51
|
Possomato-Vieira JS, Chimini JS, da Silva MLS, Dias-Junior CA. Increases in placental nitric oxide, but not nitric oxide-mediated relaxation, underlie the improvement in placental efficiency and antihypertensive effects of hydrogen sulphide donor in hypertensive pregnancy. Clin Exp Pharmacol Physiol 2018; 45:1118-1127. [PMID: 29927503 DOI: 10.1111/1440-1681.13000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/07/2018] [Accepted: 06/20/2018] [Indexed: 12/17/2022]
Abstract
Dysregulation of hydrogen sulphide (H2 S) producing enzymes has been related to hypertensive pregnancy, and H2 S donor, sodium hydrosulphide (NaHS) exerts antihypertensive effects, modulates angiogenic factors production and acts as an antioxidant. Moreover, reduction in nitric oxide (NO) bioavailability is related to hypertensive pregnancy and H2 S may interact with NO, modulating its production. We aimed to investigate the NaHS effects in hypertension-in-pregnancy and also in feto-placental parameters. Female Wistar rats (200-250 g) were mated and desoxycorticosterone acetate injections followed by replacement of water by 0.9% saline solution were used to induce hypertensive pregnancy. Rats were divided into four groups: normal pregnant (Norm-Preg), pregnant + NaHS (Preg+NaHS), hypertensive pregnant (HTN-Preg) and HTN-Preg+NaHS. Systolic blood pressure was increased in HTN-Preg and this increase was blunted in HTN-Preg+NaHS. Fetal and placental weights were decreased in HTN-Preg animals, while fetal growth restriction was improved in HTN-Preg+NaHS. Placental weight was lower in HTN-Preg+NaHS than in HTN-Preg; however, placental efficiency was re-established in HTN-Preg+NaHS rats. We observed that a partial contribution of placental NO, but not changes in anti-angiogenic factors may mediate the increases in placental efficiency in HTN-Preg+NaHS. HTN-Preg presented thoracic aorta hyperreactivity to phenylephrine while NaHS treatment blunted this hyperreactivity, which seems not to be related to NO-mediated relaxation induced by acetylcholine. Therefore, changes in vascular responsiveness promoted by NaHS treatment may underlie the beneficial effects in systolic blood pressure and feto-placental parameters in our study.
Collapse
Affiliation(s)
- Jose S Possomato-Vieira
- Department of Pharmacology, Biosciences Institute of Botucatu, São Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil
| | - Jessica S Chimini
- Department of Pharmacology, Biosciences Institute of Botucatu, São Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil
| | - Maria L S da Silva
- Department of Pharmacology, Biosciences Institute of Botucatu, São Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil
| | - Carlos A Dias-Junior
- Department of Pharmacology, Biosciences Institute of Botucatu, São Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil
| |
Collapse
|
52
|
Grambow E, Augustin VA, Strüder D, Kundt G, Klar E, Vollmar B. The effects of hydrogen sulfide on microvascular circulation in the axial pattern flap ear model in hairless mice. Microvasc Res 2018; 120:74-83. [PMID: 29991448 DOI: 10.1016/j.mvr.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 01/30/2023]
Affiliation(s)
- Eberhard Grambow
- Institute for Experimental Surgery, University Medical Center Rostock, Rostock, Germany; Department for General, Thoracic-, Vascular- and Transplantation Surgery, University Medical Center Rostock, Rostock, Germany.
