51
|
Yang LP, Young ST, Kuo TS. Effects of noise on transient-evoked oto-acoustic emission pass/fail criteria. Med Biol Eng Comput 2002; 40:278-81. [PMID: 12195973 DOI: 10.1007/bf02344208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This study investigated the effects of noise on typical transient-evoked oto-acoustic emission (TEOAE) pass/fail criteria. Different levels of synthesised noise were added to one TEOAE signal, to determine the relationship between the signal-to-noise ratio (SNR) and typical TEOAE parameters: reproducibility, TEOAE level and corrected TEOAE level. Results showed that, with the same TEOAE signal, if the SNR decreased from 19 dB to -7 dB, the means of estimated reproducibility decreased from 97% to 7%, and the means of estimated TEOAE levels were doubled. Only the means of estimated corrected TEOAE levels were relatively insensitive to SNR. The standard deviations of all TEOAE parameter estimators increased with decreasing SNR. With these results, this study proposed that each typical TEOAE parameter alone should not be taken as the absolute pass/fail criterion. A combination of the corrected TEOAE level and the reproducibility would be better.
Collapse
Affiliation(s)
- L P Yang
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
52
|
Konrad-Martin D, Neely ST, Keefe DH, Dorn PA, Cyr E, Gorga MP. Sources of DPOAEs revealed by suppression experiments, inverse fast Fourier transforms, and SFOAEs in impaired ears. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2002; 111:1800-1809. [PMID: 12002864 DOI: 10.1121/1.1455024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
DPOAE sources are modeled by intermodulation distortion generated near the f2 place and a reflection of this distortion near the DP place. In a previous paper, inverse fast Fourier transforms (IFFTs) of DPOAE filter functions in normal ears were consistent with this model [Konrad-Martin et al., J. Acoust. Soc. Am. 109, 2862-2879 (2001)]. In the present article, similar measurements were made in ears with specific hearing-loss configurations. It was hypothesized that hearing loss at f2 or DP frequencies would influence the relative contributions to the DPOAE from the corresponding basilar membrane places, and would affect the relative magnitudes of SFOAEs at frequencies equal to f2 and fDP. DPOAEs were measured with f2 = 4 kHz, f1 varied, and a suppressor near fDP. L2 was 25-55 dB SPL (L1 = L2 + 10 dB). SFOAEs were measured at f2 and at 2.7 kHz (the average fDP produced by the f1 sweep) for stimulus levels of 20-60 dB SPL. SFOAE results supported predictions of the pattern of amplitude differences between SFOAEs at 4 and 2.7 kHz for sloping losses, but did not support predictions for the rising- and flat-loss categories. Unsuppressed IFFTs for rising losses typically had one peak. IFFTs for flat or sloping losses typically have two or more peaks; later peaks were more prominent in ears with sloping losses compared to normal ears. Specific predictions were unambiguously supported by the results for only four of ten cases, and were generally supported in two additional cases. Therefore, the relative contributions of the two DPOAE sources often were abnormal in impaired ears, but not always in the predicted manner.
Collapse
|
53
|
Lucertini M, Moleti A, Sisto R. On the detection of early cochlear damage by otoacoustic emission analysis. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2002; 111:972-978. [PMID: 11863199 DOI: 10.1121/1.1432979] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Theoretical considerations and experimental evidence suggest that otoacoustic emission parameters may be used to reveal early cochlear damage, even before it can be diagnosed by standard audiometric techniques. In this work, the statistical distributions of a set of otoacoustic emission parameters chosen as candidates for the early detection of cochlear damage (global and band reproducibility, response level, signal-to-noise ratio, spectral latency, and long-lasting otoacoustic emission presence) were analyzed in a population of 138 ears. These ears have been divided, according to a standard audiometric test, in three classes: (1) ears of nonexposed bilaterally normal subjects, (2) normal ears of subjects with unilateral noise-induced high-frequency hearing loss, and (3) their hearing impaired ears. For all analyzed parameters, a statistically significant difference was found between classes 1 and 2. This difference largely exceeds the difference observed between classes 2 and 3. This fact suggests that the noise exposure, which was responsible for the unilateral hearing loss, also caused subclinical damage in the contralateral, audiometrically normal, ear. This is a clear indication that otoacoustic emission techniques may be able to early detect subclinical damages.
