51
|
Nikitin AS, Kudryavtseva EV, Kamchatnov PR. [Post-traumatic pain mononeuropathies]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:14-23. [PMID: 37084360 DOI: 10.17116/jnevro202312304114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Neuropathic pain syndrome (NPS) caused by peripheral nerve (PN) injury is a serious clinical problem due to its prevalence, complexity of pathogenesis, significant impact on the quality of life of patients. The issues of epidemiology, pathogenesis and treatment of patients with NBS with PN injury are considered. Modern possibilities of invasive treatment of such patients are discussed.
Collapse
Affiliation(s)
- A S Nikitin
- Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - E V Kudryavtseva
- Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - P R Kamchatnov
- Pirogov National Research Medical University, Moscow, Russia
| |
Collapse
|
52
|
Hewitt D, Byrne A, Henderson J, Wilford K, Chawla R, Sharma ML, Frank B, Fallon N, Brown C, Stancak A. Pulse Intensity Effects of Burst and Tonic Spinal Cord Stimulation on Neural Responses to Brushing in Patients With Neuropathic Pain. Neuromodulation 2022:S1094-7159(22)01349-6. [DOI: 10.1016/j.neurom.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 12/04/2022]
|
53
|
Sammak SE, Mualem W, Michalopoulos GD, Romero JM, Ha CT, Hunt CL, Bydon M. Rescue therapy with novel waveform spinal cord stimulation for patients with failed back surgery syndrome refractory to conventional stimulation: a systematic review and meta-analysis. J Neurosurg Spine 2022; 37:670-679. [PMID: 36303477 DOI: 10.3171/2022.4.spine22331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/20/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Conventional spinal cord stimulators (SCSs) have demonstrated efficacy in individuals with failed back surgery syndrome (FBSS). However, a subgroup of patients may become refractory to the effects of conventional waveforms over time. The objective of this study was to systematically review and evaluate the current literature on the use of novel waveform spinal cord stimulation for the management of FBSS refractory to conventional SCSs. METHODS A comprehensive electronic search of the literature published in electronic databases, including Ovid MEDLINE and Epub Ahead of Print, Ovid Cochrane Central Register of Controlled Trials, Ovid Cochrane Database of Systematic Reviews, and Scopus, was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The outcomes of interest were reduction in back pain and/or leg pain after conversion from conventional to novel SCSs. Risk of bias was assessed with the Risk of Bias in Nonrandomized Studies of Interventions (ROBINS-I) tool. The strength of evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) criteria. RESULTS A total of 6 studies with 137 patients with FBSS were identified. Studies were published between 2013 and 2021. The mean ± SD age of the pooled patient sample was 55 ± 10.5 years. All patients who underwent treatment with conventional SCSs were identified. Two studies evaluated the efficacy of high-density spinal cord stimulation, 3 studies evaluated burst spinal cord stimulation, and 1 study assessed multimodal waveforms. The mean difference in back pain scores after conversion from a standard SCS to a novel waveform SCS was 2.55 (95% CI 1.59-4.08), demonstrating a significant reduction in back pain after conversion to novel stimulation. The authors also performed a subgroup analysis to compare burst stimulation to tonic waveforms. In this analysis, the authors found no significant difference in the average reductions in back pain between the 2 groups (p = 0.534).The authors found an I2 statistic equivalent to 98.47% in the meta-regression model used to assess the effect of follow-up duration on study outcome; this value implied that the variability in the data can be attributed to the remaining between-study heterogeneity. The overall certainty was moderate, with a high risk of bias across studies. CONCLUSIONS Rescue therapy with novel waveform spinal cord stimulation is a potential option for pain reduction in patients who become refractory to conventional SCSs. Conversion to novel waveform SCSs may potentially mitigate expenses and complications.
Collapse
Affiliation(s)
| | - William Mualem
- 1Department of Neurologic Surgery, Mayo Clinic, Rochester
| | | | - Joshua M Romero
- 2Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota; and
| | - Christopher T Ha
- 2Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota; and
| | - Christine L Hunt
- 3Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Jacksonville, Florida
| | - Mohamad Bydon
- 1Department of Neurologic Surgery, Mayo Clinic, Rochester
| |
Collapse
|
54
|
Hara S, Andresen H, Solheim O, Carlsen SM, Sundstrøm T, Lønne G, Lønne VV, Taraldsen K, Tronvik EA, Øie LR, Gulati AM, Sagberg LM, Jakola AS, Solberg TK, Nygaard ØP, Salvesen ØO, Gulati S. Effect of Spinal Cord Burst Stimulation vs Placebo Stimulation on Disability in Patients With Chronic Radicular Pain After Lumbar Spine Surgery: A Randomized Clinical Trial. JAMA 2022; 328:1506-1514. [PMID: 36255427 PMCID: PMC9579901 DOI: 10.1001/jama.2022.18231] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE The use of spinal cord stimulation for chronic pain after lumbar spine surgery is increasing, yet rigorous evidence of its efficacy is lacking. OBJECTIVE To investigate the efficacy of spinal cord burst stimulation, which involves the placement of an implantable pulse generator connected to electrodes with leads that travel into the epidural space posterior to the spinal cord dorsal columns, in patients with chronic radiculopathy after surgery for degenerative lumbar spine disorders. DESIGN, SETTING, AND PARTICIPANTS This placebo-controlled, crossover, randomized clinical trial in 50 patients was conducted at St Olavs University Hospital in Norway, with study enrollment from September 5, 2018, through April 28, 2021. The date of final follow-up was May 20, 2022. INTERVENTIONS Patients underwent two 3-month periods with spinal cord burst stimulation and two 3-month periods with placebo stimulation in a randomized order. Burst stimulation consisted of closely spaced, high-frequency electrical stimuli delivered to the spinal cord. The stimulus consisted of a 40-Hz burst mode of constant-current stimuli with 4 spikes per burst and an amplitude corresponding to 50% to 70% of the paresthesia perception threshold. MAIN OUTCOMES AND MEASURES The primary outcome was difference in change from baseline in the self-reported Oswestry Disability Index (ODI; range, 0 points [no disability] to 100 points [maximum disability]; the minimal clinically important difference was 10 points) score between periods with burst stimulation and placebo stimulation. The secondary outcomes were leg and back pain, quality of life, physical activity levels, and adverse events. RESULTS Among 50 patients who were randomized (mean age, 52.2 [SD, 9.9] years; 27 [54%] were women), 47 (94%) had at least 1 follow-up ODI score and 42 (84%) completed all stimulation randomization periods and ODI measurements. The mean ODI score at baseline was 44.7 points and the mean changes in ODI score were -10.6 points for the burst stimulation periods and -9.3 points for the placebo stimulation periods, resulting in a mean between-group difference of -1.3 points (95% CI, -3.9 to 1.3 points; P = .32). None of the prespecified secondary outcomes showed a significant difference. Nine patients (18%) experienced adverse events, including 4 (8%) who required surgical revision of the implanted system. CONCLUSIONS AND RELEVANCE Among patients with chronic radicular pain after lumbar spine surgery, spinal cord burst stimulation, compared with placebo stimulation, after placement of a spinal cord stimulator resulted in no significant difference in the change from baseline in self-reported back pain-related disability. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03546738.
Collapse
Affiliation(s)
- Sozaburo Hara
- Department of Neurosurgery, St Olavs University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hege Andresen
- Department of Neurosurgery, St Olavs University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- National Advisory Unit on Spinal Surgery, St Olavs University Hospital, Trondheim, Norway
| | - Ole Solheim
- Department of Neurosurgery, St Olavs University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sven M. Carlsen
- Department of Endocrinology, St Olavs University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Terje Sundstrøm
- Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Greger Lønne
- National Advisory Unit on Spinal Surgery, St Olavs University Hospital, Trondheim, Norway
- Department of Orthopedics, Innlandet Hospital Trust, Lillehammer, Norway
| | - Vetle V. Lønne
- Department of Neurosurgery, St Olavs University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Erling A. Tronvik
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St Olavs University Hospital, Trondheim, Norway
| | - Lise R. Øie
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, St Olavs University Hospital, Trondheim, Norway
| | - Agnete M. Gulati
- Department of Rheumatology, St Olavs University Hospital, Trondheim, Norway
- Office of Medical Education, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lisa M. Sagberg
- Department of Neurosurgery, St Olavs University Hospital, Trondheim, Norway
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asgeir S. Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tore K. Solberg
- Department of Neurosurgery, University Hospital of North Norway, Tromsø
- Department of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | - Øystein P. Nygaard
- Department of Neurosurgery, St Olavs University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- National Advisory Unit on Spinal Surgery, St Olavs University Hospital, Trondheim, Norway
| | - Øyvind O. Salvesen
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sasha Gulati
- Department of Neurosurgery, St Olavs University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- National Advisory Unit on Spinal Surgery, St Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
55
|
Spinal Cord Stimulation in Chronic Low Back Pain Syndrome: Mechanisms of Modulation, Technical Features and Clinical Application. Healthcare (Basel) 2022; 10:healthcare10101953. [PMID: 36292400 PMCID: PMC9601444 DOI: 10.3390/healthcare10101953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/04/2022] Open
Abstract
Chronic low-back pain (CLBP) is a common disease with several negative consequences on the quality of life, work and activity ability and increased costs to the health-care system. When pharmacological, psychological, physical and occupational therapies or surgery fail to reduce CLBP, patients may be a candidate for Spinal Cord Stimulation (SCS). SCS consists of the transcutaneous or surgical implantation of different types of electrodes in the epidural space; electrodes are then connected to an Implanted Pulse Generator (IPG) that generates stimulating currents. Through spinal and supraspinal mechanisms based on the “gate control theory for pain transmission”, SCS reduces symptoms of CLBP in the almost totality of well-selected patients and its effect lasts up to eight years in around 75% of patients. However, the evidence in favor of SCS still remains weak, mainly due to poor trial methodology and design. This narrative review is mainly addressed to those professionals that may encounter patients with CLBP failing conventional treatments. For this reason, we report the mechanisms of pain relief during SCS, the technical features and some clinical considerations about the application of SCS in patients with CLBP.
Collapse
|
56
|
Brill S, Defrin R, Aryeh IG, Zusman AM, Benyamini Y. Short- and long-term effects of conventional spinal cord stimulation on chronic pain and health perceptions: A longitudinal controlled trial. Eur J Pain 2022; 26:1849-1862. [PMID: 35761769 PMCID: PMC9543320 DOI: 10.1002/ejp.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/03/2022] [Accepted: 06/25/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND The effectiveness and long-term outcomes of spinal cord stimulation (SCS) are not fully established, especially considering that data from patients who withdrew from the trial are rarely analysed, which may lead to overestimation of SCS efficacy. We evaluated short- and long-term effects of SCS on chronic pain and perceived health, beyond natural variability in these outcomes. METHODS In a prospective design, 176 chronic pain patients referred to SCS were evaluated five times (baseline; retest ~6 weeks later; post-SCS trial; 8 and 28 weeks post-permanent implantation). Patients whose SCS trial failed (Temp group) were followed up and compared to those who underwent permanent SCS (Perm group). RESULTS Analyses revealed a non-linear (U-shaped) trend significantly different between the two groups. In the Perm group, a significant improvement occurred post-SCS implantation in pain severity, pain interference, health-related quality of life and self-rated health, which was followed by gradual worsening and return to baseline values at end of follow-up. In the Temp group, only minor changes occurred in these outcomes over time. On average, baseline and end of follow-up values in the Perm and Temp groups were similar: ~40% in each group exhibited an increase in pain severity over time and 38% and 33%, respectively, exhibited reductions in pain severity over time. CONCLUSIONS Since the greatest improvement in the outcome measures occurred from baseline to post-SCS trial (T1-T3) followed by a gradual decline in the effect, it appears that SCS may not be effective for the majority of chronic pain patients. SIGNIFICANCE This longitudinal study evaluated short and long term effects of spinal cord stimulation (SCS) on chronic pain outcome measures, beyond their natural variation in time. Despite significant short term improvements, by the end of the seven months' follow-up, the outcomes in the treatment group (people who received the permanent implantation) were similar to those of the control group (people whose SCS trial failed and did not continue to permanent implantation) suggesting SCS may not be cost-effective for chronic pain patients.