| | - Vicky A Augustin
- Institute for Experimental Surgery, University Medical Center Rostock, Rostock, Germany
| | - Daniel Strüder
- Institute for Experimental Surgery, University Medical Center Rostock, Rostock, Germany; Department of Otorhinolaryngology, Head and Neck Surgery, Rostock University Medical Center, Rostock, Germany
| | - Günther Kundt
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Ernst Klar
- Department for General, Thoracic-, Vascular- and Transplantation Surgery, University Medical Center Rostock, Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
53
|
Hsu CN, Tain YL. Hydrogen Sulfide in Hypertension and Kidney Disease of Developmental Origins. Int J Mol Sci 2018; 19:ijms19051438. [PMID: 29751631 PMCID: PMC5983690 DOI: 10.3390/ijms19051438] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022] Open
Abstract
Adverse environments occurring during kidney development may produce long-term programming effects, namely renal programming, to create increased vulnerability to the development of later-life hypertension and kidney disease. Conversely, reprogramming is a strategy aimed at reversing the programming processes in early life, even before the onset of clinical symptoms, which may counter the rising epidemic of hypertension and kidney disease. Hydrogen sulfide (H2S), the third gasotransmitter, plays a key role in blood pressure regulation and renal physiology. This review will first present the role of H2S in the renal system and provide evidence for the links between H2S signaling and the underlying mechanisms of renal programming, including the renin–angiotensin system, oxidative stress, nutrient-sensing signals, sodium transporters, and epigenetic regulation. This will be followed by potential H2S treatment modalities that may serve as reprogramming strategies to prevent hypertension and kidney disease of developmental origins. These H2S treatment modalities include precursors for H2S synthesis, H2S donors, and natural plant-derived compounds. Despite emerging evidence from experimental studies in support of reprogramming strategies targeting the H2S signaling pathway to protect against hypertension and kidney disease of developmental origins, these results need further clinical translation.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - You-Lin Tain
- Departments of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
54
|
Clinical and Experimental Evidences of Hydrogen Sulfide Involvement in Lead-Induced Hypertension. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4627391. [PMID: 29789795 PMCID: PMC5896357 DOI: 10.1155/2018/4627391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/09/2018] [Accepted: 02/20/2018] [Indexed: 12/15/2022]
Abstract
Lead- (Pb-) induced hypertension has been shown in humans and experimental animals and cardiovascular effects of hydrogen sulfide (H2S) have been reported previously. However, no studies examined involvement of H2S in Pb-induced hypertension. We found increases in diastolic blood pressure and mean blood pressure in Pb-intoxicated humans followed by diminished H2S plasmatic levels. In order to expand our findings, male Wistar rats were divided into four groups: Saline, Pb, NaHS, and Pb + NaHS. Pb-intoxicated animals received intraperitoneally (i.p.) 1st dose of 8 μg/100 g of Pb acetate and subsequent doses of 0.1 μg/100 g for seven days and sodium hydrosulfide- (NaHS-) treated animals received i.p. NaHS injections (50 μmol/kg/twice daily) for seven days. NaHS treatment blunted increases in systolic blood pressure, increased H2S plasmatic levels, and diminished whole-blood lead levels. Treatment with NaHS in Pb-induced hypertension seems to induce a protective role in rat aorta which is dependent on endothelium and seems to promote non-NO-mediated relaxation. Pb-intoxication increased oxidative stress in rats, while treatment with NaHS blunted increases in plasmatic MDA levels and increased antioxidant status of plasma. Therefore, H2S pathway may be involved in Pb-induced hypertension and treatment with NaHS exerts antihypertensive effect, promotes non-NO-mediated relaxation, and decreases oxidative stress in rats with Pb-induced hypertension.
Collapse
|
55
|
|
56
|
Hydrogen sulfide as a regulatory factor in kidney health and disease. Biochem Pharmacol 2018; 149:29-41. [DOI: 10.1016/j.bcp.2017.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/05/2017] [Indexed: 12/19/2022]
|
57
|
Skrzypecki J, Grabska-Liberek I, Przybek J, Ufnal M. A common humoral background of intraocular and arterial blood pressure dysregulation. Curr Med Res Opin 2018; 34:521-529. [PMID: 29219620 DOI: 10.1080/03007995.2017.1415203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND It has been postulated that intraocular pressure, an important glaucoma risk factor, correlates positively with arterial blood pressure (blood pressure). However, results of experimental and clinical studies are often contradictory. It is hypothesized that, in some hypertensive patients, disturbances in intraocular pressure regulation may depend on biological effects of blood borne hormones underlying a particular type of hypertension, rather than on blood pressure level itself. REVIEW This review compares the effects of hormones on blood pressure and intraocular pressure, in order to identify a hormonal profile of hypertensive patients with an increased risk of intraocular pressure surge. The PUBMED database was searched to identify pre-clinical and clinical studies investigating the role of angiotensin II, vasopressin, adrenaline, noradrenaline, prostaglandins, and gaseous transmitters in the regulation of blood pressure and intraocular pressure. RESULTS Studies included in the review suggest that intraocular and blood pressures often follow a different pattern of response to the same hormone. For example, vasopressin increases blood pressure, but decreases intraocular pressure. In contrast, high level of nitric oxide decreases blood pressure, but increases intraocular pressure. CONCLUSIONS Arterial hypertension is associated with altered levels of blood borne hormones. Contradicting results of studies on the relationship between arterial hypertension and intraocular pressure might be partially explained by diverse effects of hormones on arterial and intraocular pressures. Further studies are needed to evaluate if hormonal profiling may help to identify glaucoma-prone patients.
