51
|
Yu B, Shao H, Su C, Jiang Y, Chen X, Bai L, Zhang Y, Li Q, Zhang X, Li X. Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1. Sci Rep 2016; 6:34562. [PMID: 27686625 PMCID: PMC5043341 DOI: 10.1038/srep34562] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022] Open
Abstract
Although accumulated evidence supports the notion that mesenchymal stem cells (MSCs) act in a paracrine manner, the mechanisms are still not fully understood. Recently, MSC-derived exosomes (MSC-Exos), a type of microvesicle released from MSCs, were thought to carry functional proteins and RNAs to recipient cells and play therapeutic roles. In the present study, we intravitreally injected MSCs derived from either mouse adipose tissue or human umbilical cord, and their exosomes to observe and compare their functions in a mouse model of laser-induced retinal injury. We found that both MSCs and their exosomes reduced damage, inhibited apoptosis, and suppressed inflammatory responses to obtain better visual function to nearly the same extent in vivo. Obvious down-regulation of monocyte chemotactic protein (MCP)-1 in the retina was found after MSC-Exos injection. In vitro, MSC-Exos also down-regulated MCP-1 mRNA expression in primarily cultured retinal cells after thermal injury. It was further demonstrated that intravitreal injection of an MCP-1-neutralizing antibody promoted the recovery of retinal laser injury, whereas the therapeutic effect of exosomes was abolished when MSC-Exos and MCP-1 were administrated simultaneously. Collectively, these results suggest that MSC-Exos ameliorate laser-induced retinal injury partially through down-regulation of MCP-1.
Collapse
Affiliation(s)
- Bo Yu
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin 300384, China
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, USA
| | - Chang Su
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin 300384, China
| | - Yuanfeng Jiang
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin 300384, China
| | - Xiteng Chen
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin 300384, China
| | - Lingling Bai
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin 300384, China
| | - Yan Zhang
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin 300384, China
| | - Qiutang Li
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, USA
| | - Xiaomin Zhang
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin 300384, China
| | - Xiaorong Li
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin 300384, China
| |
Collapse
|
52
|
Mesenchymal Stem Cells Enhance Nerve Regeneration in a Rat Sciatic Nerve Repair and Hindlimb Transplant Model. Sci Rep 2016; 6:31306. [PMID: 27510321 PMCID: PMC4980673 DOI: 10.1038/srep31306] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/18/2016] [Indexed: 01/16/2023] Open
Abstract
This study investigates the efficacy of local and intravenous mesenchymal stem cell (MSC) administration to augment neuroregeneration in both a sciatic nerve cut-and-repair and rat hindlimb transplant model. Bone marrow-derived MSCs were harvested and purified from Brown-Norway (BN) rats. Sciatic nerve transections and repairs were performed in three groups of Lewis (LEW) rats: negative controls (n = 4), local MSCs (epineural) injection (n = 4), and systemic MSCs (intravenous) injection (n = 4). Syngeneic (LEW-LEW) (n = 4) and allogeneic (BN-LEW) (n = 4) hindlimb transplants were performed and assessed for neuroregeneration after local or systemic MSC treatment. Rats undergoing sciatic nerve cut-and-repair and treated with either local or systemic injection of MSCs had significant improvement in the speed of recovery of compound muscle action potential amplitudes and axon counts when compared with negative controls. Similarly, rats undergoing allogeneic hindlimb transplants treated with local injection of MSCs exhibited significantly increased axon counts. Similarly, systemic MSC treatment resulted in improved nerve regeneration following allogeneic hindlimb transplants. Systemic administration had a more pronounced effect on electromotor recovery while local injection was more effective at increasing fiber counts, suggesting different targets of action. Local and systemic MSC injections significantly improve the pace and degree of nerve regeneration after nerve injury and hindlimb transplantation.
Collapse
|
53
|
Use of engineered Schwann cells in peripheral neuropathy: Hopes and hazards. Brain Res 2016; 1638:97-104. [DOI: 10.1016/j.brainres.2015.10.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/23/2015] [Indexed: 01/16/2023]
|
54
|
Using Stem Cells to Grow Artificial Tissue for Peripheral Nerve Repair. Stem Cells Int 2016; 2016:7502178. [PMID: 27212954 PMCID: PMC4861803 DOI: 10.1155/2016/7502178] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/17/2016] [Accepted: 03/02/2016] [Indexed: 12/17/2022] Open
Abstract
Peripheral nerve injury continues to pose a clinical hurdle despite its frequency and advances in treatment. Unlike the central nervous system, neurons of the peripheral nervous system have a greater ability to regenerate. However, due to a number of confounding factors, this is often both incomplete and inadequate. The lack of supportive Schwann cells or their inability to maintain a regenerative phenotype is a major factor. Advances in nervous system tissue engineering technology have led to efforts to build Schwann cell scaffolds to overcome this and enhance the regenerative capacity of neurons following injury. Stem cells that can differentiate along a neural lineage represent an essential resource and starting material for this process. In this review, we discuss the different stem cell types that are showing promise for nervous system tissue engineering in the context of peripheral nerve injury. We also discuss some of the biological, practical, ethical, and commercial considerations in using these different stem cells for future clinical application.
