51
|
Rajabi S, Jalili-Firoozinezhad S, Ashtiani MK, Le Carrou G, Tajbakhsh S, Baharvand H. Effect of chemical immobilization of SDF-1α into muscle-derived scaffolds on angiogenesis and muscle progenitor recruitment. J Tissue Eng Regen Med 2018; 12:e438-e450. [DOI: 10.1002/term.2479] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Sarah Rajabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Sasan Jalili-Firoozinezhad
- Department of Cell Engineering, Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
- Departments of Biomedicine and Surgery; University Hospital Basel; Basel Switzerland
| | - Mohammad Kazemi Ashtiani
- Department of Cell Engineering, Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Gilles Le Carrou
- Department of Developmental and Stem Cell Biology, Stem Cells and Development Unit, CNRS URA 3738; Institut Pasteur Paris; Paris France
| | - Shahragim Tajbakhsh
- Department of Developmental and Stem Cell Biology, Stem Cells and Development Unit, CNRS URA 3738; Institut Pasteur Paris; Paris France
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
- Department of Developmental Biology; University of Science and Culture; Tehran Iran
| |
Collapse
|
52
|
Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9342714. [PMID: 29387727 PMCID: PMC5745671 DOI: 10.1155/2017/9342714] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/30/2017] [Accepted: 11/15/2017] [Indexed: 01/09/2023]
Abstract
Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS) combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases.
Collapse
|
53
|
Laurent J, Blin G, Chatelain F, Vanneaux V, Fuchs A, Larghero J, Théry M. Convergence of microengineering and cellular self-organization towards functional tissue manufacturing. Nat Biomed Eng 2017; 1:939-956. [DOI: 10.1038/s41551-017-0166-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/07/2017] [Indexed: 12/18/2022]
|
54
|
Guler S, Aydin HM, Lü LX, Yang Y. Improvement of Decellularization Efficiency of Porcine Aorta Using Dimethyl Sulfoxide as a Penetration Enhancer. Artif Organs 2017; 42:219-230. [DOI: 10.1111/aor.12978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Selcan Guler
- Institute of Science, Bioengineering Division; Hacettepe University; Ankara Turkey
| | - Halil M. Aydin
- Environmental Engineering and Bioengineering Division and Centre for Bioengineering; Hacettepe University; Ankara Turkey
| | - Lan-Xin Lü
- Institute of Science and Technology in Medicine, School of Medicine, Keele University; Stoke-on-Trent UK
| | - Ying Yang
- Institute of Science and Technology in Medicine, School of Medicine, Keele University; Stoke-on-Trent UK
| |
Collapse
|
55
|
Monteiro N, Yelick PC. Advances and perspectives in tooth tissue engineering. J Tissue Eng Regen Med 2017; 11:2443-2461. [PMID: 27151766 PMCID: PMC6625321 DOI: 10.1002/term.2134] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022]
Abstract
Bio-engineered teeth that can grow and remodel in a manner similar to that of natural teeth have the potential to serve as permanent replacements to the currently used prosthetic teeth, such as dental implants. A major challenge in designing functional bio-engineered teeth is to mimic both the structural and anisotropic mechanical characteristics of the native tooth. Therefore, the field of dental and whole tooth regeneration has advanced towards the molecular and nanoscale design of bio-active, biomimetic systems, using biomaterials, drug delivery systems and stem cells. The focus of this review is to discuss recent advances in tooth tissue engineering, using biomimetic scaffolds that provide proper architectural cues, exhibit the capacity to support dental stem cell proliferation and differentiation and sequester and release bio-active agents, such as growth factors and nucleic acids, in a spatiotemporal controlled manner. Although many in vitro and in vivo studies on tooth regeneration appear promising, before tooth tissue engineering becomes a reality for humans, additional research is needed to perfect methods that use adult human dental stem cells, as opposed to embryonic dental stem cells, and to devise the means to generate bio-engineered teeth of predetermined size and shape. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nelson Monteiro
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| | - Pamela C. Yelick
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| |
Collapse
|
56
|
Tao Y, Wang M, Chen E, Tang H. Liver Regeneration: Analysis of the Main Relevant Signaling Molecules. Mediators Inflamm 2017; 2017:4256352. [PMID: 28947857 PMCID: PMC5602614 DOI: 10.1155/2017/4256352] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/19/2017] [Accepted: 08/10/2017] [Indexed: 02/06/2023] Open
Abstract
Liver regeneration is a highly organized tissue regrowth process and is the most important reaction of the liver to injury. The overall process of liver regeneration includes three phases: priming stage, proliferative phase, and termination phase. The initial step aims to induce hepatocytes to be sensitive to growth factors with the aid of some cytokines, including TNF-α and IL-6. The proliferation phase promotes hepatocytes to re-enter G1 with the stimulation of growth factors. While during the termination stage, hepatocytes will discontinue to proliferate to maintain normal liver mass and function. Except for cytokine- and growth factor-mediated pathways involved in regulating liver regeneration, new substances and technologies emerge to influence the regenerative process. Here, we reviewed novel and important signaling molecules involved in the process of liver regeneration to provide a cue for further research.
Collapse
Affiliation(s)
- Yachao Tao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Menglan Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Enqiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
57
|
Kuljanin M, Brown CFC, Raleigh MJ, Lajoie GA, Flynn LE. Collagenase treatment enhances proteomic coverage of low-abundance proteins in decellularized matrix bioscaffolds. Biomaterials 2017; 144:130-143. [PMID: 28829951 DOI: 10.1016/j.biomaterials.2017.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/03/2017] [Accepted: 08/12/2017] [Indexed: 12/12/2022]
Abstract
There is great interest in the application of advanced proteomic techniques to characterize decellularized tissues in order to develop a deeper understanding of the effects of the complex extracellular matrix (ECM) composition on the cellular response to these pro-regenerative bioscaffolds. However, the identification of proteins in ECM-derived bioscaffolds is hindered by the high abundance of collagen in the samples, which can interfere with the detection of lower-abundance constituents that may be important regulators of cell function. To address this limitation, we developed a novel multi-enzyme digestion approach using treatment with a highly-purified collagenase derived from Clostridium Histolyticum to selectively deplete collagen from ECM-derived protein extracts, reducing its relative abundance from up to 90% to below 10%. Moreover, we applied this new method to characterize the proteome of human decellularized adipose tissue (DAT), human decellularized cancellous bone (DCB), and commercially-available bovine tendon collagen (BTC). We successfully demonstrated with all three sources that collagenase treatment increased the depth of detection and enabled the identification of a variety of signaling proteins that were masked by collagen in standard digestion protocols with trypsin/LysC, increasing the number of proteins identified in the DAT by ∼2.2 fold, the DCB by ∼1.3 fold, and the BTC by ∼1.6 fold. In addition, quantitative proteomics using label-free quantification demonstrated that the DAT and DCB extracts were compositionally distinct, and identified a number of adipogenic and osteogenic proteins that were consistently more highly expressed in the DAT and DCB respectively. Overall, we have developed a new processing method that may be applied in advanced mass spectrometry studies to improve the high-throughput proteomic characterization of bioscaffolds derived from mammalian tissues. Further, our study provides new insight into the complex ECM composition of two human decellularized tissues of interest as cell-instructive platforms for regenerative medicine.