Collapse
Affiliation(s)
- Janusz Skrzypecki
- a Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research , Medical University of Warsaw , Warsaw , Poland
- b Department of Ophthalmology , Medical Center for Postgraduate Education , Warsaw , Poland
| | - Iwona Grabska-Liberek
- b Department of Ophthalmology , Medical Center for Postgraduate Education , Warsaw , Poland
| | - Joanna Przybek
- c Department of Experimental and Clinical Pharmacology , Medical University of Warsaw , Poland
| | - Marcin Ufnal
- a Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research , Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
58
|
Szabo C. A timeline of hydrogen sulfide (H 2S) research: From environmental toxin to biological mediator. Biochem Pharmacol 2018; 149:5-19. [PMID: 28947277 PMCID: PMC5862769 DOI: 10.1016/j.bcp.2017.09.010] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
The history of H2S - as an environmental toxin - dates back to 1700, to the observations of the Italian physician Bernardino Ramazzini, whose book "De Morbis Artificum Diatriba" described the painful eye irritation and inflammation of "sewer gas" in sewer workers. The gas has subsequently been identified as hydrogen sulfide (H2S), and opened three centuries of research into the biological roles of H2S. The current article highlights the key discoveries in the field of H2S research, including (a) the toxicological studies, which characterized H2S as an environmental toxin, and identified some of its modes of action, including the inhibition of mitochondrial respiration; (b) work in the field of bacteriology, which, starting in the early 1900s, identified H2S as a bacterial product - with subsequently defined roles in the regulation of periodontal disease (oral bacterial flora), intestinal epithelial cell function (enteral bacterial flora) as well as in the regulation of bacterial resistance to antibiotics; and (c), work in diverse fields of mammalian biology, which, starting in the 1940s, identified H2S as an endogenous mammalian enzymatic product, the functions of which - among others, in the cardiovascular and nervous system - have become subjects of intensive investigation for the last decade. The current review not only enumerates the key discoveries related to H2S made over the last three centuries, but also compiles the most frequently cited papers in the field which have been published over the last decade and highlights some of the current 'hot topics' in the field of H2S biology.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
| |
Collapse
|
59
|
Gheibi S, Jeddi S, Kashfi K, Ghasemi A. Regulation of vascular tone homeostasis by NO and H 2S: Implications in hypertension. Biochem Pharmacol 2018; 149:42-59. [PMID: 29330066 PMCID: PMC5866223 DOI: 10.1016/j.bcp.2018.01.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/05/2018] [Indexed: 02/09/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two gasotransmitters that are produced in the vasculature and contribute to the regulation of vascular tone. NO and H2S are synthesized in both vascular smooth muscle and endothelial cells; NO functions primarily through the sGC/cGMP pathway, and H2S mainly through activation of the ATP-dependent potassium channels; both leading to relaxation of vascular smooth muscle cells. A deficit in the NO/H2S homeostasis is involved in the pathogenesis of various cardiovascular diseases, especially hypertension. It is now becoming increasingly clear that there are important interactions between NO and H2S and that have a profound impact on vascular tone and this may provide insights into the new therapeutic interventions. The aim of this review is to provide a better understanding of individual and interactive roles of NO and H2S in vascular biology. Overall, available data indicate that both NO and H2S contribute to vascular (patho)physiology and in regulating blood pressure. In addition, boosting NO and H2S using various dietary sources or donors could be a hopeful therapeutic strategy in the management of hypertension.
