51
|
Prieur X, Huby T, Coste H, Schaap FG, Chapman MJ, Rodríguez JC. Thyroid hormone regulates the hypotriglyceridemic gene APOA5. J Biol Chem 2005; 280:27533-43. [PMID: 15941710 DOI: 10.1074/jbc.m503139200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The apolipoprotein AV gene (APOA5) is a key determinant of plasma triglyceride levels, a major risk factor for coronary artery disease and a biomarker for the metabolic syndrome. Since thyroid hormones influence very low density lipoprotein triglyceride metabolism and clinical studies have demonstrated an inverse correlation between thyroid status and plasma triglyceride levels, we examined whether APOA5 is regulated by thyroid hormone. Here we report that 3,5,3'-triiodo-L-thyronine (T3) and a synthetic thyroid receptor beta (TRbeta) ligand increase APOA5 mRNA and protein levels in hepatocytes. Our data revealed that T3-activated TR directly regulates APOA5 promoter through a functional direct repeat separated by four nucleotides (DR4). Interestingly, we show that upstream stimulatory factor 1, a transcription factor associated with familial combined hyperlipidemia and elevated triglyceride levels in humans, and upstream stimulatory factor 2 cooperate with TR, resulting in a synergistic activation of APOA5 promoter in a ligand-dependent manner via an adjacent E-box motif. In rats, we observed that apoAV levels declines with thyroid hormone depletion but returned to normal levels upon T3 administration. In addition, treatments with a TRbeta-selective agonist increased apoAV and diminished triglyceride levels. The identification of APOA5 as a T3 target gene provides a new potential mechanism whereby thyroid hormones can influence triglyceride homeostasis. Additionally, these data suggest that TRbeta may be a potential pharmacological target for the treatment of hypertriglyceridemia.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Apolipoprotein A-V
- Apolipoproteins/metabolism
- Apolipoproteins A
- Base Sequence
- Blotting, Western
- DNA-Binding Proteins/metabolism
- Dimerization
- Dose-Response Relationship, Drug
- Gene Expression Regulation
- Genes, Reporter
- Hepatocytes/metabolism
- Humans
- Ligands
- Lipoproteins, LDL/metabolism
- Male
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Protein Biosynthesis
- RNA/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Thyroid Hormone/metabolism
- Response Elements
- Reverse Transcriptase Polymerase Chain Reaction
- Thyroid Hormone Receptors beta
- Time Factors
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Triglycerides/metabolism
- Triiodothyronine/metabolism
- Up-Regulation
- Upstream Stimulatory Factors
Collapse
Affiliation(s)
- Xavier Prieur
- GlaxoSmithKline, 25 Avenue du Québec, 91951 Les Ulis cedex, France
| | | | | | | | | | | |
Collapse
|
52
|
Frikke-Schmidt R, Sing CF, Nordestgaard BG, Tybjaerg-Hansen A. Gender- and age-specific contributions of additional DNA sequence variation in the 5' regulatory region of the APOE gene to prediction of measures of lipid metabolism. Hum Genet 2005; 115:331-45. [PMID: 15300423 DOI: 10.1007/s00439-004-1165-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the present study of 9,000 individuals representative of the general population, we have considered whether the addition of common single nucleotide polymorphisms (SNPs) in the promoter region of Apolipoprotein E (APOE) improve the statistical explanation of variation in lipid traits and test the hypothesis that the estimated genotype effects are independent of factors indexed by gender and age. To address these questions, we have asked, for each gender and for each 20-year age strata (young: 20-39 years; middle-aged: 40-59 years; old: 60-79 years; very old: 80-100 years), how much trait variation is associated with the traditional epsilon2, epsilon3, and epsilon4 allelic variations defined by the g.2059T --> C and g.2197C --> T SNPs in the fourth exon of the APOE gene, and how much additional trait variation is associated with genotypes defined by combining the g.2059T --> C and g.2197C --> T SNPs with one, two, or three promoter SNPs. Our study demonstrates that the pleiotropic effects of genotype variation defined by the traditional epsilon2, epsilon3, and epsilon4 alleles on five plasma measures of lipid metabolism manifest differently in women and men and change significantly during the life cycle for high-density lipoprotein cholesterol in women. Multi-site genotypes defined by adding SNPs located in the 5' promoter region to the traditional g.2059T --> C and g.2197C --> T SNPs doubled the estimate of genetic variance of high-density lipoprotein and apolipoprotein Al in middle-aged females.