Collapse
Affiliation(s)
- Miljan Kuljanin
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Cody F C Brown
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Matthew J Raleigh
- Undergraduate Medical Education, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Gilles A Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| | - Lauren E Flynn
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada; Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, Ontario, N6A 5B9, Canada.
| |
Collapse
|
58
|
Oldani G, Peloso A, Lacotte S, Meier R, Toso C. Xenogeneic chimera-Generated by blastocyst complementation-As a potential unlimited source of recipient-tailored organs. Xenotransplantation 2017; 24. [PMID: 28736957 DOI: 10.1111/xen.12327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/05/2017] [Accepted: 07/08/2017] [Indexed: 12/13/2022]
Abstract
Blastocyst complementation refers to the injection of cells into a blastocyst. The technology allows for the creation of chimeric animals, which have the potential to be used as an unlimited source of organ donors. Pluripotent stem cells could be generated from a patient in need of a transplantation and injected into a large animal blastocyst (potentially of a pig), leading to the creation of organ(s) allowing immunosuppression-free transplantation. Various chimera combinations have already been generated, but one of the most recent steps leads to the creation of human-pig chimeras, which could be studied at an embryo stage. Although still far from clinical reality, the potential application is almost unlimited. The present review illustrates the historical steps of intra- and interspecific blastocyst complementation in rodents and large animals, specifically looking at its potential for generation of organ grafts. We also speculate on how it could change transplant indications, on its economic impact, and on the linked ethical concerns.
Collapse
Affiliation(s)
- Graziano Oldani
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,HepatoPancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Andrea Peloso
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of General Surgery, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Stéphanie Lacotte
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Raphael Meier
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,HepatoPancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Christian Toso
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,HepatoPancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
59
|
Gilpin SE, Li Q, Evangelista-Leite D, Ren X, Reinhardt DP, Frey BL, Ott HC. Fibrillin-2 and Tenascin-C bridge the age gap in lung epithelial regeneration. Biomaterials 2017; 140:212-219. [PMID: 28662401 DOI: 10.1016/j.biomaterials.2017.06.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 12/22/2022]
Abstract
Organ engineering based on native matrix scaffolds involves combining regenerative cell populations with corresponding biological matrices to form functional grafts on-demand. The extracellular matrix (ECM) that is retained following lung decellularization provides essential structure and biophysical cues for whole organ regeneration after recellularization. The unique ECM composition in the early post-natal lung, during active alveologenesis, may possess distinct signals that aid in driving cell adhesion, survival, and proliferation. We evaluated the behavior of basal epithelial stem cells (BESCs) isolated from adult human lung tissue, when cultured on acellular ECM derived from neonatal (aged < 1 week) or adult lung donors (n = 3 donors per group). A significant difference in cell proliferation and survival was found. We next performed in-depth proteomic analysis of the lung scaffolds to quantify proteins significantly enriched in the neonatal ECM, and identified the glycoproteins Fibrillin-2 (FBN-2) and Tenascin-C (TN-C) as potential mediators of the observed effect. BESCs cultured on Collagen Type IV coated plates, supplemented with FBN-2 and TN-C demonstrated significantly increased proliferation and decreased cellular senescence. No significant increase in epithelial-to-mesenchymal transition was observed. In vitro migration was also increased by FBN-2 and TN-C treatment. Decellularized lung scaffolds treated with FBN-2 and TN-C prior to re-epithelialization supported greater epithelial proliferation and tissue remodeling. BESC distribution, matrix alignment, and overall tissue morphology was improved on treated lung scaffolds, after 3 and 7 days of ex vivo lung culture. These results demonstrate that scaffold re-epithelialization is enhanced on neonatal lung ECM, and that supplementation of FBN-2 and TN-C to the native scaffold may be a valuable tool in lung tissue regeneration.
Collapse
Affiliation(s)
- Sarah E Gilpin
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Qiyao Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Daniele Evangelista-Leite
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xi Ren
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Dieter P Reinhardt
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, United States; Faculty of Dentistry, McGill University, Montreal, QC, United States
| | - Brian L Frey
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Harald C Ott
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
60
|
Seetapun D, Ross JJ. Eliminating the organ transplant waiting list: The future with perfusion decellularized organs. Surgery 2017; 161:1474-1478. [DOI: 10.1016/j.surg.2016.09.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/20/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
|
61
|
Zhang H, Siegel CT, Li J, Lai J, Shuai L, Lai X, Zhang Y, Jiang Y, Bie P, Bai L. Functional liver tissue engineering by an adult mouse liver-derived neuro-glia antigen 2-expressing stem/progenitor population. J Tissue Eng Regen Med 2017; 12:e190-e202. [PMID: 27638002 DOI: 10.1002/term.2311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/14/2016] [Indexed: 12/13/2022]
Abstract
Deaths due to end-stage liver diseases are increasingly registered annually in the world. Liver transplantation is the ultimate treatment for end-stage liver diseases to date, which has been hampered by a critical shortage of organs. The potential of decellularized liver scaffolds (DLS) derived from solid organs as a three-dimensional platform has been evolved as a promising approach in liver tissue engineering for translating functional liver organ replacements, but questions still exist regarding the optimal cell population for seeding in DLS and the preparation of the DLS themselves. The aim of our study was to utilize a sodium dodecyl sulfate decellularization procedure in combination with a low concentration of trypsin (0.005%)-ethylenediaminetetraacetic acid (0.002%) process to manufacture DLS from whole mouse livers and recellularized with hepatic stem/progenitors for use in liver tissue engineering and injured liver treatment. Results showed that the DLS generated with all the necessary microstructure and the extracellular components to support seeded hepatic stem/progenitor cell attachment, functional hepatic cell differentiation. Hepatic differentiation from stem/progenitor cells loaded by DLS was more efficient than that of the stem/progenitor cells in the two-dimensional cell culture model. In summary, the method of DLS loaded by hepatic stem/progenitor cells provided by this study was effective in maintaining DLS extracellular matrix to introduce seeded stem/progenitor cell differentiation, hepatic-like tissue formation and functional hepatic protein production in vitro that promoted functional recovery and survival in a mouse model of dimethylnitrosamine-induced liver cirrhosis after auxiliary heterotopic liver transplantation. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hongyu Zhang
