51
|
Rapid Decrease in HDL-C in the Puberty Period of Boys Associated with an Elevation of Blood Pressure and Dyslipidemia in Korean Teenagers: An Explanation of Why and When Men Have Lower HDL-C Levels Than Women. Med Sci (Basel) 2021; 9:medsci9020035. [PMID: 34074048 PMCID: PMC8163168 DOI: 10.3390/medsci9020035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Low serum high-density lipoproteins-cholesterol (HDL-C) levels and high blood pressure are linked to each other and are recognized as independent risk factors of cardiovascular disease and dementia. HDL can cross the blood-brain barrier to remove amyloid plaque and the blood-testis barrier to supply cholesterol for spermatogenesis, but LDL cannot. During the teenage period, between 10 and 19 years of age, the systolic blood pressure (BP) increased gradually to 7.9% in boys (p < 0.001), but not in girls (p = 0.141). The boys' group showed a remarkable decrease in the total cholesterol (TC) and HDL-C from 10 to 15 years of age (p < 0.001). After then, the TC level increased again at 19 years of age to the previous level (p < 0.001). On the other hand, the HDL-C level at 19 years of age in the boys' group was not restored to the previous level at 10 years of age. The girls' group maintained similar TC (p < 0.001) and HDL-C (p < 0.001) levels from 10 to 19 years of age. These results suggest there was a remarkable difference in cholesterol consumption, particularly in the HDL-C level between boys and girls during the pubertal period. Correlation analysis showed an inverse association between the HDL-C level and SBP in boys (r = -0.133, p < 0.001) and girls (r = -0.065, p = 0.009) from 10 to 19 years of age. Interestingly, only the boys' group showed an inverse association with the diastolic BP (r = -0.122, p < 0.001); the girls' group did not have such an association (r = -0.016, p = 0.516). In conclusion, the boys' group showed a sharp decrease in the HDL-C level from 10 to 15 years of age, whereas the girls' group showed an increase in the HDL-C level during the same period. These results explain why men have a lower serum HDL-C level than women in adulthood.
Collapse
|
52
|
Lord J, Jermy B, Green R, Wong A, Xu J, Legido-Quigley C, Dobson R, Richards M, Proitsi P. Mendelian randomization identifies blood metabolites previously linked to midlife cognition as causal candidates in Alzheimer's disease. Proc Natl Acad Sci U S A 2021; 118:e2009808118. [PMID: 33879569 PMCID: PMC8072203 DOI: 10.1073/pnas.2009808118] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/23/2021] [Indexed: 12/29/2022] Open
Abstract
There are currently no disease-modifying treatments for Alzheimer's disease (AD), and an understanding of preclinical causal biomarkers to help target disease pathogenesis in the earliest phases remains elusive. Here, we investigated whether 19 metabolites previously associated with midlife cognition-a preclinical predictor of AD-translate to later clinical risk, using Mendelian randomization (MR) to tease out AD-specific causal relationships. Summary statistics from the largest genome-wide association studies (GWASs) for AD and metabolites were used to perform bidirectional univariable MR. Bayesian model averaging (BMA) was additionally performed to address high correlation between metabolites and identify metabolite combinations that may be on the AD causal pathway. Univariable MR indicated four extra-large high-density lipoproteins (XL.HDL) on the causal pathway to AD: free cholesterol (XL.HDL.FC: 95% CI = 0.78 to 0.94), total lipids (XL.HDL.L: 95% CI = 0.80 to 0.97), phospholipids (XL.HDL.PL: 95% CI = 0.81 to 0.97), and concentration of XL.HDL particles (95% CI = 0.79 to 0.96), significant at an adjusted P < 0.009. MR-BMA corroborated XL.HDL.FC to be among the top three causal metabolites, in addition to total cholesterol in XL.HDL (XL.HDL.C) and glycoprotein acetyls (GP). Both XL.HDL.C and GP demonstrated suggestive univariable evidence of causality (P < 0.05), and GP successfully replicated within an independent dataset. This study offers insight into the causal relationship between metabolites demonstrating association with midlife cognition and AD. It highlights GP in addition to several XL.HDLs-particularly XL.HDL.FC-as causal candidates warranting further investigation. As AD pathology is thought to develop decades prior to symptom onset, expanding on these findings could inform risk reduction strategies.
Collapse
Affiliation(s)
- Jodie Lord
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 5AF, United Kingdom
| | - Bradley Jermy
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, United Kingdom
- National Institute for Health Research Maudsley Biomedical Research Centre, South London and Maudsley National Health Service (NHS) Foundation Trust, London, SE5 8AF, United Kingdom
| | - Rebecca Green
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 5AF, United Kingdom
- National Institute for Health Research Maudsley Biomedical Research Centre, South London and Maudsley National Health Service (NHS) Foundation Trust, London, SE5 8AF, United Kingdom
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, WC1E 7HB, United Kingdom
| | - Jin Xu
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 5AF, United Kingdom
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, United Kingdom
| | - Cristina Legido-Quigley
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, United Kingdom
- Systems Medicine, Steno Diabetes Centre Copenhagen, 2820 Gentofte, Denmark
| | - Richard Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, United Kingdom
- National Institute for Health Research Biomedical Research at South London and Maudsley NHS Foundation Trust and King's College London, London, SE5 8AF, United Kingdom
- Health Data Research UK London, University College London, London, NW1 2DA, United Kingdom
- Institute of Health Informatics, University College London, London, NW1 2DA, United Kingdom
- National Institute for Health Research Biomedical Research Centre at University College London Hospitals NHS Foundation Trust, London, NW1 2DA, United Kingdom
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, WC1E 7HB, United Kingdom;
| | - Petroula Proitsi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 5AF, United Kingdom;
| |
Collapse
|
53
|
Moin ASM, Al-Qaissi A, Sathyapalan T, Atkin SL, Butler AE. Hypoglycaemia in type 2 diabetes exacerbates amyloid-related proteins associated with dementia. Diabetes Obes Metab 2021; 23:338-349. [PMID: 33026133 DOI: 10.1111/dom.14220] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
