51
|
Lin LY, Pang W, Chuang WM, Hung GY, Lin YH, Horng JL. Extracellular Ca2+ and Mg2+ modulate aminoglycoside blockade of mechanotransducer channel-mediated Ca2+ entry in zebrafish hair cells: an in vivo study with the SIET. Am J Physiol Cell Physiol 2013; 305:C1060-8. [DOI: 10.1152/ajpcell.00077.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zebrafish lateral-line hair cells are an in vivo model for studying hair cell development, function, and ototoxicity. However, the molecular identification and properties of the mechanotransducer (MET) channel in hair cells are still controversial. In this study, a noninvasive electrophysiological method, the scanning ion-electrode technique (SIET), was applied for the first time to investigate properties of MET channels in intact zebrafish embryos. With the use of a Ca2+-selective microelectrode to deflect hair bundles and simultaneously record the Ca2+ flux, the inward Ca2+ flux was detected at stereocilia of hair cells in 2- to ∼4-day postfertilization embryos. Ca2+ influx was blocked by MET channel blockers (BAPTA, La3+, Gd3+, and curare). In addition, 10 μM aminoglycoside antibiotics (neomycin and gentamicin) were found to effectively block Ca2+ influx within 10 min. Elevating the external Ca2+ level (0.2–2 mM) neutralized the effects of neomycin and gentamicin. However, elevating the Mg2+ level up to 5 mM neutralized blockade by gentamicin but not by neomycin. This study demonstrated MET channel-mediated Ca2+ entry at hair cells and showed that the SIET to be a sensitive approach for functionally assaying MET channels in zebrafish.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Wei Pang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Wei-Min Chuang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Giun-Yi Hung
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Pediatrics, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Yuan-Hsiang Lin
- Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, Republic of China; and
| | - Jiun-Lin Horng
- Department of Anatomy, Taipei Medical University, Taipei, Taiwan, Republic of China
| |
Collapse
|
52
|
Chen KS, Bach A, Shoup A, Winick NJ. Hearing loss and vestibular dysfunction among children with cancer after receiving aminoglycosides. Pediatr Blood Cancer 2013; 60:1772-7. [PMID: 23788258 DOI: 10.1002/pbc.24631] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/17/2013] [Indexed: 11/11/2022]
Abstract
BACKGROUND Children undergoing cancer therapy often receive aminoglycosides to treat febrile neutropenia or gram-negative infections. The magnitude of the risk of developing aminoglycoside-induced ototoxicity and the dose threshold at which that risk significantly increases are unknown. PROCEDURE Eligible cancer patients received the aminoglycoside amikacin at Children's Medical Center between 2004 and 2007. They were aged 3-8 years; were without prior hearing loss; had no platinum-based chemotherapy, cranial radiation, nor bone marrow transplant; and received no loop diuretics within 6 weeks of testing. Consenting patients underwent complete hearing and vestibular testing. RESULTS We tested 23 patients who had significant amikacin exposure. Three (13%) had abnormal hearing tests, and four (17%) had subclinical vestibular dysfunction; none had both. Of those with hearing loss, two were known to have developed hearing loss after aminoglycoside exposure, but the third had moderate to severe high-frequency sensorineural hearing loss bilaterally that had been undiagnosed. We observed clear dose-dependent ototoxicity; of the eight patients who received amikacin for a cumulative total of more than 50 days, five (68%) developed toxicity. Similarly, of the seven who received a cumulative total of more than 1,200 mg/kg, five developed toxicity. CONCLUSIONS These data highlight the risks of prolonged aminoglycoside administration and warrant further validation in a larger group of patients. Patients to be treated with prolonged aminoglycoside therapy may benefit from prospective hearing screening.
