51
|
Diffuse reflectance spectroscopy for breach detection during pedicle screw placement: a first in vivo investigation in a porcine model. Biomed Eng Online 2020; 19:47. [PMID: 32532305 PMCID: PMC7291697 DOI: 10.1186/s12938-020-00791-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/04/2020] [Indexed: 11/10/2022] Open
Abstract
Background The safe and accurate placement of pedicle screws remains a critical step in open and minimally invasive spine surgery, emphasizing the need for intraoperative guidance techniques. Diffuse reflectance spectroscopy (DRS) is an optical sensing technology that may provide intraoperative guidance in pedicle screw placement. Purpose The study presents the first in vivo minimally invasive procedure using DRS sensing at the tip of a Jamshidi needle with an integrated optical K-wire. We investigate the effect of tissue perfusion and probe-handling conditions on the reliability of fat fraction measurements for breach detection in vivo. Methods A Jamshidi needle with an integrated fiber-optic K-wire was gradually inserted into the vertebrae under intraoperative image guidance. The fiber-optic K-wire consisted of two optical fibers with a fiber-to-fiber distance of 1.024 mm. DRS spectra in the wavelength range of 450 to 1600 nm were acquired at several positions along the path inside the vertebrae. Probe-handling conditions were varied by changing the amount of pressure exerted on the probe within the vertebrae. Continuous spectra were recorded as the probe was placed in the center of the vertebral body while the porcine specimen was sacrificed via a lethal injection. Results A typical insertion of the fiber-optic K-wire showed a drop in fat fraction during an anterior breach as the probe transitioned from cancellous to cortical bone. Fat fraction measurements were found to be similar irrespective of the amount of pressure exerted on the probe (p = 0.65). The 95% confidence interval of fat fraction determination was found in the narrow range of 1.5–3.6% under various probe-handling conditions. The fat fraction measurements remained stable during 70 min of decreased blood flow after the animal was sacrificed. Discussions These findings indicate that changes in tissue perfusion and probe-handling conditions have a relatively low measureable effect on the DRS signal quality and thereby on the determination of fat fraction as a breach detection signal. Conclusions Fat fraction quantification for intraoperative pedicle screw breach detection is reliable, irrespective of changes in tissue perfusion and probe-handling conditions.
Collapse
|
52
|
Abstract
This article presents a comprehensive review of the evolution of both invasive and noninvasive imaging technologies that are part of the arsenal of spinal diagnostics and surgical therapy. The text provides not only a historical lens to the evolution of the imaging technologies that are part of routine contemporary practice but also provides a detailed sketch of emerging imaging technologies, such as endoscopic and exoscopic systems. Augmented reality, virtual reality, and mixed reality are new technologies that have enhanced the preparation of surgery and provide excellent case-specific training modules to break down each step of an operation in isolation.
Collapse
|
53
|
Balicki M, Kyne S, Toporek G, Holthuizen R, Homan R, Popovic A, Burström G, Persson O, Edström E, Elmi-Terander A, Patriciu A. Design and control of an image-guided robot for spine surgery in a hybrid OR. Int J Med Robot 2020; 16:e2108. [PMID: 32270913 DOI: 10.1002/rcs.2108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/17/2020] [Accepted: 03/29/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND Minimally invasive spine (MIS) fusion surgery requires image guidance and expert manual dexterity for a successful, efficient, and accurate pedicle screw placement. Operating room (OR)-integrated robotic solution can provide precise assistance to potentially minimize complication rates and facilitate difficult MIS procedures. METHODS A 5-degrees of freedom robot was designed specifically for a hybrid OR with integrated surgical navigation for guiding pedicle screw pilot holes. The system automatically aligns an instrument following the surgical plan using only instrument tracking feedback. Contrary to commercially available robotic systems, no tracking markers on the robotic arm are required. The system was evaluated in a cadaver study. RESULTS The mean targeting error (N = 34) was 1.27±0.57 mm and 1.62±0.85°, with 100% of insertions graded as clinically acceptable. CONCLUSIONS A fully integrated robotic guidance system, including intra-op imaging, planning, and physical guidance with optimized robot design and control, can improve workflow and provide pedicle screw guidance with less than 2 mm targeting error.