AIMS Hypoglycaemia in diabetes (T2D) may increase the risk of Alzheimer's disease (AD). We hypothesized that hypoglycaemia-induced amyloid-related protein changes would be exacerbated in T2D. MATERIALS AND METHODS A prospective, parallel study in T2D (n = 23) and controls (n = 23). Subjects underwent insulin-induced hypoglycaemia with blood sampling at baseline, hypoglycaemia and post-hypoglycaemia; proteomic analysis of amyloid-related proteins was undertaken. RESULTS At baseline, amyloid-precursor protein (APP) (P < .01) was elevated and alpha-synuclein (SNCA) (P < .01) reduced in T2D. At hypoglycaemia, amyloid P-component (P < .01) was elevated and SNCA (P < .05) reduced in T2D; APP (P < .01) and noggin (P < .05) were elevated and SNCA (P < .01) reduced in controls. In the post-hypoglycaemia follow-up period, APP and microtubule-associated protein tau normalized in controls but showed a below-baseline decrease in T2D; noggin normalized in both; SNCA normalized in T2D, with a below-baseline decrease in controls. CONCLUSION The AD-associated protein pattern found in T2D, with basal elevated APP and reduced SNCA, was exaggerated by hypoglycaemia with increased APP and decreased SNCA. Additional AD-associated protein levels that changed in response to hypoglycaemia, particularly in T2D, included amyloid P-component, microtubule-associated protein tau, apolipoproteins A1 and E3, pappalysin and noggin. These results are in accordance with the reported detrimental effects of hypoglycaemia.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Ahmed Al-Qaissi
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull, UK
- Leeds Medical School, Leeds, UK
| | | | | | - Alexandra E Butler
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
54
|
Haghani A, Thorwald M, Morgan TE, Finch CE. The APOE gene cluster responds to air pollution factors in mice with coordinated expression of genes that differs by age in humans. Alzheimers Dement 2021; 17:175-190. [PMID: 33215813 PMCID: PMC7914175 DOI: 10.1002/alz.12230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Little is known of gene-environment interactions for Alzheimer's disease (AD) risk factors. Apolipoprotein E (APOE) and neighbors on chromosome 19q13.3 have variants associated with risks of AD, but with unknown mechanism. This study describes novel links among the APOE network, air pollution, and age-related diseases. Mice exposed to air pollution nano-sized particulate matter (nPM) had coordinate responses of Apoe-Apoc1-Tomm40 in the cerebral cortex. In humans, the AD vulnerable hippocampus and amygdala had stronger age decline in APOE cluster expression than the AD-resistant cerebellum and hypothalamus. Using consensus weighted gene co-expression network, we showed that APOE has a conserved co-expressed network in rodent and primate brains. SOX1, which has AD-associated single nucleotide polymorphisms, was among the co-expressed genes in the human hippocampus. Humans and mice shared 87% of potential binding sites for transcription factors in APOE cluster promoter, suggesting similar inducibility and a novel link among environment, APOE cluster, and risk of AD.
Collapse
Affiliation(s)
- Amin Haghani
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Max Thorwald
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
- Dornsife College, University of Southern California, Los Angeles, CA
| |
Collapse
|
55
|
Zimetti F, Adorni MP, Marsillach J, Marchi C, Trentini A, Valacchi G, Cervellati C. Connection between the Altered HDL Antioxidant and Anti-Inflammatory Properties and the Risk to Develop Alzheimer's Disease: A Narrative Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6695796. [PMID: 33505588 PMCID: PMC7811424 DOI: 10.1155/2021/6695796] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023]
Abstract
The protein composition of high-density lipoprotein (HDL) is extremely fluid. The quantity and quality of protein constituents drive the multiple biological functions of these lipoproteins, which include the ability to contrast atherogenesis, sustained inflammation, and toxic effects of reactive species. Several diseases where inflammation and oxidative stress participate in the pathogenetic process are characterized by perturbation in the HDL proteome. This change inevitably affects the functionality of the lipoprotein. An enlightening example in this frame comes from the literature on Alzheimer's disease (AD). Growing lines of epidemiological evidence suggest that loss of HDL-associated proteins, such as lipoprotein phospholipase A2 (Lp-PLA2), glutathione peroxidase-3 (GPx-3), and paraoxonase-1 and paraoxonase-3 (PON1, PON3), may be a feature of AD, even at the early stage. Moreover, the decrease in these enzymes with antioxidant/defensive action appears to be accompanied by a parallel increase of prooxidant and proinflammatory mediators, in particular myeloperoxidase (MPO) and serum amyloid A (SAA). This type of derangement of balance between two opposite forces makes HDL dysfunctional, i.e., unable to exert its "natural" vasculoprotective property. In this review, we summarized and critically analyzed the most significant findings linking HDL accessory proteins and AD. We also discuss the most convincing hypothesis explaining the mechanism by which an observed systemic occurrence may have repercussions in the brain.
Collapse
Affiliation(s)
- Francesca Zimetti
- Department of Food and Drug, University of Parma, Parma 43124, Italy
| | - Maria Pia Adorni
- Department of Medicine and Surgery, Unit of Neurosciences, University of Parma, Parma 43121, Italy
| | - Judit Marsillach
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Cinzia Marchi
- Department of Food and Drug, University of Parma, Parma 43124, Italy
| | - Alessandro Trentini
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara 44121, Italy
- Plants for Human Health Institute, Animal Sciences Department, NC Research Campus Kannapolis, NC State University, 28081 NC, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - Carlo Cervellati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
56
|
Marsillach J, Adorni MP, Zimetti F, Papotti B, Zuliani G, Cervellati C. HDL Proteome and Alzheimer's Disease: Evidence of a Link. Antioxidants (Basel) 2020; 9:E1224. [PMID: 33287338 PMCID: PMC7761753 DOI: 10.3390/antiox9121224] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Several lines of epidemiological evidence link increased levels of high-density lipoprotein-cholesterol (HDL-C) with lower risk of Alzheimer's disease (AD). This observed relationship might reflect the beneficial effects of HDL on the cardiovascular system, likely due to the implication of vascular dysregulation in AD development. The atheroprotective properties of this lipoprotein are mostly due to its proteome. In particular, apolipoprotein (Apo) A-I, E, and J and the antioxidant accessory protein paraoxonase 1 (PON1), are the main determinants of the biological function of HDL. Intriguingly, these HDL constituent proteins are also present in the brain, either from in situ expression, or derived from the periphery. Growing preclinical evidence suggests that these HDL proteins may prevent the aberrant changes in the brain that characterize AD pathogenesis. In the present review, we summarize and critically examine the current state of knowledge on the role of these atheroprotective HDL-associated proteins in AD pathogenesis and physiopathology.