Collapse
Affiliation(s)
- Kenneth S Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas; Children's Medical Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | | |
Collapse
|
53
|
Drake KM, Dunmore BJ, McNelly LN, Morrell NW, Aldred MA. Correction of nonsense BMPR2 and SMAD9 mutations by ataluren in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 2013; 49:403-9. [PMID: 23590310 DOI: 10.1165/rcmb.2013-0100oc] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heritable pulmonary arterial hypertension (HPAH) is a serious lung vascular disease caused by heterozygous mutations in the bone morphogenetic protein (BMP) pathway genes, BMPR2 and SMAD9. One noncanonical function of BMP signaling regulates biogenesis of a subset of microRNAs. We have previously shown that this function is abrogated in patients with HPAH, making it a highly sensitive readout of BMP pathway integrity. Ataluren (PTC124) is an investigational drug that permits ribosomal readthrough of premature stop codons, resulting in a full-length protein. It exhibits oral bioavailability and limited toxicity in human trials. Here, we tested ataluren in lung- or blood-derived cells from patients with HPAH with nonsense mutations in BMPR2 (n = 6) or SMAD9 (n = 1). Ataluren significantly increased BMP-mediated microRNA processing in six of the seven cases. Moreover, rescue was achieved even for mutations exhibiting significant nonsense-mediated mRNA decay. Response to ataluren was dose dependent, and complete correction was achieved at therapeutic doses currently used in clinical trials for cystic fibrosis. BMP receptor (BMPR)-II protein levels were normalized and ligand-dependent phosphorylation of downstream target Smads was increased. Furthermore, the usually hyperproliferative phenotype of pulmonary artery endothelial and smooth muscle cells was reversed by ataluren. These results indicate that ataluren can effectively suppress a high proportion of BMPR2 and SMAD9 nonsense mutations and correct BMP signaling in vitro. Approximately 29% of all HPAH mutations are nonsense point mutations. In light of this, we propose ataluren as a potential new personalized therapy for this significant subgroup of patients with PAH.
Collapse
Affiliation(s)
- Kylie M Drake
- Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | | | | | | | |
Collapse
|
54
|
Protective role of NecroX-5 against neomycin-induced hair cell damage in zebrafish. Arch Toxicol 2013; 88:435-41. [PMID: 24030356 DOI: 10.1007/s00204-013-1124-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
Abstract
NecroX-5, one of the derivatives of NecroX series compounds, is a mitochondrial reactive oxygen species and reactive nitrogen species scavenger that inhibits cell death against various kinds of oxidative stresses. The objective of the present study was to evaluate the effects of NecroX-5 on neomycin-induced ototoxicity in transgenic zebrafish (Brn3C: EGFP). Five days post-fertilization, zebrafish larvae were exposed to 125 μM neomycin and one of the following NecroX-5 concentrations for 1 h: 10, 25, 50, and 75 μM. Hair cells within the neuromasts of the supraorbital (SO1 and SO2), otic (O1), and occipital (OC1) lateral lines were analyzed using fluorescence microscopy (n = 10). The terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay and 2-[4-(dimethylamino) styryl]-N-ethylpyridiniumiodide (DASPEI) assay were performed for evaluation of apoptosis and mitochondrial damage. Ultrastructural changes were evaluated using scanning electron microscopy. NecroX-5 decreased neomycin-induced hair cell loss in the neuromasts (NecroX-5 50 μM: 13.4 ± 2.0 cells, 125 μM neomycin only: 8.1 ± 1.2 cells; n = 10, P < 0.05) and decreased the TUNEL reaction. The ultrastructural analysis showed that the structures of mitochondria and hair cells within the neuromasts were preserved in zebrafish exposed to 125 μM neomycin and 50 μM NecroX-5. NecroX-5 decreased apoptosis and mitochondrial damage. In conclusion, NecroX-5 attenuated neomycin-induced hair cell loss in zebrafish.