Collapse
Affiliation(s)
- Silviu Brill
- Department of Anesthesia and Critical Care Medicine, Institute of Pain MedicineTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Ruth Defrin
- Department of Physical Therapy, Sagol School of Neuroscience, School of Health Professions, Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Itay Goor Aryeh
- Pain Medicine Institute, Sheba Medical CenterTel HashomerRamat GanIsrael
| | | | - Yael Benyamini
- Bob Shapell School of Social WorkTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
57
|
Rigoard P, Ounajim A, Goudman L, Wood C, Roulaud M, Page P, Lorgeoux B, Baron S, Nivole K, Many M, Cuny E, Voirin J, Fontaine D, Raoul S, Mertens P, Peruzzi P, Caire F, Buisset N, David R, Moens M, Billot M. Combining Awake Anesthesia with Minimal Invasive Surgery Optimizes Intraoperative Surgical Spinal Cord Stimulation Lead Placement. J Clin Med 2022; 11:5575. [PMID: 36233439 PMCID: PMC9571566 DOI: 10.3390/jcm11195575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Spinal cord stimulation (SCS) is an effective and validated treatment to address chronic refractory neuropathic pain in persistent spinal pain syndrome-type 2 (PSPS-T2) patients. Surgical SCS lead placement is traditionally performed under general anesthesia due to its invasiveness. In parallel, recent works have suggested that awake anesthesia (AA), consisting of target controlled intra-venous anesthesia (TCIVA), could be an interesting tool to optimize lead anatomical placement using patient intra-operative feedback. We hypothesized that combining AA with minimal invasive surgery (MIS) could improve SCS outcomes. The goal of this study was to evaluate SCS lead performance (defined by the area of pain adequately covered by paraesthesia generated via SCS), using an intraoperative objective quantitative mapping tool, and secondarily, to assess pain relief, functional improvement and change in quality of life with a composite score. We analyzed data from a prospective multicenter study (ESTIMET) to compare the outcomes of 115 patients implanted with MIS under AA (MISAA group) or general anesthesia (MISGA group), or by laminectomy under general anesthesia (LGA group). All in all, awake surgery appears to show significantly better performance than general anesthesia in terms of patient pain coverage (65% vs. 34-62%), pain surface (50-76% vs. 50-61%) and pain intensity (65% vs. 35-40%), as well as improved secondary outcomes (quality of life, functional disability and depression). One step further, our results suggest that MISAA combined with intra-operative hypnosis could potentialize patient intraoperative cooperation and could be proposed as a personalized package offered to PSPS-T2 patients eligible for SCS implantation in highly dedicated neuromodulation centers.
Collapse
Affiliation(s)
- Philippe Rigoard
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
- Department of Neuro-Spine & Neuromodulation, Poitiers University Hospital, 86000 Poitiers, France
- Pprime Institute UPR 3346, CNRS, ISAE-ENSMA, University of Poitiers, 86000 Poitiers, France
| | - Amine Ounajim
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
| | - Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
- STIMULUS Consortium (reSearch and TeachIng neuroModULation Uz bruSsel), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
- Research Foundation—Flanders (FWO), 1090 Brussels, Belgium
| | - Chantal Wood
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
| | - Manuel Roulaud
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
| | - Philippe Page
- Department of Neuro-Spine & Neuromodulation, Poitiers University Hospital, 86000 Poitiers, France
| | - Bertille Lorgeoux
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
| | - Sandrine Baron
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
| | - Kevin Nivole
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
| | - Mathilde Many
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
| | - Emmanuel Cuny
- Department of Neurosurgery, Bordeaux University Hospital, 33000 Bordeaux, France
| | - Jimmy Voirin
- Department of Neurosurgery, Colmar Hospital, 68000 Colmar, France
| | - Denys Fontaine
- Centre Hospitalier Universitaire de Nice, Department of Neurosurgery, Université Côte d’Azur, 06000 Nice, France
- FHU InovPain, Côte Azur University, 06000 Nice, France
| | - Sylvie Raoul
- Department of Neurosurgery, Nantes University Hospital, 44000 Nantes, France
| | - Patrick Mertens
- Department of Neurosurgery, Lyon University Hospital, 69000 Lyon, France
| | - Philippe Peruzzi
- Department of Neurosurgery, Reims University Hospital, 51100 Reims, France
| | - François Caire
- Department of Neurosurgery, Limoges University Hospital, 87000 Limoges, France
| | - Nadia Buisset
- Department of Neurosurgery, Lille University Hospital, 59000 Lille, France
| | - Romain David
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
- Physical and Rehabilitation Medicine Unit, Poitiers University Hospital, University of Poitiers, 86021 Poitiers, France
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
- STIMULUS Consortium (reSearch and TeachIng neuroModULation Uz bruSsel), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
- Department of Radiology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Maxime Billot
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France
| |
Collapse
|
58
|
D’Souza RS, Her YF, Jin MY, Morsi M, Abd-Elsayed A. Neuromodulation Therapy for Chemotherapy-Induced Peripheral Neuropathy: A Systematic Review. Biomedicines 2022; 10:1909. [PMID: 36009456 PMCID: PMC9405804 DOI: 10.3390/biomedicines10081909] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating and painful condition in patients who have received chemotherapy. The role of neuromodulation therapy in treating pain and improving neurological function in CIPN remains unclear and warrants evidence appraisal. In compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we performed a systematic review to assess change in pain intensity and neurological function after implementation of any neuromodulation intervention for CIPN. Neuromodulation interventions consisted of dorsal column spinal cord stimulation (SCS), dorsal root ganglion stimulation (DRG-S), or peripheral nerve stimulation (PNS). In total, 15 studies utilized SCS (16 participants), 7 studies utilized DRG-S (7 participants), and 1 study utilized PNS (50 participants). Per the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) criteria, there was very low-quality GRADE evidence supporting that dorsal column SCS, DRG-S, and PNS are associated with a reduction in pain severity from CIPN. Results on changes in neurological function remained equivocal due to mixed study findings on thermal sensory thresholds and touch sensation or discrimination. Future prospective, well-powered, and comparative studies assessing neuromodulation for CIPN are warranted.
Collapse
Affiliation(s)
- Ryan S. D’Souza
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Yeng F. Her
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Max Y. Jin
- Department of Anesthesiology, University of Wisconsin, Madison, WI 53706, USA
| | - Mahmoud Morsi
- Department of Anesthesiology, John H. Stroger, Jr. Hospital of Cook County, Chicago, IL 60621, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
59
|
Jones CMP, Shaheed CA, Ferreira G, Mannix L, Harris IA, Buchbinder R, Maher CG. Spinal Cord Stimulators: An Analysis of the Adverse Events Reported to the Australian Therapeutic Goods Administration. J Patient Saf 2022; 18:507-511. [PMID: 35067619 PMCID: PMC9329040 DOI: 10.1097/pts.0000000000000971] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Spinal cord stimulators are used to treat intractable pain. Placebo-controlled trials of spinal cord stimulators typically involve short-term treatment and follow-up, so long-term safety and efficacy are unclear. AIM The aim of the study was to describe the adverse events relating to spinal cord stimulators reported to the Therapeutic Goods Administration of Australia between July 2012 and January 2019. METHODS Adverse events were coded by seriousness, severity, body system affected, type of event, action taken, and attribution of fault. Data on the number of stimulators implanted and removed were sourced from the Admitted Patient Care Minimum Data Set. RESULTS Five hundred twenty adverse events were reported for spinal cord stimulators. Most events were rated as severe (79%) or life-threatening (13%). Device malfunction was the most common event (56.5%). The most common action taken in response to an adverse event was surgical intervention with or without antibiotics (80%). The ratio of removals to implants was 4 per every 10 implanted. CONCLUSIONS Spinal cords stimulators have the potential for serious harm, and each year in Australia, many are removed. In view of the low certainty evidence of their long-term safety and effectiveness, our results raise questions about their role in providing long-term management of intractable pain.
Collapse
Affiliation(s)
| | | | - Giovanni Ferreira
- From the Institute for Musculoskeletal Health/The University of Sydney
| | | | - Ian A. Harris
- Orthopaedic Surgery, Ingham Institute for Applied Medical Research, South Western Sydney Clinical School, UNSW Sydney, Sydney
| | | | - Chris G. Maher
- From the Institute for Musculoskeletal Health/The University of Sydney
| |
Collapse
|
60
|
Spinal Cord Stimulation in Failed Back Surgery Syndrome: An Integrative Review of Quantitative and Qualitative Studies. Neuromodulation 2022; 25:657-670. [DOI: 10.1016/j.neurom.2021.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/14/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022]
|
61
|
Cohen KR. Management of Chronic Low Back Pain-Reply. JAMA Intern Med 2022; 182:687-688. [PMID: 35404428 DOI: 10.1001/jamainternmed.2022.0748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Kenneth R Cohen
- Optum Center for Research and Innovation, Minneapolis, Minnesota
| |
Collapse
|
62
|
The Added Value of Intraoperative Hypnosis during Spinal Cord Stimulation Lead Implantation under Awake Anesthesia in Patients Presenting with Refractory Chronic Pain. Medicina (B Aires) 2022; 58:medicina58020220. [PMID: 35208543 PMCID: PMC8875752 DOI: 10.3390/medicina58020220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
To improve pain relief for refractory pain condition, spinal cord stimulation (SCS) needs to target the dedicated neuronal fibers within the dorsal columns. Intraoperative feedback from the patient can optimize lead placement but requires “awake surgery”, allowing interaction between patient and surgeon. This can produce negative effects like anxiety and stress. To better manage these aspects, we propose to combine intraoperative hypnosis with awake anesthesia. Seventy-four patients (35 females, 22–80 years) presenting with chronic refractory pain, were offered intraoperative hypnosis during awake SCS lead implantation. Interactive conversational hypnosis was used as well as interactive touch, which was enhanced during painful moments during the lead intraoperative programming. All patients participated actively during the intraoperative testing which helped to optimize the lead positioning. They kept an extremely positive memory of the surgery and of the hypnotic experience, despite some painful moments. Pain could be reduced in these patients by using interactions and touch, which works on Gate Control modulation. Positive memory was reinforced by congratulations to create self-confidence and to induce positive expectations, which could reinforce the Diffuse Noxious Inhibitory Controls at the spinal level. Cooperation was improved because the patient was actively participating and thus, much more alert when feedback was required. Combining intraoperative hypnosis with awake anesthesia appears helpful for SCS lead implantation. It enhances patient cooperation, allows optimization of lead positioning, and leads to better pain control, positive and resourceful memory.