Collapse
|
55
|
Zhou Y, Notterpek L. Promoting peripheral myelin repair. Exp Neurol 2016; 283:573-80. [PMID: 27079997 DOI: 10.1016/j.expneurol.2016.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/30/2016] [Accepted: 04/06/2016] [Indexed: 01/08/2023]
Abstract
Compared to the central nervous system (CNS), peripheral nerves have a remarkable ability to regenerate and remyelinate. This regenerative capacity to a large extent is dependent on and supported by Schwann cells, the myelin-forming glial cells of the peripheral nervous system (PNS). In a variety of paradigms, Schwann cells are critical in the removal of the degenerated tissue, which is followed by remyelination of newly-regenerated axons. This unique plasticity of Schwann cells has been the target of myelin repair strategies in acute injuries and chronic diseases, such as hereditary demyelinating neuropathies. In one approach, the endogenous regenerative capacity of Schwann cells is enhanced through interventions such as exercise, electrical stimulation or pharmacological means. Alternatively, Schwann cells derived from healthy nerves, or engineered from different tissue sources have been transplanted into the PNS to support remyelination. These transplant approaches can then be further enhanced by exercise and/or electrical stimulation, as well as by the inclusion of biomaterial engineered to support glial cell viability and neurite extension. Advances in our basic understanding of peripheral nerve biology, as well as biomaterial engineering, will further improve the functional repair of myelinated peripheral nerves.
Collapse
Affiliation(s)
- Ye Zhou
- Departments of Neuroscience and Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States
| | - Lucia Notterpek
- Departments of Neuroscience and Neurology, College of Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
56
|
Liu Y, Chen J, Liu W, Lu X, Liu Z, Zhao X, Li G, Chen Z. A Modified Approach to Inducing Bone Marrow Stromal Cells to Differentiate into Cells with Mature Schwann Cell Phenotypes. Stem Cells Dev 2016; 25:347-59. [PMID: 26670188 DOI: 10.1089/scd.2015.0295] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Marrow stromal cells (MSCs) can be induced to differentiate into Schwann-like cells under classical induction conditions. However, cells derived from this method are unstable, exhibiting a low neurotrophin expression level after the induction conditions are removed. In Schwann cell (SC) culture, progesterone (PROG) enhances neurotrophic synthesis and myelination, specifically regulating the expression of the myelin protein zero (P0)- and peripheral myelin protein 22 (PMP22)-encoding genes by acting in concert or in synergy with insulin and glucocorticoids (GLUCs). In the present study, we investigated whether combined PROG, GLUC, and insulin therapy induced MSCs to differentiate into modified SC-like cells with phenotypes similar to those of mature SCs. After being cultured for 2 weeks in modified differentiation medium, the modified SC-like cells showed increased expression of P0 and PMP22. In addition, morphological and phenotypic characterizations were conducted over a period of over 2 weeks, and functional characteristics persisted for more than 3 weeks after the induction reagents were withdrawn. The transplantation of green fluorescent protein-labeled, modified SC-like cells into transected sciatic nerves with a 10-mm gap significantly increased the proliferation of the original SCs and improved axon regeneration and myelination compared with original BM-SCs. Immunostaining for P0 revealed that more of the transplanted modified SC-like cells retained the phenotypic characteristics of SCs. Taken together, these results reveal that the combined application of PROG, GLUC, and insulin induces MSCs to differentiate into cells with phenotypic, molecular, and functional properties of mature SCs.
Collapse
Affiliation(s)
- Yutian Liu
- 1 Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Jianghai Chen
- 1 Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Wei Liu
- 2 Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Xiaocheng Lu
- 1 Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Zhenyu Liu
- 1 Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Xiaobo Zhao
- 1 Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Gongchi Li
- 1 Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Zhenbing Chen
- 1 Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| |
Collapse
|
57
|
Zarbakhsh S, Goudarzi N, Shirmohammadi M, Safari M. Histological Study of Bone Marrow and Umbilical Cord Stromal Cell Transplantation in Regenerating Rat Peripheral Nerve. CELL JOURNAL 2016; 17:668-77. [PMID: 26862526 PMCID: PMC4746417 DOI: 10.22074/cellj.2016.3839] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/05/2015] [Indexed: 12/15/2022]
Abstract
Objective Bone marrow and umbilical cord stromal cells are multipotential stem cells
that have the ability to produce growth factors that play an important role in survival and
generation of axons. The goal of this study was to evaluate the effects of the two different
mesenchymal stem cells on peripheral nerve regeneration.
Materials and Methods In this experimental study, a 10 mm segment of the left sciatic
nerve of male Wistar rats (250-300 g) was removed with a silicone tube interposed into
this nerve gap. Bone marrow stromal cells (BMSCs) and human umbilical cord stromal
cells (HUCSCs) were respectively obtained from rat and human. The cells were sepa-
rately cultured and transplanted into the nerve gap. The sciatic nerve regeneration was
evaluated by immunohistochemistry, and light and electron microscopy. Moreover, histo-
morphology of the gastrocnemius muscle was observed.
Results The nerve regeneration in the BMSCs and HUCSCs groups that had received
the stem cells was significantly more favorable than the control group. In addition, the BM-
SCs group was significantly more favorable than the HUCSCs group (P<0.05).
Conclusion The results of this study suggest that both homograft BMSCs and het-
erograft HUCSCs may have the potential to regenerate peripheral nerve injury and
transplantation of BMSCs may be more effective than HUCSCs in rat.