Collapse
Affiliation(s)
- M Lucertini
- Italian Air Force--CSV Aerospace Medicine Department, Pratica di Mare AFB, Pomezia, Roma
| | | | | |
Collapse
|
54
|
Sisto R, Moleti A. On the frequency dependence of the otoacoustic emission latency in hypoacoustic and normal ears. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2002; 111:297-308. [PMID: 11831803 DOI: 10.1121/1.1428547] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Experimental measurements of the otoacoustic emission (OAE) latency of adult subjects have been obtained, as a function of frequency, by means of wavelet time-frequency analysis based on the iterative application of filter banks. The results are in agreement with previous OAE latency measurements by Tognola et al. [Hear. Res. 106, 112-122 (1997)], as regards both the latency values and the frequency dependence, and seem to be incompatible with the steep 1/f law that is predicted by scale-invariant full cochlear models. The latency-frequency relationship has been best fitted to a linear function of the cochlear physical distance, using the Greenwood map, and to an exponential function of the cochlear distance, for comparison with derived band ABR latency measurements. Two sets of ears [94 audiometrically normal and 42 impaired with high-frequency (f > 3 kHz) hearing loss] have been separately analyzed. Significantly larger average latencies were found in the impaired ears in the mid-frequency range. Theoretical implications of these findings on the transmission of the traveling wave are discussed.
Collapse
Affiliation(s)
- R Sisto
- Dipartimento Igiene del Lavoro, ISPESL, Roma, Italy.
| | | |
Collapse
|
55
|
Kompis M, Oberli M, Brugger U. A novel real-time noise reduction system for the assessment of evoked otoacoustic emissions. Comput Biol Med 2000; 30:341-54. [PMID: 10988326 DOI: 10.1016/s0010-4825(00)00018-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel noise reduction method and apparatus to be used in connection with the measurement of evoked otoacoustic emissions (EOAE) are presented. The noise reduction method is based on an adaptive noise canceller and requires a noise-only reference microphone placed in the vicinity of the OAE-probe. The method was implemented in real time on a custom built digital signal processing system using an Analog Devices ADSP-2181 digital signal processor. The system interfaces seamlessly with a commercial EOAE acquisition system. Results of a series of experiments show than noise reductions of 7-8 dB can be reached.
Collapse
Affiliation(s)
- M Kompis
- University Clinic of ENT, Head and Neck Surgery, Inselspital, Bern, Switzerland.
| | | | | |
Collapse
|
56
|
Norton SJ, Gorga MP, Widen JE, Folsom RC, Sininger Y, Cone-Wesson B, Vohr BR, Mascher K, Fletcher K. Identification of neonatal hearing impairment: evaluation of transient evoked otoacoustic emission, distortion product otoacoustic emission, and auditory brain stem response test performance. Ear Hear 2000; 21:508-28. [PMID: 11059707 DOI: 10.1097/00003446-200010000-00013] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES The purpose of this study was to compare the performance of transient evoked otoacoustic emissions (TEOAEs), distortion product otoacoustic emissions (DPOAEs), and auditory brain stem responses (ABRs) as tools for identification of neonatal hearing impairment. DESIGN A total of 4911 infants including 4478 graduates of neonatal intensive care units, 353 well babies with one or more risk factors for hearing loss (Joint Committee on Infant Hearing, 1994) and 80 well babies without risk factor who did not pass one or more neonatal test were targeted as the potential subject pool on which test performance would be assessed. During the neonatal period, they were evaluated using TEOAEs in response to an 80 dB pSPL click, DPOAE responses to two stimulus conditions (L1 = L2 = 75 dB SPL and L1 = 65 dB SPL L2 = 50 dB SPL), and ABR elicited by a 30 dB nHL click. In an effort to describe test performance, these "at-risk" infants were asked to return for behavioral audiologic assessments, using visual reinforcement audiometry (VRA) at 8 to 12 mo corrected age, regardless of neonatal test results. Sixty-four percent of these subjects returned and reliable VRA data were obtained on 95.6% of these returnees. This approach is in contrast to previous studies in which, by necessity, efforts were made to follow only those infants who "failed" the neonatal screening tests. The accuracy of the neonatal measures in predicting hearing status at 8 to 12 mo corrected age was determined. Only those infants who provided reliable, monaural VRA test results were included in the analysis. Separate analyses were performed without regard to intercurrent events (i.e., events between the neonatal and VRA tests that could cause their results to disagree), and then after accounting for the possible influence of