- Hepatobiliary Institute, Southwestern Hospital, No 30. Gaotanyan, ShapingBa Distract, Chongqing, 400038, China
| | - Christopher T Siegel
- Department of Surgery, Division of Hepatobiliary and Abdominal Organ Transplantation, Case Western Reserve University Hospital, Cleveland, OH, 44106, USA
| | - Jing Li
- Hepatobiliary Institute, Southwestern Hospital, No 30. Gaotanyan, ShapingBa Distract, Chongqing, 400038, China
| | - Jiejuan Lai
- Hepatobiliary Institute, Southwestern Hospital, No 30. Gaotanyan, ShapingBa Distract, Chongqing, 400038, China
| | - Ling Shuai
- Hepatobiliary Institute, Southwestern Hospital, No 30. Gaotanyan, ShapingBa Distract, Chongqing, 400038, China
| | - Xiangdong Lai
- Hepatobiliary Institute, Southwestern Hospital, No 30. Gaotanyan, ShapingBa Distract, Chongqing, 400038, China
| | - Yujun Zhang
- Hepatobiliary Institute, Southwestern Hospital, No 30. Gaotanyan, ShapingBa Distract, Chongqing, 400038, China
| | - Yan Jiang
- Hepatobiliary Institute, Southwestern Hospital, No 30. Gaotanyan, ShapingBa Distract, Chongqing, 400038, China
| | - Ping Bie
- Hepatobiliary Institute, Southwestern Hospital, No 30. Gaotanyan, ShapingBa Distract, Chongqing, 400038, China
| | - Lianhua Bai
- Hepatobiliary Institute, Southwestern Hospital, No 30. Gaotanyan, ShapingBa Distract, Chongqing, 400038, China
| |
Collapse
|
62
|
Abraham SJK, Yoshioka H. Insights into in vitro environments for human cartilage tissue engineering. Indian J Med Res 2017; 144:796-798. [PMID: 28474614 PMCID: PMC5433270 DOI: 10.4103/ijmr.ijmr_1237_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Samuel J K Abraham
- Department of Surgery II, Yamanashi University-Faculty of Medicine, Chuo, Yamanashi, Japan; The Mary-Yoshio Translational Hexagon, Nichi-In Centre for Regenerative Medicine (NCRM), Chennai 600 034, Tamil Nadu, India
| | | |
Collapse
|
63
|
Ferng AS, Connell AM, Marsh KM, Qu N, Medina AO, Bajaj N, Palomares D, Iwanski J, Tran PL, Lotun K, Johnson K, Khalpey Z. Acellular porcine heart matrices: whole organ decellularization with 3D-bioscaffold & vascular preservation. J Clin Transl Res 2017; 3:260-270. [PMID: 30873477 PMCID: PMC6410671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/27/2017] [Accepted: 03/10/2017] [Indexed: 12/03/2022] Open
Abstract
Regenerative medicine, particularly decellularization-recellularization methods via whole-organ tissue engineering, has been increasingly studied due to the growing donor organ shortage. Though numerous decellularization protocols exist, the ideal decellularization protocol for optimal recellularization is unclear. This study was performed to optimize existing heart decellularization protocols and compare current methods using the detergents SDS (sodium dodecyl sulfate), Triton X-100, OGP (octyl β-D-glucopyranoside), and CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate) through retrograde aortic perfusion via aortic cannulation of a whole porcine heart. The goal of decellularization is to preserve extracellular matrix integrity and architecture, which was analyzed in this study through histology, microscopy, DNA analysis, hydroxyproline content analysis, materials analysis and angiography. Effective decellularization was determined by analyzing the tissue organization, geometry, and biological properties of the resultant extracellular matrix scaffold. Using these parameters, optimal decellularization was achieved between 90 and 120 mmHg pressure with 3% SDS as a detergent. Relevance for patients: This study provides important information about whole heart decellularization, which will ultimately contribute to heart bioengineering.
Collapse
Affiliation(s)
- Alice S. Ferng
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, Tucson, Arizona, United States,University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Alana M. Connell
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, Tucson, Arizona, United States,University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Katherine M. Marsh
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, Tucson, Arizona, United States,University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Ning Qu
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Annalisa O. Medina
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Naing Bajaj
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Daniel Palomares
- Department of Biomedical Engineering, University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Jessika Iwanski
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, Tucson, Arizona, United States,University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Phat L. Tran
- Department of Biomedical Engineering, University of Arizona College of Medicine, Tucson, Arizona, United States,Department of Internal Medicine, Division of Cardiology, University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Kapil Lotun
- University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Kitsie Johnson
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, Tucson, Arizona, United States
| | - Zain Khalpey
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona College of Medicine, Tucson, Arizona, United States,University of Arizona College of Medicine, Tucson, Arizona, United States,Banner, University Medical Center, Tucson, Arizona, United States
| |
Collapse
|
64
|
Butler CR, Hynds RE, Crowley C, Gowers KHC, Partington L, Hamilton NJ, Carvalho C, Platé M, Samuel ER, Burns AJ, Urbani L, Birchall MA, Lowdell MW, De Coppi P, Janes SM. Vacuum-assisted decellularization: an accelerated protocol to generate tissue-engineered human tracheal scaffolds. Biomaterials 2017; 124:95-105. [PMID: 28189871 PMCID: PMC5332556 DOI: 10.1016/j.biomaterials.2017.02.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 12/22/2022]
Abstract
Patients with large tracheal lesions unsuitable for conventional endoscopic or open operations may require a tracheal replacement but there is no present consensus of how this may be achieved. Tissue engineering using decellularized or synthetic tracheal scaffolds offers a new avenue for airway reconstruction. Decellularized human donor tracheal scaffolds have been applied in compassionate-use clinical cases but naturally derived extracellular matrix (ECM) scaffolds demand lengthy preparation times. Here, we compare a clinically applied detergent-enzymatic method (DEM) with an accelerated vacuum-assisted decellularization (VAD) protocol. We examined the histological appearance, DNA content and extracellular matrix composition of human donor tracheae decellularized using these techniques. Further, we performed scanning electron microscopy (SEM) and biomechanical testing to analyze decellularization performance. To assess the biocompatibility of scaffolds generated using VAD, we seeded scaffolds with primary human airway epithelial cells in vitro and performed in vivo chick chorioallantoic membrane (CAM) and subcutaneous implantation assays. Both DEM and VAD protocols produced well-decellularized tracheal scaffolds with no adverse mechanical effects and scaffolds retained the capacity for in vitro and in vivo cellular integration. We conclude that the substantial reduction in time required to produce scaffolds using VAD compared to DEM (approximately 9 days vs. 3–8 weeks) does not compromise the quality of human tracheal scaffold generated. These findings might inform clinical decellularization techniques as VAD offers accelerated scaffold production and reduces the associated costs.