Collapse
Affiliation(s)
- Judit Marsillach
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Maria Pia Adorni
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Giovanni Zuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.Z.); (C.C.)
| | - Carlo Cervellati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.Z.); (C.C.)
| |
Collapse
|
57
|
Swaminathan SK, Zhou AL, Ahlschwede KM, Curran GL, Lowe VJ, Li L, Kandimalla KK. High-Density Lipoprotein Mimetic Peptide 4F Efficiently Crosses the Blood-Brain Barrier and Modulates Amyloid- β Distribution between Brain and Plasma. J Pharmacol Exp Ther 2020; 375:308-316. [PMID: 32778535 PMCID: PMC7589947 DOI: 10.1124/jpet.120.265876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022] Open
Abstract
Treatments to elevate high-density lipoprotein (HDL) levels in plasma have decreased cerebrovascular amyloid -β (Aβ) deposition and mitigated cognitive decline in Alzheimer disease (AD) transgenic mice. Since the major protein component of HDL particles, apolipoprotein A-I (ApoA-I), has very low permeability at the blood-brain barrier (BBB), we investigated 4F, an 18-amino-acid ApoA-I/HDL mimetic peptide, as a therapeutic alternative. Specifically, we examined the BBB permeability of 4F and its effects on [125I]Aβ trafficking from brain to blood and from blood to brain. After systemic injection in mice, the BBB permeability of [125I]4F, estimated as the permeability-surface area (PS) product, ranged between 2 and 5 × 10-6 ml/g per second in various brain regions. The PS products of [125I]4F were ∼1000-fold higher compared with those determined for [125I]ApoA-I. Moreover, systemic infusion with 4F increased the brain efflux of intracerebrally injected [125I]Aβ42. Conversely, 4F infusion decreased the brain influx of systemically injected [125I]Aβ42. Interestingly, 4F did not significantly alter the brain influx of [125I]Aβ40. To corroborate the in vivo findings, we evaluated the effects of 4F on [125I]Aβ42 transcytosis across polarized human BBB endothelial cell (hCMEC/D3) monolayers. Treatment with 4F increased the abluminal-to-luminal flux and decreased the luminal-to-abluminal flux of [125I]Aβ42 across the hCMEC/D3 monolayers. Additionally, 4F decreased the endothelial accumulation of fluorescein-labeled Aβ42 in the hCMEC/D3 monolayers. These findings provide a mechanistic interpretation for the reductions in brain Aβ burden reported in AD mice after oral 4F administration, which represents a novel strategy for treating AD and cerebral amyloid angiopathy. SIGNIFICANCE STATEMENT: The brain permeability of the ApoA-I mimetic peptide 4F was estimated to be ∼1000-fold greater than ApoA-I after systemic injection of radiolabeled peptide/protein in mice. Further, 4F treatment increased the brain efflux of amyloid -β and also decreased its brain influx, as evaluated in mice and in blood-brain barrier cell monolayers. Thus, 4F represents a potential therapeutic strategy to mitigate brain amyloid accumulation in cerebral amyloid angiopathy and Alzheimer disease.
Collapse
Affiliation(s)
- Suresh K Swaminathan
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Andrew L Zhou
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Kristen M Ahlschwede
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Geoffry L Curran
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Val J Lowe
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Ling Li
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| | - Karunya K Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center (S.K.S., A.L.Z., K.M.A., K.K.K.) and Department of Experimental and Clinical Pharmacology (L.L.), University of Minnesota, College of Pharmacy, Minneapolis, Minnesota; Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois (K.M.A.); and Departments of Radiology (G.L.C., V.J.L.) and Neurology (G.L.C.), Mayo Clinic, College of Medicine, Rochester, Minnesota
| |
Collapse
|
58
|
Associations between CLU polymorphisms and memory performance: The role of serum lipids in Alzheimer's disease. J Psychiatr Res 2020; 129:281-288. [PMID: 32882505 DOI: 10.1016/j.jpsychires.2020.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/10/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
CLU encoding clusterin, has been reported to associate with Alzherimer's disease (AD) by genome-wide association studies (GWAS) based on Caucasian populations. Our previous case-control study has independently confirmed the disease association of CLU in Chinese population. Since little is known about the underlying mechanism of CLU in AD, we have conducted this study to investigate whether the genetic impact of CLU polymorphisms on cognitive functioning is via serum lipid's dysfunction. Three GWAS previously published CLU polymorphisms including rs2279590, rs11136000 and rs9331888, were genotyped in 689 subjects. Serum levels of triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were measured and tested as mediators. Delayed Word Recall Test (DWRT) was used to evaluate subjects' memory performance. Multiple mediation analysis, a nonparametric procedure to create confidence interval, was performed according to Preacher and Hayes's Bootstrapping method. Our findings suggested significant correlation between CLU polymorphism and DWRT scores for rs11136000 (p = 0.045) after adjustment for age, gender, body mass index, and APOEε4 status, with borderline significant correlation for rs2279590 (p = 0.058). Both T allele of rs11136000 and A allele of rs2279590 were negatively correlated with serum TG levels (p = 0.003; p = 0.001, separately). Moreover, A allele of rs2279590 was positively correlated with serum HDL-C levels (p = 0.015). Consistent with our hypotheses, the genetic impact of CLU polymorphisms on memory performance were partially mediated through TG (rs11136000 95% CI [-0.099,-0.003] and rs2279590 95% CI [-0.104, -0.004]), but not through HDL-C and LDL-C. Our findings indicate CLU polymorphisms may modify AD susceptibility through lipid metabolic pathway.
