51
|
|
52
|
Improved effectiveness of stereotactic radiosurgery in large brain metastases by individualized isotoxic dose prescription: an in silico study. Strahlenther Onkol 2018; 194:560-569. [PMID: 29349605 PMCID: PMC5959984 DOI: 10.1007/s00066-018-1262-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 01/05/2018] [Indexed: 12/25/2022]
Abstract
INTRODUCTION In large brain metastases (BM) with a diameter of more than 2 cm there is an increased risk of radionecrosis (RN) with standard stereotactic radiosurgery (SRS) dose prescription, while the normal tissue constraint is exceeded. The tumor control probability (TCP) with a single dose of 15 Gy is only 42%. This in silico study tests the hypothesis that isotoxic dose prescription (IDP) can increase the therapeutic ratio (TCP/Risk of RN) of SRS in large BM. MATERIALS AND METHODS A treatment-planning study with 8 perfectly spherical and 46 clinically realistic gross tumor volumes (GTV) was conducted. The effects of GTV size (0.5-4 cm diameter), set-up margins (0, 1, and 2 mm), and beam arrangements (coplanar vs non-coplanar) on the predicted TCP using IDP were assessed. For single-, three-, and five-fraction IDP dose-volume constraints of V12Gy = 10 cm3, V19.2 Gy = 10 cm3, and a V20Gy = 20 cm3, respectively, were used to maintain a low risk of radionecrosis. RESULTS In BM of 4 cm in diameter, the maximum achievable single-fraction IDP dose was 14 Gy compared to 15 Gy for standard SRS dose prescription, with respective TCPs of 32 and 42%. Fractionated SRS with IDP was needed to improve the TCP. For three- and five-fraction IDP, a maximum predicted TCP of 55 and 68% was achieved respectively (non-coplanar beams and a 1 mm GTV-PTV margin). CONCLUSIONS Using three-fraction or five-fraction IDP the predicted TCP can be increased safely to 55 and 68%, respectively, in large BM with a diameter of 4 cm with a low risk of RN. Using IDP, the therapeutic ratio of SRS in large BM can be increased compared to current SRS dose prescription.
Collapse
|
53
|
Mackeprang PH, Vuong D, Volken W, Henzen D, Schmidhalter D, Malthaner M, Mueller S, Frei D, Stampanoni MFM, Dal Pra A, Aebersold DM, Fix MK, Manser P. Independent Monte-Carlo dose calculation for MLC based CyberKnife radiotherapy. ACTA ACUST UNITED AC 2017; 63:015015. [DOI: 10.1088/1361-6560/aa97f8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
54
|
Impact of a monolithic silicon detector operating in transmission mode on clinical photon beams. Phys Med 2017; 43:114-119. [PMID: 29195553 DOI: 10.1016/j.ejmp.2017.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To investigate the effect on surface dose, as a function of different field sizes and distances from the solid water phantom to transmission detector (Dsd), of using the monolithic silicon detector MP512T in transmission mode. METHODS The influence of operating the MP512T in transmission mode on the surface dose of a phantom for SSD 100cm was evaluated by using a Markus IC. The MP512T was fixed to an adjustable stand holder and was positioned at different Dsd, ranging from 0.3 to 24 cm. For each Dsd, measurements were carried out for irradiation field sizes of 5 × 5cm2, 8 × 8 cm2 and 10 × 10 cm2. Measurements were obtained under two different operational setups, (i) with the MP512T face-up and (ii) with the MP512T face-down. In addition, the transmission factors for the MP512T and the printed circuit board were only evaluated using a Farmer IC. RESULTS For all Dsd and all field sizes, the MP512T led to the surface dose increasing by less than 25% when in the beam. For Dsd >18 cm the surface dose increase is less than 5%, and negligible for field size 5 × 5 cm2. The difference in the surface dose perturbation for the MP512T operating face up or operating face down is negligible (<2%) for all field sizes. The transmission factor of the MP512T ranged from 1.020 to 0.9950 for all measured Dsd and field sizes. CONCLUSION The study demonstrated that positioning the MP512T in air between the Linac head and the phantom produced negligible perturbation of the surface dose for Dsd >18 cm, and was completely transparent for 6 MV photon beams.
Collapse
|
55
|
Drug development for noncastrate prostate cancer in a changed therapeutic landscape. Nat Rev Clin Oncol 2017; 15:168-182. [PMID: 29039422 DOI: 10.1038/nrclinonc.2017.160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The unprecedented progress in the treatment of metastatic castration-resistant prostate cancer is only beginning to be realized in patients with noncastrate disease. This slow progress in part reflects the use of trial objectives focused on time-to-event end points, such as time to metastasis and overall survival, which require long follow-up durations and large sample sizes, and has been further delayed by the use of approved therapies that are effective at the time of progression. Our central hypotheses are that progress can be accelerated, and that outcomes can be improved by shifting trial objectives to response measures occurring early that solely reflect the effects of the treatment. To test these hypotheses, a continuously enrolling multi-arm, multi-stage randomized trial design, analogous to that used in the STAMPEDE trial, has been developed. Eligibility is focused on patients with incurable disease or those with a high risk of death with any form of monotherapy alone. The primary objective is to eliminate all disease using a multimodality treatment strategy. End points include pathological complete response and an undetectable level of serum prostate-specific antigen, with recovery of serum testosterone levels. Both are binary, objective, and provide an early, quantitative indication of efficacy.