Collapse
Affiliation(s)
- Sevda Gheibi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
60
|
Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2S Levels: H 2S Donors and H 2S Biosynthesis Inhibitors. Pharmacol Rev 2017; 69:497-564. [PMID: 28978633 PMCID: PMC5629631 DOI: 10.1124/pr.117.014050] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, hydrogen sulfide (H2S) has emerged as an important endogenous gasotransmitter in mammalian cells and tissues. Similar to the previously characterized gasotransmitters nitric oxide and carbon monoxide, H2S is produced by various enzymatic reactions and regulates a host of physiologic and pathophysiological processes in various cells and tissues. H2S levels are decreased in a number of conditions (e.g., diabetes mellitus, ischemia, and aging) and are increased in other states (e.g., inflammation, critical illness, and cancer). Over the last decades, multiple approaches have been identified for the therapeutic exploitation of H2S, either based on H2S donation or inhibition of H2S biosynthesis. H2S donation can be achieved through the inhalation of H2S gas and/or the parenteral or enteral administration of so-called fast-releasing H2S donors (salts of H2S such as NaHS and Na2S) or slow-releasing H2S donors (GYY4137 being the prototypical compound used in hundreds of studies in vitro and in vivo). Recent work also identifies various donors with regulated H2S release profiles, including oxidant-triggered donors, pH-dependent donors, esterase-activated donors, and organelle-targeted (e.g., mitochondrial) compounds. There are also approaches where existing, clinically approved drugs of various classes (e.g., nonsteroidal anti-inflammatories) are coupled with H2S-donating groups (the most advanced compound in clinical trials is ATB-346, an H2S-donating derivative of the non-steroidal anti-inflammatory compound naproxen). For pharmacological inhibition of H2S synthesis, there are now several small molecule compounds targeting each of the three H2S-producing enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Although many of these compounds have their limitations (potency, selectivity), these molecules, especially in combination with genetic approaches, can be instrumental for the delineation of the biologic processes involving endogenous H2S production. Moreover, some of these compounds (e.g., cell-permeable prodrugs of the CBS inhibitor aminooxyacetate, or benserazide, a potentially repurposable CBS inhibitor) may serve as starting points for future clinical translation. The present article overviews the currently known H2S donors and H2S biosynthesis inhibitors, delineates their mode of action, and offers examples for their biologic effects and potential therapeutic utility.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
61
|
Dominguez-Rodriguez M, Drobny H, Boehm S, Salzer I. Electrophysiological Investigation of the Subcellular Fine Tuning of Sympathetic Neurons by Hydrogen Sulfide. Front Pharmacol 2017; 8:522. [PMID: 28824437 PMCID: PMC5543101 DOI: 10.3389/fphar.2017.00522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/25/2017] [Indexed: 11/20/2022] Open
Abstract
H2S is well-known as hypotensive agent, whether it is synthetized endogenously or administered systemically. Moreover, the H2S donor NaHS has been shown to inhibit vasopressor responses triggered by stimulation of preganglionic sympathetic fibers. In contradiction with this latter result, NaHS has been reported to facilitate transmission within sympathetic ganglia. To resolve this inconsistency, H2S and NaHS were applied to primary cultures of dissociated sympathetic ganglia to reveal how this gasotransmitter might act at different subcellular compartments of such neurons. At the somatodendritic region of ganglionic neurons, NaHS raised the frequency, but not the amplitudes, of cholinergic miniature postsynaptic currents via a presynaptic site of action. In addition, the H2S donor as well as H2S itself caused membrane hyperpolarization and decreased action potential firing in response to current injection. Submillimolar NaHS concentrations did not affect currents through Kυ7 channels, but did evoke currents through KATP channels. Similarly to NaHS, the KATP channel activator diazoxide led to hyperpolarization and decreased membrane excitability; the effects of both, NaHS and diazoxide, were prevented by the KATP channel blocker tolbutamide. At postganglionic sympathetic nerve terminals, H2S and NaHS enhanced noradrenaline release due to a direct action at the level of vesicle exocytosis. Taken together, H2S may facilitate transmitter release within sympathetic ganglia and at sympatho-effector junctions, but causes hyperpolarization and reduced membrane excitability in ganglionic neurons. As this latter action was due to KATP channel gating, this channel family is hereby established as another previously unrecognized determinant in the function of sympathetic ganglia.