Collapse
|
55
|
Tian CJ, Kim SW, Kim YJ, Lim HJ, Park R, So HS, Choung YH. Red ginseng protects against gentamicin-induced balance dysfunction and hearing loss in rats through antiapoptotic functions of ginsenoside Rb1. Food Chem Toxicol 2013; 60:369-76. [PMID: 23933362 DOI: 10.1016/j.fct.2013.07.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 07/13/2013] [Accepted: 07/26/2013] [Indexed: 11/16/2022]
Abstract
The authors evaluated the protective effects of Korean red ginseng (KRG) against gentamicin (GM)-induced unilateral vestibular and hearing dysfunction and investigated its effective mechanism using in vitro cell cultures. Vestibular function was comprehensively evaluated by a scoring system that ranged from 0 (normal) to 3 (worst) points, using head tilt, tail hanging, and swimming tests. The GM group showed significantly more deteriorated vestibular function (0 point--5 rats, 1 point--1 rat, 2 points--3 rats, and 3 points--3 rats) than the KRG+GM group (0 point--9 rats and 1 point--1 rat) (p<0.01). The hearing thresholds were better in the KRG+GM group than in the GM group (p<0.05). Quantitative analysis of hair cell damage in the scanning electron microscopy was closely related with vestibular and hearing functional results. In vitro study showed that ginsenoside Rb1 (gRb1) attenuated reactive oxygen species production, suppressed JNK activation, up-regulated Bcl-xL and down-regulated Bax, cytochrome c, caspase 3, and cleaved poly (ADP-ribose) polymerase in GM-treated VOT-E36 cells. These findings suggest that KRG including gRb1 component protects against vestibular/hearing dysfunction by inhibiting apoptotic pathways when ototoxicity is induced by unilateral intratympanic injection with GM in rats.
Collapse
Affiliation(s)
- Chun Jie Tian
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
56
|
Coffin AB, Rubel EW, Raible DW. Bax, Bcl2, and p53 differentially regulate neomycin- and gentamicin-induced hair cell death in the zebrafish lateral line. J Assoc Res Otolaryngol 2013; 14:645-59. [PMID: 23821348 DOI: 10.1007/s10162-013-0404-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/20/2013] [Indexed: 12/19/2022] Open
Abstract
Sensorineural hearing loss is a normal consequence of aging and results from a variety of extrinsic challenges such as excessive noise exposure and certain therapeutic drugs, including the aminoglycoside antibiotics. The proximal cause of hearing loss is often death of inner ear hair cells. The signaling pathways necessary for hair cell death are not fully understood and may be specific for each type of insult. In the lateral line, the closely related aminoglycoside antibiotics neomycin and gentamicin appear to kill hair cells by activating a partially overlapping suite of cell death pathways. The lateral line is a system of hair cell-containing sense organs found on the head and body of aquatic vertebrates. In the present study, we use a combination of pharmacologic and genetic manipulations to assess the contributions of p53, Bax, and Bcl2 in the death of zebrafish lateral line hair cells. Bax inhibition significantly protects hair cells from neomycin but not from gentamicin toxicity. Conversely, transgenic overexpression of Bcl2 attenuates hair cell death due to gentamicin but not neomycin, suggesting a complex interplay of pro-death and pro-survival proteins in drug-treated hair cells. p53 inhibition protects hair cells from damage due to either aminoglycoside, with more robust protection seen against gentamicin. Further experiments evaluating p53 suggest that inhibition of mitochondrial-specific p53 activity confers significant hair cell protection from either aminoglycoside. These results suggest a role for mitochondrial p53 activity in promoting hair cell death due to aminoglycosides, likely upstream of Bax and Bcl2.