intercurrent events such as otitis media and late-onset or progressive hearing loss. RESULTS Low refer rates were achieved for the stopping criteria used in the present study, especially when a protocol similar to the one recommended in the National Institutes of Health (1993) Consensus Conference Report was followed. These analyses, however, do not completely describe test performance because they did not compare neonatal screening test results with a gold standard test of hearing. Test performance, as measured by the area under a relative operating characteristic curve, were similar for all three neonatal tests when neonatal test results were compared with VRA data obtained at 8 to 12 mo corrected age. However, ABRs were more successful at determining auditory status at 1 kHz, compared with the otoacoustic emission (OAE) tests. Performance was more similar across all three tests when they were used to identify hearing loss at 2 and 4 kHz. No test performed perfectly. Using either the two- or three-frequency pure-tone average (PTA), with a fixed false alarm rate of 20%, hit rates for the neonatal tests, in general, exceeded 80% when hearing impairment was defined as behavioral thresholds > or =30 dB HL. All three tests performed similarly when a two-frequency (2 and 4 kHz) PTA was used as the gold standard; OAE test performance decreased when a three-frequency PTA (adding 1 kHz) was used as the gold standard definition. For both PTA and all three neonatal screening measures, however, hit rate increased as the magnitude of hearing loss increased. CONCLUSIONS Singly, all three neonatal hearing screening tests resulted in low refer rates, especially if referrals for follow-up were made only for the cases in which stopping criteria were not met in both ears. Following a protocol similar to that recommended in the National Institutes of Health (1993) Consensus Conference report resulted in refer rates that were less than 4%. TEOAEs at 80 dB pSPL, DPOAE at L1 = 65, L2 = 50 dB SPL and ABR at 30 dB nHL measured during the neonatal period, and as implemented in the current study, performed similarly at predicting behavioral hearing status at 8 to 12
Collapse
Affiliation(s)
- S J Norton
- Multi-Center Consortium on Identification of Neonatal Hearing Impairment, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Norton SJ, Gorga MP, Widen JE, Vohr BR, Folsom RC, Sininger YS, Cone-Wesson B, Fletcher KA. Identification of neonatal hearing impairment: transient evoked otoacoustic emissions during the perinatal period. Ear Hear 2000; 21:425-42. [PMID: 11059702 DOI: 10.1097/00003446-200010000-00008] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES 1) To describe transient evoked otoacoustic emission (TEOAE) levels, noise levels and signal to noise ratios (SNRs) for a range of frequency bands in three groups of neonates who were tested as a part of the Identification of Neonatal Hearing Impairment multi-center consortium project. 2) To describe the relations between these TEOAE measurements and age, test environment, baby state, and test time. DESIGN TEOAEs were measured in 4478 graduates of neonatal intensive care units (NICUs), 353 well babies with at least one risk indicator, and 2348 well babies without risk factors. TEOAE and noise levels were measured for frequency bands centered at 1.0, 1.5, 2.0, 3.0, and 4.0 kHz for a click stimulus level of 80 dB SPL. For those ears not meeting "passing" stopping criteria at 80 dB pSPL, a level of 86 dB pSPL was included. Measurement-based stopping rules were used such that a test did not terminate unless the response revealed a criterion SNR in four out of five frequency bands or no response occurred after a preset number of averages. Baby state, test environment, and other test factors were captured at the time of test. RESULTS TEOAE levels, noise levels and SNRs were similar for NICU graduates, well babies with risk factors and well babies without risk factors. There were no consistent differences in response quality as a function of test environment, i.e., private room, unit, open crib, nonworking isolette, or working isolette. Noise level varied little across risk group, test environment, or infant state other than crying, suggesting that the primary source of noise in TEOAE measurements is infant noise. The most significant effect on response quality was center frequency. Responses were difficult to measure in the half-octave band centered at 1.0 kHz, compared with higher frequencies. Reliable responses were measured routinely at frequencies of 1.5 kHz and higher. CONCLUSIONS TEOAEs are easily measured in both NICU graduates and well babies with and without risk factors for hearing loss in a wide variety of test environments. Given the difficulties encountered in making reliable measurements for a frequency band centered at 1.0 kHz, its inclusion in a screening program may not be justified.
