAI patients, diagnostic MRI criteria for DAI are not well established. In contrast, diffusion tensor imaging (DTI) has been shown to have high sensitivity for the detection of DAI lesions. As DTI is a relatively new method, further studies aimed at the establishment of diagnostic criteria for DAI detection using DTI are needed. On the other hand, because DAI distribution is not diffuse but multifocal, and because axonal injury lesions have been detected in concussion patients, steps to standardize the use of terms related to axonal injury in both concussion and DAI are necessary.
Collapse
|
98
|
Sharma B, Changoor A, Monteiro L, Colella B, Green R. Prognostic-factors for neurodegeneration in chronic moderate-to-severe traumatic brain injury: a systematic review protocol. Syst Rev 2020; 9:23. [PMID: 32014038 PMCID: PMC6998211 DOI: 10.1186/s13643-020-1281-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/15/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of death and disability. Recently, a paradigm shift in our understanding of moderate-to-severe TBI has led to its reconceptualization as a progressive neurodegenerative disorder. Widespread progressive atrophy is observed in the months and years post-injury, long after the acute effects of the injury have resolved. Some studies have begun to examine prognostic demographic, injury-related, and post-injury risk factors that contribute to these declines. A synthesis of this information, and in particular, an increased understanding of post-injury factors that may be modifiable, would improve our ability to design interventions to reduce neurodegeneration in moderate-to-severe TBI. This systematic review aims to identify prognostic factors for neural deterioration in moderate-to-severe TBI, and thereby inform future intervention research in this population. METHODS This review protocol was informed by and conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols (PRISMA-P) guidelines. Search strategies (designed to identify literature on prognostic factors of neurodegeneration in adults with moderate-to-severe TBI) optimized for MEDLINE, EMBASE PsychINFO, CINAHL, SportDiscus, and Cochrane Central Register of Controlled Trials will be developed with the assistance of a health sciences librarian. Retrieved studies will be screened by two team members. Studies must report on longitudinal neuroimaging (i.e., two or more scans in the same cohort) or neuroimaging in a cross-sectional study and potential prognostic factors for neurodegeneration, such as demographics (e.g., gender, age, education), injury (e.g., severity, etiology), or post-injury characteristics (e.g., type and length of therapy, activity level, mood). DISCUSSION By identifying prognostic factors for neurodegeneration, this systematic review can help inform injury management, as well as intervention research designed to offset the effects of modifiable prognostic factors, such as low levels of cognitive or physical activity. In turn, this systematic review can increase our understanding of how to improve outcome following moderate-to-severe TBI. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42019122389.
Collapse
Affiliation(s)
- Bhanu Sharma
- Toronto Rehabilitation Institute, University Health Network, 550 University Avenue, Toronto, ON M5G2A2 Canada
- Department of Medical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4 L8 Canada
| | - Alana Changoor
- Toronto Rehabilitation Institute, University Health Network, 550 University Avenue, Toronto, ON M5G2A2 Canada
| | - Leanne Monteiro
- Toronto Rehabilitation Institute, University Health Network, 550 University Avenue, Toronto, ON M5G2A2 Canada
| | - Brenda Colella
- Toronto Rehabilitation Institute, University Health Network, 550 University Avenue, Toronto, ON M5G2A2 Canada
| | - Robin Green
- Toronto Rehabilitation Institute, University Health Network, 550 University Avenue, Toronto, ON M5G2A2 Canada
- Department of Psychiatry, University of Toronto, 550 University Avenue, Toronto, ON M5G2A2 Canada
| |
Collapse
|
99
|
Maynard ME, Redell JB, Zhao J, Hood KN, Vita SM, Kobori N, Dash PK. Sarm1 loss reduces axonal damage and improves cognitive outcome after repetitive mild closed head injury. Exp Neurol 2020; 327:113207. [PMID: 31962129 DOI: 10.1016/j.expneurol.2020.113207] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 11/16/2022]
Abstract
One of the consistent pathologies associated with both clinical and experimental traumatic brain injury is axonal injury, especially following mild traumatic brain injury (or concussive injury). Several lines of experimental evidence have demonstrated a role for NAD+ metabolism in axonal degeneration. One of the enzymes that metabolizes NAD+ in axons is Sarm1 (Sterile Alpha and TIR Motif Containing 1), and its activity is thought to play a key role in axonal degeneration. Using a Sarm1 knock-out mouse, we examined if loss of Sarm1 offers axonal injury protection and improves cognitive outcome after repeated mild closed head injury (rmCHI). Our results indicate that rmCHI caused white matter damage that can be observed in the corpus callosum, cingulum bundle, alveus of the hippocampus, and fimbria of the fornix of wild-type mice. These pathological changes were markedly reduced in injured Sarm1-/- mice. Interestingly, the activation of astrocytes and microglia was also attenuated in the areas with white matter damage, suggesting reduced inflammation. Associated with these improved pathological outcomes, injured Sarm1-/- mice performed significantly better in both motor and cognitive tasks. Taken together, our results suggest that strategies aimed at inhibiting Sarm1 and/or restoring NAD+ levels in injured axons may have therapeutic utility.