Collapse
Affiliation(s)
- Sam Zarbakhsh
- Research Center of Nervous System Stem Cells, Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Nasim Goudarzi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shirmohammadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Manouchehr Safari
- Research Center of Nervous System Stem Cells, Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
58
|
Madhu V, Dighe AS, Cui Q, Deal DN. Dual Inhibition of Activin/Nodal/TGF-β and BMP Signaling Pathways by SB431542 and Dorsomorphin Induces Neuronal Differentiation of Human Adipose Derived Stem Cells. Stem Cells Int 2015; 2016:1035374. [PMID: 26798350 PMCID: PMC4699250 DOI: 10.1155/2016/1035374] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/03/2015] [Indexed: 12/16/2022] Open
Abstract
Damage to the nervous system can cause devastating diseases or musculoskeletal dysfunctions and transplantation of progenitor stem cells can be an excellent treatment option in this regard. Preclinical studies demonstrate that untreated stem cells, unlike stem cells activated to differentiate into neuronal lineage, do not survive in the neuronal tissues. Conventional methods of inducing neuronal differentiation of stem cells are complex and expensive. We therefore sought to determine if a simple, one-step, and cost effective method, previously reported to induce neuronal differentiation of embryonic stem cells and induced-pluripotent stem cells, can be applied to adult stem cells. Indeed, dual inhibition of activin/nodal/TGF-β and BMP pathways using SB431542 and dorsomorphin, respectively, induced neuronal differentiation of human adipose derived stem cells (hADSCs) as evidenced by formation of neurite extensions, protein expression of neuron-specific gamma enolase, and mRNA expression of neuron-specific transcription factors Sox1 and Pax6 and matured neuronal marker NF200. This process correlated with enhanced phosphorylation of p38, Erk1/2, PI3K, and Akt1/3. Additionally, in vitro subcutaneous implants of SB431542 and dorsomorphin treated hADSCs displayed significantly higher expression of active-axonal-growth-specific marker GAP43. Our data offers novel insights into cell-based therapies for the nervous system repair.
Collapse
Affiliation(s)
- Vedavathi Madhu
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Abhijit S. Dighe
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Quanjun Cui
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - D. Nicole Deal
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
59
|
Uchida H, Morita T, Niizuma K, Kushida Y, Kuroda Y, Wakao S, Sakata H, Matsuzaka Y, Mushiake H, Tominaga T, Borlongan CV, Dezawa M. Transplantation of Unique Subpopulation of Fibroblasts, Muse Cells, Ameliorates Experimental Stroke Possibly via Robust Neuronal Differentiation. Stem Cells 2015; 34:160-73. [DOI: 10.1002/stem.2206] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/30/2015] [Accepted: 07/12/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Hiroki Uchida
- Department of Stem Cell Biology and Histology
- Department of Neurosurgery
| | - Takahiro Morita
- Department of Stem Cell Biology and Histology
- Department of Neurosurgery
| | | | | | | | | | | | - Yoshiya Matsuzaka
- Department of Physiology; Tohoku University Graduate School of Medicine; Sendai Japan
| | - Hajime Mushiake
- Department of Physiology; Tohoku University Graduate School of Medicine; Sendai Japan
| | | | - Cesario V. Borlongan
- Department of Neurosurgery and Brain Repair; University of South Florida College of Medicine; Tampa Florida USA
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology
- Department of Anatomy and Anthropology
| |
Collapse
|
60
|
Oriented growth and transdifferentiation of mesenchymal stem cells towards a Schwann cell fate on micropatterned substrates. J Biosci Bioeng 2015; 121:325-35. [PMID: 26371993 DOI: 10.1016/j.jbiosc.2015.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/01/2015] [Accepted: 07/14/2015] [Indexed: 11/24/2022]
Abstract
While Schwann cells (SCs) have a significant role in peripheral nerve regeneration, their use in treatments has been limited because of lack of a readily available source. To address this issue, this study focused on the effect of guidance cues by employing micropatterned polymeric films to influence the alignment, morphology and transdifferentiation of bone marrow-derived rat mesenchymal stem cells (MSCs) towards a Schwann cell-like fate. Two different types of polymers, biocompatible polystyrene (PS) and biodegradable poly(lactic acid) (PLA) were used to fabricate patterned films. Percentages of transdifferentiated MSCs (tMSCs) immunolabeled with SC markers (α-S100β and α-p75(NTR)) were found to be similar on patterned versus smooth PS and PLA substrates. However, patterning had a significant effect on the alignment and elongation of the tMSCs. More than 80% of the tMSCs were oriented in the direction of microgrooves (0°-20°), while cells on the smooth substrates were randomly oriented. The aspect ratio [AR, ratio of length (in direction of microgrooves) and breadth (in direction perpendicular to microgrooves)] of the tMSCs on patterned substrates had a value of approximately five, as compared to cells on smooth substrates where the AR was one. Understanding responses to these cues in vitro helps us in understanding the behavior and interaction of the cells with the 3D environment of the scaffolds, facilitating the application of these concepts to designing effective nerve guidance conduits for peripheral nerve regeneration.
Collapse
|
61
|
Guo ZY, Sun X, Xu XL, Zhao Q, Peng J, Wang Y. Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms. Neural Regen Res 2015; 10:651-8. [PMID: 26170829 PMCID: PMC4424761 DOI: 10.4103/1673-5374.155442] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2015] [Indexed: 12/17/2022] Open
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the paracrine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These findings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.