Collapse
Affiliation(s)
- Allison B Coffin
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Box 357923, Seattle, WA, 98195, USA,
| | | | | |
Collapse
|
57
|
Disruption of intracellular calcium regulation is integral to aminoglycoside-induced hair cell death. J Neurosci 2013; 33:7513-25. [PMID: 23616556 DOI: 10.1523/jneurosci.4559-12.2013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intracellular Ca(2+) is a key regulator of life or death decisions in cultured neurons and sensory cells. The role of Ca(2+) in these processes is less clear in vivo, as the location of these cells often impedes visualization of intracellular Ca(2+) dynamics. We generated transgenic zebrafish lines that express the genetically encoded Ca(2+) indicator GCaMP in mechanosensory hair cells of the lateral line. These lines allow us to monitor intracellular Ca(2+) dynamics in real time during aminoglycoside-induced hair cell death. After exposure of live larvae to aminoglycosides, dying hair cells undergo a transient increase in intracellular Ca(2+) that occurs shortly after mitochondrial membrane potential collapse. Inhibition of intracellular Ca(2+) elevation through either caged chelators or pharmacological inhibitors of Ca(2+) effectors mitigates toxic effects of aminoglycoside exposure. Conversely, artificial elevation of intracellular Ca(2+) by caged Ca(2+) release agents sensitizes hair cells to the toxic effects of aminoglycosides. These data suggest that alterations in intracellular Ca(2+) homeostasis play an essential role in aminoglycoside-induced hair cell death, and indicate several potential therapeutic targets to stem ototoxicity.
Collapse
|
58
|
Aminoglycoside-induced hair cell death of inner ear organs causes functional deficits in adult zebrafish (Danio rerio). PLoS One 2013; 8:e58755. [PMID: 23533589 PMCID: PMC3606392 DOI: 10.1371/journal.pone.0058755] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/06/2013] [Indexed: 02/06/2023] Open
Abstract
Aminoglycoside antibiotics, like gentamicin, kill inner ear sensory hair cells in a variety of species including chickens, mice, and humans. The zebrafish (Danio rerio) has been used to study hair cell cytotoxicity in the lateral line organs of larval and adult animals. Little is known about whether aminoglycosides kill the hair cells within the inner ear of adult zebrafish. We report here the ototoxic effects of gentamicin on hair cells in the saccule, the putative hearing organ, and utricle of zebrafish. First, adult zebrafish received a single 30 mg/kg intraperitoneal injection of fluorescently-tagged gentamicin (GTTR) to determine the distribution of gentamicin within inner ear sensory epithelia. After 4 hours, GTTR was observed in hair cells throughout the saccular and utriclar sensory epithelia. To assess the ototoxic effects of gentamicin, adult zebrafish received a single 250 mg/kg intraperitoneal injection of gentamicin and, 24 hours later, auditory evoked potential recordings (AEPs) revealed significant shifts in auditory thresholds compared to untreated controls. Zebrafish were then euthanized, the inner ear fixed, and labeled for apoptotic cells (TUNEL reaction), and the stereociliary bundles of hair cells labeled with fluorescently-tagged phalloidin. Whole mounts of the saccule and utricle were imaged and cells counted. There were significantly more TUNEL-labeled cells found in both organs 4 hours after gentamicin injection compared to vehicle-injected controls. As expected, significantly fewer hair cell bundles were found along the rostral-caudal axis of the saccule and in the extrastriolar and striolar regions of the utricle in gentamicin-treated animals compared to untreated controls. Therefore, as in other species, gentamicin causes significant inner ear sensory hair cell death and auditory dysfunction in zebrafish.
Collapse
|
59
|
Oesterle EC. Changes in the adult vertebrate auditory sensory epithelium after trauma. Hear Res 2013; 297:91-8. [PMID: 23178236 PMCID: PMC3637947 DOI: 10.1016/j.heares.2012.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/30/2012] [Accepted: 11/06/2012] [Indexed: 01/12/2023]
Abstract
Auditory hair cells transduce sound vibrations into membrane potential changes, ultimately leading to changes in neuronal firing and sound perception. This review provides an overview of the characteristics and repair capabilities of traumatized auditory sensory epithelium in the adult vertebrate ear. Injured mammalian auditory epithelium repairs itself by forming permanent scars but is unable to regenerate replacement hair cells. In contrast, injured non-mammalian vertebrate ear generates replacement hair cells to restore hearing functions. Non-sensory support cells within the auditory epithelium play key roles in the repair processes.