Collapse
|
63
|
Affiliation(s)
- Kenneth R Cohen
- Optum Center for Research and Innovation, Minneapolis, Minnesota
| |
Collapse
|
64
|
Rigoard P, Ounajim A, Goudman L, Banor T, Héroux F, Roulaud M, Babin E, Bouche B, Page P, Lorgeoux B, Baron S, Adjali N, Nivole K, Many M, Charrier E, Rannou D, Poupin L, Wood C, David R, Moens M, Billot M. The Challenge of Converting "Failed Spinal Cord Stimulation Syndrome" Back to Clinical Success, Using SCS Reprogramming as Salvage Therapy, through Neurostimulation Adapters Combined with 3D-Computerized Pain Mapping Assessment: A Real Life Retrospective Study. J Clin Med 2022; 11:272. [PMID: 35012013 PMCID: PMC8746025 DOI: 10.3390/jcm11010272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/03/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
While paresthesia-based Spinal Cord Stimulation (SCS) has been proven effective as treatment for chronic neuropathic pain, its initial benefits may lead to the development of "Failed SCS Syndrome' (FSCSS) defined as decrease over time related to Loss of Efficacy (LoE) with or without Loss of Coverage (LoC). Development of technologies associating new paresthesia-free stimulation waveforms and implanted pulse generator adapters provide opportunities to manage patients with LoE. The main goal of our study was to investigate salvage procedures, through neurostimulation adapters, in patients already implanted with SCS and experiencing LoE. We retrospectively analyzed a cohort of patients who were offered new SCS programs/waveforms through an implanted adapter between 2018 and 2021. Patients were evaluated before and at 1-, 3-, 6- and 12-month follow-ups. Outcomes included pain intensity rating with a Visual Analog Scale (VAS), pain/coverage mappings and stimulation preferences. Last follow-up evaluations (N = 27) showed significant improvement in VAS (p = 0.0001), ODI (p = 0.021) and quality of life (p = 0.023). In the 11/27 patients with LoC, SCS efficacy on pain intensity (36.89%) was accompanied via paresthesia coverage recovery (55.57%) and pain surface decrease (47.01%). At 12-month follow-up, 81.3% preferred to keep tonic stimulation in their waveform portfolio. SCS conversion using adapters appears promising as a salvage solution, with an emphasis on paresthesia recapturing enabled via spatial retargeting. In light of these results, adapters could be integrated in SCS rescue algorithms or should be considered in SCS rescue.
Collapse
Affiliation(s)
- Philippe Rigoard
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (A.O.); (M.R.); (E.B.); (B.B.); (B.L.); (S.B.); (N.A.); (K.N.); (M.M.); (C.W.); (R.D.)
- Department of Spine Surgery & Neuromodulation, Poitiers University Hospital, 86021 Poitiers, France; (T.B.); (P.P.)
- Pprime Institute UPR 3346, CNRS, ISAE-ENSMA, University of Poitiers, 86360 Chasseneuil-du-Poitou, France
| | - Amine Ounajim
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (A.O.); (M.R.); (E.B.); (B.B.); (B.L.); (S.B.); (N.A.); (K.N.); (M.M.); (C.W.); (R.D.)
- Laboratoire de Mathématiques et Applications, UMR 7348, Poitiers University and CNRS, 86000 Poitiers, France
| | - Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium; (L.G.); (M.M.)
- STIMULUS Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Tania Banor
- Department of Spine Surgery & Neuromodulation, Poitiers University Hospital, 86021 Poitiers, France; (T.B.); (P.P.)
| | - France Héroux
- Department of Neurosurgery, Sherbrooke University, Saguenay Delocalized Site, Chicoutimi Hospital, Sherbrooke, QC G7H 5H6, Canada;
| | - Manuel Roulaud
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (A.O.); (M.R.); (E.B.); (B.B.); (B.L.); (S.B.); (N.A.); (K.N.); (M.M.); (C.W.); (R.D.)
| | - Etienne Babin
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (A.O.); (M.R.); (E.B.); (B.B.); (B.L.); (S.B.); (N.A.); (K.N.); (M.M.); (C.W.); (R.D.)
- Laboratoire de Mathématiques et Applications, UMR 7348, Poitiers University and CNRS, 86000 Poitiers, France
| | - Bénédicte Bouche
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (A.O.); (M.R.); (E.B.); (B.B.); (B.L.); (S.B.); (N.A.); (K.N.); (M.M.); (C.W.); (R.D.)
- Department of Spine Surgery & Neuromodulation, Poitiers University Hospital, 86021 Poitiers, France; (T.B.); (P.P.)
| | - Philippe Page
- Department of Spine Surgery & Neuromodulation, Poitiers University Hospital, 86021 Poitiers, France; (T.B.); (P.P.)
| | - Bertille Lorgeoux
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (A.O.); (M.R.); (E.B.); (B.B.); (B.L.); (S.B.); (N.A.); (K.N.); (M.M.); (C.W.); (R.D.)
| | - Sandrine Baron
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (A.O.); (M.R.); (E.B.); (B.B.); (B.L.); (S.B.); (N.A.); (K.N.); (M.M.); (C.W.); (R.D.)
| | - Nihel Adjali
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (A.O.); (M.R.); (E.B.); (B.B.); (B.L.); (S.B.); (N.A.); (K.N.); (M.M.); (C.W.); (R.D.)
| | - Kevin Nivole
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (A.O.); (M.R.); (E.B.); (B.B.); (B.L.); (S.B.); (N.A.); (K.N.); (M.M.); (C.W.); (R.D.)
| | - Mathilde Many
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (A.O.); (M.R.); (E.B.); (B.B.); (B.L.); (S.B.); (N.A.); (K.N.); (M.M.); (C.W.); (R.D.)
| | - Elodie Charrier
- Pain Evaluation and Treatment Centre, Poitiers University Hospital, 86021 Poitiers, France; (E.C.); (D.R.); (L.P.)
| | - Delphine Rannou
- Pain Evaluation and Treatment Centre, Poitiers University Hospital, 86021 Poitiers, France; (E.C.); (D.R.); (L.P.)
| | - Laure Poupin
- Pain Evaluation and Treatment Centre, Poitiers University Hospital, 86021 Poitiers, France; (E.C.); (D.R.); (L.P.)
| | - Chantal Wood
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (A.O.); (M.R.); (E.B.); (B.B.); (B.L.); (S.B.); (N.A.); (K.N.); (M.M.); (C.W.); (R.D.)
- Department of Spine Surgery & Neuromodulation, Poitiers University Hospital, 86021 Poitiers, France; (T.B.); (P.P.)
| | - Romain David
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (A.O.); (M.R.); (E.B.); (B.B.); (B.L.); (S.B.); (N.A.); (K.N.); (M.M.); (C.W.); (R.D.)
- Physical and Rehabilitation Medicine Unit, Poitiers University Hospital, University of Poitiers, 86021 Poitiers, France
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium; (L.G.); (M.M.)
- STIMULUS Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Maxime Billot
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (A.O.); (M.R.); (E.B.); (B.B.); (B.L.); (S.B.); (N.A.); (K.N.); (M.M.); (C.W.); (R.D.)
| |
Collapse
|
65
|
Stress-related dysautonomias and neurocardiology-based treatment approaches. Auton Neurosci 2022; 239:102944. [DOI: 10.1016/j.autneu.2022.102944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/13/2021] [Accepted: 01/16/2022] [Indexed: 11/21/2022]
|
66
|
Rigoard P, Roulaud M, Goudman L, Adjali N, Ounajim A, Voirin J, Perruchoud C, Bouche B, Page P, Guillevin R, Naudin M, Simoneau M, Lorgeoux B, Baron S, Nivole K, Many M, Maitre I, Rigoard R, David R, Moens M, Billot M. Comparison of Spinal Cord Stimulation vs. Dorsal Root Ganglion Stimulation vs. Association of Both in Patients with Refractory Chronic Back and/or Lower Limb Neuropathic Pain: An International, Prospective, Randomized, Double-Blinded, Crossover Trial (BOOST-DRG Study). MEDICINA (KAUNAS, LITHUANIA) 2021; 58:7. [PMID: 35056316 PMCID: PMC8780129 DOI: 10.3390/medicina58010007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/25/2022]
Abstract
While spinal cord stimulation (SCS) is a well-established therapy to address refractory persistent spinal pain syndrome after spinal surgery (PSPS-T2), its lack of spatial selectivity and reported discomfort due to positional effects can be considered as significant limitations. As alternatives, new waveforms, such as burst stimulation and different spatial neural targets, such as dorsal root ganglion stimulation (DRGS), have shown promising results. Comparisons between DRGS and standard SCS, or their combination, have never been studied on the same patients. "BOOST DRG" is the first prospective, randomized, double-blinded, crossover study to compare SCS vs. DRGS vs. SCS+DRGS. Sixty-six PSPS-T2 patients will be recruited internationally in three centers. Before crossing over, patients will receive each stimulation modality for 1 month, using tonic conventional stimulation. After 3 months, stimulation will consist in switching to burst for 1 month, and patients will choose which modality/waveform they receive and will then be reassessed at 6 and 12 months. In addition to our primary outcome based on pain rating, this study is designed to assess quality of life, functional disability, psychological distress, pain surface coverage, global impression of change, medication quantification, adverse events, brain functional imaging and electroencephalography, with the objective being to provide a multidimensional insight based on composite pain assessment.
Collapse
Affiliation(s)
- Philippe Rigoard
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
- Department of Spine Surgery & Neuromodulation, Poitiers University Hospital, 86021 Poitiers, France;
- Pprime Institute UPR 3346, CNRS, ISAE-ENSMA, University of Poitiers, 86360 Chasseneuil-du-Poitou, France
| | - Manuel Roulaud
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
| | - Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium; (L.G.); (M.M.)
- STUMULUS Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Nihel Adjali
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
| | - Amine Ounajim
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
| | - Jimmy Voirin
- Department of Neurosurgery, Hopitaux Civils de Colmar, 68000 Colmar, France;
| | - Christophe Perruchoud
- Service of Anesthesiology and Pain Centre, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland;
| | - Bénédicte Bouche
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
- Department of Spine Surgery & Neuromodulation, Poitiers University Hospital, 86021 Poitiers, France;
| | - Philippe Page
- Department of Spine Surgery & Neuromodulation, Poitiers University Hospital, 86021 Poitiers, France;
| | - Rémy Guillevin
- Department of Radiology, Poitiers University Hospital, 86021 Poitiers, France; (R.G.); (M.N.)
- UMR CNRS 7348, DACTIM-MIS/LMA Laboratory, University of Poitiers, 86000 Poitiers, France
| | - Mathieu Naudin
- Department of Radiology, Poitiers University Hospital, 86021 Poitiers, France; (R.G.); (M.N.)
- UMR CNRS 7348, DACTIM-MIS/LMA Laboratory, University of Poitiers, 86000 Poitiers, France
| | - Martin Simoneau
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada;
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (CIRRIS), Quebec, QC G1M 2S8, Canada
| | - Bertille Lorgeoux
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
| | - Sandrine Baron
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
| | - Kevin Nivole
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
| | - Mathilde Many
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
| | - Iona Maitre
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
| | - Raphaël Rigoard
- CEA Cadarache, Département de Support Technique et Gestion, Service des Technologies de l’Information et de la Communication, 13108 Saint-Paul-Lez-Durance, France;
| | - Romain David
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
- Department of Physical and Rehabilitation Medicine, Poitiers University Hospital, University of Poitiers, 86021 Poitiers, France
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium; (L.G.); (M.M.)