Collapse
Affiliation(s)
- Zhi-Yuan Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xun Sun
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Long Xu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Qing Zhao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China ; The Neural Regeneration Co-innovation Center of Jiangsu Province, Nantong, Jiangsu Province, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China ; The Neural Regeneration Co-innovation Center of Jiangsu Province, Nantong, Jiangsu Province, China
| |
Collapse
|
62
|
Umbilical Cord Tissue-Derived Cells as Therapeutic Agents. Stem Cells Int 2015; 2015:150609. [PMID: 26246808 PMCID: PMC4515303 DOI: 10.1155/2015/150609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/21/2014] [Indexed: 12/14/2022] Open
Abstract
Although the characteristics of SC, including UC-derived cells, are a dramatically discussed issue, this review will focus particularly on some controversial issues regarding clinical utility of cells isolated from UC tissue. UC-derived cells have several advantages compared to other types and sources of stem cells. The impact of UC topography on cell characteristics is briefly discussed. The necessity to adapt existing methods of cell isolation and culturing to GMP conditions is mentioned, as well as possible cryopreservation of this material. Light is shed on some future perspectives for UC-derived cells.
Collapse
|
63
|
Wakao S, Matsuse D, Dezawa M. Mesenchymal stem cells as a source of Schwann cells: their anticipated use in peripheral nerve regeneration. Cells Tissues Organs 2015; 200:31-41. [PMID: 25765009 DOI: 10.1159/000368188] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2014] [Indexed: 11/19/2022] Open
Abstract
Schwann cells form myelin, sustain axons and provide the microenvironment for nerve fibers, thereby playing a key role in the peripheral nervous system (PNS). Schwann cells also provide support for the damaged PNS by producing factors that strongly promote axonal regrowth and contribute to remyelination, which is crucial for the recovery of neural function. These advantages are not confined to the PNS and also apply to the central nervous system. Many diseases, including peripheral nerve injury, neuropathy, multiple sclerosis and spinal cord injury, are targets for Schwann cell therapy. The collection of Schwann cells, however, causes new damage to other peripheral nerve segments. Furthermore, the doubling time of Schwann cells is not very fast, and thus adequate amounts of Schwann cells for clinical use cannot be collected within a reasonable amount of time. Mesenchymal stem cells, which are highly proliferative, are easily accessible from various types of mesenchymal tissues, such as the bone marrow, umbilical cord and fat tissue. Because these cells have the ability to cross oligolineage boundaries between mesodermal to ectodermal lineages, they are capable of differentiating into Schwann cells with step-by-step cytokine stimulation. In this review, we summarize the properties of mesenchymal stem cell-derived Schwann cells, which are comparable to authentic Schwann cells, and discuss future perspectives.
Collapse
Affiliation(s)
- Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | |
Collapse
|
64
|
Faroni A, Mobasseri SA, Kingham PJ, Reid AJ. Peripheral nerve regeneration: experimental strategies and future perspectives. Adv Drug Deliv Rev 2015; 82-83:160-7. [PMID: 25446133 DOI: 10.1016/j.addr.2014.11.010] [Citation(s) in RCA: 397] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/01/2014] [Accepted: 11/08/2014] [Indexed: 12/15/2022]
Abstract
Peripheral nerve injuries represent a substantial clinical problem with insufficient or unsatisfactory treatment options. This review summarises all the events occurring after nerve damage at the level of the cell body, the site of injury and the target organ. Various experimental strategies to improve neuronal survival, axonal regeneration and target reinnervation are described including pharmacological approaches and cell-based therapies. Given the complexity of nerve regeneration, further studies are needed to address the biology of nerve injury, to improve the interaction with implantable scaffolds, and to implement cell-based therapies in nerve tissue engineering.
Collapse
|
65
|
Fairbairn NG, Meppelink AM, Ng-Glazier J, Randolph MA, Winograd JM. Augmenting peripheral nerve regeneration using stem cells: A review of current opinion. World J Stem Cells 2015; 7:11-26. [PMID: 25621102 PMCID: PMC4300921 DOI: 10.4252/wjsc.v7.i1.11] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/18/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
Outcomes following peripheral nerve injury remain frustratingly poor. The reasons for this are multifactorial, although maintaining a growth permissive environment in the distal nerve stump following repair is arguably the most important. The optimal environment for axonal regeneration relies on the synthesis and release of many biochemical mediators that are temporally and spatially regulated with a high level of incompletely understood complexity. The Schwann cell (SC) has emerged as a key player in this process. Prolonged periods of distal nerve stump denervation, characteristic of large gaps and proximal injuries, have been associated with a reduction in SC number and ability to support regenerating axons. Cell based therapy offers a potential therapy for the improvement of outcomes following peripheral nerve reconstruction. Stem cells have the potential to increase the number of SCs and prolong their ability to support regeneration. They may also have the ability to rescue and replenish populations of chromatolytic and apoptotic neurons following axotomy. Finally, they can be used in non-physiologic ways to preserve injured tissues such as denervated muscle while neuronal ingrowth has not yet occurred. Aside from stem cell type, careful consideration must be given to differentiation status, how stem cells are supported following transplantation and how they will be delivered to the site of injury. It is the aim of this article to review current opinions on the strategies of stem cell based therapy for the augmentation of peripheral nerve regeneration.