Collapse
Affiliation(s)
- Colin R Butler
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK; Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Robert E Hynds
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Claire Crowley
- Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Kate H C Gowers
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Leanne Partington
- Department of Haematology, Royal Free Hospital and University College London, London, UK
| | - Nicholas J Hamilton
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Carla Carvalho
- Department of Haematology, Royal Free Hospital and University College London, London, UK
| | - Manuela Platé
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Edward R Samuel
- Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Alan J Burns
- Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK; Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Luca Urbani
- Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Martin A Birchall
- UCL Ear Institute, The Royal National Throat Nose and Ear Hospital, London, UK
| | - Mark W Lowdell
- Department of Haematology, Royal Free Hospital and University College London, London, UK
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK.
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK.
| |
Collapse
|
65
|
Shahabipour F, Banach M, Johnston TP, Pirro M, Sahebkar A. Novel approaches toward the generation of bioscaffolds as a potential therapy in cardiovascular tissue engineering. Int J Cardiol 2017; 228:319-326. [DOI: 10.1016/j.ijcard.2016.11.210] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/06/2016] [Indexed: 12/18/2022]
|
66
|
Taylan E, Oktay K. Application of Decellularized Tissue Scaffolds in Ovarian Tissue Transplantation. Methods Mol Biol 2017; 1577:177-181. [PMID: 28510115 DOI: 10.1007/7651_2017_35] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In tissue engineering, decellularized scaffolds have been proved to have remarkable capacity to promote regeneration in various organs such as kidney, heart, lung, and liver. Marrying the field of cryobiology and reproductive medicine resulted in considerable progress and breakthroughs, which led to the emergence of ovarian tissue cryopreservation and transplantation as a promising option for fertility preservation. Here we describe an innovative application of decellularized tissue scaffolds as a regenerative platform for reconstruction of ovarian grafts for auto-transplantation.
Collapse
Affiliation(s)
- Enes Taylan
- Innovation Institute for Fertility Preservation and In Vitro Fertilization, New York, NY, USA
| | - Kutluk Oktay
- Innovation Institute for Fertility Preservation and In Vitro Fertilization, New York, NY, USA. .,Laboratory of Molecular Reproduction and Fertility Preservation, Department of Obstetrics and Gynecology, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
67
|
Abstract
Decellularized bone matrix is gaining a lot of attention as implantable biomaterials and/or biological scaffolds for bone tissue repair, and shows good clinical performance. This chapter describes the processing techniques and characterization protocols of decellularized bone. For the applications of the decellularized bone scaffold in promoting bone repair and regeneration, we discuss some of the current advances, and highlight the advantages and disadvantages of these scaffolds. Fabrication and application of the hydrogel derived from decellularized bone for bone tissue engineering are also presented.
Collapse
Affiliation(s)
- Guobao Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, 400044, People's Republic of China
| | - Yonggang Lv
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China.
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
68
|
Hosseini S, Jahangir S, Eslaminejad MB. Tooth tissue engineering. BIOMATERIALS FOR ORAL AND DENTAL TISSUE ENGINEERING 2017:467-501. [DOI: 10.1016/b978-0-08-100961-1.00027-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
69
|
Ghiringhelli M, Zenobi A, Brizzola S, Gandolfi F, Bontempo V, Rossi S, Brevini TAL, Acocella F. Simple and Quick Method to Obtain a Decellularized, Functional Liver Bioscaffold. Methods Mol Biol 2017; 1577:283-292. [PMID: 29101679 DOI: 10.1007/7651_2017_97] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of new approaches for organ transplantation has become crucial in the last years. In particular, organ engineering, involving the preparation of acellular matrices that provide a natural habitat for reseeding with an appropriate population of cells, is an attractive although technically demanding approach. We here describe a method that allows for the derivation of functional in vitro hepatic organoids and that does not require a previous selection of all the parenchymal hepatocytes and non-parenchymal cells, namely, Kupffer cells, liver endothelial cells, and hepatic stellate cells. The procedure also replaces the costly standard collagenase perfusion step with a trypsin-based enzymatic digestion that results in high-yield decellularization. A combination of physical and chemical treatments through deep immersion and intraluminal infusion of two different consecutive solutions is used: (1) deionized water (DI) and (2) DI + Triton X 1% + ammonium hydroxide (NH4OH) 0.1%. This ensures the isolation of the hepatic constructs that reliably maintain original architecture and ECM components while completely removing cellular DNA and RNA. The procedure is fast, simple, and cheap and warrants an optimal organoid functionality that may find applications in both toxicological and transplantation studies.
Collapse
Affiliation(s)
- Matteo Ghiringhelli
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Zenobi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
- Laboratory of Biomedical Embryology, Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Stefano Brizzola
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| | - Fulvio Gandolfi
- Laboratory of Biomedical Embryology, Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
- Department of Agricultural and Environmental Science - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Valentino Bontempo
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| | - Sandro Rossi
- Medicina Interna e Gastroenterologia, Università di Pavia, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Tiziana A L Brevini
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy.
- Laboratory of Biomedical Embryology, Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy.
| | - Fabio Acocella
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
70
|
Yu Y, Alkhawaji A, Ding Y, Mei J. Decellularized scaffolds in regenerative medicine. Oncotarget 2016; 7:58671-58683. [PMID: 27486772 PMCID: PMC5295461 DOI: 10.18632/oncotarget.10945] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/18/2016] [Indexed: 12/11/2022] Open
Abstract
Allogeneic organ transplantation remains the ultimate solution for end-stage organ failure. Yet, the clinical application is limited by the shortage of donor organs and the need for lifelong immunosuppression, highlighting the importance of developing effective therapeutic strategies. In the field of regenerative medicine, various regenerative technologies have lately been developed using various biomaterials to address these limitations. Decellularized scaffolds, derived mainly from various non-autologous organs, have been proved a regenerative capability in vivo and in vitro and become an emerging treatment approach. However, this regenerative capability varies between scaffolds as a result of the diversity of anatomical structure and cellular composition of organs used for decellularization. Herein, recent advances in scaffolds based on organ regeneration in vivo and in vitro are highlighted along with aspects where further investigations and analyses are needed.