- STUMULUS Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Maxime Billot
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
| |
Collapse
|
67
|
O'Connell NE, Ferraro MC, Gibson W, Rice AS, Vase L, Coyle D, Eccleston C. Implanted spinal neuromodulation interventions for chronic pain in adults. Cochrane Database Syst Rev 2021; 12:CD013756. [PMID: 34854473 PMCID: PMC8638262 DOI: 10.1002/14651858.cd013756.pub2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Implanted spinal neuromodulation (SNMD) techniques are used in the treatment of refractory chronic pain. They involve the implantation of electrodes around the spinal cord (spinal cord stimulation (SCS)) or dorsal root ganglion (dorsal root ganglion stimulation (DRGS)), and a pulse generator unit under the skin. Electrical stimulation is then used with the aim of reducing pain intensity. OBJECTIVES To evaluate the efficacy, effectiveness, adverse events, and cost-effectiveness of implanted spinal neuromodulation interventions for people with chronic pain. SEARCH METHODS We searched CENTRAL, MEDLINE Ovid, Embase Ovid, Web of Science (ISI), Health Technology Assessments, ClinicalTrials.gov and World Health Organization International Clinical Trials Registry from inception to September 2021 without language restrictions, searched the reference lists of included studies and contacted experts in the field. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing SNMD interventions with placebo (sham) stimulation, no treatment or usual care; or comparing SNMD interventions + another treatment versus that treatment alone. We included participants ≥ 18 years old with non-cancer and non-ischaemic pain of longer than three months duration. Primary outcomes were pain intensity and adverse events. Secondary outcomes were disability, analgesic medication use, health-related quality of life (HRQoL) and health economic outcomes. DATA COLLECTION AND ANALYSIS Two review authors independently screened database searches to determine inclusion, extracted data and evaluated risk of bias for prespecified results using the Risk of Bias 2.0 tool. Outcomes were evaluated at short- (≤ one month), medium- four to eight months) and long-term (≥12 months). Where possible we conducted meta-analyses. We used the GRADE system to assess the certainty of evidence. MAIN RESULTS We included 15 unique published studies that randomised 908 participants, and 20 unique ongoing studies. All studies evaluated SCS. We found no eligible published studies of DRGS and no studies comparing SCS with no treatment or usual care. We rated all results evaluated as being at high risk of bias overall. For all comparisons and outcomes where we found evidence, we graded the certainty of the evidence as low or very low, downgraded due to limitations of studies, imprecision and in some cases, inconsistency. Active stimulation versus placebo SCS versus placebo (sham) Results were only available at short-term follow-up for this comparison. Pain intensity Six studies (N = 164) demonstrated a small effect in favour of SCS at short-term follow-up (0 to 100 scale, higher scores = worse pain, mean difference (MD) -8.73, 95% confidence interval (CI) -15.67 to -1.78, very low certainty). The point estimate falls below our predetermined threshold for a clinically important effect (≥10 points). No studies reported the proportion of participants experiencing 30% or 50% pain relief for this comparison. Adverse events (AEs) The quality and inconsistency of adverse event reporting in these studies precluded formal analysis. Active stimulation + other intervention versus other intervention alone SCS + other intervention versus other intervention alone (open-label studies) Pain intensity Mean difference Three studies (N = 303) demonstrated a potentially clinically important mean difference in favour of SCS of -37.41 at short term (95% CI -46.39 to -28.42, very low certainty), and medium-term follow-up (5 studies, 635 participants, MD -31.22 95% CI -47.34 to -15.10 low-certainty), and no clear evidence for an effect of SCS at long-term follow-up (1 study, 44 participants, MD -7 (95% CI -24.76 to 10.76, very low-certainty). Proportion of participants reporting ≥50% pain relief We found an effect in favour of SCS at short-term (2 studies, N = 249, RR 15.90, 95% CI 6.70 to 37.74, I2 0% ; risk difference (RD) 0.65 (95% CI 0.57 to 0.74, very low certainty), medium term (5 studies, N = 597, RR 7.08, 95 %CI 3.40 to 14.71, I2 = 43%; RD 0.43, 95% CI 0.14 to 0.73, low-certainty evidence), and long term (1 study, N = 87, RR 15.15, 95% CI 2.11 to 108.91 ; RD 0.35, 95% CI 0.2 to 0.49, very low certainty) follow-up. Adverse events (AEs) Device related No studies specifically reported device-related adverse events at short-term follow-up. At medium-term follow-up, the incidence of lead failure/displacement (3 studies N = 330) ranged from 0.9 to 14% (RD 0.04, 95% CI -0.04 to 0.11, I2 64%, very low certainty). The incidence of infection (4 studies, N = 548) ranged from 3 to 7% (RD 0.04, 95%CI 0.01, 0.07, I2 0%, very low certainty). The incidence of reoperation/reimplantation (4 studies, N =5 48) ranged from 2% to 31% (RD 0.11, 95% CI 0.02 to 0.21, I2 86%, very low certainty). One study (N = 44) reported a 55% incidence of lead failure/displacement (RD 0.55, 95% CI 0.35, 0 to 75, very low certainty), and a 94% incidence of reoperation/reimplantation (RD 0.94, 95% CI 0.80 to 1.07, very low certainty) at five-year follow-up. No studies provided data on infection rates at long-term follow-up. We found reports of some serious adverse events as a result of the intervention. These included autonomic neuropathy, prolonged hospitalisation, prolonged monoparesis, pulmonary oedema, wound infection, device extrusion and one death resulting from subdural haematoma. Other No studies reported the incidence of other adverse events at short-term follow-up. We found no clear evidence of a difference in otherAEs at medium-term (2 studies, N = 278, RD -0.05, 95% CI -0.16 to 0.06, I2 0%) or long term (1 study, N = 100, RD -0.17, 95% CI -0.37 to 0.02) follow-up. Very limited evidence suggested that SCS increases healthcare costs. It was not clear whether SCS was cost-effective. AUTHORS' CONCLUSIONS We found very low-certainty evidence that SCS may not provide clinically important benefits on pain intensity compared to placebo stimulation. We found low- to very low-certainty evidence that SNMD interventions may provide clinically important benefits for pain intensity when added to conventional medical management or physical therapy. SCS is associated with complications including infection, electrode lead failure/migration and a need for reoperation/re-implantation. The level of certainty regarding the size of those risks is very low. SNMD may lead to serious adverse events, including death. We found no evidence to support or refute the use of DRGS for chronic pain.
Collapse
Affiliation(s)
- Neil E O'Connell
- Department of Health Sciences, Centre for Health and Wellbeing Across the Lifecourse, Brunel University London, Uxbridge, UK
| | - Michael C Ferraro
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia
- School of Health Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - William Gibson
- School of Physiotherapy, The University of Notre Dame Australia, Fremantle, Australia
| | - Andrew Sc Rice
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Lene Vase
- Department of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark
| | - Doug Coyle
- Epidemiology and Community Medicine, Ottawa Health Research Institute, Ottawa, Canada
- Health Economics Research Group, Institute of Environment, Health and Societies, Department of Clinical Sciences, Brunel University London, Uxbridge, UK
| | | |
Collapse
|
68
|
Wilson SH, Hellman KM, James D, Adler AC, Chandrakantan A. Mechanisms, Diagnosis, and Medical Management of Hyperalgesia: an Educational Review. CURRENT ANESTHESIOLOGY REPORTS 2021. [DOI: 10.1007/s40140-021-00485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
69
|
A Review of the Clinical and Therapeutic Implications of Neuropathic Pain. Biomedicines 2021; 9:biomedicines9091239. [PMID: 34572423 PMCID: PMC8465811 DOI: 10.3390/biomedicines9091239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Understanding neuropathic pain presents several challenges, given the various mechanisms underlying its pathophysiological classification and the lack of suitable tools to assess its diagnosis. Furthermore, the response of this pathology to available drugs is still often unpredictable, leaving the treatment of neuropathic pain still questionable. In addition, the rise of personalized treatments further extends the ramified classification of neuropathic pain. While a few authors have focused on neuropathic pain clustering, by analyzing, for example, the presence of specific TRP channels, others have evaluated the presence of alterations in microRNAs to find tailored therapies. Thus, this review aims to synthesize the available evidence on the topic from a clinical perspective and provide a list of current demonstrations on the treatment of this disease.
Collapse
|
70
|
Cohen SP, Vase L, Hooten WM. Chronic pain: an update on burden, best practices, and new advances. Lancet 2021; 397:2082-2097. [PMID: 34062143 DOI: 10.1016/s0140-6736(21)00393-7] [Citation(s) in RCA: 1107] [Impact Index Per Article: 276.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/08/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
Chronic pain exerts an enormous personal and economic burden, affecting more than 30% of people worldwide according to some studies. Unlike acute pain, which carries survival value, chronic pain might be best considered to be a disease, with treatment (eg, to be active despite the pain) and psychological (eg, pain acceptance and optimism as goals) implications. Pain can be categorised as nociceptive (from tissue injury), neuropathic (from nerve injury), or nociplastic (from a sensitised nervous system), all of which affect work-up and treatment decisions at every level; however, in practice there is considerable overlap in the different types of pain mechanisms within and between patients, so many experts consider pain classification as a continuum. The biopsychosocial model of pain presents physical symptoms as the denouement of a dynamic interaction between biological, psychological, and social factors. Although it is widely known that pain can cause psychological distress and sleep problems, many medical practitioners do not realise that these associations are bidirectional. While predisposing factors and consequences of chronic pain are well known, the flipside is that factors promoting resilience, such as emotional support systems and good health, can promote healing and reduce pain chronification. Quality of life indicators and neuroplastic changes might also be reversible with adequate pain management. Clinical trials and guidelines typically recommend a personalised multimodal, interdisciplinary treatment approach, which might include pharmacotherapy, psychotherapy, integrative treatments, and invasive procedures.
Collapse
Affiliation(s)
- Steven P Cohen
- Johns Hopkins School of Medicine, Baltimore, MD, USA; Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Lene Vase
- Neuroscientific Division, Department of Psychology and Behavioural Sciences, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
71
|
Knotkova H, Hamani C, Sivanesan E, Le Beuffe MFE, Moon JY, Cohen SP, Huntoon MA. Neuromodulation for chronic pain. Lancet 2021; 397:2111-2124. [PMID: 34062145 DOI: 10.1016/s0140-6736(21)00794-7] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 12/23/2022]
Abstract
Neuromodulation is an expanding area of pain medicine that incorporates an array of non-invasive, minimally invasive, and surgical electrical therapies. In this Series paper, we focus on spinal cord stimulation (SCS) therapies discussed within the framework of other invasive, minimally invasive, and non-invasive neuromodulation therapies. These therapies include deep brain and motor cortex stimulation, peripheral nerve stimulation, and the non-invasive treatments of repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and transcutaneous electrical nerve stimulation. SCS methods with electrical variables that differ from traditional SCS have been approved. Although methods devoid of paraesthesias (eg, high frequency) should theoretically allow for placebo-controlled trials, few have been done. There is low-to-moderate quality evidence that SCS is superior to reoperation or conventional medical management for failed back surgery syndrome, and conflicting evidence as to the superiority of traditional SCS over sham stimulation or between different SCS modalities. Peripheral nerve stimulation technologies have also undergone rapid development and become less invasive, including many that are placed percutaneously. There is low-to-moderate quality evidence that peripheral nerve stimulation is effective for neuropathic pain in an extremity, low quality evidence that it is effective for back pain with or without leg pain, and conflicting evidence that it can prevent migraines. In the USA and many areas in Europe, deep brain and motor cortex stimulation are not approved for chronic pain, but are used off-label for refractory cases. Overall, there is mixed evidence supporting brain stimulation, with most sham-controlled trials yielding negative findings. Regarding non-invasive modalities, there is moderate quality evidence that repetitive transcranial magnetic stimulation does not provide meaningful benefit for chronic pain in general, but conflicting evidence regarding pain relief for neuropathic pain and headaches. For transcranial direct current stimulation, there is low-quality evidence supporting its benefit for chronic pain, but conflicting evidence regarding a small treatment effect for neuropathic pain and headaches. For transcutaneous electrical nerve stimulation, there is low-quality evidence that it is superior to sham or no treatment for neuropathic pain, but conflicting evidence for non-neuropathic pain. Future research should focus on better evaluating the short-term and long-term effectiveness of all neuromodulation modalities and whether they decrease health-care use, and on refining selection criteria and treatment variables.