Collapse
|
66
|
Cwykiel J, Tfaily EB, Siemionow MZ. Cellular Therapies in Nerve Regeneration. Plast Reconstr Surg 2015. [DOI: 10.1007/978-1-4471-6335-0_76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
67
|
Stem cell-based approaches to improve nerve regeneration: potential implications for reconstructive transplantation? Arch Immunol Ther Exp (Warsz) 2014; 63:15-30. [PMID: 25428664 DOI: 10.1007/s00005-014-0323-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/07/2014] [Indexed: 12/17/2022]
Abstract
Reconstructive transplantation has become a viable option to restore form and function after devastating tissue loss. Functional recovery is a key determinant of overall success and critically depends on the quality and pace of nerve regeneration. Several molecular and cell-based therapies have been postulated and tested in pre-clinical animal models to enhance nerve regeneration. Schwann cells remain the mainstay of research focus providing neurotrophic support and signaling cues for regenerating axons. Alternative cell sources such as mesenchymal stem cells and adipose-derived stromal cells have also been tested in pre-clinical animal models and in clinical trials due to their relative ease of harvest, rapid expansion in vitro, minimal immunogenicity, and capacity to integrate and survive within host tissues, thereby overcoming many of the challenges faced by culturing of human Schwann cells and nerve allografting. Induced pluripotent stem cell-derived Schwann cells are of particular interest since they can provide abundant, patient-specific autologous Schwann cells. The majority of experimental evidence on cell-based therapies, however, has been generated using stem cell-seeded nerve guides that were developed to enhance nerve regeneration across "gaps" in neural repair. Although primary end-to-end repair is the preferred method of neurorrhaphy in reconstructive transplantation, mechanistic studies elucidating the principles of cell-based therapies from nerve guidance conduits will form the foundation of further research employing stem cells in end-to-end repair of donor and recipient nerves. This review presents key components of nerve regeneration in reconstructive transplantation and highlights the pre-clinical studies that utilize stem cells to enhance nerve regeneration.
Collapse
|
68
|
XIAO YUZHOU, WANG SHENG. Differentiation of Schwann-like cells from human umbilical cord blood mesenchymal stem cells in vitro. Mol Med Rep 2014; 11:1146-52. [DOI: 10.3892/mmr.2014.2840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 08/08/2014] [Indexed: 11/05/2022] Open
|
69
|
Watson N, Divers R, Kedar R, Mehindru A, Mehindru A, Borlongan MC, Borlongan CV. Discarded Wharton jelly of the human umbilical cord: a viable source for mesenchymal stromal cells. Cytotherapy 2014; 17:18-24. [PMID: 25442786 DOI: 10.1016/j.jcyt.2014.08.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multi-potent cells that have the capability of differentiating into adipogenic, osteogenic, chondrogenic and neural cells. With these multiple capabilities, MSCs have been highly regarded as an effective transplantable cell source for regenerative medicine. A large bank of these cells can be found in several regions of the human umbilical cord, including the umbilical cord lining, the subendothelial layer, the perivascular zone and, most important, in Wharton jelly (WJ). These cells, all umbilical cord-derived MSCs, are durable, have large loading capacities and are considered ethical to harvest because the umbilical cord is often considered waste. These logistical advantages make WJ as appealing source of stem cells for transplant therapy. In particular, WJ is a predominantly good source of cells because MSCs in WJ are maintained in an early embryologic phase and therefore have retained some of the primitive stemness properties. WJ-MSCs can easily differentiate into a plethora of cell types leading to a variety of applications. In addition, WJ-MSCs are slightly easier to harvest compared with other MSCs (such as bone marrow-derived MSCs). The fascinating stemness properties and therapeutic potential of WJ-MSCs provide great promise in many aspects of regenerative medicine and should be considered for further investigations as safe and effective donor cells for transplantation therapy in many debilitating disorders, which are discussed here. We previously reviewed the therapeutic potential of WJ-MSCs and now provide an update on their recent preclinical and clinical applications.
Collapse
Affiliation(s)
- Nate Watson
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Ryan Divers
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Roshan Kedar
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Ankur Mehindru
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Anuj Mehindru
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Mia C Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida.
| |
Collapse
|
70
|
Faroni A, Smith RJ, Reid AJ. Adipose derived stem cells and nerve regeneration. Neural Regen Res 2014; 9:1341-6. [PMID: 25221589 PMCID: PMC4160863 DOI: 10.4103/1673-5374.137585] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2014] [Indexed: 12/25/2022] Open
Abstract
Injuries to peripheral nerves are common and cause life-changing problems for patients alongside high social and health care costs for society. Current clinical treatment of peripheral nerve injuries predominantly relies on sacrificing a section of nerve from elsewhere in the body to provide a graft at the injury site. Much work has been done to develop a bioengineered nerve graft, precluding sacrifice of a functional nerve. Stem cells are prime candidates as accelerators of regeneration in these nerve grafts. This review examines the potential of adipose-derived stem cells to improve nerve repair assisted by bioengineered nerve grafts.