Collapse
Affiliation(s)
- Yaling Yu
- Department of Anatomy, Wenzhou Medical University, Wenzhou, China.,Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Ali Alkhawaji
- Department of Anatomy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Yuqiang Ding
- Institute of Neuroscience, Wenzhou Medical University, Wenzhou, China
| | - Jin Mei
- Department of Anatomy, Wenzhou Medical University, Wenzhou, China.,Institute of Bioscaffold Transplantation and Immunology, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
71
|
Silva AC, Rodrigues SC, Caldeira J, Nunes AM, Sampaio-Pinto V, Resende TP, Oliveira MJ, Barbosa MA, Thorsteinsdóttir S, Nascimento DS, Pinto-do-Ó P. Three-dimensional scaffolds of fetal decellularized hearts exhibit enhanced potential to support cardiac cells in comparison to the adult. Biomaterials 2016; 104:52-64. [PMID: 27424216 DOI: 10.1016/j.biomaterials.2016.06.062] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/25/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022]
Abstract
A main challenge in cardiac tissue engineering is the limited data on microenvironmental cues that sustain survival, proliferation and functional proficiency of cardiac cells. The aim of our study was to evaluate the potential of fetal (E18) and adult myocardial extracellular matrix (ECM) to support cardiac cells. Acellular three-dimensional (3D) bioscaffolds were obtained by parallel decellularization of fetal- and adult-heart explants thereby ensuring reliable comparison. Acellular scaffolds retained main constituents of the cardiac ECM including distinctive biochemical and structural meshwork features of the native equivalents. In vitro, fetal and adult ECM-matrices supported 3D culture of heart-derived Sca-1(+) progenitors and of neonatal cardiomyocytes, which migrated toward the center of the scaffold and displayed elongated morphology and excellent viability. At the culture end-point, more Sca-1(+) cells and cardiomyocytes were found adhered and inside fetal bioscaffolds, compared to the adult. Higher repopulation yields of Sca-1(+) cells on fetal ECM relied on β1-integrin independent mitogenic signals. Sca-1(+) cells on fetal bioscaffolds showed a gene expression profile that anticipates the synthesis of a permissive microenvironment for cardiomyogenesis. Our findings demonstrate the superior potential of the 3D fetal microenvironment to support and instruct cardiac cells. This knowledge should be integrated in the design of next-generation biomimetic materials for heart repair.
Collapse
Affiliation(s)
- A C Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto 4050-313, Portugal; Gladstone Institutes, University of California San Francisco, San Francisco 94158, USA
| | - S C Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal
| | - J Caldeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal
| | - A M Nunes
- Centre for Ecology, Evolution and Environmental Change, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - V Sampaio-Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto 4050-313, Portugal
| | - T P Resende
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal
| | - M J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal; Faculty of Medicine, University of Porto, Porto 4200-319, Portugal
| | - M A Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto 4050-313, Portugal
| | - S Thorsteinsdóttir
- Centre for Ecology, Evolution and Environmental Change, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - D S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal.
| | - P Pinto-do-Ó
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto 4050-313, Portugal; Unit for Lymphopoiesis, Immunology Department, INSERM U668, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur. Institut Pasteur, Paris, France.
| |
Collapse
|
72
|
Jorba I, Uriarte JJ, Campillo N, Farré R, Navajas D. Probing Micromechanical Properties of the Extracellular Matrix of Soft Tissues by Atomic Force Microscopy. J Cell Physiol 2016; 232:19-26. [PMID: 27163411 DOI: 10.1002/jcp.25420] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/09/2016] [Indexed: 01/11/2023]
Abstract
The extracellular matrix (ECM) determines 3D tissue architecture and provides structural support and chemical and mechanical cues to the cells. Atomic force microscopy (AFM) has unique capabilities to measure ECM mechanics at the scale at which cells probe the mechanical features of their microenvironment. Moreover, AFM measurements can be readily combined with bright field and fluorescence microscopy. Performing reliable mechanical measurements with AFM requires accurate calibration of the device and correct computation of the mechanical parameters. A suitable approach to isolate ECM mechanics from cell contribution is removing the cells by means of an effective decellularization process that preserves the composition, structure and mechanical properties of the ECM. AFM measurement of ECM micromechanics provides important insights into organ biofabrication, cell-matrix mechanical crosstalk and disease-induced tissue stiffness alterations. J. Cell. Physiol. 232: 19-26, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ignasi Jorba
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Juan J Uriarte
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Noelia Campillo
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain. .,Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain. .,CIBER de Enfermedades Respiratorias, Madrid, Spain.
| |
Collapse
|
73
|
Garreta E, de Oñate L, Fernández-Santos ME, Oria R, Tarantino C, Climent AM, Marco A, Samitier M, Martínez E, Valls-Margarit M, Matesanz R, Taylor DA, Fernández-Avilés F, Izpisua Belmonte JC, Montserrat N. Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts. Biomaterials 2016; 98:64-78. [PMID: 27179434 DOI: 10.1016/j.biomaterials.2016.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/27/2022]
Abstract
Genome editing on human pluripotent stem cells (hPSCs) together with the development of protocols for organ decellularization opens the door to the generation of autologous bioartificial hearts. Here we sought to generate for the first time a fluorescent reporter human embryonic stem cell (hESC) line by means of Transcription activator-like effector nucleases (TALENs) to efficiently produce cardiomyocyte-like cells (CLCs) from hPSCs and repopulate decellularized human heart ventricles for heart engineering. In our hands, targeting myosin heavy chain locus (MYH6) with mCherry fluorescent reporter by TALEN technology in hESCs did not alter major pluripotent-related features, and allowed for the definition of a robust protocol for CLCs production also from human induced pluripotent stem cells (hiPSCs) in 14 days. hPSCs-derived CLCs (hPSCs-CLCs) were next used to recellularize acellular cardiac scaffolds. Electrophysiological responses encountered when hPSCs-CLCs were cultured on ventricular decellularized extracellular matrix (vdECM) correlated with significant increases in the levels of expression of different ion channels determinant for calcium homeostasis and heart contractile function. Overall, the approach described here allows for the rapid generation of human cardiac grafts from hPSCs, in a total of 24 days, providing a suitable platform for cardiac engineering and disease modeling in the human setting.
Collapse
Affiliation(s)
- Elena Garreta
- Pluripotent Stem Cells and Activation of Endogenous Tissue Programs for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Lorena de Oñate
- Pluripotent Stem Cells and Activation of Endogenous Tissue Programs for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain; Center of Regenerative Medicine in Barcelona (CMRB), Barcelona, Spain
| | - M Eugenia Fernández-Santos
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Spain; Cell Production Unit, Department of Cardiology, Instituto de Investigación Sanitaria Hospital Gregorio Marañón (IiSGM), Madrid, Spain
| | - Roger Oria
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Carolina Tarantino
- Pluripotent Stem Cells and Activation of Endogenous Tissue Programs for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Andreu M Climent
- Bioartifical Organs Laboratory, Instituto de Investigación Sanitaria Hospital Gregorio Marañón (IiSGM), Madrid, Spain
| | - Andrés Marco
- Pluripotent Stem Cells and Activation of Endogenous Tissue Programs for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Mireia Samitier
- Pluripotent Stem Cells and Activation of Endogenous Tissue Programs for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Elena Martínez
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Maria Valls-Margarit
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Rafael Matesanz
- National Transplant Organization (ONT), Spanish Ministry of Health and Consumption, Spain
| | - Doris A Taylor
- Center for Cardiovascular Repair, University of Minnesota, Minneapolis, MN, USA; Department of Regenerative Medicine Research, Texas Heart Institute, Houston, TX, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Spain; Cell Production Unit, Department of Cardiology, Instituto de Investigación Sanitaria Hospital Gregorio Marañón (IiSGM), Madrid, Spain.