Collapse
Affiliation(s)
- Marcin Balicki
- Philips Research North America, Cambridge, Massachusetts, USA
| | - Sean Kyne
- Philips Research North America, Cambridge, Massachusetts, USA
| | | | | | | | | | - Gustav Burström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Oscar Persson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Edström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Adrian Elmi-Terander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
54
|
Burström G, Balicki M, Patriciu A, Kyne S, Popovic A, Holthuizen R, Homan R, Skulason H, Persson O, Edström E, Elmi-Terander A. Feasibility and accuracy of a robotic guidance system for navigated spine surgery in a hybrid operating room: a cadaver study. Sci Rep 2020; 10:7522. [PMID: 32371880 PMCID: PMC7200720 DOI: 10.1038/s41598-020-64462-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
The combination of navigation and robotics in spine surgery has the potential to accurately identify and maintain bone entry position and planned trajectory. The goal of this study was to examine the feasibility, accuracy and efficacy of a new robot-guided system for semi-automated, minimally invasive, pedicle screw placement. A custom robotic arm was integrated into a hybrid operating room (OR) equipped with an augmented reality surgical navigation system (ARSN). The robot was mounted on the OR-table and used to assist in placing Jamshidi needles in 113 pedicles in four cadavers. The ARSN system was used for planning screw paths and directing the robot. The robot arm autonomously aligned with the planned screw trajectory, and the surgeon inserted the Jamshidi needle into the pedicle. Accuracy measurements were performed on verification cone beam computed tomographies with the planned paths superimposed. To provide a clinical grading according to the Gertzbein scale, pedicle screw diameters were simulated on the placed Jamshidi needles. A technical accuracy at bone entry point of 0.48 ± 0.44 mm and 0.68 ± 0.58 mm was achieved in the axial and sagittal views, respectively. The corresponding angular errors were 0.94 ± 0.83° and 0.87 ± 0.82°. The accuracy was statistically superior (p < 0.001) to ARSN without robotic assistance. Simulated pedicle screw grading resulted in a clinical accuracy of 100%. This study demonstrates that the use of a semi-automated surgical robot for pedicle screw placement provides an accuracy well above what is clinically acceptable.
Collapse
Affiliation(s)
- Gustav Burström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | - Sean Kyne
- Philips Research North America, Cambridge, USA
| | | | - Ronald Holthuizen
- Department of Image Guided Therapy Systems, Philips Healthcare, Best, the Netherlands
| | - Robert Homan
- Department of Image Guided Therapy Systems, Philips Healthcare, Best, the Netherlands
| | - Halldor Skulason
- Department of Neurosurgery, Landspitali University Hospital, Reykjavik, Iceland
| | - Oscar Persson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Edström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Adrian Elmi-Terander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
55
|
Peh S, Chatterjea A, Pfarr J, Schäfer JP, Weuster M, Klüter T, Seekamp A, Lippross S. Accuracy of augmented reality surgical navigation for minimally invasive pedicle screw insertion in the thoracic and lumbar spine with a new tracking device. Spine J 2020; 20:629-637. [PMID: 31863933 DOI: 10.1016/j.spinee.2019.12.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Minimally invasive approaches are increasingly used in spine surgery. The purpose of navigation systems is to guide the surgeon and to reduce intraoperative x-ray exposure. PURPOSE This study aimed to determine the feasibility and clinical accuracy of a navigation technology based on augmented reality surgical navigation (ARSN) for minimally invasive thoracic and lumbar pedicle screw instrumentation compared with standard fluoroscopy-guided minimally invasive technique. STUDY DESIGN/SETTING Cadaveric laboratory study. METHODS ARSN was installed in a hybrid operating room, consisting of a flat panel detector c-arm with two dimensional/three dimensional imaging capabilities and four integrated