Collapse
Affiliation(s)
- Alessandro Faroni
- Blond McIndoe Laboratories, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Richard Jp Smith
- Blond McIndoe Laboratories, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Adam J Reid
- Blond McIndoe Laboratories, Institute of Inflammation and Repair, University of Manchester, Manchester, UK ; Department of Plastic Surgery & Burns, University Hospital of South Manchester, Manchester, UK
| |
Collapse
|
71
|
Zhao F, He W, Zhang Y, Tian D, Zhao H, Yu K, Bai J. Electric stimulation and decimeter wave therapy improve the recovery of injured sciatic nerves. Neural Regen Res 2014; 8:1974-84. [PMID: 25206506 PMCID: PMC4145900 DOI: 10.3969/j.issn.1673-5374.2013.21.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/24/2013] [Indexed: 01/08/2023] Open
Abstract
Drug treatment, electric stimulation and decimeter wave therapy have been shown to promote the repair and regeneration of the peripheral nerves at the injured site. This study prepared a Mackinnon's model of rat sciatic nerve compression. Electric stimulation was given immediately after neurolysis, and decimeter wave radiation was performed at 1 and 12 weeks post-operation. Histological observation revealed that intraoperative electric stimulation and decimeter wave therapy could improve the local blood circulation of repaired sites, alleviate hypoxia of compressed nerves, and lessen adhesion of compressed nerves, thereby decreasing the formation of new entrapments and enhancing compressed nerve regeneration through an improved microenvironment for regeneration. Immunohistochemical staining results revealed that intraoperative electric stimulation and decimeter wave could promote the expression of S-100 protein. Motor nerve conduction velocity and amplitude, the number and diameter of myelinated nerve fibers, and sciatic functional index were significantly increased in the treated rats. These results verified that intraoperative electric stimulation and decimeter wave therapy contributed to the regeneration and the recovery of the functions in the compressed nerves.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Orthopedics, the First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei Province, China
| | - Wei He
- Department of Hand Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| | - Yingze Zhang
- Department of Hand Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| | - Dehu Tian
- Department of Hand Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| | - Hongfang Zhao
- Department of Hand Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| | - Kunlun Yu
- Department of Hand Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| | - Jiangbo Bai
- Department of Hand Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province, China
| |
Collapse
|
72
|
Li Z, Qin H, Feng Z, Liu W, Zhou Y, Yang L, Zhao W, Li Y. Human umbilical cord mesenchymal stem cell-loaded amniotic membrane for the repair of radial nerve injury. Neural Regen Res 2014; 8:3441-8. [PMID: 25206667 PMCID: PMC4146003 DOI: 10.3969/j.issn.1673-5374.2013.36.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/25/2013] [Indexed: 12/19/2022] Open
Abstract
In this study, we loaded human umbilical cord mesenchymal stem cells onto human amniotic membrane with epithelial cells to prepare nerve conduits, i.e., a relatively closed nerve regeneration chamber. After neurolysis, the injured radial nerve was enwrapped with the prepared nerve conduit, which was fixed to the epineurium by sutures, with the cell on the inner surface of the conduit. Simultaneously, a 1.0 mL aliquot of human umbilical cord mesenchymal stem cell suspension was injected into the distal and proximal ends of the injured radial nerve with 1.0 cm intervals. A total of 1.75 × 107 cells were seeded on the amniotic membrane. In the control group, patients received only neurolysis. At 12 weeks after cell transplantation, more than 80% of patients exhibited obvious improvements in muscular strength, and touch and pain sensations. In contrast, these improvements were observed only in 55–65% of control patients. At 8 and 12 weeks, muscular electrophysiological function in the region dominated by the injured radial nerve was significantly better in the transplantation group than the control group. After cell transplantation, no immunological rejections were observed. These findings suggest that human umbilical cord mesenchymal stem cell-loaded amniotic membrane can be used for the repair of radial nerve injury.
Collapse
Affiliation(s)
- Zhi Li
- Affiliated Central Hospital of Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Hanjiao Qin
- Department of Endocrinology and Metabolism, First Clinical Hospital of Norman Bethune College of Medicine, Jilin University, Changchun 130021, Jilin Province, China
| | - Zishan Feng
- Shengjing Hospital, China Medical University, Shenyang 110000, Liaoning Province, China
| | - Wei Liu
- Affiliated Central Hospital of Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Ye Zhou
- Affiliated Central Hospital of Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Lifeng Yang
- Affiliated Central Hospital of Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Wei Zhao
- Affiliated Central Hospital of Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Youjun Li
- Department of Human Anatomy and Histoembryology, Norman Bethune University of Medical Science, Changchun 130000, Jilin Province, China
| |
Collapse
|
73
|
Li B, Jung HJ, Kim SM, Kim MJ, Jahng JW, Lee JH. Human periodontal ligament stem cells repair mental nerve injury. Neural Regen Res 2014; 8:2827-37. [PMID: 25206604 PMCID: PMC4146018 DOI: 10.3969/j.issn.1673-5374.2013.30.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/26/2013] [Indexed: 01/31/2023] Open
Abstract
Human periodontal ligament stem cells are easily accessible and can differentiate into Schwann cells. We hypothesized that human periodontal ligament stem cells can be used as an alternative source for the autologous Schwann cells in promoting the regeneration of injured peripheral nerve. To validate this hypothesis, human periodontal ligament stem cells (1 × 106) were injected into the crush-injured left mental nerve in rats. Simultaneously, autologous Schwann cells (1 × 106) and PBS were also injected as controls. Real-time reverse transcriptase polymerase chain reaction showed that at 5 days after injection, mRNA expression of low affinity nerve growth factor receptor was significantaly increased in the left trigeminal ganglion of rats with mental nerve injury. Sensory tests, histomorphometric evaluation and retrograde labeling demonstrated that at 2 and 4 weeks after injection, sensory function was significantly improved, the numbers of retrograde labeled sensory neurons and myelinated axons were significantly increased, and human periodontal ligament stem cells and autologous Schwann cells exhibited similar therapeutic effects. These findings suggest that transplantation of human periodontal ligament stem cells show a potential value in repair of mental nerve injury.