Collapse
Affiliation(s)
- Helena Knotkova
- MJHS Institute for Innovation in Palliative Care, New York, NY, USA; Department of Family and Social Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Clement Hamani
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Harquail Centre for Neuromodulation, University of Toronto, Toronto, ON, Canada
| | - Eellan Sivanesan
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Jee Youn Moon
- Department of Anesthesiology, Seoul National University, Seoul, South Korea
| | - Steven P Cohen
- Department of Neurology, Department of Physical Medicine & Rehabilitation, and Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Anesthesiology and Department of Physical Medicine & Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Marc A Huntoon
- Department of Anesthesiology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
72
|
Verma N, Mudge JD, Kasole M, Chen RC, Blanz SL, Trevathan JK, Lovett EG, Williams JC, Ludwig KA. Auricular Vagus Neuromodulation-A Systematic Review on Quality of Evidence and Clinical Effects. Front Neurosci 2021; 15:664740. [PMID: 33994937 PMCID: PMC8120162 DOI: 10.3389/fnins.2021.664740] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background: The auricular branch of the vagus nerve runs superficially, which makes it a favorable target for non-invasive stimulation techniques to modulate vagal activity. For this reason, there have been many early-stage clinical trials on a diverse range of conditions. These trials often report conflicting results for the same indication. Methods: Using the Cochrane Risk of Bias tool we conducted a systematic review of auricular vagus nerve stimulation (aVNS) randomized controlled trials (RCTs) to identify the factors that led to these conflicting results. The majority of aVNS studies were assessed as having "some" or "high" risk of bias, which makes it difficult to interpret their results in a broader context. Results: There is evidence of a modest decrease in heart rate during higher stimulation dosages, sometimes at above the level of sensory discomfort. Findings on heart rate variability conflict between studies and are hindered by trial design, including inappropriate washout periods, and multiple methods used to quantify heart rate variability. There is early-stage evidence to suggest aVNS may reduce circulating levels and endotoxin-induced levels of inflammatory markers. Studies on epilepsy reached primary endpoints similar to previous RCTs testing implantable vagus nerve stimulation therapy. Preliminary evidence shows that aVNS ameliorated pathological pain but not evoked pain. Discussion: Based on results of the Cochrane analysis we list common improvements for the reporting of results, which can be implemented immediately to improve the quality of evidence. In the long term, existing data from aVNS studies and salient lessons from drug development highlight the need for direct measures of local neural target engagement. Direct measures of neural activity around the electrode will provide data for the optimization of electrode design, placement, and stimulation waveform parameters to improve on-target engagement and minimize off-target activation. Furthermore, direct measures of target engagement, along with consistent evaluation of blinding success, must be used to improve the design of controls-a major source of concern identified in the Cochrane analysis. The need for direct measures of neural target engagement and consistent evaluation of blinding success is applicable to the development of other paresthesia-inducing neuromodulation therapies and their control designs.
Collapse
Affiliation(s)
- Nishant Verma
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - Jonah D. Mudge
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - Maïsha Kasole
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - Rex C. Chen
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - Stephan L. Blanz
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - James K. Trevathan
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | | | - Justin C. Williams
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
- Department of Neurosurgery, University of Wisconsin – Madison, Madison, WI, United States
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
- Department of Neurosurgery, University of Wisconsin – Madison, Madison, WI, United States
| |
Collapse
|
73
|
Boakye M, Ugiliweneza B, Madrigal F, Mesbah S, Ovechkin A, Angeli C, Bloom O, Wecht JW, Ditterline B, Harel NY, Kirshblum S, Forrest G, Wu S, Harkema S, Guest J. Clinical Trial Designs for Neuromodulation in Chronic Spinal Cord Injury Using Epidural Stimulation. Neuromodulation 2021; 24:405-415. [PMID: 33794042 DOI: 10.1111/ner.13381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/11/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
STUDY DESIGN This is a narrative review focused on specific challenges related to adequate controls that arise in neuromodulation clinical trials involving perceptible stimulation and physiological effects of stimulation activation. OBJECTIVES 1) To present the strengths and limitations of available clinical trial research designs for the testing of epidural stimulation to improve recovery after spinal cord injury. 2) To describe how studies can control for the placebo effects that arise due to surgical implantation, the physical presence of the battery, generator, control interfaces, and rehabilitative activity aimed to promote use-dependent plasticity. 3) To mitigate Hawthorne effects that may occur in clinical trials with intensive supervised participation, including rehabilitation. MATERIALS AND METHODS Focused literature review of neuromodulation clinical trials with integration to the specific context of epidural stimulation for persons with chronic spinal cord injury. CONCLUSIONS Standard of care control groups fail to control for the multiple effects of knowledge of having undergone surgical procedures, having implanted stimulation systems, and being observed in a clinical trial. The irreducible effects that have been identified as "placebo" require sham controls or comparison groups in which both are implanted with potentially active devices and undergo similar rehabilitative training.
Collapse
Affiliation(s)
- Maxwell Boakye
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Beatrice Ugiliweneza
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Department of Health Management and Systems Sciences, University of Louisville, Louisville, KY, USA
| | - Fabian Madrigal
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - Samineh Mesbah
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Alexander Ovechkin
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Claudia Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Department of Bioengineering, University of Louisville, Louisville, KY, USA.,Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY, USA
| | - Ona Bloom
- Feinstein Institute for Medical Research, Manhasset, NY, USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra Northwell, Manhasset, NY, USA.,Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra Northwell, Manhasset, NY, USA.,James J Peters VA Medical Center, Bronx, NY, USA
| | - Jill W Wecht
- James J Peters VA Medical Center, Bronx, NY, USA.,The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bonnie Ditterline
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Noam Y Harel
- James J Peters VA Medical Center, Bronx, NY, USA.,The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven Kirshblum
- Kessler Institute for Rehabilitation, Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NY, USA.,Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, USA
| | - Gail Forrest
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, USA.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Samuel Wu
- Department of Biostatistics, CTSI Data Coordinating Center, University of Florida, Gainesville, FL, USA
| | - Susan Harkema
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY, USA
| | - James Guest
- Neurological Surgery, and the Miami Project to Cure Paralysis, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
74
|
Lamy JC, Varriale P, Apartis E, Mehdi S, Blancher-Meinadier A, Kosutzka Z, Degos B, Frismand S, Simonetta-Moreau M, Meunier S, Roze E, Vidailhet M. Trans-Spinal Direct Current Stimulation for Managing Primary Orthostatic Tremor. Mov Disord 2021; 36:1835-1842. [PMID: 33772851 DOI: 10.1002/mds.28581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Primary orthostatic tremor (POT) is a rare disorder, characterized by 13 to 18 Hz tremor in the legs when standing and is often refractory to medical treatment. Epidural spinal cord stimulation has been proposed as an alternative treatment. However, this approach is invasive, which limits its application. OBJECTIVE Trans-spinal direct current stimulation (tsDCS) is a non-invasive method to modulate spinal cord circuits. The aim of this proof-of-concept study was to investigate the potential beneficial effect of tsDCS in POT. METHODS We conducted a double-blind, sham-controlled study in 16 patients with POT. In two separate visits, patients received sham tsDCS first followed by active (either cathodal or anodal) tsDCS. The primary outcome was the change in time in standing position. Secondary outcomes comprised quantitative assessment of tremor, measurement of corticospinal excitability including short-latency afferent inhibition, and clinical global impression-improvement (CGI-I). Measurements were made at baseline, after sham tsDCS, 0-30 min, and 30-60 min after active conditions. RESULTS Cathodal-tsDCS reduced tremor amplitude and frequency and lowered corticospinal excitability whereas anodal-tsDCS reduced tremor frequency only. CGI-I scores positively correlated with the time in standing position after both active tsDCS conditions. CONCLUSION A single session of tsDCS can improve instability in POT. This opens a new vista for experimental treatment options using multiple sessions of spinal DC stimulation. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jean-Charles Lamy
- Institut du Cerveau / Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, CNRS UMR 7225, Inserm U 1127, Sorbonne Université UM75, Paris, France
| | - Pasquale Varriale
- Institut du Cerveau / Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, CNRS UMR 7225, Inserm U 1127, Sorbonne Université UM75, Paris, France
| | - Emmanuelle Apartis
- Institut du Cerveau / Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, CNRS UMR 7225, Inserm U 1127, Sorbonne Université UM75, Paris, France.,Department of Neurophysiology, Saint-Antoine Hospital, Assistance Publique - Hopitaux de Paris (AP-HP), Paris, France
| | - Sophien Mehdi
- Institut du Cerveau / Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, CNRS UMR 7225, Inserm U 1127, Sorbonne Université UM75, Paris, France
| | - Anne Blancher-Meinadier
- Department of Neurophysiology, Saint-Antoine Hospital, Assistance Publique - Hopitaux de Paris (AP-HP), Paris, France
| | - Zuzana Kosutzka
- Institut du Cerveau / Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, CNRS UMR 7225, Inserm U 1127, Sorbonne Université UM75, Paris, France.,2nd Department of Neurology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Bertrand Degos
- Department of Neurology, Avicenne Hospital, Assistance Publique - Hopitaux de Paris (AP-HP), Sorbonne Paris Nord, Bobigny, France.,Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR7241/INSERM U1050, Université PSL, Paris, France
| | - Solène Frismand
- Department of Neurology, University Hospital of Nancy, Nancy, France
| | - Marion Simonetta-Moreau
- Department of Neurology Toulouse Hospital, Toulouse NeuroImaging Center (ToNIC), INSERM, University Paul Sabatier, UPS, Toulouse, France
| | - Sabine Meunier
- Institut du Cerveau / Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, CNRS UMR 7225, Inserm U 1127, Sorbonne Université UM75, Paris, France
| | - Emmanuel Roze
- Institut du Cerveau / Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, CNRS UMR 7225, Inserm U 1127, Sorbonne Université UM75, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique - Hopitaux de Paris (AP-HP), Paris, France
| | - Marie Vidailhet
- Institut du Cerveau / Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, CNRS UMR 7225, Inserm U 1127, Sorbonne Université UM75, Paris, France.,Department of Neurology, Pitié-Salpêtrière Hospital, Assistance Publique - Hopitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
75
|
Sokal P, Świtońska M, Kierońska S, Rudaś M, Harat M. The Impact of Electrical Stimulation of the Brain and Spinal Cord on Iron and Calcium-Phosphate Metabolism. Brain Sci 2021; 11:156. [PMID: 33503960 PMCID: PMC7912219 DOI: 10.3390/brainsci11020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Deep-brain stimulation (DBS) electrically modulates the subcortical brain regions. Under conditions of monopolar cerebral stimulation, electrical current flows between electrode's contacts and an implantable pulse generator, placed in the subclavicular area. Spinal cord stimulation (SCS) delivers an electrical current to the spinal cord. Epidural electrical stimulation is associated with the leakage of current, which can cause a generalized reaction. The aim of our study was to investigate whether the electrical stimulation of the cerebrum and spinal cord could have generalized effects on biochemical parameters. MATERIALS AND METHODS A total of 25 patients with Parkinson's disease (PD, n = 21) and dystonia (n = 4), who underwent DBS implantation, and 12 patients with chronic pain, who had SCS, received electrical stimulation. The blood levels of selected biochemical parameters were measured before and after overnight stimulation. RESULTS After DBS, the mean ± interquartile range (IQR) values for iron (off 15.6 ± 13.53 µmol/L; on: 7.65 ± 10.8 µmol/L; p < 0.001), transferrin (off: 2.42 ± 0.88 g/L; on: 1.99 ± 0.59 g/L; p < 0.001), transferrin saturation (off: 23.20 ± 14.50%; on: 10.70 ± 11.35%; p = 0.001), phosphate (off: 1.04 ± 0.2 mmol/L; on: 0.83 ± 0.2 mmol/L; p = 0.007), and total calcium (off: 2.39 ± 0.29 mmol/L; on: 2.27 ± 0.19 mmol/L; p = 0.016) were significantly reduced, whereas ferritin (off: 112.00 ± 89.00 ng/mL; on: 150.00 ± 89.00 ng/mL; p = 0.003) and C-reactive protein (off: 0.90 ± 19.39 mg/L; on: 60.35 ± 35.91 mg/L; p = 0.002) were significantly increased. Among patients with SCS, significant differences were observed for ferritin (off: 35 ± 63 ng/mL; on: 56 ± 62 ng/mL; p = 0.013), transferrin (off: 2.70 ± 0.74 g/L; on: 2.49 ± 0.69 g/L; p = 0.048), and C-reactive protein (off: 31.00 ± 36.40 mg/L; on: 36.60 ± 62.030 mg/L; p = 0.018) before and after electrical stimulation. No significant changes in the examined parameters were observed among patients after thalamotomy and pallidotomy. CONCLUSIONS Leaking electric current delivered to the subcortical nuclei of the brain and the dorsal column of the spinal cord exposes the rest of the body to a negative charge. The generalized reaction is associated with an inflammatory response and altered iron and calcium-phosphate metabolism. Alterations in iron metabolism due to electrical stimulation may impact the course of PD. Future research should investigate the influence of electric current and electromagnetic field induced by neurostimulators on human metabolism.