cameras in its frame. The surface-referenced navigation device does not require a bony reference but uses video cameras and optical markers applied to the patient's skin for tracking. In four cadavers, a total of 136 pedicle screws were inserted in thoracic and lumbar vertebrae. The accuracy was assessed by three independent raters in postoperative conventional computed tomography. RESULTS The overall accuracy of ARSN was 94% compared with an accuracy of 88% for fluoroscopy. The difference was not statistically significant. In the thoracic region, accuracy with ARSN was 92% compared with 83% with fluoroscopy. With fluoroscopy, unsafe screws were observed in three normal cadavers and one with scoliosis. Using ARSN, unsafe screws were only observed in the scoliotic spine. No significant difference in the median of time for K-wire placement was recorded. As no intraoperative fluoroscopy was necessary in ARSN, the performing surgeon was not exposed to radiation. CONCLUSIONS In this limited cadaveric study minimally invasive screw placement using ARSN was demonstrated to be feasible and as accurate as fluoroscopy. It did not require any additional navigation time or use of any intraoperative x-ray imaging, thereby potentially permitting surgery in a protective lead garment-free environment. A well-powered clinical study is needed to demonstrate a significant difference in the accuracy between the two methods. CLINICAL SIGNIFICANCE ARSN offers real-time imaging of planned insertion paths, instrument tracking, and overlay of three dimensional bony anatomy and surface topography. The referencing procedure, by optical recognition of several skin markers is easy and does not require a solid bony reference as necessary for conventional navigation which saves time. Additionally, ARSN may foster the reduction of intraoperative x-ray exposure to spinal surgeons.
Collapse
Affiliation(s)
- Simon Peh
- Department of Orthopedics and Trauma Surgery, University Hospital Schleswig-Holstein, Arnold-Heller-Strasse 3, 24105 Kiel, Germany.
| | - Anindita Chatterjea
- Image Guided Therapy Systems, Philips Healthcare, Veenpluis 4-6, 5684 PC, Best, the Netherlands
| | - Julian Pfarr
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Arnold-Heller-Strasse 3, 24105 Kiel, Germany
| | - Jost Philipp Schäfer
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Arnold-Heller-Strasse 3, 24105 Kiel, Germany
| | - Matthias Weuster
- Department of Orthopedics and Trauma Surgery, University Hospital Schleswig-Holstein, Arnold-Heller-Strasse 3, 24105 Kiel, Germany
| | - Tim Klüter
- Department of Orthopedics and Trauma Surgery, University Hospital Schleswig-Holstein, Arnold-Heller-Strasse 3, 24105 Kiel, Germany
| | - Andreas Seekamp
- Department of Orthopedics and Trauma Surgery, University Hospital Schleswig-Holstein, Arnold-Heller-Strasse 3, 24105 Kiel, Germany
| | - Sebastian Lippross
- Department of Orthopedics and Trauma Surgery, University Hospital Schleswig-Holstein, Arnold-Heller-Strasse 3, 24105 Kiel, Germany
| |
Collapse
|
56
|
Hussain I, Cosar M, Kirnaz S, Schmidt FA, Wipplinger C, Wong T, Härtl R. Evolving Navigation, Robotics, and Augmented Reality in Minimally Invasive Spine Surgery. Global Spine J 2020; 10:22S-33S. [PMID: 32528803 PMCID: PMC7263339 DOI: 10.1177/2192568220907896] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Innovative technology and techniques have revolutionized minimally invasive spine surgery (MIS) within the past decade. The introduction of navigation and image-guided surgery has greatly affected spinal surgery and will continue to make surgery safer and more efficient. Eventually, it is conceivable that fluoroscopy will be completely replaced with image guidance. These advancements, among others such as robotics and virtual and augmented reality technology, will continue to drive the value of 3-dimensional navigation in MIS. In this review, we cover pertinent features of navigation in MIS and explore their evolution over time. Moreover, we aim to discuss the key features germane to surgical advancement, including technique and technology development, accuracy, overall health care costs, operating room time efficiency, and radiation exposure.