| | | | - Nuria Montserrat
- Pluripotent Stem Cells and Activation of Endogenous Tissue Programs for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.
| |
Collapse
|
74
|
Poornejad N, Schaumann LB, Buckmiller EM, Roeder BL, Cook AD. Current Cell-Based Strategies for Whole Kidney Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:358-370. [PMID: 26905375 DOI: 10.1089/ten.teb.2015.0520] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic kidney diseases affect thousands of people worldwide. Although hemodialysis alleviates the situation by filtering the patient's blood, it does not replace other kidney functions such as hormone release or homeostasis regulation. Consequently, orthotopic transplantation of donor organs is the ultimate treatment for patients suffering from end-stage renal failure. Unfortunately, the number of patients on the waiting list far exceeds the number of donors. In addition, recipients must remain on immunosuppressive medications for the remainder of their lives, which increases the risk of morbidity due to their weakened immune system. Despite recent advancements in whole organ transplantation, 40% of recipients will face rejection of implanted organs with a life expectancy of only 10 years. Bioengineered patient-specific kidneys could be an inexhaustible source of healthy kidneys without the risk of immune rejection. The purpose of this article is to review the pros and cons of several bioengineering strategies used in recent years and their unresolved issues. These strategies include repopulation of natural scaffolds with a patient's cells, de-novo generation of kidneys using patient-induced pluripotent stem cells combined with stepwise differentiation, and the creation of a patient's kidney in the embryos of other mammalian species.
Collapse
Affiliation(s)
- Nafiseh Poornejad
- 1 Department of Chemical Engineering, Brigham Young University , Provo, Utah
| | - Lara B Schaumann
- 1 Department of Chemical Engineering, Brigham Young University , Provo, Utah
| | - Evan M Buckmiller
- 2 Department of Genetics and Biotechnology, Brigham Young University , Provo, Utah
| | | | - Alonzo D Cook
- 1 Department of Chemical Engineering, Brigham Young University , Provo, Utah
| |
Collapse
|
75
|
Montserrat N, Garreta E, Izpisua Belmonte JC. Regenerative strategies for kidney engineering. FEBS J 2016; 283:3303-24. [DOI: 10.1111/febs.13704] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/22/2016] [Accepted: 03/01/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Nuria Montserrat
- Pluripotent Stem Cells and Activation of Endogenous Tissue Programs for Organ Regeneration (PR Lab) Institute for Bioengineering of Catalonia (IBEC) Barcelona Spain
- Networking Biomedical Research Center in Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Madrid Spain
| | - Elena Garreta
- Pluripotent Stem Cells and Activation of Endogenous Tissue Programs for Organ Regeneration (PR Lab) Institute for Bioengineering of Catalonia (IBEC) Barcelona Spain
| | | |
Collapse
|
76
|
Spector M. Decellularized tissues and organs: an historical perspective and prospects for the future. Biomed Mater 2016; 11:020201. [DOI: 10.1088/1748-6041/11/2/020201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
77
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|
78
|
Jalili-Firoozinezhad S, Rajabi-Zeleti S, Marsano A, Aghdami N, Baharvand H. Influence of decellularized pericardium matrix on the behavior of cardiac progenitors. J Appl Polym Sci 2015. [DOI: 10.1002/app.43255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sasan Jalili-Firoozinezhad
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
- Departments of Surgery and Biomedicine; University Hospital Basel, University of Basel; Basel CH-4031 Switzerland
| | - Sareh Rajabi-Zeleti
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Anna Marsano
- Departments of Surgery and Biomedicine; University Hospital Basel, University of Basel; Basel CH-4031 Switzerland
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology; Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| |
Collapse
|
79
|
Katari R, Edgar L, Wong T, Boey A, Mancone S, Igel D, Callese T, Voigt M, Tamburrini R, Zambon JP, Perin L, Orlando G. Tissue-Engineering Approaches to Restore Kidney Function. Curr Diab Rep 2015; 15:69. [PMID: 26275443 DOI: 10.1007/s11892-015-0643-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Kidney transplantation for the treatment of chronic kidney disease has established outcome and quality of life. However, its implementation is severely limited by a chronic shortage of donor organs; consequently, most candidates remain on dialysis and on the waiting list while accruing further morbidity and mortality. Furthermore, those patients that do receive kidney transplants are committed to a life-long regimen of immunosuppressive drugs that also carry significant adverse risk profiles. The disciplines of tissue engineering and regenerative medicine have the potential to produce alternative therapies which circumvent the obstacles posed by organ shortage and immunorejection. This review paper describes some of the most promising tissue-engineering solutions currently under investigation for the treatment of acute and chronic kidney diseases. The various stem cell therapies, whole embryo transplantation, and bioengineering with ECM scaffolds are outlined and summarized.
Collapse
Affiliation(s)
- Ravi Katari
- Section of Transplantation, Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Tapias LF, Gilpin SE, Ren X, Wei L, Fuchs BC, Tanabe KK, Lanuti M, Ott HC. Assessment of Proliferation and Cytotoxicity in a Biomimetic Three-Dimensional Model of Lung Cancer. Ann Thorac Surg 2015; 100:414-21. [DOI: 10.1016/j.athoracsur.2015.04.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/03/2015] [Accepted: 04/07/2015] [Indexed: 11/27/2022]
|
81
|
Weymann A, Patil NP, Sabashnikov A, Korkmaz S, Li S, Soos P, Ishtok R, Chaimow N, Pätzold I, Czerny N, Schmack B, Popov AF, Simon AR, Karck M, Szabo G. Perfusion-Decellularization of Porcine Lung and Trachea for Respiratory Bioengineering. Artif Organs 2015; 39:1024-32. [PMID: 25894696 DOI: 10.1111/aor.12481] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Decellularization of native organs may provide an acellular tissue platform for organ regeneration. However, decellularization involves a trade-off between removal of immunogenic cellular elements and preservation of biomechanical integrity. We sought to develop a bioartificial scaffold for respiratory tissue engineering by decellularization of porcine lungs and trachea while preserving organ architecture and vasculature. Lung-trachea preparations from 25 German Landrace pigs were perfused in a modified Langendorff circuit and decellularized by an SDC (sodium deoxycholate)-based perfusion protocol. Decellularization was evaluated by histology and fluorescence microscopy, and residual DNA quantified spectrophotometrically and compared with controls. Airway compliance was evaluated by endotracheal intubation and mechanical ventilation to simulate physiological breathing-induced stretch. Structural integrity was evaluated by bronchoscopy and biomechanical stress/strain analysis by measuring passive tensile strength, all compared with controls. Decellularized lungs and trachea lacked intracellular components but retained specific collagen fibers and elastin. Quantitative DNA analysis demonstrated a significant reduction of DNA compared with controls (32.8 ± 12.4 μg DNA/mg tissue vs. 179.7 ± 35.8 μg DNA/mg tissue, P < 0.05). Lungs and trachea decellularized by our perfusion protocol demonstrated increased airway compliance but preserved biomechanical integrity as compared with native tissue. Whole porcine lungs-tracheae can be successfully decellularized to create an acellular scaffold that preserves extracellular matrix and retains structral integrity and three-dimensional architecture to provide a bioartifical platform for respiratory tissue engineering.