Collapse
Affiliation(s)
- Ruth Frikke-Schmidt
- Department of Clinical Biochemistry KB3011, Section for Molecular Genetics, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
53
|
Gao J, Wei Y, Huang Y, Liu D, Liu G, Wu M, Wu L, Zhang Q, Zhang Z, Zhang R, Liang C. The expression of intact and mutant human apoAI/CIII/AIV/AV gene cluster in transgenic mice. J Biol Chem 2005; 280:12559-66. [PMID: 15649902 DOI: 10.1074/jbc.m409883200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The apoAI/CIII/AIV gene cluster is involved in lipid metabolism and has a complex pattern of gene expression modulated by a common regulatory element, the apoCIII enhancer. A new member of this cluster, apolipoprotein (apo) AV, has recently been discovered as a novel modifier in triglyceride metabolism. To determine the expression of all four apo genes in combination and, most importantly, whether the transcription of apoAV is coregulated by the apoCIII enhancer in the cluster, we generated an intact transgenic line carrying the 116-kb human apoAI/CIII/AIV/AV gene cluster and a mutant transgenic line in which the apoCIII enhancer was deleted from the 116-kb structure. We demonstrated that the apoCIII enhancer regulated hepatic and intestinal apoAI, apoCIII, and apoAIV expression; however, it did not direct the newly identified apoAV in the cluster. Furthermore, human apo genes displayed integrated position-independent expression and a closer approximation of copy number-dependent expression in the intact transgenic mice. Because apoCIII and apoAV play opposite roles in triglyceride homeostasis, we analyzed the lipid profiles in our transgenic mice to assess the effects of human apoAI gene cluster expression on lipid metabolism. The triglyceride level was elevated in intact transgenic mice but decreased in mutant ones compared with nontransgenic mice. In addition, the expression of human apoAI and apoAIV elevated high density lipoprotein cholesterol in transgenic mice fed an atherogenic diet. In conclusion, our studies with human apoAI/CIII/AIV/AV gene cluster transgenic models showed that the apoCIII enhancer regulated expression of apoAI, apo-CIII, and apoAIV but not apoAV in vivo and showed the influences of expression of the entire cluster on lipid metabolism.
Collapse
MESH Headings
- Animals
- Apolipoprotein A-I/biosynthesis
- Apolipoprotein A-I/genetics
- Apolipoprotein C-III
- Apolipoproteins A/biosynthesis
- Apolipoproteins A/genetics
- Apolipoproteins C/biosynthesis
- Apolipoproteins C/genetics
- Arteriosclerosis
- Blotting, Western
- Cholesterol, HDL/metabolism
- Chromosomes, Artificial, Bacterial
- DNA/metabolism
- Diet, Atherogenic
- Enhancer Elements, Genetic
- Gene Deletion
- Gene Expression Regulation
- Humans
- In Situ Hybridization, Fluorescence
- Lipid Metabolism
- Liver/metabolism
- Mice
- Mice, Transgenic
- Models, Genetic
- Multigene Family
- Mutation
- RNA/metabolism
- Time Factors
- Tissue Distribution
- Transcription, Genetic
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Jun Gao
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Tedla N, Glaros EN, Brunk UT, Jessup W, Garner B. Heterogeneous expression of apolipoprotein-E by human macrophages. Immunology 2004; 113:338-47. [PMID: 15500620 PMCID: PMC1782582 DOI: 10.1111/j.1365-2567.2004.01972.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Apolipoprotein-E (apoE) is expressed at high levels by macrophages. In addition to its role in lipid transport, macrophage-derived apoE plays an important role in immunoregulation. Previous studies have identified macrophage subpopulations that differ substantially in their ability to synthesize specific cytokines and enzymes, however, potential heterogeneous macrophage apoE expression has not been studied. Here we examined apoE expression in human THP-1 macrophages and monocyte-derived macrophages (MDM). Using immunocytochemistry and flow cytometry methods we reveal a striking heterogeneity in macrophage apoE expression in both cell types. In phorbol-ester-differentiated THP-1 macrophages, 5% of the cells over-expressed apoE at levels more than 50-fold higher than the rest of the population. ApoE over-expressing THP-1 macrophages contained condensed/fragmented nuclei and increased levels of activated caspase-3 indicating induction of apoptosis. In MDM, 3-5% of the cells also highly over-expressed apoE, up to 50-fold higher than the rest of the population; however, this was not associated with obvious nuclear alterations. The apoE over-expressing MDM were larger, more granular, and more autofluorescent than the majority of cells and they contained numerous vesicle-like structures that appeared to be coated by apoE. Flow cytometry experiments indicated that the apoE over-expressing subpopulation of MDM were positive for CD14, CD11b/Mac-1 and CD68. These observations suggest that specific macrophage subpopulations may be important for apoE-mediated immunoregulation and clearly indicate that subpopulation heterogeneity should be taken into account when investigating macrophage apoE expression.