Collapse
Affiliation(s)
- Ibrahim Hussain
- Weill Cornell Medical College, New York–Presbyterian Hospital, New York, NY, USA
- Ibrahim Hussain and Murat Cosar are equal contributors to this study
| | - Murat Cosar
- Weill Cornell Medical College, New York–Presbyterian Hospital, New York, NY, USA
- Ibrahim Hussain and Murat Cosar are equal contributors to this study
| | - Sertac Kirnaz
- Weill Cornell Medical College, New York–Presbyterian Hospital, New York, NY, USA
| | - Franziska A. Schmidt
- Weill Cornell Medical College, New York–Presbyterian Hospital, New York, NY, USA
| | - Christoph Wipplinger
- Weill Cornell Medical College, New York–Presbyterian Hospital, New York, NY, USA
| | - Taylor Wong
- Weill Cornell Medical College, New York–Presbyterian Hospital, New York, NY, USA
| | - Roger Härtl
- Weill Cornell Medical College, New York–Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
57
|
Vadalà G, De Salvatore S, Ambrosio L, Russo F, Papalia R, Denaro V. Robotic Spine Surgery and Augmented Reality Systems: A State of the Art. Neurospine 2020; 17:88-100. [PMID: 32252158 PMCID: PMC7136092 DOI: 10.14245/ns.2040060.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 02/24/2020] [Indexed: 12/26/2022] Open
Abstract
Instrumented spine procedures have been performed for decades to treat a wide variety of spinal disorders. New technologies have been employed to obtain a high degree of precision, to minimize risks of damage to neurovascular structures and to diminish harmful exposure of patients and the operative team to ionizing radiations. Robotic spine surgery comprehends 3 major categories: telesurgical robotic systems, robotic-assisted navigation (RAN) and virtual augmented reality (AR) systems, including AR and virtual reality. Telesurgical systems encompass devices that can be operated from a remote command station, allowing to perform surgery via instruments being manipulated by the robot. On the other hand, RAN technologies are characterized by the robotic guidance of surgeon-operated instruments based on real-time imaging. Virtual AR systems are able to show images directly on special visors and screens allowing the surgeon to visualize information about the patient and the procedure (i.e., anatomical landmarks, screw direction and inclination, distance from neurological and vascular structures etc.). The aim of this review is to focus on the current state of the art of robotics and AR in spine surgery and perspectives of these emerging technologies that hold promises for future applications.
Collapse
Affiliation(s)
- Gianluca Vadalà
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Sergio De Salvatore
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Luca Ambrosio
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Fabrizio Russo
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Rocco Papalia
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| | - Vincenzo Denaro
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
58
|
Tonetti J, Boudissa M, Kerschbaumer G, Seurat O. Role of 3D intraoperative imaging in orthopedic and trauma surgery. Orthop Traumatol Surg Res 2020; 106:S19-S25. [PMID: 31734181 DOI: 10.1016/j.otsr.2019.05.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/03/2019] [Accepted: 05/09/2019] [Indexed: 02/02/2023]
Abstract
Intraoperative three-dimensional (3D) imaging is now feasible because of recent technological advances such as 3D cone-beam CT (CBCT) and flat-panel X-ray detectors (FPDs). These technologies reduce the radiation dose to the patient and surgical team. The aim of this study is to review the advantages of 3D intraoperative imaging in orthopedic and trauma surgery by answering the following 5 questions: What are its technical principles? CBCT with a FPD produces non-distorted digital images and frees up the surgical field. The high quality of these 3D intraoperative images allows them to be integrated into surgical navigation systems. Human-robot comanipulation will likely follow soon after. Conventional multislice CT technology has also improved to the point where it can be used in the operating room. What can we expect from 3D intraoperative imaging and which applications have been validated clinically? We reviewed the literature on this topic for the past 10 years. The expected benefits were determined during the implantation of pedicular screws: more accurate implantation, fewer surgical revisions and time savings. There are few studies in trauma or arthroplasty cases, as robotic comanipulation is a more recent development. What is the tolerance for irradiation to the patient and surgical team? The health drawbacks are the harmful radiation-induced effects. The deterministic effects that we will develop are correlated to the absorbed dose in Gray units (Gy). The stochastic and carcinogenic effects are related to the effective dose in milliSievert (mSv) of linear evolution without threshold. The International Commission on Radiological Protection (ICRP) states that irradiation for medical purposes with risk of detriment is acceptable if it is justified by an optimization attempt. The radioprotection limits must be known but do not constitute opposable restrictions. The superiority of intraoperative 3D imaging over fluoroscopy has been demonstrated for spine surgery and sacroiliac screw fixation. How does the environment need to be adapted? The volume, access, wall protection and floor strength of the operating room must take into account the features of each machine. The instrumentation implants and need for specialized staff result in additional costs. Not every system can track movements during the CBCT acquisition thus transient suspension of assisted ventilation may be required. Is it financially viable? This needs to be calculated based on the expected clinical benefits, which mainly correspond to the elimination of expenses tied to surgical revisions. Our society's search for safety has driven the investments in this technology. LEVEL OF EVIDENCE: V, Expert opinion.