Collapse
Affiliation(s)
- Paweł Sokal
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital No 2, Ujejskiego 75 Street, 85-168 Bydgoszcz, Poland; (M.Ś.); (S.K.); (M.R.)
- Faculty of Health Science, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jagielonska 13–15 Street, 85-067 Bydgoszcz, Poland;
| | - Milena Świtońska
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital No 2, Ujejskiego 75 Street, 85-168 Bydgoszcz, Poland; (M.Ś.); (S.K.); (M.R.)
- Faculty of Health Science, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jagielonska 13–15 Street, 85-067 Bydgoszcz, Poland;
| | - Sara Kierońska
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital No 2, Ujejskiego 75 Street, 85-168 Bydgoszcz, Poland; (M.Ś.); (S.K.); (M.R.)
| | - Marcin Rudaś
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital No 2, Ujejskiego 75 Street, 85-168 Bydgoszcz, Poland; (M.Ś.); (S.K.); (M.R.)
| | - Marek Harat
- Faculty of Health Science, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jagielonska 13–15 Street, 85-067 Bydgoszcz, Poland;
- Department of Neurosurgery, The 10th Military Research Hospital, Powstanców Warszawy 5 Street, 85-081 Bydgoszcz, Poland
| |
Collapse
|
76
|
Varshney V, Osborn J, Chaturvedi R, Shah V, Chakravarthy K. Advances in the interventional management of neuropathic pain. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:187. [PMID: 33569489 PMCID: PMC7867895 DOI: 10.21037/atm-20-6190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The management of neuropathic pain, defined as pain as a result of a lesion or disease in the somatosensory nervous system, continues to be researched and explored. As conventional methods demonstrate limited long-term efficacy, there is a significant need to discover therapies that offer both longitudinal and sustained management of this highly prevalent disease, which can be offered through interventional therapies. Tricyclic antidepressants (TCAs), gabapentinoids, lidocaine, serotonin norepinephrine reuptake inhibitors (SNRIs), and capsaicin have been shown to be the most efficacious pharmacologic agents for neuropathic pain relief. With respect to infusion therapies, the use of intravenous (IV) ketamine could be useful for complex regional pain syndrome, fibromyalgia, and traumatic spinal cord injury. Interventional approaches such as lumbar epidurals are a reasonable treatment choice for up to 3 months of pain relief for patients who failed to respond to conservative treatment, with a “B” strength of recommendation and moderate certainty. Neuroablative procedures like pulsed radiofrequency ablation work by delivering electrical field and heat bursts to targeted nerves or tissues without permanently damaging these structures, and have been recently explored for neuropathic pain relief. Alternatively, neuromodulation therapy is now recommended as the fourth line treatment of neuropathic pain after failed pharmacological therapy but prior to low dose opioids. Finally, the intrathecal delivery of various pharmacologic agents, such as quinoxaline-based kappa-opioid receptor agonists, can be utilized for neuropathic pain relief. In this review article, we aim to highlight advances and novel methods of interventional management of neuropathic pain.
Collapse
Affiliation(s)
- Vishal Varshney
- Department of Anesthesia, Providence Healthcare, Vancouver, BC, Canada.,Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Jill Osborn
- Department of Anesthesia, Providence Healthcare, Vancouver, BC, Canada.,Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Rahul Chaturvedi
- School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Vrajesh Shah
- School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Krishnan Chakravarthy
- Division of Pain Medicine, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA.,VA San Diego Health Care, San Diego, CA, USA
| |
Collapse
|
77
|
Ranjan M, Kumar P, Konrad P, Rezai AR. Finding Optimal Neuromodulation for Chronic Pain: Waves, Bursts, and Beyond. Neurol India 2020; 68:S218-S223. [PMID: 33318354 DOI: 10.4103/0028-3886.302465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Spinal cord stimulation (SCS) has emerged as state-of-the-art evidence-based treatment for chronic intractable pain related to spinal and peripheral nerve disorders. Traditionally delivered as steady-state, paraesthesia-producing electrical stimulation, newer technology has augmented the SCS option and outcome in the last decade. Objective To present an overview of the traditional and newer SCS waveforms. Materials and Methods We present a short literature review of SCS waveforms in reference to newer waveforms and describing paraesthesia-free, high frequency, and burst stimulation methods as well as advances in waveform paradigms and programming modalities. Pertinent literature was reviewed, especially in the context of evolution in the waveforms of SCS and stimulation parameters. Results Conventional tonic SCS remains one of the most utilized and clinically validated SCS waveforms. Newer waveforms such as burst stimulation, high-frequency stimulation, and the sub-perception SCS have emerged in the last decades with favorable results with no or minimal paraesthesia, including in cases otherwise intractable to conventional tonic SCS. The recent evolution and experience of closed-loop SCS is promising and appealing. The experience and validation of the newer SCS waveforms, however, remain limited but optimistic. Conclusions Advances in SCS device technology and waveforms have improved patient outcomes, leading to its increased utilization of SCS for chronic pain. These improvements and the development of closed-loop SCS have been increasingly promising development and foster a clinical translation of improved pain relief as the years of research and clinical study beyond conventional SCS waveform come to fruition.
Collapse
Affiliation(s)
- Manish Ranjan
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University
| | - Pranab Kumar
- Department of Anaesthesiology and Pain Medicine, Toronto Western Hospital, University of Toronto
| | - Peter Konrad
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University
| | - Ali R Rezai
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University
| |
Collapse
|
78
|
Eldabe S, Duarte R, Gulve A, Williams H, Garner F, Brookes M, Madzinga G, Buchser E, Batterham AM. Analgesic Efficacy of "Burst" and Tonic (500 Hz) Spinal Cord Stimulation Patterns: A Randomized Placebo-Controlled Crossover Study. Neuromodulation 2020; 24:471-478. [PMID: 33251662 DOI: 10.1111/ner.13321] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to compare the efficacy in reducing pain intensity in adult subjects suffering from chronic back and leg pain of burst (BST) and tonic sub-threshold stimulation at 500 Hz (T500) vs. sham stimulation delivered by a spinal cord stimulation (SCS) device capable of automated postural adjustment of current intensity. MATERIALS AND METHODS A multicentre randomized double-blind, three-period, three-treatment, crossover study was undertaken at two centers in the United Kingdom. Patients who had achieved stable pain relief with a conventional SCS capable of automated postural adjustment of current intensity were randomized to sequences of BST, T500, and sham SCS with treatment order balanced across the six possible sequences. A current leakage was programmed into the implantable pulse generator (IPG) in the sham period. The primary outcome was patient reported pain intensity using a visual analog scale (VAS). RESULTS Nineteen patients were enrolled and randomized. The mean reduction in pain with T500 was statistically significantly greater than that observed with either sham (25%; 95% CI, 8%-38%; p = 0.008) or BST (28%; 95% CI, 13%-41%; p = 0.002). There were no statistically significant differences in pain VAS for BST versus Sham (5%; 95% CI, -13% to 27%; p = 0.59). Exploratory sub-group analyses by study site and sex were also conducted for the T500 vs. sham and BST versus sham comparisons. CONCLUSIONS The findings suggest a superior outcome versus sham from T500 stimulation over BST stimulation and a practical equivalence between BST and sham in a group of subjects with leg and back pain habituated to tonic SCS and having achieved a stable status with stimulation.
Collapse
Affiliation(s)
- Sam Eldabe
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, UK
| | - Rui Duarte
- Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, UK
| | - Ashish Gulve
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, UK
| | - Heather Williams
- Department of Pain Management, Newcastle-upon-Tyne NHS Trust, Newcastle, UK
| | - Fay Garner
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, UK
| | - Morag Brookes
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, UK
| | - Grace Madzinga
- Department of Clinical Research Services, ICON Group, Sydney, Australia
| | - Eric Buchser
- Department of Anaesthesia and Pain Management, EHC - Hôpital de Morges, Morges, Switzerland
| | - Alan M Batterham
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| |
Collapse
|
79
|
O'Connell NE, Gibson W, Rice ASC, Vase L, Coyle D, Eccleston C. Implanted spinal neuromodulation interventions for chronic pain in adults. Hippokratia 2020. [DOI: 10.1002/14651858.cd013756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Neil E O'Connell
- Health Economics Research Group, Institute of Environment, Health and Societies, Department of Clinical Sciences; Brunel University London; Uxbridge UK
| | - William Gibson
- School of Physiotherapy; The University of Notre Dame Australia; Fremantle Australia
| | - Andrew SC Rice
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine; Imperial College London; London UK
| | - Lene Vase
- Department of Psychology and Behavioural Sciences; Aarhus University; Aarhus Denmark
| | - Doug Coyle
- Health Economics Research Group, Institute of Environment, Health and Societies, Department of Clinical Sciences; Brunel University London; Uxbridge UK
- Epidemiology and Community Medicine; Ottawa Health Research Institute; Ottawa Canada
| | | |
Collapse
|
80
|
Reply to Sharma et al. Pain 2020; 161:2429-2430. [PMID: 32956261 DOI: 10.1097/j.pain.0000000000001972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
81
|
Sivanesan E, Cohen SP. Neuromodulation for Pain Treatment: Building a Foundation for Future Study. Anesthesiology 2020; 133:262-264. [PMID: 32568851 DOI: 10.1097/aln.0000000000003384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Eellan Sivanesan
- From the Department of Anesthesiology and Critical Care Medicine (E.S., S.P.C.) the Departments of Neurology and Physical Medicine and Rehabilitation (S.P.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland the Departments of Anesthesiology and Physical Medicine and Rehabilitation, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland (S.P.C.)