Collapse
|
59
|
Martinez LO, Ingueneau C, Genoux A. Is it time to reconcile HDL with cardiovascular diseases and beyond? An update on a paradigm shift. Curr Opin Lipidol 2020; 31:302-304. [PMID: 32881754 DOI: 10.1097/mol.0000000000000705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Laurent O Martinez
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1048, Institute of Metabolic and Cardiovascular Diseases
- University of Toulouse, UMR1048, Paul Sabatier University
| | - Cécile Ingueneau
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1048, Institute of Metabolic and Cardiovascular Diseases
- University of Toulouse, UMR1048, Paul Sabatier University
- Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - Annelise Genoux
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1048, Institute of Metabolic and Cardiovascular Diseases
- University of Toulouse, UMR1048, Paul Sabatier University
- Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| |
Collapse
|
60
|
Lee H, Kim K, Lee YC, Kim S, Won HH, Yu TY, Lee EM, Kang JM, Lewis M, Kim DK, Myung W. Associations between vascular risk factors and subsequent Alzheimer's disease in older adults. ALZHEIMERS RESEARCH & THERAPY 2020; 12:117. [PMID: 32979926 PMCID: PMC7520023 DOI: 10.1186/s13195-020-00690-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/15/2020] [Indexed: 01/21/2023]
Abstract
Background The clinical guidelines related to the primary prevention of Alzheimer’s disease (AD) have focused on the management of vascular risk factors. However, the link between vascular risk factors and AD in older adults remains unclear. This study aimed to determine the association between vascular risk factors and subsequent AD in 178,586 older adults (age ≥ 65 years). Methods Participants were recruited from 2009 through 2010 and followed up for 6 years. We assessed various vascular risk factors (total cholesterol [TC], low-density lipoprotein cholesterol [LDL-C], high-density lipoprotein cholesterol [HDL-C], triglycerides [TG], fasting glucose [FG], systolic blood pressure [SBP], diastolic blood pressure [DBP], pulse pressure [PP], and body mass index [BMI]) and their association with AD incidence, categorizing each vascular factor using current clinical guidelines. Results AD was observed in 6.0% of participants at follow-up. All lipid profiles (TC, LDL-C, HDL-C and TG) were positively associated with the risk of AD. SBP and PP were in negative associations with AD, and DBP was positively associated with AD. BMI exhibited a negative association with AD incidence. We found no significant association between FG and AD risk. The sex difference was observed to have effects on vascular risk factors. Conclusions In this study, we comprehensively investigated the association between eight vascular risk factors and the risk of incident AD. Our findings suggest that multiple vascular risk factors are related to the development of AD in older adults. These results can help inform future guidelines for reducing AD risk.
Collapse
Affiliation(s)
- Hyewon Lee
- Department of Health Administration and Management, College of Medical Sciences, Soonchunhyang University, Asan, South Korea
| | - Kiwon Kim
- Department of Psychiatry, Veteran Health Service Medical Center, Seoul, South Korea
| | - Yeong Chan Lee
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Soyeon Kim
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Hong-Hee Won
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | - Tae Yang Yu
- Division of Endocrinology and Metabolism, Department of Medicine, Wonkwang Medical Center, Wonkwang University School of Medicine, Iksan, South Korea
| | - Eun-Mi Lee
- Department of Health Science, Dongduk Women's University, Seoul, South Korea
| | - Jae Myeong Kang
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Matthew Lewis
- The Department of General Practice, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Doh Kwan Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Woojae Myung
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam-si, South Korea.
| |
Collapse
|
61
|
Jang E, Robert J, Rohrer L, von Eckardstein A, Lee WL. Transendothelial transport of lipoproteins. Atherosclerosis 2020; 315:111-125. [PMID: 33032832 DOI: 10.1016/j.atherosclerosis.2020.09.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
The accumulation of low-density lipoproteins (LDL) in the arterial wall plays a pivotal role in the initiation and pathogenesis of atherosclerosis. Conversely, the removal of cholesterol from the intima by cholesterol efflux to high density lipoproteins (HDL) and subsequent reverse cholesterol transport shall confer protection against atherosclerosis. To reach the subendothelial space, both LDL and HDL must cross the intact endothelium. Traditionally, this transit is explained by passive filtration. This dogma has been challenged by the identification of several rate-limiting factors namely scavenger receptor SR-BI, activin like kinase 1, and caveolin-1 for LDL as well as SR-BI, ATP binding cassette transporter G1, and endothelial lipase for HDL. In addition, estradiol, vascular endothelial growth factor, interleukins 6 and 17, purinergic signals, and sphingosine-1-phosphate were found to regulate transendothelial transport of either LDL or HDL. Thorough understanding of transendothelial lipoprotein transport is expected to elucidate new therapeutic targets for the treatment or prevention of atherosclerotic cardiovascular disease and the development of strategies for the local delivery of drugs or diagnostic tracers into diseased tissues including atherosclerotic lesions.
Collapse
Affiliation(s)
- Erika Jang
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Jerome Robert
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland
| | - Lucia Rohrer
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland.
| | - Warren L Lee
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada; Interdepartmental Division of Critical Care, Department of Medicine, University of Toronto, Canada; Department of Biochemistry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada.
| |
Collapse
|
62
|
BET bromodomains as novel epigenetic targets for brain health and disease. Neuropharmacology 2020; 181:108306. [PMID: 32946883 DOI: 10.1016/j.neuropharm.2020.108306] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
Epigenetic pharmacotherapy for CNS-related diseases is a burgeoning area of research. In particular, members of the bromodomain and extra-terminal domain (BET) family of proteins have emerged as intriguing therapeutic targets due to their putative involvement in an array of brain diseases. With their ability to bind to acetylated histones and act as a scaffold for chromatin modifying complexes, BET proteins were originally thought of as passive epigenetic 'reader' proteins. However, new research depicts a more complex reality where BET proteins act as key nodes in lineage-specific and signal-dependent transcriptional mechanisms to influence disease-relevant functions. Amid a recent wave of drug development efforts from basic scientists and pharmaceutical companies, BET inhibitors are currently being studied in several CNS-related disease models, but safety and tolerability remain a concern. Here we review the progress in understanding the neurobiological mechanisms of BET proteins and the therapeutic potential of targeting BET proteins for brain health and disease.