Collapse
Affiliation(s)
- Jérôme Tonetti
- Clinique universitaire de chirurgie orthopédique et traumatologie, hôpital Michallon, CS 10217, 38043 Grenoble cedex 09, France.
| | - Mehdi Boudissa
- Clinique universitaire de chirurgie orthopédique et traumatologie, hôpital Michallon, CS 10217, 38043 Grenoble cedex 09, France
| | - Gael Kerschbaumer
- Clinique universitaire de chirurgie orthopédique et traumatologie, hôpital Michallon, CS 10217, 38043 Grenoble cedex 09, France
| | - Olivier Seurat
- Clinique universitaire de chirurgie orthopédique et traumatologie, hôpital Michallon, CS 10217, 38043 Grenoble cedex 09, France
| |
Collapse
|
59
|
Fusion of augmented reality imaging with the endoscopic view for endonasal skull base surgery; a novel application for surgical navigation based on intraoperative cone beam computed tomography and optical tracking. PLoS One 2020; 15:e0227312. [PMID: 31945082 PMCID: PMC6964902 DOI: 10.1371/journal.pone.0227312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 12/16/2019] [Indexed: 01/11/2023] Open
Abstract
Objective Surgical navigation is a well-established tool in endoscopic skull base surgery. However, navigational and endoscopic views are usually displayed on separate monitors, forcing the surgeon to focus on one or the other. Aiming to provide real-time integration of endoscopic and diagnostic imaging information, we present a new navigation technique based on augmented reality with fusion of intraoperative cone beam computed tomography (CBCT) on the endoscopic view. The aim of this study was to evaluate the accuracy of the method. Material and methods An augmented reality surgical navigation system (ARSN) with 3D CBCT capability was used. The navigation system incorporates an optical tracking system (OTS) with four video cameras embedded in the flat detector of the motorized C-arm. Intra-operative CBCT images were fused with the view of the surgical field obtained by the endoscope’s camera. Accuracy of CBCT image co-registration was tested using a custom-made grid with incorporated 3D spheres. Results Co-registration of the CBCT image on the endoscopic view was performed. Accuracy of the overlay, measured as mean target registration error (TRE), was 0.55 mm with a standard deviation of 0.24 mm and with a median value of 0.51mm and interquartile range of 0.39˗˗0.68 mm. Conclusion We present a novel augmented reality surgical navigation system, with fusion of intraoperative CBCT on the endoscopic view. The system shows sub-millimeter accuracy.