Collapse
Affiliation(s)
- Mark E Maynard
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, TX 77225, United States of America
| | - John B Redell
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, TX 77225, United States of America
| | - Jing Zhao
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, TX 77225, United States of America
| | - Kimberly N Hood
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, TX 77225, United States of America
| | - Sydney M Vita
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, TX 77225, United States of America
| | - Nobuhide Kobori
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, TX 77225, United States of America
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, the University of Texas McGovern Medical School, Houston, TX 77225, United States of America.
| |
Collapse
|
100
|
Vasilyeva YB, Talypov AE, Sinkin MV, Petrikov SS. Features of the Clinical Course and Prognosis of Severe Traumatic Brain Injury Outcomes. ACTA ACUST UNITED AC 2020. [DOI: 10.23934/2223-9022-2019-8-4-423-429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND. Traumatic brain injury (TBI) is one of the most important contemporary health issues. According to the World Health Organization, TBI is one of three leading causes of death in the world. Despite the development and widespread use of neuroimaging tools and instrumental research methods, clinical diagnosis of TBI is preferred. It is especially relevant at the prehospital stage when it is impossible to use instrumental diagnostic methods.THE AIM OF THE STUDY. To determine the clinical course features and prognosis of treatment outcomes in patients with various types of traumatic brain damage.MATERIAL AND METHODS. We studied the results of examination and treatment of 100 victims with a severe head injury hospitalized during the first days after receiving an injury and undergoing treatment at the N.V. Sklifosovsky Research Institute in 2008–2017. Depending on the type of brain injury patients were divided into 3 groups: Group 1 — isolated hematoma (n=20), Group 2 — hematomas and injuries of the brain (n=40), Group 3 — injuries of the brain (n=40). All patients underwent neurological examination, CT scan of the brain upon admission and over time within 12 days after trauma. In 30 victims, intracranial pressure (ICP) was monitored.RESULTS. We revealed features of the dynamics of individual neurological symptoms in patients with different types of brain damage. In patients with isolated hematomas, neurological status was represented mainly with clinic dislocation syndrome and contralateral hematoma hemiparesis, and clinical pattern significantly depended on intracranial hemorrhage. In patients with combination of hematomas and contusions, the neurological status and its dynamics were less dependent on the volume of the hematoma and were mainly determined by contusions of the midline structures of the brain. In patients with brain injuries, neurological status reliably correlated with injuries of midline structures.CONCLUSION. We revealed significant differences in neurological status, its changes over time and correlation with CT findings in patients with different types of traumatic brain injury.Authors declare lack of the conflicts of interests.
Collapse
Affiliation(s)
| | - A. E. Talypov
- N.V. Sklifosovsky Research Institute for Emergency Medicine
| | - M. V. Sinkin
- N.V. Sklifosovsky Research Institute for Emergency Medicine
| | - S. S. Petrikov
- N.V. Sklifosovsky Research Institute for Emergency Medicine
| |
Collapse
|