Collapse
Affiliation(s)
- Nicodemus Tedla
- Inflammatory Diseases Research Unit, University of New South Wales, Sydney, Australia
| | | | | | | | | |
Collapse
|
55
|
van Dijk KW, Rensen PCN, Voshol PJ, Havekes LM. The role and mode of action of apolipoproteins CIII and AV: synergistic actors in triglyceride metabolism? Curr Opin Lipidol 2004; 15:239-46. [PMID: 15166778 DOI: 10.1097/00041433-200406000-00002] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE OF REVIEW Apolipoprotein (apo)CIII and apoAV play an important role in triglyceride metabolism as evidenced by the unambiguous and opposing phenotypes of transgenic and knockout mouse models. In this review we discuss studies on the genetics, protein structure, and regulation of apoCIII and apoAV and compare their potential molecular mechanisms of action in triglyceride metabolism. We examine the hypothesis that apoCIII and apoAV synergistically affect triglyceride metabolism. RECENT FINDINGS It has now been firmly established that variation in plasma triglyceride levels in a wide range of human populations is strongly associated with genetic variation at the chromosomal locus encoding both the APOC3 and APOA5 genes, the APOA1/C3/A4/A5 gene cluster. The close physical linkage of these genes and the frequent concurrence of genetic variants, however, complicate the assignment of specific metabolic defects to specific polymorphisms. Recent insight into the regulation of APOC3 and APOA5 gene expression and structural modeling studies on the apoAV protein have provided novel clues for the potential molecular mechanisms responsible for the effects of apoCIII and apoAV on triglyceride metabolism. SUMMARY Hypertriglyceridemia is a major independent risk factor in the development of cardiovascular disease. Moreover, triglyceride-derived fatty acids are thought to play a key role in the development and progression of the metabolic syndrome. As modulators of triglyceride metabolism, apoCIII and apoAV are key players and potential therapeutic targets. However, little is known of their molecular mechanism and potential cooperativity. Rational therapeutic application will require the filling of this hiatus in our knowledge.
Collapse
Affiliation(s)
- Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, PO Box 9503, 2000 RA Leiden, The Netherlands.
| | | | | | | |
Collapse
|
56
|
Schmitz G, Heimerl S, Langmann T. Zinc finger protein ZNF202 structure and function in transcriptional control of HDL metabolism. Curr Opin Lipidol 2004; 15:199-208. [PMID: 15017363 DOI: 10.1097/00041433-200404000-00013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The zinc finger protein ZNF202 is a transcriptional repressor controlling promoter elements predominantly found in genes involved in lipid metabolism and energy homeostasis. Here we summarize the structure, regulation and modulation of ZNF202 function by protein interactions. RECENT FINDINGS We review recent data and discuss the importance of the steadily growing list of ZNF202 target genes, defining a central role for ZNF202 as a key transcriptional regulator in metabolic disorders. Furthermore, we provide an interlink between transcriptional repression by ZNF202 and enhancement of gene activation via nuclear receptor coactivation by SCAN domain protein 1. SUMMARY The novel findings suggest that ZNF202 together with other SCAN domain proteins orchestrates a complex transcriptional regulatory network, which justifies a further exploration of its potential as a therapeutic target in lipid disorders such as atherosclerosis and associated metabolic syndromes.