Collapse
|
63
|
The Role of HDL and HDL Mimetic Peptides as Potential Therapeutics for Alzheimer's Disease. Biomolecules 2020; 10:biom10091276. [PMID: 32899606 PMCID: PMC7563116 DOI: 10.3390/biom10091276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
The role of high-density lipoproteins (HDL) in the cardiovascular system has been extensively studied and the cardioprotective effects of HDL are well established. As HDL particles are formed both in the systemic circulation and in the central nervous system, the role of HDL and its associated apolipoproteins in the brain has attracted much research interest in recent years. Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and the leading cause of dementia worldwide, for which there currently exists no approved disease modifying treatment. Multiple lines of evidence, including a number of large-scale human clinical studies, have shown a robust connection between HDL levels and AD. Low levels of HDL are associated with increased risk and severity of AD, whereas high levels of HDL are correlated with superior cognitive function. Although the mechanisms underlying the protective effects of HDL in the brain are not fully understood, many of the functions of HDL, including reverse lipid/cholesterol transport, anti-inflammation/immune modulation, anti-oxidation, microvessel endothelial protection, and proteopathy modification, are thought to be critical for its beneficial effects. This review describes the current evidence for the role of HDL in AD and the potential of using small peptides mimicking HDL or its associated apolipoproteins (HDL-mimetic peptides) as therapeutics to treat AD.
Collapse
|
64
|
Agarwal D, Sandor C, Volpato V, Caffrey TM, Monzón-Sandoval J, Bowden R, Alegre-Abarrategui J, Wade-Martins R, Webber C. A single-cell atlas of the human substantia nigra reveals cell-specific pathways associated with neurological disorders. Nat Commun 2020; 11:4183. [PMID: 32826893 PMCID: PMC7442652 DOI: 10.1038/s41467-020-17876-0] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/21/2020] [Indexed: 01/05/2023] Open
Abstract
We describe a human single-nuclei transcriptomic atlas for the substantia nigra (SN), generated by sequencing approximately 17,000 nuclei from matched cortical and SN samples. We show that the common genetic risk for Parkinson’s disease (PD) is associated with dopaminergic neuron (DaN)-specific gene expression, including mitochondrial functioning, protein folding and ubiquitination pathways. We identify a distinct cell type association between PD risk and oligodendrocyte-specific gene expression. Unlike Alzheimer’s disease (AD), we find no association between PD risk and microglia or astrocytes, suggesting that neuroinflammation plays a less causal role in PD than AD. Beyond PD, we find associations between SN DaNs and GABAergic neuron gene expression and multiple neuropsychiatric disorders. Conditional analysis reveals that distinct neuropsychiatric disorders associate with distinct sets of neuron-specific genes but converge onto shared loci within oligodendrocytes and oligodendrocyte precursors. This atlas guides our aetiological understanding by associating SN cell type expression profiles with specific disease risk. The substantia nigra is important in neurological disease, particularly movement disorders. Here the authors provide a single cell transcriptomic atlas for the human substantia nigra.
Collapse
Affiliation(s)
- Devika Agarwal
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.,Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy, Genetics, University of Oxford, Oxford, UK
| | - Cynthia Sandor
- UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Viola Volpato
- UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Tara M Caffrey
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy, Genetics, University of Oxford, Oxford, UK.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | | | - Rory Bowden
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX2 7BN, UK
| | - Javier Alegre-Abarrategui
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy, Genetics, University of Oxford, Oxford, UK.,Department of Neuropathology, University of Oxford, Oxford, UK.,Division of Brain Sciences, Imperial College London, London, UK
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy, Genetics, University of Oxford, Oxford, UK
| | - Caleb Webber
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy, Genetics, University of Oxford, Oxford, UK. .,UK Dementia Research Institute, Cardiff University, Cardiff, UK.
| |
Collapse
|
65
|
Sáiz-Vazquez O, Puente-Martínez A, Ubillos-Landa S, Pacheco-Bonrostro J, Santabárbara J. Cholesterol and Alzheimer's Disease Risk: A Meta-Meta-Analysis. Brain Sci 2020; 10:E386. [PMID: 32570800 PMCID: PMC7349210 DOI: 10.3390/brainsci10060386] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common subtype of dementia. In the last ten years, the relationship between cholesterol and AD has been investigated. Evidence suggests that cholesterol is associated with AD and represents promising targets for intervention. However, the causality of these associations is unclear. Therefore, we sought to conduct a meta-meta-analysis to determine the effect of cholesterol on the development AD. Then, we assessed the effect of serum levels of low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC) and triglycerides (TG), on AD risk. METHODS A systematic search of meta-analyses was conducted. Scopus, Web of Science, Science direct, PubMed and Google academic system databases were reviewed. RESULTS We found 100 primary studies and five meta-analyses to analyze the relationships between cholesterol and AD. The total effect of cholesterol on risk of AD was significant and heterogeneous. Subgroup analysis shows that LDL-C levels influence the development of AD. However, non-significant effects of HDL-C, TC and TG levels on AD were found. CONCLUSIONS These results strengthen the evidence that LDL-C cholesterol levels increase risk for AD. More initiatives to investigate the relationship between cholesterol and AD are needed.