Collapse
Affiliation(s)
- Manuel Dominguez-Rodriguez
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| | - Helmut Drobny
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| | - Stefan Boehm
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| | - Isabella Salzer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| |
Collapse
|
62
|
Meng G, Liu J, Liu S, Song Q, Liu L, Xie L, Han Y, Ji Y. Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner. Br J Pharmacol 2017; 175:1126-1145. [PMID: 28503736 DOI: 10.1111/bph.13861] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/18/2017] [Accepted: 05/09/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Hydrogen sulfide (H2 S) is a gaseous signal molecule with antioxidative properties. Sirtuin 3 (SIRT3) is closely associated with mitochondrial function and oxidative stress. The study was to investigate whether and how H2 S improved myocardial hypertrophy via a SIRT3-dependent manner. EXPERIMENTAL APPROACH Neonatal rat cardiomyocytes were pretreated with NaHS (50 μM) for 4 h followed by angiotensin II (Ang II, 100 nM) for 24 h. SIRT3 was silenced with siRNA technology. SIRT3 promoter activity and expression, cell surface, hypertrophic gene mRNA expression, mitochondrial oxygen consumption rate and membrane potential were measured. Male 129S1/SvImJ [wild-type (WT)] and SIRT3 knockout (KO) mice were injected with NaHS (50 μmol·kg-1 ·day-1 ; i.p.) followed by transverse aortic constriction (TAC). Echocardiography, heart mass, mitochondrial ultrastructure, volume and number, oxidative stress, mitochondria fusion and fission-related protein expression were measured. KEY RESULTS In vitro, NaHS increased SIRT3 promoter activity and SIRT3 expression in Ang II-induced cardiomyocyte hypertrophy. SIRT3 silencing abolished the ability of NaHS to reverse the Ang II-induced cardiomyocyte hypertrophy, mitochondrial function impairment and permeability potential dysfunction, along with the decline in FOXO3a and SOD2 expression. In vivo, after TAC. NaHS attenuated myocardial hypertrophy, inhibited oxidative stress, improved mitochondrial ultrastructure, suppressed mitochondrial volume but increased mitochondrial numbers, enhanced OPA1, MFN1 and MFN2 expression but suppressed DRP1 and FIS1 expression in WT mice but not in SIRT3 KO mice CONCLUSION AND IMPLICATIONS: NaHS improved mitochondrial function and inhibited oxidative stress in myocardial hypertrophy in a SIRT3-dependent manner. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jieqiong Liu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Shangmin Liu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Qiuyi Song
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Lulu Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Liping Xie
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yi Han
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| |
Collapse
|
63
|
Sun X, Chen Y, Zeng Q, Huang X, Cai J. Reduction of leukocyte-derived H 2S linked to abnormal glycolipid metabolism in hypertensive subjects. Clin Exp Hypertens 2017; 39:427-434. [PMID: 28537431 DOI: 10.1080/10641963.2016.1267193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We deduced that leukocyte-derived H2S would also play a pivotal role regarding nutrition homeostasis in hypertensive subjects. Plasma was obtained from patients with hypertension (n = 151) as well as control (n = 41). Leukocyte-derived H2S speed was determined, and biochemical indices of glucose and lipid metabolism were measured. Western blot analyses of CSE were also performed. Inflammation factors were measured. Leukocyte-derived H2S is produced at a significantly lower rate in overweight or obese patients (p < 0.05). There is a significant negative correlation between H2S and the levels of HOMA-RI and insulin in overweight patients and has a positive relationship with HDL-C only in overweight hypertensive patients (p < 0.05). Patients with high insulin levels showed down-regulation of CSE (p < 0.05). The levels of IL-10 decreased in both the obese and the overweight which showed significant relationship with all metabolism parameters such as HDL-C(r = 0.176, p = 0.031), insulin (r = -0.181, p = 0.027), HOMA-IR (r = -0.166, p = 0.045), and H2S speed (r = 0.995, p = 0.001). Linear regression analysis showed that insulin levels will increase (β = -1.685, p = 0.041) with the slower speed of H2S. Leukocyte-derived H2S production varied according to the nutritional status of hypertensive subjects, and the H2S/IL-10 signaling pathway may be the junction point among hypertension, disturbance of nutritional status, and inflammation.