Collapse
Affiliation(s)
- Bohan Li
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Binzhou Medical College, Binzhou, Shandong Province, China
| | - Hun-Jong Jung
- Department of Occupation and Environment, Konkuk Postgraduate Medical School, Choong-Ju, Korea
| | - Soung-Min Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea
| | - Myung-Jin Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jeong Won Jahng
- Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jong-Ho Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Korea ; Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
74
|
Kouroupis D, Churchman SM, English A, Emery P, Giannoudis PV, McGonagle D, Jones EA. Assessment of umbilical cord tissue as a source of mesenchymal stem cell/endothelial cell mixtures for bone regeneration. Regen Med 2014; 8:569-81. [PMID: 23998751 DOI: 10.2217/rme.13.47] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM To enumerate and characterize mesenchymal stem cells (MSCs) and endothelial cells (ECs) in umbilical cord (UC) tissue digests. MATERIALS & METHODS Cultured UC cells were characterized phenotypically, and functionally by using 48-gene arrays. Native MSCs and ECs were enumerated using flow cytometry. RESULTS Compared with bone marrow (BM) MSCs, UC MSCs displayed significantly lower (range 4-240-fold) basal levels of bone-related transcripts, but their phenotypes were similar (CD73⁺, CD105⁺, CD90⁺, CD45⁻ and CD31⁻). UC MSCs responded well to osteogenic induction, but day 21 postinduction levels remained below those achieved by BM MSCs. The total yield of native UC MSCs (CD90⁺, CD45⁻ and CD235α⁻) and ECs (CD31⁺, CD45⁻ and CD235α⁻) exceeded 150 and 15 million cells/donation, respectively. Both UC MSCs and ECs expressed CD146. CONCLUSION While BM MSCs are more predisposed to osteogenesis, UC tissue harbors large numbers of MSCs and ECs; such minimally manipulated 'off-the-shelf' cellular mixtures can be used for regenerating bone in patients with compromised vascular supply.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | | | | | | | | | | | | |
Collapse
|
75
|
Hundepool CA, Nijhuis THJ, Mohseny B, Selles RW, Hovius SER. The effect of stem cells in bridging peripheral nerve defects: a meta-analysis. J Neurosurg 2014; 121:195-209. [PMID: 24816327 DOI: 10.3171/2014.4.jns131260] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED OBJECT.: For decades the gold standard for reconstructing a large peripheral nerve defect has been, and remains, the nerve autograft. Alternatives to the nerve autograft include biological conduits and vessels. Adding stem cells in the lumen of a nerve conduit has been the subject of multiple studies. The purpose of the present meta-analysis was to summarize animal experimental studies on the effect of stem cells as a luminal additive when reconstructing a peripheral nerve defect with a nerve graft. METHODS A literature search of the MEDLINE and Embase databases was performed from inception to April 2012, searching for animal experiments on peripheral nerve reconstruction models in which a nerve conduit was used with and without the support of 3 different types of stem cells. Stem cells were analyzed according to their origin: bone marrow, adipose tissue, and other origins. Included studies had consistent outcome measurements: walking track analysis, muscle mass ratio, and electrophysiology. RESULTS Forty-four studies were included in the final analysis. Forest plots of the 3 outcome measurements (walking track analysis, muscle mass ratio, and electrophysiology) showed positive effects of stem cells on the regeneration of peripheral nerves at different time points. Almost all comparisons showed significant differences for all 3 stem cells groups compared with a control group in which stem cells were not used. CONCLUSIONS The present report systematically analyzed the different studies that used stem cells as a luminal additive when bridging a large peripheral nerve defect. All 3 different stem cell groups showed a beneficial effect when used in the reconstruction compared with control groups in which stem cells were not used.
Collapse
|
76
|
Martinez AMB, Goulart CDO, Ramalho BDS, Oliveira JT, Almeida FM. Neurotrauma and mesenchymal stem cells treatment: From experimental studies to clinical trials. World J Stem Cells 2014; 6:179-94. [PMID: 24772245 PMCID: PMC3999776 DOI: 10.4252/wjsc.v6.i2.179] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/26/2014] [Accepted: 03/11/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy has attracted the attention of scientists and clinicians around the world. Basic and pre-clinical experimental studies have highlighted the positive effects of MSC treatment after spinal cord and peripheral nerve injury. These effects are believed to be due to their ability to differentiate into other cell lineages, modulate inflammatory and immunomodulatory responses, reduce cell apoptosis, secrete several neurotrophic factors and respond to tissue injury, among others. There are many pre-clinical studies on MSC treatment for spinal cord injury (SCI) and peripheral nerve injuries. However, the same is not true for clinical trials, particularly those concerned with nerve trauma, indicating the necessity of more well-constructed studies showing the benefits that cell therapy can provide for individuals suffering the consequences of nerve lesions. As for clinical trials for SCI treatment the results obtained so far are not as beneficial as those described in experimental studies. For these reasons basic and pre-clinical studies dealing with MSC therapy should emphasize the standardization of protocols that could be translated to the clinical set with consistent and positive outcomes. This review is based on pre-clinical studies and clinical trials available in the literature from 2010 until now. At the time of writing this article there were 43 and 36 pre-clinical and 19 and 1 clinical trials on injured spinal cord and peripheral nerves, respectively.