Collapse
Affiliation(s)
- Elizabeth C Oesterle
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, CHDD CD176, Box 357923, Univ. of Washington, Seattle, WA 98195-7923, USA.
| |
Collapse
|
60
|
Esterberg R, Coffin AB, Ou H, Simon JA, Raible DW, Rubel EW. Fish in a Dish: Drug Discovery for Hearing Habilitation. ACTA ACUST UNITED AC 2013; 10. [PMID: 24187569 DOI: 10.1016/j.ddmod.2012.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The majority of hearing loss is caused by the permanent loss of inner ear hair cells. The identification of drugs that modulate the susceptibility to hair cell loss or spur their regeneration is often hampered by the difficulties of assaying for such complex phenomena in mammalian models. The zebrafish has emerged as a powerful animal model for chemical screening in many contexts. Several characteristics of the zebrafish, such as its small size and external location of sensory hair cells, uniquely position it as an ideal model organism for the study of hair cell toxicity, protection, and regeneration. We have used this model to screen for drugs that affect each of these aspects of hair cell biology and have identified compounds that affect each of these processes. The identification of such drugs and drug-like compounds holds promise in the future ability to stem hearing loss in the human population.
Collapse
Affiliation(s)
- Robert Esterberg
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, Washington ; Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington
| | | | | | | | | | | |
Collapse
|
61
|
The mitochondrion: a perpetrator of acquired hearing loss. Hear Res 2013; 303:12-9. [PMID: 23361190 DOI: 10.1016/j.heares.2013.01.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/22/2012] [Accepted: 01/06/2013] [Indexed: 02/01/2023]
Abstract
Age, drugs, and noise are major causes of acquired hearing loss. The involvement of reactive oxygen species (ROS) in hair cell death has long been discussed, but there is considerably less information available as to the mechanisms underlying ROS formation. Most cellular ROS arise in mitochondria and this review will evaluate evidence for mitochondrial pathology in general and dysfunction of the mitochondrial respiratory chain in particular in acquired hearing loss. We will discuss evidence that different pathways can lead to the generation of ROS and that oxidative stress might not necessarily be causal to all three pathologies. Finally, we will detail recent advances in exploiting knowledge of aminoglycoside-mitochondria interactions for the development of non-ototoxic antibacterials. This article is part of a Special Issue entitled "Annual Reviews 2013".
Collapse
|
62
|
Fan GR, Yin ZD, Sun Y, Chen S, Zhang WJ, Huang X, Kong WJ, Zhang HL. Reversible neurotoxicity of kanamycin on dorsal cochlear nucleus. Brain Res 2013; 1502:30-46. [PMID: 23333799 DOI: 10.1016/j.brainres.2012.12.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 10/13/2012] [Accepted: 12/27/2012] [Indexed: 01/05/2023]
Abstract
The time course of aminoglycoside neurotoxic effect on cochlear nucleus is still obscure. We examined dynamic pathological changes of dorsal cochlear nucleus (DCN) and investigated whether apoptosis or autophagy was upregulated in the neurotoxic course of kanamycin on DCN after kanamycin treatment. Rats were treated with kanamycin sulfate/kg/day at a dose of 500mg by subcutaneous injection for 10 days. Dynamic pathological changes, neuron density and neuron apoptosis of the DCN were examined at 1, 7, 14, 28, 56, 70 and 140 days after kanamycin treatment. The expressions of JNK1, DAPK2, Bcl-2, p-Bcl-2, Caspase-3, LC3B and Beclin-1 were also detected. Under transmission electron microscopy, the mitochondrial swelling and focal vacuoles as well as endoplasmic reticulum dilation were progressively aggravated from 1 day to 14 days, and gradually recovered from 28 days to 140 days. Meanwhile, both autophagosomes and autolysosomes were increased from 1 day to 56 days. Only few neurons were positive to the TUNEL staining. Moreover, neither the expressions of caspase-3 and DAPK2 nor neurons density of DCN changed significantly. LC3-II was drastically increased at 7 days. Beclin-1 was upgraded at 1 and 7 days. P-Bcl-2 increased at 1, 7, 14 and 28 days. JNK1 increased at 7 days, and Bcl-2 was downgraded at 140 days. LC3-B positive neurons were increased at 1, 7 and 14 days. These data demonstrated that the neurons damage of the DCN caused by kanamycin was reversible and autophagy was upregulated in the neurotoxic course of kanamycin on DCN through JNK1-mediated phosphorylation of Bcl-2 pathway.