Collapse
|
56
|
Denton TR, Shields LB, Howe JN, Shanks TS, Spalding AC. Practical considerations of linear accelerator-based frameless extracranial radiosurgery for treatment of occipital neuralgia for nonsurgical candidates. J Appl Clin Med Phys 2017; 18:123-132. [PMID: 28517492 PMCID: PMC5874950 DOI: 10.1002/acm2.12105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/02/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022] Open
Abstract
Occipital neuralgia generally responds to medical or invasive procedures. Repeated invasive procedures generate increasing complications and are often contraindicated. Stereotactic radiosurgery (SRS) has not been reported as a treatment option largely due to the extracranial nature of the target as opposed to the similar, more established trigeminal neuralgia. A dedicated phantom study was conducted to determine the optimum imaging studies, fusion matrices, and treatment planning parameters to target the C2 dorsal root ganglion which forms the occipital nerve. The conditions created from the phantom were applied to a patient with medically and surgically refractory occipital neuralgia. A dose of 80 Gy in one fraction was prescribed to the C2 occipital dorsal root ganglion. The phantom study resulted in a treatment achieved with an average translational magnitude of correction of 1.35 mm with an acceptable tolerance of 0.5 mm and an average rotational magnitude of correction of 0.4° with an acceptable tolerance of 1.0°. For the patient, the spinal cord was 12.0 mm at its closest distance to the isocenter and received a maximum dose of 3.36 Gy, a dose to 0.35 cc of 1.84 Gy, and a dose to 1.2 cc of 0.79 Gy. The brain maximum dose was 2.20 Gy. Treatment time was 59 min for 18, 323 MUs. Imaging was performed prior to each arc delivery resulting in 21 imaging sessions. The average deviation magnitude requiring a positional or rotational correction was 0.96 ± 0.25 mm, 0.8 ± 0.41°, whereas the average deviation magnitude deemed within tolerance was 0.41 ± 0.12 mm, 0.57 ± 0.28°. Dedicated quality assurance of the treatment planning and delivery is necessary for safe and accurate SRS to the cervical spine dorsal root ganglion. With additional prospective study, linear accelerator-based frameless radiosurgery can provide an accurate, noninvasive alternative for treating occipital neuralgia where an invasive procedure is contraindicated.
Collapse
Affiliation(s)
- Travis R. Denton
- The Norton Cancer Institute Radiation CenterNorton HealthcareLouisvilleKYUSA
- Associates in Medical PhysicsLLCGreenbeltMDUSA
| | - Lisa B.E. Shields
- The Norton Cancer Institute Radiation CenterNorton HealthcareLouisvilleKYUSA
- Norton Neuroscience InstituteLouisvilleKYUSA
- The Brain Tumor CenterNorton HealthcareLouisvilleKYUSA
| | - Jonathan N. Howe
- The Norton Cancer Institute Radiation CenterNorton HealthcareLouisvilleKYUSA
- Associates in Medical PhysicsLLCGreenbeltMDUSA
| | - Todd S. Shanks
- The Norton Cancer Institute Radiation CenterNorton HealthcareLouisvilleKYUSA
- Norton Neuroscience InstituteLouisvilleKYUSA
- The Brain Tumor CenterNorton HealthcareLouisvilleKYUSA
| | - Aaron C. Spalding
- The Norton Cancer Institute Radiation CenterNorton HealthcareLouisvilleKYUSA
- Norton Neuroscience InstituteLouisvilleKYUSA
- The Brain Tumor CenterNorton HealthcareLouisvilleKYUSA
| |
Collapse
|
57
|
Bennett EE, Berriochoa C, Habboub G, Brigeman S, Chao ST, Angelov L. Rapid and complete radiological resolution of an intradural cervical cord lung cancer metastasis treated with spinal stereotactic radiosurgery: case report. Neurosurg Focus 2017; 42:E10. [PMID: 28041319 DOI: 10.3171/2016.9.focus16254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Stereotactic radiosurgery (SRS) has emerged as a treatment option for patients with spinal metastatic disease. Although SRS has been shown to be successful in a multitude of extradural metastatic tumors causing cord compression, very few cases of intradural treatment have been reported. The authors present a rare case of an intradural extramedullary metastatic small cell lung cancer lesion to the cervical spine resulting in cord compression in an area that had also been extensively pretreated with conventional external-beam radiation therapy. The patient underwent successful SRS to this metastatic site, with rapid and complete resolution of his lesion.
Collapse
Affiliation(s)
| | | | - Ghaith Habboub
- Department of Neurological Surgery.,Neurological Institute
| | - Scott Brigeman
- Case Western Reserve University Medical School, Cleveland, Ohio
| | - Samuel T Chao
- Department of Radiation Oncology.,Taussig Cancer Institute, and.,The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic; and
| | - Lilyana Angelov
- Department of Neurological Surgery.,Neurological Institute.,Taussig Cancer Institute, and.,The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic; and
| |
Collapse
|
58
|
Jang SY, Lalonde R, Ozhasoglu C, Burton S, Heron D, Huq MS. Dosimetric comparison between cone/Iris-based and InCise MLC-based CyberKnife plans for single and multiple brain metastases. J Appl Clin Med Phys 2016; 17:184-199. [PMID: 27685124 PMCID: PMC5874093 DOI: 10.1120/jacmp.v17i5.6260] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/29/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022] Open
Abstract
We performed an evaluation of the CyberKnife InCise MLC by comparing plan qualities for single and multiple brain lesions generated using the first version of InCise MLC, fixed cone, and Iris collimators. We also investigated differences in delivery efficiency among the three collimators. Twenty‐four patients with single or multiple brain mets treated previously in our clinic on a CyberKnife M6 using cone/Iris collimators were selected for this study. Treatment plans were generated for all lesions using the InCise MLC. Number of monitor units, delivery time, target coverage, conformity index, and dose falloff were compared between MLC‐ and clinical cone/Iris‐based plans. Statistical analysis was performed using the nonparametric Wilcoxon‐Mann‐Whitney signed‐rank test. The planning accuracy of the MLC‐based plans was validated using chamber and film measurements. The InCise MLC‐based plans achieved mean dose and target coverage comparable to the cone/Iris‐based plans. Although the conformity indices of the MLC‐based plans were slightly higher than those of the cone/Iris‐based plans, beam delivery time for the MLC‐based plans was shorter by 30%∼40%. For smaller targets or cases with OARs located close to or abutting target volumes, MLC‐based plans provided inferior dose conformity compared to cone/Iris‐based plans. The QA results of MLC‐based plans were within 5% absolute dose difference with over 90% gamma passing rate using 2%/2 mm gamma criteria. The first version of InCise MLC could be a useful delivery modality, especially for clinical situations for which delivery time is a limiting factor or for multitarget cases. PACS number(s): 87.53.Ly, 87.55.D‐
Collapse
|
59
|
Scorsetti M, Franceschini D, De Rose F, Comito T, Franzese C, Masci G, Torrisi R, Viganò L, Torzilli G. The role of SBRT in oligometastatic patients with liver metastases from breast cancer. Rep Pract Oncol Radiother 2016; 22:163-169. [PMID: 28490988 DOI: 10.1016/j.rpor.2016.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/16/2016] [Accepted: 07/23/2016] [Indexed: 12/24/2022] Open
Abstract
Liver metastases from breast cancer are a common occurrence. Local ablative therapies are a promising therapeutic option for these patients, with the potential for a long term disease control in the setting of "oligometastatic patients". Identification of the perfect candidate for local approaches is still challenging and unclear. Stereotactic body radiation therapy (SBRT) is one of the most valuable local therapy, because of great efficiency, low morbidity and minimal invasiveness. In this paper, we reviewed the state of the art in the care of breast cancer patients with liver metastases, with a focus on SBRT.