Collapse
Affiliation(s)
- Alexander Weymann
- Department of Cardiac Surgery, Heart and Marfan Center, University of Heidelberg, Heidelberg, Germany.,Department of Cardiothoracic Transplantation & Mechanical Circulatory Support, Royal Brompton and Harefield NHS Foundation Trust, Middlesex, UK
| | - Nikhil Prakash Patil
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support, Royal Brompton and Harefield NHS Foundation Trust, Middlesex, UK
| | - Anton Sabashnikov
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support, Royal Brompton and Harefield NHS Foundation Trust, Middlesex, UK
| | - Sevil Korkmaz
- Department of Cardiac Surgery, Heart and Marfan Center, University of Heidelberg, Heidelberg, Germany
| | - Shiliang Li
- Department of Cardiac Surgery, Heart and Marfan Center, University of Heidelberg, Heidelberg, Germany
| | - Pal Soos
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Roland Ishtok
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Nicole Chaimow
- Department of Cardiac Surgery, Heart and Marfan Center, University of Heidelberg, Heidelberg, Germany
| | - Ines Pätzold
- Department of Cardiac Surgery, Heart and Marfan Center, University of Heidelberg, Heidelberg, Germany
| | - Natalie Czerny
- Department of Cardiac Surgery, Heart and Marfan Center, University of Heidelberg, Heidelberg, Germany
| | - Bastian Schmack
- Department of Cardiac Surgery, Heart and Marfan Center, University of Heidelberg, Heidelberg, Germany
| | - Aron-Frederik Popov
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support, Royal Brompton and Harefield NHS Foundation Trust, Middlesex, UK
| | - Andre Rüdiger Simon
- Department of Cardiothoracic Transplantation & Mechanical Circulatory Support, Royal Brompton and Harefield NHS Foundation Trust, Middlesex, UK
| | - Matthias Karck
- Department of Cardiac Surgery, Heart and Marfan Center, University of Heidelberg, Heidelberg, Germany
| | - Gabor Szabo
- Department of Cardiac Surgery, Heart and Marfan Center, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
82
|
Blazeski A, Kostecki GM, Tung L. Engineered heart slices for electrophysiological and contractile studies. Biomaterials 2015; 55:119-28. [PMID: 25934457 DOI: 10.1016/j.biomaterials.2015.03.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/09/2015] [Accepted: 03/15/2015] [Indexed: 11/18/2022]
Abstract
A major consideration in the design of engineered cardiac tissues for the faithful representation of physiological behavior is the recapitulation of the complex topography and biochemistry of native tissue. In this study we present engineered heart slices (EHS), which consist of neonatal rat ventricular cells (NRVCs) seeded onto thin slices of decellularized cardiac tissue that retain important aspects of native extracellular matrix (ECM). To form EHS, rat or pig ventricular tissue was sectioned into 300 μm-thick, 5 to 16 mm-diameter disks, which were subsequently decellularized using detergents, spread on coverslips, and seeded with NRVCs. The organized fiber structure of the ECM remained after decellularization and promoted cell elongation and alignment, resulting in an anisotropic, functional tissue that could be electrically paced. Contraction decreased at higher pacing rates, and optical mapping revealed electrical conduction that was anisotropic with a ratio of approximately 2.0, rate-dependent shortening of the action potential and slowing of conduction, and slowing of conduction by the sodium channel blocker lidocaine. Reentrant arrhythmias could also be pace-induced and terminated. EHS constitute an attractive in vitro cardiac tissue in which cardiac cells are cultured on thin slices of decellularized cardiac ECM that provide important biochemical, structural, and mechanical cues absent in traditional cell cultures.
Collapse
Affiliation(s)
- Adriana Blazeski
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Geran M Kostecki
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Leslie Tung
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
83
|
Leijten J, Chai Y, Papantoniou I, Geris L, Schrooten J, Luyten F. Cell based advanced therapeutic medicinal products for bone repair: Keep it simple? Adv Drug Deliv Rev 2015; 84:30-44. [PMID: 25451134 DOI: 10.1016/j.addr.2014.10.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 09/18/2014] [Accepted: 10/20/2014] [Indexed: 02/08/2023]
Abstract
The development of cell based advanced therapeutic medicinal products (ATMPs) for bone repair has been expected to revolutionize the health care system for the clinical treatment of bone defects. Despite this great promise, the clinical outcomes of the few cell based ATMPs that have been translated into clinical treatments have been far from impressive. In part, the clinical outcomes have been hampered because of the simplicity of the first wave of products. In response the field has set-out and amassed a plethora of complexities to alleviate the simplicity induced limitations. Many of these potential second wave products have remained "stuck" in the development pipeline. This is due to a number of reasons including the lack of a regulatory framework that has been evolving in the last years and the shortage of enabling technologies for industrial manufacturing to deal with these novel complexities. In this review, we reflect on the current ATMPs and give special attention to novel approaches that are able to provide complexity to ATMPs in a straightforward manner. Moreover, we discuss the potential tools able to produce or predict 'goldilocks' ATMPs, which are neither too simple nor too complex.
Collapse
|
84
|
Ko IK, Peng L, Peloso A, Smith CJ, Dhal A, Deegan DB, Zimmerman C, Clouse C, Zhao W, Shupe TD, Soker S, Yoo JJ, Atala A. Bioengineered transplantable porcine livers with re-endothelialized vasculature. Biomaterials 2015; 40:72-9. [DOI: 10.1016/j.biomaterials.2014.11.027] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/01/2014] [Accepted: 11/08/2014] [Indexed: 02/08/2023]
|
85
|
Colvin KL, Yeager ME. Applying Biotechnology and Bioengineering to Pediatric Lung Disease: Emerging Paradigms and Platforms. Front Pediatr 2015; 3:45. [PMID: 26106589 PMCID: PMC4460801 DOI: 10.3389/fped.2015.00045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/08/2015] [Indexed: 11/15/2022] Open
Abstract
Pediatric lung diseases remain a costly worldwide health burden. For many children with end-stage lung disease, lung transplantation remains the only therapeutic option. Due to the limited number of lungs available for transplantation, alternatives to lung transplant are desperately needed. Recently, major improvements in tissue engineering have resulted in newer technology and methodology to develop viable bioengineered lungs. These include critical advances in lung cell biology, stem cell biology, lung extracellular matrix, microfabrication techniques, and orthotopic transplantation of bioartificial lungs. The goal of this short review is to engage the reader's interest with regard to these emerging concepts and to stimulate their interest to learn more. We review the existing state of the art of lung tissue engineering, and point to emerging paradigms and platforms in the field. Finally, we summarize the challenges and unmet needs that remain to be overcome.