| | | |
Collapse
|
82
|
Sokal P, Malukiewicz A, Kierońska S, Murawska J, Guzowski C, Rudaś M, Paczkowski D, Rusinek M, Krakowiak M. Sub-Perception and Supra-Perception Spinal Cord Stimulation in Chronic Pain Syndrome: A Randomized, Semi-Double-Blind, Crossover, Placebo-Controlled Trial. J Clin Med 2020; 9:E2810. [PMID: 32878061 PMCID: PMC7563558 DOI: 10.3390/jcm9092810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/18/2020] [Accepted: 08/29/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The introduction of modern sub-perception modalities has improved the efficacy of spinal cord stimulation (SCS) in refractory pain syndromes of the trunk and lower limbs. The objective of this study was to evaluate the effectiveness of low and high frequency SCS among patients with chronic pain. MATERIAL AND METHODS A randomised, semi-double-blind, placebo controlled, four period (4 × 2 weeks) crossover trial was conducted from August 2018 to January 2020. Eighteen patients with SCS due to failed back surgery syndrome and/or complex regional pain syndrome were randomised to four treatment arms without washout periods: (1) low frequency (40-60 Hz), (2) 1 kHz, (3) clustered tonic, and (4) sham SCS (i.e., placebo). The primary outcome was pain scores measured by visual analogue scale (VAS) preoperatively and during subsequent treatment arms. RESULTS Pain scores (VAS) reported during the preoperative period was M (SD) = 8.13 (0.99). There was a 50% reduction in pain reported in the low frequency tonic treatment group (M (SD) = 4.18 (1.76)), a 37% reduction in the 1 kHz treatment group (M (SD) = 5.17 (1.4)), a 34% reduction in the clustered tonic settings group (M (SD) = 5.27 (1.33)), and a 34% reduction in the sham stimulation group (M (SD) = 5.42 (1.22)). The reduction in pain from the preoperative period to the treatment period was significant in each treatment group (p < 0.001). Overall, these reductions were of comparable magnitude between treatments. However, the modality most preferred by patients was low frequency (55% or 10 patients). CONCLUSIONS The pain-relieving effects of SCS reached significance and were comparable across all modes of stimulation including sham. Sub-perception stimulation was not superior to supra-perception. SCS was characterised by a high degree of placebo effect. No evidence of carryover effect was observed between subsequent treatments. Contemporary neuromodulation procedures should be tailored to the individual preferences of patients.
Collapse
Affiliation(s)
- Paweł Sokal
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital Nr 2, Ujejskiego 75 Street, 85-168 Bydgoszcz, Poland; (A.M.); (S.K.); (M.R.); (D.P.); (M.R.); (M.K.)
- Faculty of Health Sciences, Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Toruń, Jagielońska 13-15 85-067 Bydgoszcz, Poland
| | - Agnieszka Malukiewicz
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital Nr 2, Ujejskiego 75 Street, 85-168 Bydgoszcz, Poland; (A.M.); (S.K.); (M.R.); (D.P.); (M.R.); (M.K.)
| | - Sara Kierońska
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital Nr 2, Ujejskiego 75 Street, 85-168 Bydgoszcz, Poland; (A.M.); (S.K.); (M.R.); (D.P.); (M.R.); (M.K.)
| | - Joanna Murawska
- Students’ Scientific Circle at the Department of Neurosurgery, Jan Biziel University Hospital Nr 2, Ujejskiego 75 Street, 85-168 Bydgoszcz, Poland; (J.M.); (C.G.)
| | - Cezary Guzowski
- Students’ Scientific Circle at the Department of Neurosurgery, Jan Biziel University Hospital Nr 2, Ujejskiego 75 Street, 85-168 Bydgoszcz, Poland; (J.M.); (C.G.)
| | - Marcin Rudaś
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital Nr 2, Ujejskiego 75 Street, 85-168 Bydgoszcz, Poland; (A.M.); (S.K.); (M.R.); (D.P.); (M.R.); (M.K.)
| | - Dariusz Paczkowski
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital Nr 2, Ujejskiego 75 Street, 85-168 Bydgoszcz, Poland; (A.M.); (S.K.); (M.R.); (D.P.); (M.R.); (M.K.)
| | - Marcin Rusinek
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital Nr 2, Ujejskiego 75 Street, 85-168 Bydgoszcz, Poland; (A.M.); (S.K.); (M.R.); (D.P.); (M.R.); (M.K.)
| | - Mateusz Krakowiak
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital Nr 2, Ujejskiego 75 Street, 85-168 Bydgoszcz, Poland; (A.M.); (S.K.); (M.R.); (D.P.); (M.R.); (M.K.)
| |
Collapse
|
83
|
Rigoard P, Billot M, Ingrand P, Durand-Zaleski I, Roulaud M, Peruzzi P, Dam Hieu P, Voirin J, Raoul S, Page P, Djian MC, Fontaine D, Lantéri-Minet M, Blond S, Buisset N, Cuny E, Cadenne M, Caire F, Ranoux D, Mertens P, Naous H, Simon E, Emery E, Béraud G, Debiais F, Durand G, Serrie A, Diallo B, Bulsei J, Ounajim A, Nivole K, Duranton S, Naiditch N, Monlezun O, Bataille B. How Should we Use Multicolumn Spinal Cord Stimulation to Optimize Back Pain Spatial Neural Targeting? A Prospective, Multicenter, Randomized, Double-Blind, Controlled Trial (ESTIMET Study). Neuromodulation 2020; 24:86-101. [PMID: 32865344 DOI: 10.1111/ner.13251] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent studies have highlighted multicolumn spinal cord stimulation (SCS) efficacy, hypothesizing that optimized spatial neural targeting provided by new-generation SCS lead design or its multicolumn programming abilities could represent an opportunity to better address chronic back pain (BP). OBJECTIVE To compare multicolumn vs. monocolumn programming on clinical outcomes of refractory postoperative chronic BP patients implanted with SCS using multicolumn surgical lead. MATERIALS AND METHODS Twelve centers included 115 patients in a multicenter, randomized, double-blind, controlled trial. After randomization, leads were programmed using only one or several columns. The primary outcome was change in BP visual analogic scale (VAS) at six months. All patients were then programmed using the full potential of the lead up until 12-months follow-up. RESULTS At six months, there was no significant difference in clinical outcomes whether the SCS was programmed using a mono or a multicolumn program. At 12 months, in all patients having been receiving multicolumn SCS for at least six months (n = 97), VAS decreases were significant for global pain (45.1%), leg pain (55.8%), and BP (41.5%) compared with baseline (p < 0.0001). CONCLUSION The ESTIMET study confirms the significant benefit experienced on chronic BP by patients implanted with multicolumn SCS, independently from multicolumn lead programming. These good clinical outcomes might result from the specific architecture of the multicolumn lead, giving the opportunity to select initially the best column on a multicolumn grid and to optimize neural targeting with low-energy requirements. However, involving more columns than one does not appear necessary, once initial spatial targeting of the "sweet spot" has been achieved. Our findings suggest that this spatial concept could also be transposed to cylindrical leads, which have drastically improved their capability to shape the electrical field, and might be combined with temporal resolution using SCS new modalities.
Collapse
Affiliation(s)
- Philippe Rigoard
- PRISMATICS Lab (Predictive Research In Spine/neurostimulation Management and Thoracic Innovation in Cardiac Surgery), Poitiers University Hospital, Poitiers, France.,Department of Neurosurgery, Spine & Neurostimulation Unit, Poitiers University Hospital, Poitiers, France.,UPR 3346, CNRS, P' Institute, Futuroscope, Faculty of Sciences, Poitiers, France
| | - Maxime Billot
- PRISMATICS Lab (Predictive Research In Spine/neurostimulation Management and Thoracic Innovation in Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Pierre Ingrand
- Faculty of Medicine and Pharmacy, Poitiers University Hospital, Poitiers, France
| | | | - Manuel Roulaud
- PRISMATICS Lab (Predictive Research In Spine/neurostimulation Management and Thoracic Innovation in Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Philippe Peruzzi
- Department of Neurosurgery, Reims University Hospital, Reims, France
| | - Phong Dam Hieu
- Department of Neurosurgery, Brest University Hospital, Brest, France
| | - Jimmy Voirin
- Department of Neurosurgery, Colmar Hospital, Colmar, France
| | - Sylvie Raoul
- Department of Neurosurgery, Nantes University Hospital, Nantes, France
| | - Philippe Page
- Department of Neurosurgery, Spine & Neurostimulation Unit, Poitiers University Hospital, Poitiers, France
| | | | - Denys Fontaine
- Centre Hospitalier Universitaire de Nice, Department of Neurosurgery, Université Côte d'Azur, Nice, France.,FHU InovPain, Côte Azur University, Nice, France
| | - Michel Lantéri-Minet
- FHU InovPain, Côte Azur University, Nice, France.,Pain Evaluation and Treatment Centre, Nice University Hospital, Nice, France.,INSERM U1107, Neuro-Dol, Trigeminal Pain and Migraine, Auvergne University, Clermont-Ferrand, France
| | - Serge Blond
- Department of Neurosurgery, Lille University Hospital, Lille, France
| | - Nadia Buisset
- Department of Neurosurgery, Lille University Hospital, Lille, France
| | - Emmanuel Cuny
- Department of Neurosurgery, Bordeaux University Hospital, Bordeaux, France
| | - Myriam Cadenne
- Pain Evaluation and Treatment Centre, Bordeaux University Hospital, Bordeaux, France
| | - François Caire
- Department of Neurosurgery, Limoges University Hospital, Limoges, France
| | - Danièle Ranoux
- Pain Evaluation and Treatment Centre, Limoges University Hospital, Limoges, France
| | - Patrick Mertens
- Department of Neurosurgery, Lyon University Hospital, Lyon, France
| | - Hussein Naous
- Department of Neurosurgery, Lyon University Hospital, Lyon, France
| | - Emile Simon
- Department of Neurosurgery, Lyon University Hospital, Lyon, France
| | - Evelyne Emery
- Department of Neurosurgery, Caen University Hospital, Caen, France
| | - Guillaume Béraud
- Internal Medicine/Infectious and Tropical Diseases Department, Poitiers University Hospital, Poitiers, France
| | - Françoise Debiais
- Department of Rheumatology, Poitiers University Hospital, Poitiers, France
| | - Géraldine Durand
- Department of Rheumatology, Poitiers University Hospital, Poitiers, France
| | - Alain Serrie
- Pain Evaluation and Treatment Centre, Lariboisière Hospital, Paris, France
| | - Bakari Diallo
- Pain Evaluation and Treatment Centre, Poitiers University Hospital, Poitiers, France
| | - Julie Bulsei
- Clinical Research Unit in Economics, Hôtel Dieu, Paris, France
| | - Amine Ounajim
- PRISMATICS Lab (Predictive Research In Spine/neurostimulation Management and Thoracic Innovation in Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Kevin Nivole
- PRISMATICS Lab (Predictive Research In Spine/neurostimulation Management and Thoracic Innovation in Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Sophie Duranton
- Vigilance Department, Clinical Research Direction, Poitiers University Hospital, Poitiers, France
| | - Nicolas Naiditch
- PRISMATICS Lab (Predictive Research In Spine/neurostimulation Management and Thoracic Innovation in Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Olivier Monlezun
- PRISMATICS Lab (Predictive Research In Spine/neurostimulation Management and Thoracic Innovation in Cardiac Surgery), Poitiers University Hospital, Poitiers, France
| | - Benoit Bataille
- Department of Neurosurgery, Spine & Neurostimulation Unit, Poitiers University Hospital, Poitiers, France
| |
Collapse
|
84
|
Jinich-Diamant A, Garland E, Baumgartner J, Gonzalez N, Riegner G, Birenbaum J, Case L, Zeidan F. Neurophysiological Mechanisms Supporting Mindfulness Meditation–Based Pain Relief: an Updated Review. Curr Pain Headache Rep 2020; 24:56. [DOI: 10.1007/s11916-020-00890-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
85
|
Duarte RV, North RB, Eldabe S. Advances in Neurostimulation for Chronic Pain Disorders. PAIN MEDICINE 2020; 21:1312-1314. [PMID: 32634246 DOI: 10.1093/pm/pnaa158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rui V Duarte
- Liverpool Reviews and Implementation Group, University of Liverpool, Liverpool, UK
| | - Richard B North
- Neurosurgery, Anesthesiology and Critical Care Medicine (ret.), Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sam Eldabe
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, UK
| |
Collapse
|
86
|
Reply to Banik. Pain 2020; 161:1939-1940. [PMID: 32701853 DOI: 10.1097/j.pain.0000000000001909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
87
|
|
88
|
McNicol E, Ferguson M, Bungay K, Rowe EL, Eldabe S, Gewandter JS, Hayek SM, Katz N, Kopell BH, Markman J, Rezai A, Taylor RS, Turk DC, Dworkin RH, North RB, Thomson S. Systematic Review of Research Methods and Reporting Quality of Randomized Clinical Trials of Spinal Cord Stimulation for Pain. THE JOURNAL OF PAIN 2020; 22:127-142. [PMID: 32574787 DOI: 10.1016/j.jpain.2020.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022]
Abstract
This systematic review assessed design characteristics and reporting quality of published randomized clinical trials of spinal cord stimulation (SCS) for treatment of pain in adults and adolescents. The study protocol was registered with PROSPERO (CRD42018090412). Relevant articles were identified by searching the following databases through December 31, 2018: MEDLINE, Embase, WikiStim, The Cochrane Database of Systematic Reviews, and The Cochrane Central Register of Controlled Trials. Forty-six studies were included. Eighty-seven percent of articles identified a pain-related primary outcome. Secondary outcomes included physical functioning, health-related quality of life, and reductions in opioid use. Nineteen of the 46 studies prespecified adverse events as an outcome, with 4 assessing them as a primary outcome. Eleven studies stated that they blinded participants. Of these, only 5 were assessed as being adequately blinded. The number of participants enrolled was generally low (median 38) and study durations were short (median 12 weeks), particularly in studies of angina. Fifteen studies employed an intention-to-treat analysis, of which only seven specified a method to accommodate missing data. Review of these studies identified deficiencies in both reporting and methodology. The review's findings suggest areas for improving the design of future studies and increasing transparency of reporting. PERSPECTIVE: This article presents a systematic review of research methods and reporting quality of randomized clinical trials of SCS for the treatment of various pain complaints. The review identifies deficiencies in both methodology and reporting, which may inform the design of future studies and improve reporting standards.