Collapse
Affiliation(s)
- Marta Scorsetti
- Departments of Radiotherapy and Radiosurgery, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Davide Franceschini
- Departments of Radiotherapy and Radiosurgery, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Fiorenza De Rose
- Departments of Radiotherapy and Radiosurgery, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Tiziana Comito
- Departments of Radiotherapy and Radiosurgery, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Ciro Franzese
- Departments of Radiotherapy and Radiosurgery, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Giovanna Masci
- Department of Medical Oncology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Rosalba Torrisi
- Department of Medical Oncology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Luca Viganò
- Department of Hepatobiliary & General Surgery, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Guido Torzilli
- Department of Hepatobiliary & General Surgery, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
60
|
Cohen-Inbar O, Lee CC, Sheehan JP. The Contemporary Role of Stereotactic Radiosurgery in the Treatment of Meningiomas. Neurosurg Clin N Am 2016; 27:215-28. [DOI: 10.1016/j.nec.2015.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
61
|
Musunuru HB, Loblaw A. Clinical trials of stereotactic ablative radiotherapy for prostate cancer: updates and future direction. Future Oncol 2015; 11:819-31. [PMID: 25757684 DOI: 10.2217/fon.15.14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Stereotactic body radiotherapy, also known as stereotactic ablative body radiotherapy (SABR), is an emerging treatment option for lung, prostate, liver and other tumors. Key factors in SABR are delivery of a high-dose radiation per fraction, proper patient positioning and target localization. Our review details the various radiotherapy techniques, dose fractionation schedules and toxicities for prostate SABR. Ongoing Phase II/III SABR studies across various risk groups have been included. It also discusses the role of conscientious focal dose escalation of the dominant intraprostatic nodule, integrating multiparametric MRI into radiotherapy protocols and finally cost-effectiveness of SABR.
Collapse
Affiliation(s)
- H Bindu Musunuru
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | | |
Collapse
|
62
|
Steroid and anticonvulsant prophylaxis for stereotactic radiosurgery: Large variation in physician recommendations. Pract Radiat Oncol 2015; 6:e89-e96. [PMID: 26850650 DOI: 10.1016/j.prro.2015.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 11/23/2022]
Abstract
PURPOSE/OBJECTIVE(S) The risk of developing symptomatic edema or seizure following stereotactic radiosurgery (SRS) is poorly defined, and many practitioners prescribe prophylactic corticosteroids and/or anticonvulsants. Because there are no clear guidelines regarding appropriate use, we sought to characterize prescribing practices and factors associated with these recommendations. METHODS AND MATERIALS We conducted a 1-time, internet-based survey among 500 randomly selected radiation oncologists self-described as specializing in central nervous system diseases who were registered in the American Society for Radiation Oncology directory. Physicians were contacted by e-mail and invited to complete the 22-question survey. RESULTS The response rate was 32% (n = 161). Sixty-six percent of respondents had been in practice for >10 years, and 45% of respondents practiced at an academic medical center. During/after SRS, 53% of respondents "always" or "usually" recommended corticosteroids, whereas 47% "never," "rarely," or "sometimes" recommended them. When prescribing corticosteroids, the recommended duration of use was <1 week, 1-2 weeks, or >2 weeks among 49%, 33%, and 18% of respondents, respectively. Respondents who worked in an academic medical center were less likely to prescribe corticosteroids, although this did not reach significance (P = .09). Seizure prophylaxis was less common overall, as 79% of respondents "rarely" or "never" prescribed anticonvulsants for SRS. Respondents who prescribed anticonvulsants more frequently had higher estimations of the risk of seizure within 2 weeks of SRS (P < .001), and their recommended duration of anticonvulsant use was <1 week, 1-2 weeks, and >2 weeks among 35%, 25%, and 41% of respondents, respectively. CONCLUSIONS There is extreme variation in physician recommendations regarding prophylactic corticosteroid and anticonvulsant use for patients undergoing SRS. Further investigation of the risks and benefits of these medications for SRS is warranted, which may promote guideline development and more patient-centered, rational prescribing practices.