Collapse
Affiliation(s)
- Xiaonan Sun
- a Department of Geriatric Cardiology , Chinese PLA General Hospital , Beijing , China
| | - Yongzeng Chen
- a Department of Geriatric Cardiology , Chinese PLA General Hospital , Beijing , China
| | - Qiang Zeng
- a Department of Geriatric Cardiology , Chinese PLA General Hospital , Beijing , China
| | - Xianyong Huang
- a Department of Geriatric Cardiology , Chinese PLA General Hospital , Beijing , China
| | - Junyan Cai
- b School of Basic Science , Peking University Health Science Center , Beijing , China
| |
Collapse
|
64
|
Kanagy NL, Szabo C, Papapetropoulos A. Vascular biology of hydrogen sulfide. Am J Physiol Cell Physiol 2017; 312:C537-C549. [PMID: 28148499 PMCID: PMC5451519 DOI: 10.1152/ajpcell.00329.2016] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S) is a ubiquitous signaling molecule with important functions in many mammalian organs and systems. Observations in the 1990s ascribed physiological actions to H2S in the nervous system, proposing that this gasotransmitter acts as a neuromodulator. Soon after that, the vasodilating properties of H2S were demonstrated. In the past decade, H2S was shown to exert a multitude of physiological effects in the vessel wall. H2S is produced by vascular cells and exhibits antioxidant, antiapoptotic, anti-inflammatory, and vasoactive properties. In this concise review, we have focused on the impact of H2S on vascular structure and function with an emphasis on angiogenesis, vascular tone, vascular permeability and atherosclerosis. H2S reduces arterial blood pressure, limits atheromatous plaque formation, and promotes vascularization of ischemic tissues. Although the beneficial properties of H2S are well established, mechanistic insights into the molecular pathways implicated in disease prevention and treatment remain largely unexplored. Unraveling the targets and downstream effectors of H2S in the vessel wall in the context of disease will aid in translation of preclinical observations. In addition, acute regulation of H2S production is still poorly understood and additional work delineating the pathways regulating the enzymes that produce H2S will allow pharmacological manipulation of this pathway. As the field continues to grow, we expect that H2S-related compounds will find their way into clinical trials for diseases affecting the blood vessels.
Collapse
Affiliation(s)
- Nancy L Kanagy
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece; and
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
65
|
Grösch S, Niederberger E, Geisslinger G. Investigational drugs targeting the prostaglandin E2 signaling pathway for the treatment of inflammatory pain. Expert Opin Investig Drugs 2017; 26:51-61. [PMID: 27841017 DOI: 10.1080/13543784.2017.1260544] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAID) are the most commonly used drugs for the treatment of pain, inflammation and fever. Although they are effective for a huge number of users, their analgesic properties are not sufficient for several patients and the occurrence of side effects still constitutes a big challenge during long term therapy. Areas covered: This review gives an overview about the first and second generations of NSAIDs (COX1/2 non-selective, COX-2 selective), and their main side effects which gave still an urgent need for safer drugs and for the establishment of novel treatment strategies (improved safety, tolerability, patient convenience). The current developments of a possible third generation NSAID class comprise changes in the formulation of already approved drugs, combination therapies, dual cyclooxygenase-lipoxygenase inhibitors, NO- and H2S-releasing NSAIDs, prostaglandin synthase inhibitors and EP receptor modulators, respectively. Literature search has been done with PubMed NCBI. Expert opinion: Currently, there is no newly developed drug that is superior to the already approved selective and non-selective NSAIDs. Several novel approaches show promising analgesic efficacy but side effects are still an important problem. Solutions might be constituted by combination therapies allowing administration of lower drug doses or by individualized therapies targeting molecules apart from COX, respectively.
Collapse
Affiliation(s)
- Sabine Grösch
- a Pharmazentrum frankfurt/ZAFES , Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Ellen Niederberger
- a Pharmazentrum frankfurt/ZAFES , Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Gerd Geisslinger
- a Pharmazentrum frankfurt/ZAFES , Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt , Frankfurt am Main , Germany
- b Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group for Translational Medicine & Pharmacology (TMP) , Frankfurt/Main , Germany
| |
Collapse
|