Collapse
Affiliation(s)
- Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany.
| | | | | |
Collapse
|
57
|
Ivanov GS, Kater JM, Jha SH, Stutius EA, Sabharwal R, Tricarico MD, Ginsburg GS, Ozer JS. Sp and GATA factors are critical for Apolipoprotein AI downstream enhancer activity in human HepG2 cells. Gene 2004; 323:31-42. [PMID: 14659877 DOI: 10.1016/j.gene.2003.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The factors that bind to the hepatic-specific human apolipoprotein AI (apoAI) 48-bp downstream enhancer (DSE) were identified and characterized by electrophoretic mobility shift assays. A significant homology was shown between the histone 4 (H4) promoters and the hepatic-specific human apoAI DSE at Sp1 and H4TF2 binding sites. Human HepG2 nuclear extracts were used to form four specific complexes with the DSE (referred to as apoAI DSE-1, -2, -3, and -4). The apoAI DSE-1 and -2 complexes showed similar binding specificity to the Sp/H4TF1 consensus site within the apoAI DSE. The apoAI DSE-1 complex was predominantly recognized by anti-Sp1 and Sp3 sera in gel shift assays, indicating that the DSE was recognized by multiple Sp family members. Nuclear extracts that were prepared from retinoic acid treated HepG2 cells showed increased levels of Sp factors in gel shift and Western blot assays. The apoAI DSE-2 complex was identified as H4TF1 and formed in the absence of magnesium chloride. The apoAI DSE-3 complex bound to a consensus GATA element within the DSE that was recognized by recombinant human GATA-6 as well. The apoAI DSE-3 complex was completely disrupted by a GATA-4 antibody in EMSA. GATA-4 and -6 were detected in nuclear extracts prepared from retinoic acid treated HepG2 cells using Western blot assays. The highest apoAI DSE-3 levels were observed with retinoic acid treated HepG2 cell nuclear extracts in EMSA. ApoAI DSE-4 is a multi-factor complex that includes an Sp/H4TF1 factor and either H4TF2 or apoAI DSE-3. Because apoAI DSE mutations revealed transcription defects in transient transfection assays, we conclude that the entire DSE sequence is required for full apoAI transcriptional activity in HepG2 cells.
Collapse
Affiliation(s)
- Gleb S Ivanov
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 715 Albany Street, Building R-618, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
Apolipoprotein B is a large, amphipathic protein that plays a central role in lipoprotein metabolism. Because its overproduction and deficiency leads to metabolic and pathologic disorders, much effort has been paid to investigate the mechanisms of how its homeostasis is achieved. Earlier and recent studies have showed that apoB gene locus might reside in different chromatin domains in the hepatic and intestinal cells, and two sets of very distinct regulatory elements operate to control its transcription. Posttranscriptional modification of apoB mRNA is performed by a multicomponent enzyme complex, several possible pathways regulate the editing efficiency. Understanding of the mechanism responsible for apoB mRNA editing will provide the basis for C-to-U editing in gene therapy. In addition to apoB mRNA abundance and stability, its translation can be also regulated at the steps of elongation. The translocation of apoB into the ER is an important and complicated process that is less understood. Successful transport and correct folding of apoB may lead to its final secretion, otherwise subject to intracellular degradation, which is accomplished by proteasomal and nonproteasomal pathways at multiple levels and may differ among cell types.
Collapse
Affiliation(s)
- Ai-Bing Wang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 10005, People's Republic of China
| | | | | |
Collapse
|
59
|
Prieur X, Coste H, Rodriguez JC. The human apolipoprotein AV gene is regulated by peroxisome proliferator-activated receptor-alpha and contains a novel farnesoid X-activated receptor response element. J Biol Chem 2003; 278:25468-80. [PMID: 12709436 DOI: 10.1074/jbc.m301302200] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The newly identified apolipoprotein AV (apoAV) gene is a key player in determining plasma triglyceride concentrations. Because hypertriglyceridemia is a major independent risk factor in coronary artery disease, the understanding of the regulation of the expression of this gene is of considerable importance. We presently characterize the structure, the transcription start site, and the promoter of the human apoAV gene. Since the peroxisome proliferator-activated receptor-alpha (PPARalpha) and the farnesoid X-activated receptor (FXR) have been shown to modulate the expression of genes involved in triglyceride metabolism, we evaluated the potential role of these nuclear receptors in the regulation of apoAV transcription. Bile acids and FXR induced the apoAV gene promoter activity. 5'-Deletion, mutagenesis, and gel shift analysis identified a heretofore unknown element at positions -103/-84 consisting of an inverted repeat of two consensus receptor-binding hexads separated by 8 nucleotides (IR8), which was required for the response to bile acid-activated FXR. The isolated IR8 element conferred FXR responsiveness on a heterologous promoter. On the other hand, in apoAV-expressing human hepatic Hep3B cells, transfection of PPARalpha specifically enhanced apoAV promoter activity. By deletion, site-directed mutagenesis, and binding analysis, a PPARalpha response element located 271 bp upstream of the transcription start site was identified. Finally, treatment with a specific PPARalpha activator led to a significant induction of apoAV mRNA expression in hepatocytes. The identification of apoAV as a PPARalpha target gene has major implications with respect to mechanisms whereby pharmacological PPARalpha agonists may exert their beneficial hypotriglyceridemic actions.