Collapse
Affiliation(s)
- Olalla Sáiz-Vazquez
- Department of Occupational Therapy, Faculty of Health Science, University of Burgos, C/Villadiego, 1, 09001 Burgos, Spain;
| | - Alicia Puente-Martínez
- Department of Social Psychology and Methodology of Behavioral Science, University of the Basque Country, Avenida Tolosa 70, 20018 San Sebastián, Spain;
| | - Silvia Ubillos-Landa
- Department of Social Psychology, Faculty of Health Science, University of Burgos, C/Villadiego, 1, 09001 Burgos, Spain
| | - Joaquín Pacheco-Bonrostro
- Department of Applied Economy, Faculty of Economics and Business Sciences, University of Burgos, Pza. De la Infanta Dª Elena, s/n. 09001 Burgos, Spain;
| | - Javier Santabárbara
- Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, C/Domingo Miral s/n, 50009 Zaragoza, Spain;
- Aragonese Institute of Health Sciences (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
66
|
Jensen CS, Musaeus CS, Frikke-Schmidt R, Andersen BB, Beyer N, Gottrup H, Høgh P, Vestergaard K, Wermuth L, Frederiksen KS, Waldemar G, Hasselbalch S, Simonsen AH. Physical Exercise May Increase Plasma Concentration of High-Density Lipoprotein-Cholesterol in Patients With Alzheimer's Disease. Front Neurosci 2020; 14:532. [PMID: 32536853 PMCID: PMC7269030 DOI: 10.3389/fnins.2020.00532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/29/2020] [Indexed: 12/27/2022] Open
Abstract
Lifestyle factors have been shown to increase the risk of developing Alzheimer's disease (AD) later in life. Specifically, an unfavorable cholesterol profile, and insulin resistance are associated with increased risk of developing AD. One way to non-pharmacologically affect the levels of plasma lipids is by exercise, which has been shown to be beneficial in cognitively healthy individuals. In this randomized controlled trial y, we therefore aimed to clarify the effect of physical exercise on the lipid profile, insulin and glucose in patients with AD. In addition, we investigated the effect of apolipoproteinE genotype on total cholesterol, high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), and triglycerides (TG) in plasma from patients with AD. Plasma samples from 172 patients who underwent 16 weeks of moderate-to-high intensity exercise (n = 90) or treatment as usual (n = 82) were analyzed change from baseline for the levels of total cholesterol, LDL-C, HDL-C, TG, glucose, and insulin. In addition, we analyzed those from the exercise group who adhered to the protocol with an attendance of 2/3 or more of the exercise session and who followed the protocol of an intensity of 70% of the maximum heart rate. We found a significant increase in plasma HDL-C levels between the "high exercise sub-group" compared to control group. After intervention HDL-C was increased by 4.3% in the high-exercise group, and decreased by 0.7% in the control group, after adjustment for statin use. In conclusion, short term physical activity may be beneficial on the cholesterol profile in patients with AD.
Collapse
Affiliation(s)
- Camilla Steen Jensen
- Danish Dementia Research Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Christian Sandøe Musaeus
- Danish Dementia Research Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Bo Andersen
- Danish Dementia Research Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Nina Beyer
- Department of Physical and Occupational Therapy, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Gottrup
- Dementia Clinic, Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Høgh
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Regional Dementia Research Centre, Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| | | | - Lene Wermuth
- Dementia Clinic, Department of Neurology, Odense University Hospital, Odense, Denmark
| | | | - Gunhild Waldemar
- Danish Dementia Research Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Steen Hasselbalch
- Danish Dementia Research Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
67
|
Gatti L, Tinelli F, Scelzo E, Arioli F, Di Fede G, Obici L, Pantoni L, Giaccone G, Caroppo P, Parati EA, Bersano A. Understanding the Pathophysiology of Cerebral Amyloid Angiopathy. Int J Mol Sci 2020; 21:ijms21103435. [PMID: 32414028 PMCID: PMC7279405 DOI: 10.3390/ijms21103435] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA), one of the main types of cerebral small vessel disease, is a major cause of spontaneous intracerebral haemorrhage and an important contributor to cognitive decline in elderly patients. Despite the number of experimental in vitro studies and animal models, the pathophysiology of CAA is still largely unknown. Although several pathogenic mechanisms including an unbalance between production and clearance of amyloid beta (Aβ) protein as well as ‘the prion hypothesis’ have been invoked as possible disease triggers, they do not explain completely the disease pathogenesis. This incomplete disease knowledge limits the implementation of treatments able to prevent or halt the clinical progression. The continuous increase of CAA patients makes imperative the development of suitable experimental in vitro or animal models to identify disease biomarkers and new pharmacological treatments that could be administered in the early disease stages to prevent irreversible changes and disease progression.
Collapse
Affiliation(s)
- Laura Gatti
- Neurobiology Laboratory, Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (L.G.); (F.T.); (F.A.)
| | - Francesca Tinelli
- Neurobiology Laboratory, Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (L.G.); (F.T.); (F.A.)
| | - Emma Scelzo
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.S.); (E.A.P.)
| | - Francesco Arioli
- Neurobiology Laboratory, Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (L.G.); (F.T.); (F.A.)
| | - Giuseppe Di Fede
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.D.F.); (G.G.); (P.C.)
| | - Laura Obici
- Amyloidosis Research and Treatment Centre, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Leonardo Pantoni
- “Luigi Sacco” Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy;
| | - Giorgio Giaccone
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.D.F.); (G.G.); (P.C.)
| | - Paola Caroppo
- Unit of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (G.D.F.); (G.G.); (P.C.)
| | - Eugenio Agostino Parati
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.S.); (E.A.P.)
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (E.S.); (E.A.P.)
- Correspondence: ; Tel.: +39-0223943310
| |
Collapse
|
68
|
Effect of Combined Antihypertensive and Lipid-Lowering Therapies on Cognitive Function: A New Treatment Strategy? Cardiol Res Pract 2020; 2020:1484357. [PMID: 32351732 PMCID: PMC7178519 DOI: 10.1155/2020/1484357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/03/2020] [Accepted: 03/19/2020] [Indexed: 01/06/2023] Open
Abstract
Risk factors for cardiovascular disease such as hypertension and hyperlipidemia are associated with cognitive decline. However, there is still no clear evidence that the use of antihypertensive or lipid-lowering therapy can prevent or delay cognitive decline or development of dementia. To provide a reference for clinical treatment, we analyzed the potential mechanisms of cognitive dysfunction induced by hypertension and hyperlipidemia, the clinical research and controversy of antihypertensive and lipid-lowering therapies on cognitive function, and the clinical value of combined antihypertensive and lipid-lowering therapy. It is currently believed that hypertension and elevated blood cholesterol levels in middle-aged people may be related to cognitive impairment or dementia in the elderly. Some studies suggest that intensive antihypertensive or lipid-lowering therapies are better than standard antihypertensive or lipid-lowering therapy, yet further tests are needed to confirm their effects on cognitive function. Actively controlling potential risk factors from middle age may be important for Alzheimer's disease (AD) prevention.