Collapse
Affiliation(s)
- Guo-Run Fan
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan 430022, PR China
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Mann SE, Johnson M, Meredith FL, Rennie KJ. Inhibition of K+ Currents in Type I Vestibular Hair Cells by Gentamicin and Neomycin. ACTA ACUST UNITED AC 2013; 18:317-26. [DOI: 10.1159/000354056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/24/2013] [Indexed: 11/19/2022]
|
64
|
Goldmann T, Overlack N, Möller F, Belakhov V, van Wyk M, Baasov T, Wolfrum U, Nagel-Wolfrum K. A comparative evaluation of NB30, NB54 and PTC124 in translational read-through efficacy for treatment of an USH1C nonsense mutation. EMBO Mol Med 2012; 4:1186-99. [PMID: 23027640 PMCID: PMC3494875 DOI: 10.1002/emmm.201201438] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/17/2012] [Accepted: 08/22/2012] [Indexed: 12/22/2022] Open
Abstract
Translational read-through-inducing drugs (TRIDs) promote read-through of nonsense mutations, placing them in the spotlight of current gene-based therapeutic research. Here, we compare for the first time the relative efficacies of new-generation aminoglycosides NB30, NB54 and the chemical compound PTC124 on retinal toxicity and read-through efficacy of a nonsense mutation in the USH1C gene, which encodes the scaffold protein harmonin. This mutation causes the human Usher syndrome, the most common form of inherited deaf-blindness. We quantify read-through efficacy of the TRIDs in cell culture and show the restoration of harmonin function. We do not observe significant differences in the read-through efficacy of the TRIDs in retinal cultures; however, we show an excellent biocompatibility in retinal cultures with read-through versus toxicity evidently superior for NB54 and PTC124. In addition, in vivo administration of NB54 and PTC124 induced recovery of the full-length harmonin a1 with the same efficacy. The high biocompatibilities combined with the sustained read-through efficacies of these drugs emphasize the potential of NB54 and PTC124 in treating nonsense mutation-based retinal disorders.
Collapse
Affiliation(s)
- Tobias Goldmann
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Jensen-Smith HC, Hallworth R, Nichols MG. Gentamicin rapidly inhibits mitochondrial metabolism in high-frequency cochlear outer hair cells. PLoS One 2012; 7:e38471. [PMID: 22715386 PMCID: PMC3371036 DOI: 10.1371/journal.pone.0038471] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/10/2012] [Indexed: 01/08/2023] Open
Abstract
Aminoglycosides (AG), including gentamicin (GM), are the most frequently used antibiotics in the world and are proposed to cause irreversible cochlear damage and hearing loss (HL) in 1/4 of the patients receiving these life-saving drugs. Akin to the results of AG ototoxicity studies, high-frequency, basal turn outer hair cells (OHCs) preferentially succumb to multiple HL pathologies while inner hair cells (IHCs) are much more resilient. To determine if endogenous differences in IHC and OHC mitochondrial metabolism dictate differential sensitivities to AG-induced HL, IHC- and OHC-specific changes in mitochondrial reduced nicotinamide adenine dinucleotide (NADH) fluorescence during acute (1 h) GM treatment were compared. GM-mediated decreases in NADH fluorescence and succinate dehydrogenase activity were observed shortly after GM application. High-frequency basal turn OHCs were found to be metabolically biased to rapidly respond to alterations in their microenvironment including GM and elevated glucose exposures. These metabolic biases may predispose high-frequency OHCs to preferentially produce cell-damaging reactive oxygen species during traumatic challenge. Noise-induced and age-related HL pathologies share key characteristics with AG ototoxicity, including preferential OHC loss and reactive oxygen species production. Data from this report highlight the need to address the role of mitochondrial metabolism in regulating AG ototoxicity and the need to illuminate how fundamental differences in IHC and OHC metabolism may dictate differences in HC fate during multiple HL pathologies.