Collapse
Affiliation(s)
- Kelley L Colvin
- Department of Pediatrics-Critical Care, University of Colorado Denver , Denver, CO , USA ; Cardiovascular Pulmonary Research, University of Colorado Denver , Denver, CO , USA ; Department of Bioengineering, University of Colorado Denver , Denver, CO , USA ; Linda Crnic Institute for Down Syndrome, University of Colorado Denver , Denver, CO , USA
| | - Michael E Yeager
- Department of Pediatrics-Critical Care, University of Colorado Denver , Denver, CO , USA ; Cardiovascular Pulmonary Research, University of Colorado Denver , Denver, CO , USA ; Department of Bioengineering, University of Colorado Denver , Denver, CO , USA ; Linda Crnic Institute for Down Syndrome, University of Colorado Denver , Denver, CO , USA
| |
Collapse
|
86
|
Tharp KM, Stahl A. Bioengineering Beige Adipose Tissue Therapeutics. Front Endocrinol (Lausanne) 2015; 6:164. [PMID: 26539163 PMCID: PMC4611961 DOI: 10.3389/fendo.2015.00164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023] Open
Abstract
Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and their potential for the metabolic therapies.
Collapse
Affiliation(s)
- Kevin M. Tharp
- Program in Metabolic Biology, Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Andreas Stahl
- Program in Metabolic Biology, Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA, USA
- *Correspondence: Andreas Stahl,
| |
Collapse
|
87
|
Antanavičiūtė I, Ereminienė E, Vysockas V, Račkauskas M, Skipskis V, Rysevaitė K, Treinys R, Benetis R, Jurevičius J, Skeberdis VA. Exogenous connexin43-expressing autologous skeletal myoblasts ameliorate mechanical function and electrical activity of the rabbit heart after experimental infarction. Int J Exp Pathol 2014; 96:42-53. [PMID: 25529770 DOI: 10.1111/iep.12109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/26/2014] [Indexed: 12/19/2022] Open
Abstract
Acute myocardial infarction is one of the major causes of mortality worldwide. For regeneration of the rabbit heart after experimentally induced infarction we used autologous skeletal myoblasts (SMs) due to their high proliferative potential, resistance to ischaemia and absence of immunological and ethical concerns. The cells were characterized with muscle-specific and myogenic markers. Cell transplantation was performed by injection of cell suspension (0.5 ml) containing approximately 6 million myoblasts into the infarction zone. The animals were divided into four groups: (i) no injection; (ii) sham injected; (iii) injected with wild-type SMs; and (iv) injected with SMs expressing connexin43 fused with green fluorescent protein (Cx43EGFP). Left ventricular ejection fraction (LVEF) was evaluated by 2D echocardiography in vivo before infarction, when myocardium has stabilized after infarction, and 3 months after infarction. Electrical activity in the healthy and infarction zones of the heart was examined ex vivo in Langendorff-perfused hearts by optical mapping using di-4-ANEPPS, a potential sensitive fluorescent dye. We demonstrate that SMs in the coculture can couple electrically not only to abutted but also to remote acutely isolated allogenic cardiac myocytes through membranous tunnelling tubes. The beneficial effect of cellular therapy on LVEF and electrical activity was observed in the group of animals injected with Cx43EGFP-expressing SMs. L-type Ca(2+) current amplitude was approximately fivefold smaller in the isolated SMs compared to healthy myocytes suggesting that limited recovery of LVEF may be related to inadequate expression or function of L-type Ca(2+) channels in transplanted differentiating SMs.
Collapse
Affiliation(s)
- Ieva Antanavičiūtė
- Institute of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Farag A, Vaquette C, Theodoropoulos C, Hamlet SM, Hutmacher DW, Ivanovski S. Decellularized periodontal ligament cell sheets with recellularization potential. J Dent Res 2014; 93:1313-9. [PMID: 25270757 DOI: 10.1177/0022034514547762] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The periodontal ligament is the key tissue facilitating periodontal regeneration. This study aimed to fabricate decellularized human periodontal ligament cell sheets for subsequent periodontal tissue engineering applications. The decellularization protocol involved the transfer of intact human periodontal ligament cell sheets onto melt electrospun polycaprolactone membranes and subsequent bi-directional perfusion with NH4OH/Triton X-100 and DNase solutions. The protocol was shown to remove 92% of DNA content. The structural integrity of the decellularized cell sheets was confirmed by a collagen quantification assay, immunostaining of human collagen type I and fibronectin, and scanning electron microscopy. ELISA was used to demonstrate the presence of residual basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF) in the decellularized cell sheet constructs. The decellularized cell sheets were shown to have the ability to support recellularization by allogenic human periodontal ligament cells. This study describes the fabrication of decellularized periodontal ligament cell sheets that retain an intact extracellular matrix and resident growth factors and can support repopulation by allogenic cells. The decellularized hPDL cell sheet concept has the potential to be utilized in future "off-the-shelf" periodontal tissue engineering strategies.
Collapse
Affiliation(s)
- A Farag
- Griffith Health Institute, Regenerative Medicine Center, School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia Institute of Health and Biomedical Innovation, Kelvin Grove, Brisbane, Australia
| | - C Vaquette
- Institute of Health and Biomedical Innovation, Kelvin Grove, Brisbane, Australia
| | - C Theodoropoulos
- Institute of Health and Biomedical Innovation, Kelvin Grove, Brisbane, Australia
| | - S M Hamlet
- Griffith Health Institute, Regenerative Medicine Center, School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia
| | - D W Hutmacher
- Institute of Health and Biomedical Innovation, Kelvin Grove, Brisbane, Australia
| | - S Ivanovski
- Griffith Health Institute, Regenerative Medicine Center, School of Dentistry and Oral Health, Griffith University, Gold Coast, Australia
| |
Collapse
|
89
|
Abstract
One in 10 Americans suffers from chronic kidney disease, and close to 90,000 people die each year from causes related to kidney failure. Patients with end-stage renal disease are faced with two options: hemodialysis or transplantation. Unfortunately, the transplantation option is limited because of the shortage of donor organs and the need for immunosuppression. Bioengineered kidney grafts theoretically present a novel solution to both problems. Herein, we discuss the history of bioengineering organs, the current status of bioengineered kidneys, considerations for the future of the field, and challenges to clinical translation. We hope that by integrating principles of tissue engineering, and stem cell and developmental biology, bioengineered kidney grafts will advance the field of regenerative medicine while meeting a critical clinical need.
Collapse
Affiliation(s)
- Maria Lucia L Madariaga
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Harvard Stem Cell Institute, Boston, MA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Harald C Ott
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Harvard Stem Cell Institute, Boston, MA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
90
|
|