Collapse
|
69
|
Jomard A, Osto E. High Density Lipoproteins: Metabolism, Function, and Therapeutic Potential. Front Cardiovasc Med 2020; 7:39. [PMID: 32296714 PMCID: PMC7136892 DOI: 10.3389/fcvm.2020.00039] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
High Density Lipoproteins (HDLs) have long been considered as “good cholesterol,” beneficial to the whole body and, in particular, to cardio-vascular health. However, HDLs are complex particles that undergoes dynamic remodeling through interactions with various enzymes and tissues throughout their life cycle, making the complete understanding of its functions and roles more complicated than initially expected. In this review, we explore the novel understanding of HDLs' behavior in health and disease as a multifaceted class of lipoprotein, with different size subclasses, molecular composition, receptor interactions, and functionality. Further, we report on emergent HDL-based therapeutics tested in small and larger scale clinical trials and their mixed successes.
Collapse
Affiliation(s)
- Anne Jomard
- Laboratory of Translational Nutrition Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | - Elena Osto
- Laboratory of Translational Nutrition Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland.,Department of Cardiology, Heart Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
70
|
Characterisation of the dynamic nature of lipids throughout the lifespan of genetically identical female and male Daphnia magna. Sci Rep 2020; 10:5576. [PMID: 32221338 PMCID: PMC7101400 DOI: 10.1038/s41598-020-62476-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/24/2020] [Indexed: 01/08/2023] Open
Abstract
Lipids play a significant role in regulation of health and disease. To enhance our understanding of the role of lipids in regulation of lifespan and healthspan additional studies are required. Here, UHPLC-MS/MS lipidomics was used to measure dynamic changes in lipid composition as a function of age and gender in genetically identical male and female Daphnia magna with different average lifespans. We demonstrate statistically significant age-related changes in triglycerides (TG), diglycerides (DG), phosphatidylcholine, phosphatidylethanolamine, ceramide and sphingomyelin lipid groups, for example, in males, 17.04% of TG lipid species decline with age whilst 37.86% increase in relative intensity with age. In females, 23.16% decrease and 25.31% increase in relative intensity with age. Most interestingly, the rate and direction of change can differ between genetically identical female and male Daphnia magna, which could be the cause and/or the consequence of the different average lifespans between the two genetically identical genders. This study provides a benchmark dataset to understand how lipids alter as a function of age in genetically identical female and male species with different average lifespan and ageing rate.
Collapse
|
71
|
Robert J, Button EB, Martin EM, McAlary L, Gidden Z, Gilmour M, Boyce G, Caffrey TM, Agbay A, Clark A, Silverman JM, Cashman NR, Wellington CL. Cerebrovascular amyloid Angiopathy in bioengineered vessels is reduced by high-density lipoprotein particles enriched in Apolipoprotein E. Mol Neurodegener 2020; 15:23. [PMID: 32213187 PMCID: PMC7093966 DOI: 10.1186/s13024-020-00366-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/13/2020] [Indexed: 12/21/2022] Open
Abstract
Background Several lines of evidence suggest that high-density lipoprotein (HDL) reduces Alzheimer’s disease (AD) risk by decreasing vascular beta-amyloid (Aβ) deposition and inflammation, however, the mechanisms by which HDL improve cerebrovascular functions relevant to AD remain poorly understood. Methods Here we use a human bioengineered model of cerebral amyloid angiopathy (CAA) to define several mechanisms by which HDL reduces Aβ deposition within the vasculature and attenuates endothelial inflammation as measured by monocyte binding. Results We demonstrate that HDL reduces vascular Aβ accumulation independently of its principal binding protein, scavenger receptor (SR)-BI, in contrast to the SR-BI-dependent mechanism by which HDL prevents Aβ-induced vascular inflammation. We describe multiple novel mechanisms by which HDL acts to reduce CAA, namely: i) altering Aβ binding to collagen-I, ii) forming a complex with Aβ that maintains its solubility, iii) lowering collagen-I protein levels produced by smooth-muscle cells (SMC), and iv) attenuating Aβ uptake into SMC that associates with reduced low density lipoprotein related protein 1 (LRP1) levels. Furthermore, we show that HDL particles enriched in apolipoprotein (apo)E appear to be the major drivers of these effects, providing new insights into the peripheral role of apoE in AD, in particular, the fraction of HDL that contains apoE. Conclusion The findings in this study identify new mechanisms by which circulating HDL, particularly HDL particles enriched in apoE, may provide vascular resilience to Aβ and shed new light on a potential role of peripherally-acting apoE in AD.
Collapse
Affiliation(s)
- Jerome Robert
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada. .,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada. .,Present address: Institute of Clinical Chemistry, University Hospital Zurich, 8000, Zurich, Switzerland.