Collapse
|
63
|
Comito T, Clerici E, Tozzi A, D’Agostino G. Liver metastases and SBRT: A new paradigm? Rep Pract Oncol Radiother 2015; 20:464-71. [PMID: 26696787 PMCID: PMC4661346 DOI: 10.1016/j.rpor.2014.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/03/2014] [Accepted: 10/10/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The outstanding innovations made by early diagnosis, novel surgical techniques, effective chemotherapy regimens and conformal radiotherapy, have significantly improved patients overall survival and quality of life. Multidisciplinary approach to cancer has also led to an increased prevalence of patients with few, organ-confined metastases, who can experience long-term survival even if their disease is no longer localized. Liver is one of the most common site for metastatic disease from several cancers, and when metastatic disease is confined to liver, given the ability of this organ to regenerate almost to its optimal volume, surgical resection represents the standard of care because is associated with a better prognosis. Approximately 70-90% of liver metastases, however, are unresectable and a safe, effective alternative therapeutic option is necessary for these patients. MATERIALS AND METHODS A review of the current literature was performed to analyze the role of SBRT in treating liver metastases from different cancers. A literature search using the terms "SBRT" and "liver metastases" was carried out in PUBMED. RESULTS Stereotactic body radiation therapy has shown to provide promising results in the treatment of liver metastases, thanks to the ability of this procedure to deliver a conformal high dose of radiation to the target lesion and a minimal dose to surrounding critical tissues. CONCLUSION Stereotactic body radiation therapy is a non-invasive, well-tolerated and effective treatment for patients with liver metastases not suitable for surgical resection.
Collapse
Affiliation(s)
- Tiziana Comito
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano, Milano, Italy
| | | | | | | |
Collapse
|
64
|
Zindler JD, Thomas CR, Hahn SM, Hoffmann AL, Troost EGC, Lambin P. Increasing the Therapeutic Ratio of Stereotactic Ablative Radiotherapy by Individualized Isotoxic Dose Prescription. J Natl Cancer Inst 2015; 108:djv305. [PMID: 26476075 DOI: 10.1093/jnci/djv305] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 09/25/2015] [Indexed: 12/25/2022] Open
Abstract
To obtain a favorable tradeoff between treatment benefits and morbidity ("therapeutic ratio"), radiotherapy (RT) dose is prescribed according to the tumor volume, with the goal of controlling the disease while respecting normal tissue tolerance levels. We propose a new paradigm for tumor dose prescription in stereotactic ablative radiotherapy (SABR) based on organ-at-risk (OAR) tolerance levels called isotoxic dose prescription (IDP), which is derived from experiences and limitations of conventionally fractionated radiotherapy. With IDP, the radiation dose is prescribed based on the predefined level of normal tissue complication probability of a nearby dose-limiting OAR at a prespecified dose-volume constraint. Simultaneously, the prescribed total tumor dose (TTD) is maximized to the technically highest achievable level in order to increase the local tumor control probability (TCP). IDP is especially relevant for tumors located at eloquent locations or for large tumors in which severe toxicity has been described. IDP will result in a lower RT dose or a treatment scheduled with more fractions if the OAR tolerance level is exceeded, and potential dose escalation occurs when the OAR tolerance level allows it and when it is expected to be beneficial (if TCP < 90%). For patients with small tumors at noneloquent sites, the current SABR dose prescription already results in high rates of local control at low toxicity rates. In this review, the concept of IDP is described in the context of SABR.
Collapse
Affiliation(s)
- Jaap D Zindler
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands (JDZ, ALH, EGCT, PL); Department of Radiation Medicine, Knight Cancer Institute, Oregon Health & Science University, Oregon, OR (CRTJr); Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SMH); Helmholtz Zentrum Dresden-Rossendorf, Dresden, Germany (ALH, EGCT); Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (ALH, EGCT).
| | - Charles R Thomas
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands (JDZ, ALH, EGCT, PL); Department of Radiation Medicine, Knight Cancer Institute, Oregon Health & Science University, Oregon, OR (CRTJr); Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SMH); Helmholtz Zentrum Dresden-Rossendorf, Dresden, Germany (ALH, EGCT); Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (ALH, EGCT)
| | - Stephen M Hahn
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands (JDZ, ALH, EGCT, PL); Department of Radiation Medicine, Knight Cancer Institute, Oregon Health & Science University, Oregon, OR (CRTJr); Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SMH); Helmholtz Zentrum Dresden-Rossendorf, Dresden, Germany (ALH, EGCT); Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (ALH, EGCT)
| | - Aswin L Hoffmann
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands (JDZ, ALH, EGCT, PL); Department of Radiation Medicine, Knight Cancer Institute, Oregon Health & Science University, Oregon, OR (CRTJr); Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SMH); Helmholtz Zentrum Dresden-Rossendorf, Dresden, Germany (ALH, EGCT); Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (ALH, EGCT)
| | - Esther G C Troost
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands (JDZ, ALH, EGCT, PL); Department of Radiation Medicine, Knight Cancer Institute, Oregon Health & Science University, Oregon, OR (CRTJr); Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SMH); Helmholtz Zentrum Dresden-Rossendorf, Dresden, Germany (ALH, EGCT); Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (ALH, EGCT)
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands (JDZ, ALH, EGCT, PL); Department of Radiation Medicine, Knight Cancer Institute, Oregon Health & Science University, Oregon, OR (CRTJr); Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (SMH); Helmholtz Zentrum Dresden-Rossendorf, Dresden, Germany (ALH, EGCT); Department of Radiation Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany (ALH, EGCT)
| |
Collapse
|
65
|
Treuer H, Hoevels M, Luyken K, Visser-Vandewalle V, Wirths J, Kocher M, Ruge M. Authors' reply to "Dosimetric of intracranial stereotactic radiosurgery: only 'an exercise of style'". Strahlenther Onkol 2015; 191:812-3. [PMID: 26253789 DOI: 10.1007/s00066-015-0881-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Harald Treuer
- Department of Stereotaxy and Functional Neurosurgery, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Moritz Hoevels