Collapse
Affiliation(s)
- S J Norton
- Multi-Center Consortium on Identification of Neonatal Hearing Impairment, Seattle, Washington, USA
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Taylor CL, Brooks RP. Screening for hearing loss and middle-ear disorders in children using TEOAEs. Am J Audiol 2000; 9:50-5. [PMID: 10943024 DOI: 10.1044/1059-0889(2000/001)] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The purpose of this research was to obtain the sensitivity and specificity of transient evoked otoacoustic emission (TEOAE) screening procedures compared with conventional audiometric pure-tone screening and tympanometry. Pass/refer values were obtained from a group of 297 ears of 152 preschool and school-aged children, 3 to 8 years of age. The sensitivity and specificity of the TEOAE screenings compared with the pure-tone screenings were 81% and 95%, respectively. The sensitivity and specificity of TEOAE screenings compared with tympanometric screenings were 60% and 91%, respectively.
Collapse
|
59
|
Prieve BA, Stevens F. The New York State universal newborn hearing screening demonstration project: introduction and overview. Ear Hear 2000; 21:85-91. [PMID: 10777016 DOI: 10.1097/00003446-200004000-00003] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To determine the feasibility of universal newborn hearing screening, including intervention of identified infants, in the state of New York. DESIGN The New York State Department of Health issued a request for proposals that invited regional perinatal centers to apply for funding to implement universal newborn hearing screening. Hospitals were free to choose their own protocols but were to use physiologically based measures to screen infants for possible hearing loss. Criteria for passing the screening measures were common across sites. Infants failing the screening were to have diagnostic testing. Identified infants were to be followed by the state's Early Intervention Program and its associated Infant-Child Health Assessment Program. RESULTS Seven regional perinatal centers (eight hospitals) representing the various regions of the state were funded for 3 yr to implement universal newborn hearing screening and follow-up of identified infants. Detailed data analysis was performed for inpatient, outpatient, and intervention outcome measures and for the various protocols. Most of the outcome measures were analyzed in terms of year of program operation, nursery type, and geographic region of the state. CONCLUSIONS Universal newborn hearing screening was feasible in regional perinatal centers across the state of New York. The average ages of identification of hearing loss, hearing aid fitting, and enrollment in early intervention were less than those reported in published studies where universal newborn hearing screening was not in place.
Collapse
|
60
|
Gorga MP, Neely ST, Dorn PA. Distortion product otoacoustic emission test performance for a priori criteria and for multifrequency audiometric standards. Ear Hear 1999; 20:345-62. [PMID: 10466570 DOI: 10.1097/00003446-199908000-00007] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES 1) To describe distortion product otoacoustic emission (DPOAE) test performance when a priori response criteria are applied to a large set of DPOAE data. 2) To describe DPOAE test performance when multifrequency definitions of auditory function are used. 3) To determine DPOAE test performance when a single decision regarding auditory status is made for an ear, based on DPOAE data from several frequencies. 4) To compare univariate and multivariate test performance when multifrequency gold standard definitions and response criteria are applied to DPOAE data. DESIGN DPOAE and audiometric data were analyzed from 1267 ears of 806 subjects. These data were evaluated for three different frequency combinations (2, 3, 4 kHz; 2, 3, 4, 6 kHz; 1.5, 2, 3, 4, 6 kHz). DPOAE data were collected for each of the f2 frequencies listed above, using primary levels (L1/L2) of 65/55 dB SPL and a primary ratio (f2/f1) of 1.22. Sensitivity and specificity were evaluated for signal to noise ratios (SNRs) of 3, 6, and 9 dB, which are in common clinical use. In addition, test performance was evaluated using clinical decision theory, following the convention we have used in previous reports on otoacoustic emission test performance. Both univariate and multivariate analyses techniques were applied to the data. In addition to evaluating DPOAE test performance for the case when audiometric and f2 frequency were equal, multifrequency gold standards and multifrequency criterion responses were evaluated. Three new gold standards were used to assess test performance: average pure-tone thresholds, extrema thresholds that took into account both the magnitude of the loss and the number of frequencies at which hearing loss existed, and a combination of the two. These new gold standards were applied to each of the three frequency groups described above. RESULTS As expected, SNR criteria of 3, 6, and 9 dB never resulted in perfect DPOAE test performance. Even the most stringent