| | - Emily B Button
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Emma M Martin
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Luke McAlary
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Zoe Gidden
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Megan Gilmour
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Guilaine Boyce
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Tara M Caffrey
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Andrew Agbay
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Amanda Clark
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Judith M Silverman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Department of Neurology, University of British Columbia, Vancouver, British Columbia, V6T 2B5, Canada
| | - Neil R Cashman
- Department of Neurology, University of British Columbia, Vancouver, British Columbia, V6T 2B5, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, V5Z 1M9, Canada
| |
Collapse
|
72
|
Cho KH, Park HJ, Kim JR. Decrease in Serum HDL-C Level Is Associated with Elevation of Blood Pressure: Correlation Analysis from the Korean National Health and Nutrition Examination Survey 2017. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031101. [PMID: 32050502 PMCID: PMC7036966 DOI: 10.3390/ijerph17031101] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
A low-serum, high-density lipoproteins-cholesterol (HDL-C) level and high blood pressure (BP) are independent risk factors for cardiovascular disease and dementia. In the present study, in order to find putative correlation between low HDL-C and hypertension, 4552 subjects (20-80 years old) were selected from the Korean National Health And Nutrition Examination Survey 2017 (KNHANES VII-2, n = 2017 men, n = 2535 women). They were classified into four levels of blood pressure, ranging from BP1 (normal, below 120/80 mmHg for systolic BP (SBP)/diastolic BP (DBP), BP2 (prehypertension, 120/80 to 139/89 mmHg), BP3 (hypertension stage 1, 140/90-159/99 mmHg), and BP4 (hypertension stage 2, higher than 160/100 mmHg). Generally, in the total population, a higher SBP level and age were associated with a lower HDL-C in both genders. However, DBP was not associated with age in men. In the total population, Pearson's correlation analysis revealed that SBP (r = -0.188, p < 0.001) and DBP (r = -0.198, p < 0.001) showed negative correlations with percentage of HDL-C in total cholesterol (TC), HDL-C/TC (%). In both genders, HDL-C gradually decreased with age and HDL-C/TC (%) was more accurate in expressing a correlation with BP. Women showed a more distinct decrease in HDL-C with an elevation of BP and age than men. Both elevation of DBP and SBP were associated with a decrease in HDL-C, around 2.3-2.4 mg/dL, between normal range and hypertension 2 stage. Additionally, DBP was significantly associated with HDL-C/TC (%) (men: r = -0.136, p < 0.001; women: r = -0.152, p < 0.001), while HDL-C did not show a significant association with a change in DBP. In conclusion, SBP was positively correlated with age, but DBP did not change significantly with age. The correlation of BP and HDL-C depending on age showed that SBP gradually increased and HDL-C decreased with an increase in age. The percentage of HDL-C in TC was more significantly associated with a change in SBP and DBP in both genders.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- Korea Research Institute of Lipoproteins, Medical Innovation Complex, Daegu 41061, Korea;
- LipoLab, Yeungnam University, Gyeongsan 712-749, Korea
- Department of Biochemistry and Molecular Biology, Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu 705-717, Korea;
- Correspondence: ; Tel.: +82-53-964-1990; Fax: +82-53-965-1992
| | - Hye-Jeong Park
- Korea Research Institute of Lipoproteins, Medical Innovation Complex, Daegu 41061, Korea;
- LipoLab, Yeungnam University, Gyeongsan 712-749, Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu 705-717, Korea;
| |
Collapse
|
73
|
D’Arrigo JS. Nanotargeting of Drug(s) for Delaying Dementia: Relevance of Covid-19 Impact on Dementia. Am J Alzheimers Dis Other Demen 2020; 35:1533317520976761. [PMID: 33307726 PMCID: PMC10623919 DOI: 10.1177/1533317520976761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
By incorporating appropriate drug(s) into lipid (biobased) nanocarriers, one obtains a combination therapeutic for dementia treatment that targets certain cell-surface scavenger receptors (mainly class B type I, or "SR-BI") and thereby crosses the blood-brain barrier. The cardiovascular risk factors for dementia trigger widespread inflammation -- which lead to neurodegeneration, gradual cognitive/memory decline, and eventually (late-onset) dementia. Accordingly, one useful strategy to delay dementia could be based upon nanotargeting drug(s), using lipid nanocarriers, toward a major receptor class responsible for inflammation-associated (cytokine-mediated) cell signaling events. At the same time, the immune response and excessive inflammation, commonly observed in the very recent human coronavirus (COVID-19) pandemic, may accelerate the progression of brain inflammatory neurodegeneration-which increases the probability of post-infection memory impairment and accelerating progression of Alzheimer's disease. Hence, the proposed multitasking combination therapeutic, using a (biobased) lipid nanocarrier, may also display greater effectiveness at different stages of dementia.
Collapse
Affiliation(s)
- Joseph S. D’Arrigo
- Cavitation-Control Technology Inc, Farmington, CT, USA. D’Arrigo is now with Cav-Con, Inc, Bellevue, WA, USA
| |
Collapse
|
74
|
Cho KH, Park HJ, Kim SJ, Kim JR. Decrease in HDL-C is Associated with Age and Household Income in Adults from the Korean National Health and Nutrition Examination Survey 2017: Correlation Analysis of Low HDL-C and Poverty. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3329. [PMID: 31509977 PMCID: PMC6765955 DOI: 10.3390/ijerph16183329] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/27/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022]
Abstract
A low serum high-density lipoproteins-cholesterol (HDL-C) level is a risk factor of cardiovascular disease and dementia. On the other hand, no study has elucidated the correlation between household income and the HDL-C level in the adult population. In the present study, 5535 subjects (20-80 year-old individuals) were selected from the Korean national health and nutrition examination survey 2017 (KNHANES VII-2, n = 2469 men, n = 3066 women). They were classified into five levels of household income grades ranging from one (the lowest) to five (the highest). They were also classified according to the HDL-C level: category 1 (<40 mg/dL, n = 943), category 2 (40-49 mg/dL, n = 1764), category 3 (50-59 mg/dL, n = 1572), category 4 (60-69 mg/dL, n = 820), and category 5 (≥70 mg/dL, n = 436). Generally, in both genders, a higher HDL-C level is associated with a larger percentage of income grades 4 and 5. Moreover, the lowest HDL-C group showed the largest percentage of income grade 1. In both groups, a significant increase in the average income grade was associated with a concomitant increase in the HDL-C level (men, p = 0.03, women, p < 0.001). In the low HDL-C category, a lower income grade is associated directly with a lower HDL-C level, which suggests that poverty is associated directly with a low HDL-C. Women showed a 3.3-fold higher incidence of dementia than men did at later-life. The sharp decrease in HDL-C in the female group older than 50 was accompanied by a dramatic increase in the incidence of dementia. However, the male group showed a relatively mild decrease in the HDL-C level after mid-life and weak elevation in the incidence of dementia. In conclusion, in both genders, the lower income group showed a larger prevalence of low-HDL-C levels. The decrease in HDL-C after middle age was strongly associated with the considerable increase in dementia in later-life.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- LipoLab, Yeungnam University, Gyeongsan 712-749, Korea.
- RayDel Lipoprotein Research Center, Daegu 41061, Korea.
- Department of Biochemistry and Molecular Biology, Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu 705-717, Korea.
| | - Hye-Jeong Park
- LipoLab, Yeungnam University, Gyeongsan 712-749, Korea.
- RayDel Lipoprotein Research Center, Daegu 41061, Korea.
| | - Suk-Jeong Kim
- LipoLab, Yeungnam University, Gyeongsan 712-749, Korea.
- RayDel Lipoprotein Research Center, Daegu 41061, Korea.
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu 705-717, Korea.
| |
Collapse
|