Collapse
Affiliation(s)
- Heather C Jensen-Smith
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America.
| | | | | |
Collapse
|
66
|
Raimundo N, Song L, Shutt TE, McKay SE, Cotney J, Guan MX, Gilliland TC, Hohuan D, Santos-Sacchi J, Shadel GS. Mitochondrial stress engages E2F1 apoptotic signaling to cause deafness. Cell 2012; 148:716-26. [PMID: 22341444 DOI: 10.1016/j.cell.2011.12.027] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/31/2011] [Accepted: 12/15/2011] [Indexed: 01/03/2023]
Abstract
Mitochondrial dysfunction causes poorly understood tissue-specific pathology stemming from primary defects in respiration, coupled with altered reactive oxygen species (ROS), metabolic signaling, and apoptosis. The A1555G mtDNA mutation that causes maternally inherited deafness disrupts mitochondrial ribosome function, in part, via increased methylation of the mitochondrial 12S rRNA by the methyltransferase mtTFB1. In patient-derived A1555G cells, we show that 12S rRNA hypermethylation causes ROS-dependent activation of AMP kinase and the proapoptotic nuclear transcription factor E2F1. This retrograde mitochondrial-stress relay is operative in vivo, as transgenic-mtTFB1 mice exhibit enhanced 12S rRNA methylation in multiple tissues, increased E2F1 and apoptosis in the stria vascularis and spiral ganglion neurons of the inner ear, and progressive E2F1-dependent hearing loss. This mouse mitochondrial disease model provides a robust platform for deciphering the complex tissue specificity of human mitochondrial-based disorders, as well as the precise pathogenic mechanism of maternally inherited deafness and its exacerbation by environmental factors.
Collapse
Affiliation(s)
- Nuno Raimundo
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Park J, Kim S, Park K, Choung Y, Jou I, Park S. Pravastatin attenuates noise-induced cochlear injury in mice. Neuroscience 2012; 208:123-32. [DOI: 10.1016/j.neuroscience.2012.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/19/2012] [Accepted: 02/06/2012] [Indexed: 11/26/2022]
|
68
|
Abstract
Antibiotics are most commonly prescribed drugs in clinical practice. Therapeutic drug monitoring of these medications is typically associated with a select group of antibiotics such as aminoglycosides and vancomycin. Outside this group, other antibiotics such as chloramphenicol and antituberculosis agents may also require monitoring. Due to their wide therapeutic index, other classes of antibiotics such as penicillins, cephalosporin, sulfonamides, quinolones, and macrolides do not generally require routine therapeutic drug monitoring. Determination of serum or plasma concentration of these drugs, however, may be beneficial in those patients with compromised renal function. As can be expected, immunoassays for routine monitoring of aminoglycosides and vancomycin have been developed and are widely commercially available. Tests for other antibiotics, due to their infrequent use and low clinical application, are generally limited to in-house developed methods.