Collapse
Affiliation(s)
- Xavier Prieur
- GlaxoSmithKline, 25 Avenue du Québec, 91951 Les Ulis cedex, France
| | | | | |
Collapse
|
60
|
Kardassis D, Roussou A, Papakosta P, Boulias K, Talianidis I, Zannis VI. Synergism between nuclear receptors bound to specific hormone response elements of the hepatic control region-1 and the proximal apolipoprotein C-II promoter mediate apolipoprotein C-II gene regulation by bile acids and retinoids. Biochem J 2003; 372:291-304. [PMID: 12585964 PMCID: PMC1223391 DOI: 10.1042/bj20021532] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2002] [Revised: 02/06/2003] [Accepted: 02/13/2003] [Indexed: 02/02/2023]
Abstract
We have shown previously that the hepatic control region 1 (HCR-1) enhances the activity of the human apolipoprotein C-II (apoC-II) promoter in HepG2 cells via two hormone response elements (HREs) present in the apoC-II promoter. In the present paper, we report that the HCR-1 selectively mediates the transactivation of the apoC-II promoter by chenodeoxycholic acid (CDCA) and 9- cis -retinoic acid. CDCA, which is a natural ligand of farnesoid X receptor alpha (FXRalpha), increases the steady-state apoC-II mRNA levels in HepG2 cells. This increase in transcription requires the binding of retinoid X receptor alpha (RXRalpha)-FXRalpha heterodimers to a novel inverted repeat with one nucleotide spacing (IR-1) present in the HCR-1. This element also binds hepatocyte nuclear factor 4 and apoA-I regulatory protein-1. Transactivation of the HCR-1/apoC-II promoter cluster by RXRalpha-FXRalpha heterodimers in the presence of CDCA was abolished by mutations either in the IR-1 HRE of the HCR-1 or in the thyroid HRE of the proximal apoC-II promoter, which binds RXRalpha-thyroid hormone receptor beta (T3Rbeta) heterodimers. The same mutations also abolished transactivation of the HCR-1/apoC-II promoter cluster by RXRalpha-T3Rbeta heterodimers in the presence of tri-iodothyronine. The findings establish synergism between nuclear receptors bound to specific HREs of the proximal apoC-II promoter and the HCR-1, and suggest that this synergism mediates the induction of the HCR-1/apoC-II promoter cluster by bile acids and retinoids.
Collapse
Affiliation(s)
- Dimitris Kardassis
- Department of Basic Sciences, School of Health Sciences, Faculty of Medicine, University of Crete, PO Box 1393, 71500 Heraklion, Greece.
| | | | | | | | | | | |
Collapse
|
61
|
Norton PA, Gong Q, Mehta AS, Lu X, Block TM. Hepatitis B virus-mediated changes of apolipoprotein mRNA abundance in cultured hepatoma cells. J Virol 2003; 77:5503-6. [PMID: 12692252 PMCID: PMC153946 DOI: 10.1128/jvi.77.9.5503-5506.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2002] [Accepted: 02/03/2003] [Indexed: 01/04/2023] Open
Abstract
An inverse correlation between hepatitis B virus (HBV) and steady-state levels of apolipoprotein AI and CIII mRNAs was observed in two hepatoma cell lines. Analysis of a third line containing an inducible viral genome implicated viral pregenomic RNA in apolipoprotein mRNA reduction. We conclude that HBV alters infected cells despite the absence of overt cytopathogenicity.