Collapse
|
60
|
Lohre R, Wang JC, Lewandrowski KU, Goel DP. Virtual reality in spinal endoscopy: a paradigm shift in education to support spine surgeons. JOURNAL OF SPINE SURGERY (HONG KONG) 2020; 6:S208-S223. [PMID: 32195429 PMCID: PMC7063305 DOI: 10.21037/jss.2019.11.16] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Minimally invasive spine surgery (MISS) and endoscopic spine surgery have continually evolving indications in the cervical, thoracic, and lumbar spine. Endoscopic spine surgery entails treatment of disc disease, stenosis, spondylolisthesis, radiculopathy, and deformity. MISS involves complex motor skills in regions of variable anatomy. Simulator use has been proposed to aid in training and skill retention, preoperative planning, and intraoperative use. METHODS A systematic review of five databases was performed for publications pertaining to the use of virtual (VR), augmented (AR), and mixed (MR) reality in MISS and spinal endoscopic surgery. Qualitative data analysis was undertaken with focus of study design, quality, and reported outcomes. Study quality was assessed using the Medical Education Research Quality Instrument (MERSQI) score and level of evidence (LoE) by a modified Oxford Centre for Evidence-Based Medicine (OCEBM) level for simulation in medicine. RESULTS Thirty-eight studies were retained for data collection. Studies were of intervention-control, clinical application, and pilot or cross-sectional design. Identified articles illustrated use of VR, AR, and MR in all study designs. Procedures included pedicle cannulation and screw insertion, vertebroplasty, kyphoplasty, percutaneous transforaminal endoscopic discectomy (PTED), lumbar puncture and facet injection, transvertebral anterior cervical foraminotomy (TVACF) and posterior cervical laminoforaminotomy. Overall MERSQI score was low-to-medium [M =9.71 (SD =2.60); range, 4.5-13.5], and LoE was predominantly low given the number of purely descriptive articles, or low-quality randomized studies. CONCLUSIONS The current scope of VR, AR, and MR surgical simulators in MISS and spinal endoscopic surgery was described. Studies demonstrate improvement in technical skill and patient outcomes in short term follow-up. Despite this, overall study quality and levels of evidence remain low. Cohesive study design and reporting with focus on transfer validity in training scenarios, and patient derived outcome measures in clinical studies are required to further advance the field.
Collapse
Affiliation(s)
- Ryan Lohre
- Department of Orthopaedics, University of British Columbia, Vancouver, BC, USA
| | - Jeffrey C. Wang
- USC Spine Center, Keck School of Medicine at University of Southern California, Los Angeles, USA
| | - Kai-Uwe Lewandrowski
- Center for Advanced Spine Care of Southern Arizona and Surgical Institute of Tucson, Tucson, AZ, USA
- Department of Neurosurgery, UNIRIO, Rio de Janeiro, Brazil
| | - Danny P. Goel
- Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
61
|
Robot-Assisted Pedicle Screw Placement: Learning Curve Experience. World Neurosurg 2019; 130:e417-e422. [DOI: 10.1016/j.wneu.2019.06.107] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022]
|
62
|
Carl B, Bopp M, Saß B, Pojskic M, Nimsky C. Augmented reality in intradural spinal tumor surgery. Acta Neurochir (Wien) 2019; 161:2181-2193. [PMID: 31300886 DOI: 10.1007/s00701-019-04005-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Microscope-based augmented reality (AR) is commonly used in cranial surgery; however, until recently, this technique was not implemented for spinal surgery. We prospectively investigated, how AR can be applied for intradural spinal tumor surgery. METHODS For ten patients with intradural spinal tumors (ependymoma, glioma, hemangioblastoma, meningioma, and metastasis), AR was provided by head-up displays (HUDs) of operating microscopes. User-independent automatic AR registration was established by low-dose intraoperative computed tomography. The objects visualized by AR were segmented in preoperative imaging data; non-linear image registration was applied to consider spine flexibility. RESULTS In all cases, AR supported surgery by visualizing the tumor outline and other relevant surrounding structures. The overall AR registration error was 0.72 ± 0.24 mm (mean ± standard deviation), a close matching of visible tumor outline and AR visualization was observed for all cases. Registration scanning resulted in a low effective dose of 0.22 ± 0.16 mSv for cervical and 1.68 ± 0.61 mSv for thoracic lesions. The mean HUD AR usage in relation to microscope time was 51.6 ± 36.7%. The HUD was switched off and turned on again in a range of 2 to 17 times (5.7 ± 4.4 times). Independent of the status of the HUD, the AR visualization was displayed on monitors throughout surgery. CONCLUSIONS Microscope-based AR can be reliably applied to intradural spinal tumor surgery. Automatic AR registration ensures high precision and provides an intuitive visualization of the extent of the tumor and surrounding structures. Given this setting, all advanced multi-modality options of cranial AR can also be applied to spinal surgery.
Collapse
|
63
|
Three-dimensional Elastic Augmented Reality for Robot-assisted Laparoscopic Prostatectomy: Pushing the Boundaries, but Cutting it Fine. Eur Urol 2019; 76:515-516. [PMID: 31053374 DOI: 10.1016/j.eururo.2019.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/17/2019] [Indexed: 11/23/2022]
|