- Department of Stereotaxy and Functional Neurosurgery, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Klaus Luyken
- Department of Stereotaxy and Functional Neurosurgery, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotaxy and Functional Neurosurgery, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Jochen Wirths
- Department of Stereotaxy and Functional Neurosurgery, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Martin Kocher
- Department of Radiotherapy, University Hospital Cologne, Cologne, Germany
| | - Maximilian Ruge
- Department of Stereotaxy and Functional Neurosurgery, University Hospital Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| |
Collapse
|
66
|
Sheehan JP, Kavanagh BD, Asher A, Harbaugh RE. Inception of a national multidisciplinary registry for stereotactic radiosurgery. J Neurosurg 2015; 124:155-62. [PMID: 26252466 DOI: 10.3171/2015.1.jns142466] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stereotactic radiosurgery (SRS) represents a multidisciplinary approach to the delivery of ionizing high-dose radiation to treat a wide variety of disorders. Much of the radiosurgical literature is based upon retrospective single-center studies along with a few randomized controlled clinical trials. More timely and effective evidence is needed to enhance the consistency and quality of and clinical outcomes achieved with SRS. The authors summarize the creation and implementation of a national SRS registry. The American Association of Neurological Surgeons (AANS) through NeuroPoint Alliance, Inc., started a successful registry effort with its lumbar spine initiative. Following a similar approach, the AANS and NeuroPoint Alliance collaborated with corporate partners and the American Society for Radiation Oncology to devise a data dictionary for an SRS registry. Through administrative and financial support from professional societies and corporate partners, a framework for implementation of the registry was created. Initial plans were devised for a 3-year effort encompassing 30 high-volume SRS centers across the country. Device-specific web-based data-extraction platforms were built by the corporate partners. Data uploaders were then used to port the data to a common repository managed by Quintiles, a national and international health care trials company. Audits of the data for completeness and veracity will be undertaken by Quintiles to ensure data fidelity. Data governance and analysis are overseen by an SRS board comprising equal numbers of representatives from the AANS and NeuroPoint Alliance. Over time, quality outcome assessments and post hoc research can be performed to advance the field of SRS. Stereotactic radiosurgery offers a high-technology approach to treating complex intracranial disorders. Improvements in the consistency and quality of care delivered to patients who undergo SRS should be afforded by the national registry effort that is underway.
Collapse
Affiliation(s)
- Jason P Sheehan
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Brian D Kavanagh
- Department of Radiation Oncology, University of Colorado at Denver, Aurora, Colorado
| | - Anthony Asher
- Carolina Neurosurgery & Spine, Charlotte, North Carolina; and
| | | |
Collapse
|
67
|
|
68
|
Treuer H, Hoevels M, Luyken K, Visser-Vandewalle V, Wirths J, Kocher M, Ruge M. Intracranial stereotactic radiosurgery with an adapted linear accelerator vs. robotic radiosurgery. Strahlenther Onkol 2014; 191:470-6. [DOI: 10.1007/s00066-014-0786-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 10/31/2014] [Indexed: 11/29/2022]
|
69
|
Lievens Y, Defourny N, Coffey M, Borras JM, Dunscombe P, Slotman B, Malicki J, Bogusz M, Gasparotto C, Grau C, Kokobobo A, Sedlmayer F, Slobina E, Coucke P, Gabrovski R, Vosmik M, Eriksen JG, Jaal J, Dejean C, Polgar C, Johannsson J, Cunningham M, Atkocius V, Back C, Pirotta M, Karadjinovic V, Levernes S, Maciejewski B, Trigo ML, Šegedin B, Palacios A, Pastoors B, Beardmore C, Erridge S, Smyth G, Cleries Soler R. Radiotherapy staffing in the European countries: final results from the ESTRO-HERO survey. Radiother Oncol 2014; 112:178-86. [PMID: 25300718 DOI: 10.1016/j.radonc.2014.08.034] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND The ESTRO Health Economics in Radiation Oncology (HERO) project has the overall aim to develop a knowledge base of the provision of radiotherapy in Europe and build a model for health economic evaluation of radiation treatments at the European level. The first milestone was to assess the availability of radiotherapy resources within Europe. This paper presents the personnel data collected in the ESTRO HERO database. MATERIALS AND METHODS An 84-item questionnaire was sent out to European countries, through their national scientific and professional radiotherapy societies. The current report includes a detailed analysis of radiotherapy staffing (questionnaire items 47-60), analysed in relation to the annual number of treatment courses and the socio-economic status of the countries. The analysis was conducted between February and July 2014, and is based on validated responses from 24 of the 40 European countries defined by the European Cancer Observatory (ECO). RESULTS A large variation between countries was found for most parameters studied. Averages and ranges for personnel numbers per million inhabitants are 12.8 (2.5-30.9) for radiation oncologists, 7.6 (0-19.7) for medical physicists, 3.5 (0-12.6) for dosimetrists, 26.6 (1.9-78) for RTTs and 14.8 (0.4-61.0) for radiotherapy nurses. The combined average for physicists and dosimetrists is 9.8 per million inhabitants and 36.9 for RTT and nurses. Radiation oncologists on average treat 208.9 courses per year (range: 99.9-348.8), physicists and dosimetrists conjointly treat 303.3 courses (range: 85-757.7) and RTT and nurses 76.8 (range: 25.7-156.8). In countries with higher GNI per capita, all personnel categories treat fewer courses per annum than in less affluent countries. This relationship is most evident for RTTs and nurses. Different clusters of countries can be distinguished on the basis of available personnel resources and socio-economic status. CONCLUSIONS The average personnel figures in Europe are now consistent with, or even more favourable than the QUARTS recommendations, probably reflecting a combination of better availability as such, in parallel with the current use of more complex treatments than a decade ago. A considerable variation in available personnel and delivered courses per year however persists among the highest and lowest staffing levels. This not only reflects the variation in cancer incidence and socio-economic determinants, but also the stage in technology adoption along with treatment complexity and the different professional roles and responsibilities within each country. Our data underpin the need for accurate prediction models and long-term education and training programmes.