Collapse
Affiliation(s)
- Pamela A Norton
- Jefferson Center for Biomedical Research and Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Doylestown, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
62
|
Abstract
The eukaryotic genome is organized into different domains by cis-acting elements, such as boundaries/insulators and matrix attachment regions, and is packaged with different degrees of condensation. In the M phase, the chromatin becomes further highly condensed into chromosomes. The first step for transcriptional activation of a given gene, at a particular time during development, in any locus, is the opening of its chromatin domain. This locus needs to be kept in this state in each early G(1) phase during every cell cycle. Certain distal enhance elements, including locus control regions (LCRs) and enhancers, are believed to perform this target chromatin domain opening process and several models have been proposed to explain distal enhance action. But they did not explain precisely how a given chromatin domain is opened. Based on various studies, we propose a hypothesis for the mechanism of opening chromatin on a large scale. One important mechanism may involved breaking one or two DNA strands and reducing the linking numbers within chromatin domain. The topological changes can overpass some complexes formed on DNA strands and can be transmitted from specific localized points over a broad region, until boundary elements or insulators are reached. These may initiate downstream events such as propagation of histone acetylation and the binding of transcription factors to proximal promoters and may further augment the action mediated by distal enhancer elements.
Collapse
Affiliation(s)
- Li Xin
- National Laboratory of Medical Molecular Biology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, P.R. China
| | | | | |
Collapse
|
63
|
Zannis VI, Liu T, Zanni M, Kan HY, Kardassis D. Regulatory gene mutations affecting apolipoprotein gene expression: functions and regulatory behavior of known genes may guide future pharmacogenomic approaches to therapy. Clin Chem Lab Med 2003; 41:411-24. [PMID: 12747582 DOI: 10.1515/cclm.2003.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A pharmacogenomic approach to therapy requires systematic knowledge of the regulatory regions of the genes, as well as basic understanding of transcriptional regulatory mechanisms of genes. Using the apolipoprotein (apo) A-I/CIII gene cluster as a model system, we have identified by in vitro and in vivo studies the regulatory elements and the factors which control its transcription. Studies in transgenic mice established that the hepatocyte nuclear factor (HNF-4) binding site of the apoCIII enhancer, which controls transcription of both genes, is required for the intestinal expression of apoA-I and apoCIII genes, and enhances synergistically their hepatic transcription in vivo. The three Sp1 sites of the enhancer are also required for the intestinal expression of apoA-land apoCIII genes in vivo, and for the enhancement of the hepatic transcription. The regulation of the apoE/apoCI/apoCIV/apoCII cluster is also cited. It is expected that identification of the regulatory regions of genes will be soon accelerated by the sequencing of several mammalian genomes. The functional analyses of the regulatory domains of genes involved in lipid homeostasis, combined with cross-species sequence comparisons in the near future, may identify natural regulatory gene polymorphisms in the general population that will permit rational pharmacogenomic approaches for treatment of dyslipidemias.
Collapse
Affiliation(s)
- Vassilis I Zannis
- Section of Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | |
Collapse
|
64
|
Chou WC, Prokova V, Shiraishi K, Valcourt U, Moustakas A, Hadzopoulou-Cladaras M, Zannis VI, Kardassis D. Mechanism of a transcriptional cross talk between transforming growth factor-beta-regulated Smad3 and Smad4 proteins and orphan nuclear receptor hepatocyte nuclear factor-4. Mol Biol Cell 2003; 14:1279-94. [PMID: 12631740 PMCID: PMC151596 DOI: 10.1091/mbc.e02-07-0375] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We have shown previously that the transforming growth factor-beta (TGFbeta)-regulated Sma-Mad (Smad) protein 3 and Smad4 proteins transactivate the apolipoprotein C-III promoter in hepatic cells via a hormone response element that binds the nuclear receptor hepatocyte nuclear factor 4 (HNF-4). In the present study, we show that Smad3 and Smad4 but not Smad2 physically interact with HNF-4 via their Mad homology 1 domains both in vitro and in vivo. The synergistic transactivation of target promoters by Smads and HNF-4 was shown to depend on the specific promoter context and did not require an intact beta-hairpin/DNA binding domain of the Smads. Using glutathione S-transferase interaction assays, we established that two regions of HNF-4, the N-terminal activation function 1 (AF-1) domain (aa 1-24) and the C-terminal F domain (aa 388-455) can mediate physical Smad3/HNF-4 interactions in vitro. In vivo, Smad3 and Smad4 proteins enhanced the transactivation function of various GAL4-HNF-4 fusion proteins via the AF-1 and the adjacent DNA binding domain, whereas a single tyrosine to alanine substitution in AF-1 abolished coactivation by Smads. The findings suggest that the transcriptional cross talk between the TGFbeta-regulated Smads and HNF-4 is mediated by specific functional domains in the two types of transcription factors. Furthermore, the specificity of this interaction for certain target promoters may play an important role in various hepatocyte functions, which are regulated by TGFbeta and the Smads.