Collapse
|
69
|
Rajan GP, Kuthubutheen J, Hedne N, Krishnaswamy J. The role of preoperative, intratympanic glucocorticoids for hearing preservation in cochlear implantation: a prospective clinical study. Laryngoscope 2012; 122:190-5. [PMID: 22183635 DOI: 10.1002/lary.22142] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hearing Preservation is becoming increasingly important in cochlear implantation as there is growing evidence that preserving the residual hearing, especially in the low frequencies in combination with the electric stimulation can significantly improve hearing and speech outcomes in noise. Besides the ongoing development of atraumatic implant electrodes and insertion techniques, the implementation of pharmacologic hair cell protection is thought to increase hearing preservation. This study investigates the effects of preoperative intratympanic glucocorticoid application on hearing preservation rates in cochlear implantation. STUDY DESIGN Prospective interventional study. SETTING Tertiary neurotology referral center. PATIENTS Patients undergoing cochlear implantation with measurable preoperative hearing thresholds using either a Flex soft electrode or a Flex EAS electrode depending on the degree of residual low frequency hearing. INTERVENTION Preoperative intratympanic steroid application during cochlear implantation via round window insertion. MAIN OUTCOME MEASURES Level of hearing preservation after cochlear implantation; electrode- and frequency-specific hearing preservation rates. RESULTS Preoperative hearing thresholds were comparable in the control group and the interventional Flex soft group (70.5 db±12.5 dB vs. 73.5 dB±10.5 dB, P=.27). As per selection criteria the low-frequency hearing thresholds were significantly lower in interventional Flex EAS groups when compared to the control group. Hearing preservation was significantly better in the interventional group with no case of complete hearing loss in this group (11 dB±2.5 dB vs. 19.5 dB 3.5 dB, P<.05). The interventional group displayed a higher stability of hearing preservation after implantation (r=.8, P=.03). Level of hearing preservation was higher when a specific hearing preservation electrode was used (r=.85, P<.05). Hearing preservation in the low frequencies was significantly higher than in the high frequencies. CONCLUSIONS Our study suggests that the additional preoperative use of intratympanic glucocorticoids improves and stabilizes hearing preservations rates in round window cochlear implantation for adults and children with residual hearing.
Collapse
Affiliation(s)
- Gunesh P Rajan
- Otolaryngology, Head & Neck Surgery Division, School of Surgery, Fremantle Hospital Campus, University of Western Australia, Fremantle, Australia.
| | | | | | | |
Collapse
|
70
|
Bremer HG, de Groot JC, Versnel H, Klis SF. Combined Administration of Kanamycin and Furosemide Does Not Result in Loss of Vestibular Function in Guinea Pigs. ACTA ACUST UNITED AC 2012; 17:25-38. [DOI: 10.1159/000327256] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/09/2011] [Indexed: 11/19/2022]
|
71
|
Sustained Fos expression is observed in the developing brainstem auditory circuits of kanamycin-treated rats. Neurosci Lett 2011; 505:98-103. [DOI: 10.1016/j.neulet.2011.09.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 09/05/2011] [Accepted: 09/29/2011] [Indexed: 12/22/2022]
|
72
|
|
73
|
Mukherjea D, Rybak LP, Sheehan KE, Kaur T, Ramkumar V, Jajoo S, Sheth S. The design and screening of drugs to prevent acquired sensorineural hearing loss. Expert Opin Drug Discov 2011; 6:491-505. [PMID: 22646075 DOI: 10.1517/17460441.2011.562887] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Sensorineural hearing loss affects a high percentage of the population. Ototoxicity is a serious and pervasive problem in patients treated with cisplatin. Strategies to ameliorate ototoxicity without compromising on antitumor activity of treatments are urgently needed. Similar problems occur with aminoglycoside antibiotic therapy for infections. Noise-induced hearing loss affects a large number of people. The use of ear protection is not always possible or effective. The prevention of hearing loss with drug therapy would have a huge impact in reducing the number of people with hearing loss from these major causes. AREAS COVERED This review discusses significant research findings dealing with the use of protective agents against hearing loss caused by cisplatin, aminoglycoside antibiotics and noise trauma. The efficacy in animal studies and the application of these protective agents in clinical trials that are ongoing are presented. EXPERT OPINION The reader will gain new insights into current and projected future strategies to prevent sensorineural hearing loss from cisplatin chemotherapy, aminoglycoside antibiotic therapy and noise exposure. The future appears to offer numerous agents to prevent hearing loss caused by cisplatin, aminoglycoside antibiotics and noise. Novel delivery systems will provide ways to guide these protective agents to the desired target areas in the inner ear and circumvent problems with therapeutic interference of antitumor and antibiotics agents as well as minimize undesired side effects.
Collapse
Affiliation(s)
- Debashree Mukherjea
- Southern Illinois University, School of Medicine, Department of Surgery , P.O. Box 19653, Springfield, IL 62794-9653 , USA
| | | | | | | | | | | | | |
Collapse
|