Collapse
Affiliation(s)
| | | | | | | | | | - Ben Slotman
- VU University Medical Centre, Amsterdam, The Netherlands
| | - Julian Malicki
- Poznan University of Medical Sciences and Greater-Poland Cancer Centre, Poland
| | - Marta Bogusz
- Cancer Diagnosis and Treatment Centre, Katowice, Poland
| | | | - Cai Grau
- Aarhus University Hospital, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Sheehan JP, Yen CP, Lee CC, Loeffler JS. Cranial stereotactic radiosurgery: current status of the initial paradigm shifter. J Clin Oncol 2014; 32:2836-46. [PMID: 25113762 PMCID: PMC4152711 DOI: 10.1200/jco.2013.53.7365] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The concept of stereotactic radiosurgery (SRS) was first described by Lars Leksell in 1951. It was proposed as a noninvasive alternative to open neurosurgical approaches to manage a variety of conditions. In the following decades, SRS emerged as a unique discipline involving a collegial partnership among neurosurgeons, radiation oncologists, and medical physicists. SRS relies on the precisely guided delivery of high-dose ionizing radiation to an intracranial target. The focused convergence of multiple beams yields a potent therapeutic effect on the target and a steep dose fall-off to surrounding structures, thereby minimizing the risk of collateral damage. SRS is typically administered in a single session but can be given in as many as five sessions or fractions. By providing an ablative effect noninvasively, SRS has altered the treatment paradigms for benign and malignant intracranial tumors, functional disorders, and vascular malformations. Literature on extensive intracranial radiosurgery has unequivocally demonstrated the favorable benefit-to-risk profile that SRS affords for appropriately selected patients. In a departure from conventional radiotherapeutic strategies, radiosurgical principles have recently been extended to extracranial indications such as lung, spine, and liver tumors. The paradigm shift resulting from radiosurgery continues to alter the landscape of related fields.
Collapse
Affiliation(s)
- Jason P Sheehan
- Jason P. Sheehan, Chun-Po Yen, Cheng-Chia Lee, University of Virginia, Charlottesville, VA; Jay S. Loeffler, Massachusetts General Hospital, Harvard Medical School, Boston, MA.
| | - Chun-Po Yen
- Jason P. Sheehan, Chun-Po Yen, Cheng-Chia Lee, University of Virginia, Charlottesville, VA; Jay S. Loeffler, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Cheng-Chia Lee
- Jason P. Sheehan, Chun-Po Yen, Cheng-Chia Lee, University of Virginia, Charlottesville, VA; Jay S. Loeffler, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jay S Loeffler
- Jason P. Sheehan, Chun-Po Yen, Cheng-Chia Lee, University of Virginia, Charlottesville, VA; Jay S. Loeffler, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
71
|
Maingon P, Lisbona A. [Irradiation in stereotactic conditions: prerequisites]. Cancer Radiother 2014; 18:383-6. [PMID: 25179251 DOI: 10.1016/j.canrad.2014.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 12/31/2022]
Abstract
Indications of treatment by stereotactic body radiotherapy are dramatically increasing due to new potential indications. The conditions associated with the treatment delivery are multiple. The first step of the process is crucial. It is related to the validation of the indication proposed during the multidisciplinary meeting as regard the evidence-based proof of the concept. These emerging techniques mainly extracranial stereotactic body irradiation do not benefit from long-term evaluation in terms of efficiency as well as normal tissue late toxicities. Priority should be given to prospective independent clinical trials, validated by an independent scientific committee, performed under a relevant and well dedicated multicentric quality assurance program aiming to improve knowledge and selection of indications. The SFRO is still working with others professionals on the definition of the conditions for the implementation of such treatments and actively collaborates with the authorities to define the appropriate conditions to preserve the quality of the treatment delivery under these specific conditions.
Collapse
Affiliation(s)
- P Maingon
- Département de radiothérapie, centre Georges-François-Leclerc, 1, rue Professeur-Marion, 21034 Dijon cedex, France.