Collapse
Affiliation(s)
- Ewan McNicol
- Department of Pharmacy Practice, MCPHS University, Boston, Massachusetts.
| | - McKenzie Ferguson
- Department of Pharmacy Practice, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | | | | | - Sam Eldabe
- University of Exeter, Exeter, UK; Durham University, Durham, UK
| | - Jennifer S Gewandter
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, New York
| | - Salim M Hayek
- Case Western Reserve University, University Hospitals of Cleveland, Cleveland, Ohio
| | - Nathaniel Katz
- Analgesic Solutions, Wayland, Massachusetts; Tufts University School of Medicine, Boston, Massachusetts
| | - Brian H Kopell
- Departments of Neurosurgery, Neurology, Psychiatry and Neuroscience, The Icahn School of Medicine at Mount Sinai, NY, New York
| | - John Markman
- Translational Pain Research Program, Department of Neurosurgery, University of Rochester, New York
| | - Ali Rezai
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Rod S Taylor
- Institute of Health and Well Being, University of Glasgow, Glasgow, UK; College of Medicine and Health, University of Exeter, Exeter, UK
| | - Dennis C Turk
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Robert H Dworkin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, New York
| | | | - Simon Thomson
- Basildon and Thurrock University Hospitals, Essex, UK
| |
Collapse
|
89
|
Unanswered questions from the Evoke trial. Lancet Neurol 2020; 19:380. [DOI: 10.1016/s1474-4422(20)30110-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/19/2020] [Indexed: 11/17/2022]
|
90
|
Moisset X, Bouhassira D, Avez Couturier J, Alchaar H, Conradi S, Delmotte MH, Lanteri-Minet M, Lefaucheur JP, Mick G, Piano V, Pickering G, Piquet E, Regis C, Salvat E, Attal N. Pharmacological and non-pharmacological treatments for neuropathic pain: Systematic review and French recommendations. Rev Neurol (Paris) 2020; 176:325-352. [PMID: 32276788 DOI: 10.1016/j.neurol.2020.01.361] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
Abstract
Neuropathic pain remains a significant unmet medical need. Several recommendations have recently been proposed concerning pharmacotherapy, neurostimulation techniques and interventional management, but no comprehensive guideline encompassing all these treatments has yet been issued. We performed a systematic review of pharmacotherapy, neurostimulation, surgery, psychotherapies and other types of therapy for peripheral or central neuropathic pain, based on studies published in peer-reviewed journals before January 2018. The main inclusion criteria were chronic neuropathic pain for at least three months, a randomized controlled methodology, at least three weeks of follow-up, at least 10 patients per group, and a double-blind design for drug therapy. Based on the GRADE system, we provide weak-to-strong recommendations for use and proposal as a first-line treatment for SNRIs (duloxetine and venlafaxine), gabapentin and tricyclic antidepressants and, for topical lidocaine and transcutaneous electrical nerve stimulation specifically for peripheral neuropathic pain; a weak recommendation for use and proposal as a second-line treatment for pregabalin, tramadol, combination therapy (antidepressant combined with gabapentinoids), and for high-concentration capsaicin patches and botulinum toxin A specifically for peripheral neuropathic pain; a weak recommendation for use and proposal as a third-line treatment for high-frequency rTMS of the motor cortex, spinal cord stimulation (failed back surgery syndrome and painful diabetic polyneuropathy) and strong opioids (in the absence of an alternative). Psychotherapy (cognitive behavioral therapy and mindfulness) is recommended as a second-line therapy, as an add-on to other therapies. An algorithm encompassing all the recommended treatments is proposed.
Collapse
Affiliation(s)
- X Moisset
- Université Clermont Auvergne, Inserm, Neuro-Dol, 63000 Clermont-Ferrand, France; CHU de Clermont-Ferrand, 63000 Clermont-Ferrand, France.
| | - D Bouhassira
- INSERM U987, CETD, Ambroise-Paré Hospital, AP-HP, Boulogne-Billancourt, France; Université Versailles - Saint-Quentin-en-Yvelines, Versailles, France
| | - J Avez Couturier
- Service de Neuropédiatrie, Consultation Douleur Enfant, CIC-IT 1403, CHU de Lille, Lille, France
| | - H Alchaar
- 73, boulevard de Cimiez, Nice, France
| | - S Conradi
- CETD, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - M H Delmotte
- GHU, Paris site Ste-Anne, Structure Douleurs, 1, rue Cabanis, Paris 14, France
| | - M Lanteri-Minet
- Université Clermont Auvergne, Inserm, Neuro-Dol, 63000 Clermont-Ferrand, France; Département d'Évaluation et Traitement de la Douleur, Centre Hospitalier Universitaire (CHU) de Nice, Fédération Hospitalo-Universitaire InovPain, Université Côte d'Azur, Nice, France
| | - J P Lefaucheur
- EA 4391, Faculté de Médecine, Université Paris Est Créteil, Créteil, France; Service de Physiologie, Explorations Fonctionnelles, Hôpital Henri-Mondor, Assistance publique-Hôpitaux de Paris, Créteil, France
| | - G Mick
- Centre d'Évaluation et Traitement de la Douleur du Voironnais, Centre Hospitalier de Voiron, Laboratoire P2S, Université de Lyon, Lyon, France
| | - V Piano
- Centre Hospitalier de Draguignan, Service Algologie 4(e), route de Montferrat, 83007 Draguignan cedex, France
| | - G Pickering
- Université Clermont Auvergne, Inserm, Neuro-Dol, 63000 Clermont-Ferrand, France; Clinical Pharmacology Department, CPC/CIC Inserm 1405, University Hospital CHU, Clermont-Ferrand, France
| | - E Piquet
- Département d'Évaluation et Traitement de la Douleur, Centre Hospitalier Universitaire (CHU) de Nice, Fédération Hospitalo-Universitaire InovPain, Université Côte d'Azur, Nice, France
| | - C Regis
- CETD, CHU Montpellier, Montpellier, France
| | - E Salvat
- Centre d'Évaluation et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - N Attal
- INSERM U987, CETD, Ambroise-Paré Hospital, AP-HP, Boulogne-Billancourt, France; Université Versailles - Saint-Quentin-en-Yvelines, Versailles, France
| |
Collapse
|
91
|
Isagulyan E, Slavin K, Konovalov N, Dorochov E, Tomsky A, Dekopov A, Makashova E, Isagulyan D, Genov P. Spinal cord stimulation in chronic pain: technical advances. Korean J Pain 2020; 33:99-107. [PMID: 32235010 PMCID: PMC7136296 DOI: 10.3344/kjp.2020.33.2.99] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic severe pain results in a detrimental effect on the patient’s quality of life. Such patients have to take a large number of medications, including opioids, often without satisfactory effect, sometimes leading to medication abuse and the pain worsening. Spinal cord stimulation (SCS) is one of the most effective technologies that, unlike other interventional pain treatment methods, achieves long-term results in patients suffering from chronic neuropathic pain. The first described mode of SCS was a conventional tonic stimulation, but now the novel modalities (high-frequency and burst), techniques (dorsal root ganglia stimulations), and technical development (wireless and implantable pulse generator-free systems) of SCS are becoming more popular. The improvement of SCS systems, their miniaturization, and the appearance of new mechanisms for anchoring electrodes results in a significant reduction in the rate of complications and revision surgeries, and the appearance of new waves of stimulation allows not only to avoid the phenomenon of addiction, but also to improve the long-term results of chronic SCS. The purpose of this review is to describe the current condition of SCS and up-to-date technical advances.
Collapse
Affiliation(s)
- Emil Isagulyan
- Department of Functional Neurosurgery, Federal State Autonomous Institution «N.N. Burdenko National Scientific and Practical Center for Neurosurgery of the Ministry of Healthcare of the Russian Federation», Moscow, Russia
| | - Konstantin Slavin
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Nikolay Konovalov
- Department of Spinal Surgery, Federal State Autonomous Institution «N.N. Burdenko National Scientific and Practical Center for Neurosurgery of the Ministry of Healthcare of the Russian Federation», Moscow, Russia
| | - Eugeny Dorochov
- Department of Functional Neurosurgery, Federal State Autonomous Institution «N.N. Burdenko National Scientific and Practical Center for Neurosurgery of the Ministry of Healthcare of the Russian Federation», Moscow, Russia
| | - Alexey Tomsky
- Department of Functional Neurosurgery, Federal State Autonomous Institution «N.N. Burdenko National Scientific and Practical Center for Neurosurgery of the Ministry of Healthcare of the Russian Federation», Moscow, Russia
| | - Andrey Dekopov
- Department of Functional Neurosurgery, Federal State Autonomous Institution «N.N. Burdenko National Scientific and Practical Center for Neurosurgery of the Ministry of Healthcare of the Russian Federation», Moscow, Russia
| | - Elizaveta Makashova
- Departament of Neurology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - David Isagulyan
- Departament of Clinical Science, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Pavel Genov
- Pain Management Clinic, Moscow City Clinical Hospital #52, Moscow, Russia
| |
Collapse
|
92
|
Nahm FS. From the torpedo fish to the spinal cord stimulator. Korean J Pain 2020; 33:97-98. [PMID: 32235009 PMCID: PMC7136297 DOI: 10.3344/kjp.2020.33.2.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Francis Sahngun Nahm
- Department of Anesthesiology and Pain Medicine, Seoul National Univeristy Bundang Hospital, Seongnam, Korea
| |
Collapse
|