Collapse
Affiliation(s)
- Wan-Chih Chou
- Department of Basic Sciences, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology of Hellas, Heraklion GR-71110, Greece
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Raspé E, Duez H, Mansén A, Fontaine C, Fiévet C, Fruchart JC, Vennström B, Staels B. Identification of Rev-erbalpha as a physiological repressor of apoC-III gene transcription. J Lipid Res 2002; 43:2172-9. [PMID: 12454280 DOI: 10.1194/jlr.m200386-jlr200] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elevated serum levels of triglyceride-rich remnant lipoproteins (TRL) are a major risk factor predisposing a subject to atherosclerosis. Apolipoprotein C-III (apoC-III) is a major constituent of TRL that impedes triglyceride hydrolysis and remnant clearance and, as such, may exert pro-atherogenic activities. In the present study, transient cotransfection experiments in rat hepatocytes in primary culture and rabbit kidney RK13 cells demonstrated that overexpression of Rev-erbalpha specifically decreases basal and HNF-4 stimulated human apoC-III promoter activity. A Rev-erbalpha response element was mapped by promoter deletion, mutation analysis, and gel-shift experiments to a AGGTCA half-site located at position -23/-18 (downstream of the TATA box) in the apoC-III promoter. Finally, Rev-erbalpha-deficient mice displayed elevated serum and liver mRNA levels of apoC-III together with increased serum VLDL triglycerides. Taken together, our data identify Rev-erbalpha as a regulator of apoC-III gene expression, providing a novel, physiological role for this nuclear receptor in the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Eric Raspé
- UR 545 INSERM, Institut Pasteur de Lille, 1 rue Calmette, 59019 Lille, France
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Coste H, Rodríguez JC. Orphan nuclear hormone receptor Rev-erbalpha regulates the human apolipoprotein CIII promoter. J Biol Chem 2002; 277:27120-9. [PMID: 12021280 DOI: 10.1074/jbc.m203421200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein CIII (apoCIII) plays an important role in plasma triglyceride and remnant lipoprotein metabolism. Because hypertriglyceridemia is an independent risk factor in coronary artery disease and the presence in plasma of triglyceride-rich remnant lipoproteins is correlated with atherosclerosis, considerable research efforts have been focused on the identification of factors regulating apoCIII gene expression to decrease its production. Here we report that the orphan nuclear hormone receptor Rev-erbalpha regulates the human apoCIII gene promoter. In apoCIII expressing human hepatic HepG2 cells, transfection of Rev-erbalpha specifically repressed apoCIII gene promoter activity. We determined by deletion and site-directed mutagenesis experiments that Rev-erbalpha dependent repression is mainly due to an element present in the proximal promoter of the apoCIII gene. In contrast, we found no functional Rev-erbalpha response elements in the convergently transcribed human apoAI gene or the common regulatory enhancer. The identified Rev-erbalpha response element coincides with a RORalpha1 element, and in the present study we provide evidence that functional cross-talk between these orphan receptors modulates the apoCIII promoter. In vitro binding analysis showed that monomers of Rev-erbalpha bound this element but not another upstream RORalpha1 response element. In addition, we showed that the closely related nuclear orphan receptor RVR also specifically repressed the human apoCIII gene. These studies underscore a novel physiological role for members of the Rev-erb family of nuclear receptors in the regulation of genes involved in triglyceride metabolism and the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Hervé Coste
- GlaxoSmithKline, 25 avenue du Québec, 91951 Les Ulis cedex, France.
| | | |
Collapse
|
67
|
Fisher EA, Ginsberg HN. Complexity in the secretory pathway: the assembly and secretion of apolipoprotein B-containing lipoproteins. J Biol Chem 2002; 277:17377-80. [PMID: 12006608 DOI: 10.1074/jbc.r100068200] [Citation(s) in RCA: 356] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Edward A Fisher
- Cardiovascular Institute and Departments of Medicine and Biochemistry, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | |
Collapse
|