| | - A Lisbona
- Service de physique médicale, institut de cancérologie de l'Ouest René-Gauducheau, boulevard Jacques-Monod, 44805 Saint-Herblain, France
| |
Collapse
|
72
|
Macchia G, Deodato F, Cilla S, Torre G, Corrado G, Legge F, Gambacorta MA, Tagliaferri L, Mignogna S, Scambia G, Valentini V, Morganti AG, Ferrandina G. Volumetric intensity modulated arc therapy for stereotactic body radiosurgery in oligometastatic breast and gynecological cancers: feasibility and clinical results. Oncol Rep 2014; 32:2237-43. [PMID: 25175950 DOI: 10.3892/or.2014.3412] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/04/2014] [Indexed: 11/06/2022] Open
Abstract
In the present study, the preliminary results of the first stereotactic body radiosurgery (SRS) experience with volumetric intensity modulated arc therapy (VMAT) in oligometastatic breast and recurrent gynecological tumors (OBRGT) are reported in terms of feasibility, toxicity and efficacy. Patients were treated in a head-first supine treatment position on a customized body frame immobilization shell. SRS-VMAT treatment plans were optimized using the ERGO++ treatment planning system. Response assessment was performed 8-12 weeks after treatment by morphologic imaging modalities, or if feasible, also by functional imaging. Thirty-six lesions in 24 consecutive patients (median age, 63 years; range, 40-81) were treated: 13.9% had primary or metastatic lung lesions, 30.5% had liver metastases, 36.1% had bone lesions, 16.7% had lymph node metastases and 2.8% had a primary vulvar melanoma. The median dose was 18 Gy (BED2 Gy, α/β: 10=50.4 Gy), the minimal dose was 12 Gy (BED2 Gy, α/β: 10=26.4 Gy) and the maximal dose was 28 Gy (BED2 Gy, α/β: 10=106.4 Gy). Seven patients (29.2%) experienced acute toxicity, which however was grade 2 in only 1 case. Moreover, only 3 patients (12.5%) developed late toxicity of which only 1 was grade 2. Objective response rate was 77.7% including 16 lesions achieving complete response (44.4%) and 12 lesions achieving partial response (33.3%). The median duration of follow-up was 15.5 months (range, 6-50). Recurrence/progression within the SRS-VMAT treated field was observed in 6 patients (total lesions=7) with a 2-year inside SRS-VMAT field disease control expressed on a per lesion basis of 69%. Recurrence/progression of disease outside the SRS-VMAT field was documented in 15 patients; the 2-year outside SRS-VMAT field metastasis‑free survival, expressed on a per patient basis, was 35%. Death due to disease was documented in 6 patients and the 2-year overall survival was 58%. Although the maximum tolerated dose was not reached, SRS-VMAT resulted in positive early clinical results in terms of tumor response, local control rate and toxicity.
Collapse
Affiliation(s)
- Gabriella Macchia
- Radiotherapy Oncology Unit, Fondazione di Ricerca e Cura 'Giovanni Paolo II', Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Francesco Deodato
- Radiotherapy Oncology Unit, Fondazione di Ricerca e Cura 'Giovanni Paolo II', Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Savino Cilla
- Medical Physics Unit, Fondazione di Ricerca e Cura 'Giovanni Paolo II', Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Gabriella Torre
- Palliative Therapy Unit, Fondazione di Ricerca e Cura 'Giovanni Paolo II', Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Giacomo Corrado
- Gynaecologic Oncology Unit, Fondazione di Ricerca e Cura 'Giovanni Paolo II', Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Francesco Legge
- Gynaecologic Oncology Unit, Fondazione di Ricerca e Cura 'Giovanni Paolo II', Università Cattolica del Sacro Cuore, Campobasso, Italy
| | | | - Luca Tagliaferri
- Department of Radiation, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Samantha Mignogna
- Palliative Therapy Unit, Fondazione di Ricerca e Cura 'Giovanni Paolo II', Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Giovanni Scambia
- Department of Gynaecologic Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Valentini
- Department of Radiation, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessio G Morganti
- Radiotherapy Oncology Unit, Fondazione di Ricerca e Cura ̔Giovanni Paolo II', Università Cattolica del Sacro Cuore, Campobasso, Italy
| | - Gabriella Ferrandina
- Gynaecologic Oncology Unit, Fondazione di Ricerca e Cura 'Giovanni Paolo II', Università Cattolica del Sacro Cuore, Campobasso, Italy
| |
Collapse
|
73
|
Unyielding progress: recent advances in the treatment of central nervous system neoplasms with radiosurgery and radiation therapy. J Neurooncol 2014; 119:513-29. [PMID: 25119001 DOI: 10.1007/s11060-014-1501-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/06/2014] [Indexed: 10/24/2022]
Abstract
In the past decade, our understanding of the roles of external beam radiotherapy (EBRT) and stereotactic radiosurgery (SRS) in the management of brain tumors has dramatically improved. To highlight the changes and contemporary treatment approaches, we review the indications and outcomes of ionizing radiation for benign intracranial tumors and brain metastases. For nonfunctioning pituitary adenomas, SRS is able to achieve radiographic tumor control in at least 90 % of cases. The rate of SRS-induced endocrine remission for functioning pituitary adenomas depends on the tumor subtype, but it is generally lower than the rate of radiographic tumor control. The most common complications from pituitary adenoma SRS treatment are hypopituitarism and cranial neuropathies. SRS has become the preferred treatment modality for vestibular schwannomas and skull base meningiomas less than 3 cm in size. Large vestibular schwannomas and meningiomas remain best managed with initial surgical resection or EBRT for surgically ineligible patients. For small to moderately sized brain metastases, there has been a shift toward treatment of newly diagnosed patients with SRS alone due to similar local control rates compared with surgical resection. RCTs have shown combined SRS and whole brain radiation therapy (WBRT) for brain metastases to decrease rates of local and distant intracranial recurrence compared to SRS alone. However, the improved intracranial control comes at the expense of poorer neurocognitive outcomes and without prolonging overall survival. Therefore, WBRT is generally reserved for salvage therapy. While EBRT has been frequently supplanted by SRS for the treatment pituitary adenomas and brain metastases, it still proves useful in selected cases of large lesions which are not amenable to surgical debulking or for those with widespread disease, poor performance status, and short life expectancy. In recent years, the scope of SRS has extended beyond the intracranial space to include extradural and intradural spinal tumors.
Collapse
|
74
|
Scorsetti M, Clerici E, Comito T. Stereotactic body radiation therapy for liver metastases. J Gastrointest Oncol 2014; 5:190-7. [PMID: 24982767 DOI: 10.3978/j.issn.2078-6891.2014.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/19/2014] [Indexed: 12/18/2022] Open
Abstract
Over the years, early diagnosis of metastatic disease has improved and the prevalence of oligometastatic patients is increasing. Liver is a most common site of progression from gastrointestinal, lung and breast cancer and in the setting of oligometastatic patients, surgical resection is associated with increased survival. Approximately 70-90% of liver metastases, however, are unresectable and an effective and safe alternative therapeutic option is necessary for these patients. The role of stereotactic body radiation therapy (SBRT) was investigated in the treatment of oligometastatic patients with promising results, thanks to the ability of this procedure to deliver a conformal high dose of radiation to the target lesion and a minimal dose to surrounding critical tissues. This paper was performed to review the current literature and to provide the practice guidelines on the use of stereotactic body radiotherapy in the treatment of liver metastases. We performed a literature search using Medical Subject Heading terms "SBRT" and "liver metastases", considering a period of ten years.