of these criteria (9 dB SNR) did not result in a sensitivity of 100%. This result suggests that caution should be exercised in the interpretation of DPOAE test results when these a priori criteria are used clinically. Excellent test performance was achieved when auditory status was classified on the basis of the new gold standards and when either SNR or the output of multivariate logistic regressions (LRs) were used as criterion measures. Invariably, the LR resulted in superior test performance compared with what was achieved by the SNR. For SNR criteria of 3, 6, and 9 dB and (by definition) for the LR, specificity, in general, exceeded 80% and often was greater than 90%. Sensitivity, however, depended on the magnitude of hearing loss. Diagnostic errors, when they occurred, were more common for patients with mild hearing losses (21 to 40 dB HL); sensitivity approached 100% once the hearing loss exceeded 40 dB HL. The largest differences between test performance based on SNR or LR occurred for the ears with mild hearing loss, where the LR resulted in more accurate diagnoses. CONCLUSIONS It should not be assumed that the use of a priori response criteria, such as SNRs of 3, 6, or 9 dB, will identify all ears with hearing loss. Test performance when multifrequency gold standards are used to define an ear as normal or impaired and when data from multiple f2 frequencies are used to make a diagnosis, resulted in excellent test performance, especially when the LR was used. When predicting auditory status with multifrequency gold standards, the LR resulted in relative operating characteristic curve areas of 0.95 or 0.96. An output from the LR can be selected that results in a specificity of 90% or better. When the loss exceeded 40 dB HL, the same output from the LR resulted in test sensitivity of nearly 100%. These were the best test results that were achieved. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- M P Gorga
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | | | | |
Collapse
|
61
|
Dorn PA, Piskorski P, Gorga MP, Neely ST, Keefe DH. Predicting audiometric status from distortion product otoacoustic emissions using multivariate analyses. Ear Hear 1999; 20:149-63. [PMID: 10229516 DOI: 10.1097/00003446-199904000-00006] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES 1) To determine whether multivariate statistical approaches improve the classification of normal and impaired ears based on distortion product otoacoustic emission (DPOAE) measurements, in comparison with the results obtained with more traditional single-variable applications of clinical decision theory. 2) To determine how well the multivariate predictors, derived from analysis on a training group, generalized to a validation group. 3) To provide a way to apply the multivariate approaches clinically. DESIGN Areas under the relative operating characteristic (ROC) curve and cumulative distributions derived from DPOAE, DPOAE/Noise, discriminant function (DF) scores and logit function (LF) scores were used to compare univariate and multivariate predictors of audiometric status. DPOAE and Noise amplitudes for 8 f2 frequencies were input to a discriminant analysis and to a logistic regression. These analyses generated a DF and LF, respectively, composed of a linear combination of selected variables. The DF and LF scores were the input variables to the decision theory analyses. For comparison purposes, DPOAE test performance was also evaluated using only one variable (DPOAE or DPOAE/Noise when f2 = audiometric frequency). Analyses were based on data from over 1200 ears of 806 subjects, ranging in age from 1.3 to 96 yr, with thresholds ranging from -5 to >120 dB HL. For statistical purposes, normal hearing was defined as thresholds of 20 dB HL or better. For the multivariate analyses, the database was randomly divided into two groups of equal size. One group served as the "training" set, which was used to generate the DFs and LFs. The other group served as a "validation" set to determine the robustness of the DF and LF solutions. RESULTS For all test frequencies, multivariate analyses yielded greater areas under the ROC curve than univariate analyses, and greater specificities at fixed sensitivities. Within the multivariate techniques, discriminant analysis and logistic regression yielded similar results and both yielded robust solutions that generalized well to the validation groups. The improvement in test performance with multivariate analyses was greatest for conditions in which the single predictor variable resulted in the poorest performance. CONCLUSIONS A more accurate determination of auditory status at a specific frequency can be obtained by combining multiple predictor variables. Although the DF and LF multivariate approaches resulted in the greatest separation between normal and impaired distributions, overlap still exists, which suggests that there would be value in continued efforts to improve DPOAE test performance.
Collapse
Affiliation(s)
- P A Dorn
- Boys Town National Research Hospital, Omaha, Nebraska 68131, USA
| | | | | | | | | |
Collapse
|