Collapse
Affiliation(s)
- Marta Scorsetti
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano (Mi), Italy
| | - Elena Clerici
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano (Mi), Italy
| | - Tiziana Comito
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, Rozzano (Mi), Italy
| |
Collapse
|
75
|
Badakhshi H, Graf R, Prasad V, Budach V. The impact of 18 F-FET PET-CT on target definition in image-guided stereotactic radiotherapy in patients with skull base lesions. Cancer Imaging 2014; 14:25. [PMID: 25608761 PMCID: PMC4331830 DOI: 10.1186/1470-7330-14-25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 05/30/2014] [Indexed: 02/01/2023] Open
Abstract
Background 18 F-fluoro-ethyl-tyrosine PET is gaining more indications in the field of oncology. We investigated the potentials of usage of FET-PET/CT in addition to MRI for definition of gross tumor volume (GTV) in stereotactic radiotherapy of lesions of skull base. Methods We included in a prospective setting 21 cases. An MRI was performed, completed by FET PET/CT. Different GTV’s were defined based on respective imaging tools: 1. GTVMRI, 2. GTV MRI /CT, 3. GTV composit (1 + 2), and GTVPET = GTV Boost. Lesions could be visualised by MRI and FET-PET/CT in all patients. Results FET tracer enhancement was found in all cases. Skull base infiltration by these lesions was observed by MRI, CT (PET/CT) and FET-PET (PET/CT) in all patients. Totally, brain tissue infiltration was seen in 10 patients. While, in 7 (out 10) cases, MRI and CT (from PET/CT) were indicating brain infiltration, FET-PET could add additional information regarding infiltrative behaviour: in 3 (out 10) patients, infiltration of the brain was displayed merely in FET-PET. An enlargement of GTVMRI/CT due to the FET-PET driven information, which revealed GTVcomposite , was necessary in 7 cases,. This enlargement was significant by definition (> 10% of GTVMRI/CT). The mean PET-effect on GTV counted for 1 ± 4 cm3. The restricted boost fields were based mainly on the GTVPET volume. In mean, about 8.5 cm3 of GTVMRI/CT, which showed no FET uptake, were excluded from target volume. GTVboost driven by only-PET-activity, was in mean by 33% smaller than the initial large treatment field, GTVcomposite, for those cases received boost treatment. FET-PET lead to significant (>10%) changes in the initial treatment fields in 11/21 patients and showed additional tumour volume relevant for radiation planning in 6/21 cases, and led to a subsequent decrease of more than 10% of the initial volumes for the boost fields. Conclusion The implementation of FET PET into the planning procedures showed a benefit in terms of accurate definition of skull base lesions as targets for Image-guided stereotactic Radiotherapy. This has to be investigated prospectively in larger cohorts.
Collapse
|
76
|
Kocher M, Wittig A, Piroth MD, Treuer H, Seegenschmiedt H, Ruge M, Grosu AL, Guckenberger M. Stereotactic radiosurgery for treatment of brain metastases. A report of the DEGRO Working Group on Stereotactic Radiotherapy. Strahlenther Onkol 2014; 190:521-32. [PMID: 24715242 DOI: 10.1007/s00066-014-0648-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 02/25/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND This report from the Working Group on Stereotaktische Radiotherapie of the German Society of Radiation Oncology (Deutsche Gesellschaft für Radioonkologie, DEGRO) provides recommendations for the use of stereotactic radiosurgery (SRS) on patients with brain metastases. It considers existing international guidelines and details them where appropriate. RESULTS AND DISCUSSION The main recommendations are: Patients with solid tumors except germ cell tumors and small-cell lung cancer with a life expectancy of more than 3 months suffering from a single brain metastasis of less than 3 cm in diameter should be considered for SRS. Especially when metastases are not amenable to surgery, are located in the brain stem, and have no mass effect, SRS should be offered to the patient. For multiple (two to four) metastases--all less than 2.5 cm in diameter--in patients with a life expectancy of more than 3 months, SRS should be used rather than whole-brain radiotherapy (WBRT). Adjuvant WBRT after SRS for both single and multiple (two to four) metastases increases local control and reduces the frequency of distant brain metastases, but does not prolong survival when compared with SRS and salvage treatment. As WBRT carries the risk of inducing neurocognitive damage, it seems reasonable to withhold WBRT for as long as possible. CONCLUSION A single (marginal) dose of 20 Gy is a reasonable choice that balances the effect on the treated lesion (local control, partial remission) against the risk of late side effects (radionecrosis). Higher doses (22-25 Gy) may be used for smaller (< 1 cm) lesions, while a dose reduction to 18 Gy may be necessary for lesions greater than 2.5-3 cm. As the infiltration zone of the brain metastases is usually small, the GTV-CTV (gross tumor volume-clinical target volume) margin should be in the range of 0-1 mm. The CTV-PTV (planning target volume) margin depends on the treatment technique and should lie in the range of 0-2 mm. Distant brain recurrences fulfilling the aforementioned criteria can be treated with SRS irrespective of previous WBRT.
Collapse
Affiliation(s)
- Martin Kocher
- Department of Radiation Oncology, University Hospital Cologne, Joseph-Stelzmann-Str. 9, 50924, Köln, Germany,
| | | | | | | | | | | | | | | |
Collapse
|