Collapse
Affiliation(s)
- Ana Maria Blanco Martinez
- Ana Maria Blanco Martinez, Camila de Oliveira Goulart, Bruna dos Santos Ramalho, Júlia Teixeira Oliveira, Fernanda Martins Almeida, Laboratory of Neurodegeneration and Repair, Institute of Biomedical Sciences, Health Science Center, 21941-902, Rio de Janeiro, Brazil
| | - Camila de Oliveira Goulart
- Ana Maria Blanco Martinez, Camila de Oliveira Goulart, Bruna dos Santos Ramalho, Júlia Teixeira Oliveira, Fernanda Martins Almeida, Laboratory of Neurodegeneration and Repair, Institute of Biomedical Sciences, Health Science Center, 21941-902, Rio de Janeiro, Brazil
| | - Bruna Dos Santos Ramalho
- Ana Maria Blanco Martinez, Camila de Oliveira Goulart, Bruna dos Santos Ramalho, Júlia Teixeira Oliveira, Fernanda Martins Almeida, Laboratory of Neurodegeneration and Repair, Institute of Biomedical Sciences, Health Science Center, 21941-902, Rio de Janeiro, Brazil
| | - Júlia Teixeira Oliveira
- Ana Maria Blanco Martinez, Camila de Oliveira Goulart, Bruna dos Santos Ramalho, Júlia Teixeira Oliveira, Fernanda Martins Almeida, Laboratory of Neurodegeneration and Repair, Institute of Biomedical Sciences, Health Science Center, 21941-902, Rio de Janeiro, Brazil
| | - Fernanda Martins Almeida
- Ana Maria Blanco Martinez, Camila de Oliveira Goulart, Bruna dos Santos Ramalho, Júlia Teixeira Oliveira, Fernanda Martins Almeida, Laboratory of Neurodegeneration and Repair, Institute of Biomedical Sciences, Health Science Center, 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
77
|
Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci 2014; 15:4142-4157. [PMID: 24608926 PMCID: PMC3975389 DOI: 10.3390/ijms15034142] [Citation(s) in RCA: 574] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/14/2014] [Accepted: 02/26/2014] [Indexed: 12/12/2022] Open
Abstract
The functional mechanisms of mesenchymal stem cells (MSCs) have become a research focus in recent years. Accumulating evidence supports the notion that MSCs act in a paracrine manner. Therefore, the biological factors in conditioned medium, including exosomes and soluble factors, derived from MSC cultures are being explored extensively. The results from most investigations show that MSC-conditioned medium or its components mediate some biological functions of MSCs. Several studies have reported that MSC-derived exosomes have functions similar to those of MSCs, such as repairing tissue damage, suppressing inflammatory responses, and modulating the immune system. However, the mechanisms are still not fully understood and the results remain controversial. Compared with cells, exosomes are more stable and reservable, have no risk of aneuploidy, a lower possibility of immune rejection following in vivo allogeneic administration, and may provide an alternative therapy for various diseases. In this review, we summarize the properties and biological functions of MSC-derived exosomes and discuss the related mechanisms.
Collapse
Affiliation(s)
- Bo Yu
- Department of the Uveitis & Ocular Immunology, Tianjin Medical University Eye Hospital & Eye Institute, No. 251 Fukang Road, Nankai District, Tianjin 300384, China.
| | - Xiaomin Zhang
- Department of the Uveitis & Ocular Immunology, Tianjin Medical University Eye Hospital & Eye Institute, No. 251 Fukang Road, Nankai District, Tianjin 300384, China.
| | - Xiaorong Li
- Department of the Uveitis & Ocular Immunology, Tianjin Medical University Eye Hospital & Eye Institute, No. 251 Fukang Road, Nankai District, Tianjin 300384, China.
| |
Collapse
|
78
|
Wharton's jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci 2013; 14:11692-712. [PMID: 23727936 PMCID: PMC3709752 DOI: 10.3390/ijms140611692] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 05/22/2013] [Accepted: 05/27/2013] [Indexed: 12/14/2022] Open
Abstract
Wharton's jelly (WJ) is a gelatinous tissue within the umbilical cord that contains myofibroblast-like stromal cells. A unique cell population of WJ that has been suggested as displaying the stemness phenotype is the mesenchymal stromal cells (MSCs). Because MSCs' stemness and immune properties appear to be more robustly expressed and functional which are more comparable with fetal than adult-derived MSCs, MSCs harvested from the "young" WJ are considered much more proliferative, immunosuppressive, and even therapeutically active stem cells than those isolated from older, adult tissue sources such as the bone marrow or adipose. The present review discusses the phenotypic characteristics, therapeutic applications, and optimization of experimental protocols for WJ-derived stem cells. MSCs derived from WJ display promising transplantable features, including ease of sourcing, in vitro expandability, differentiation abilities, immune-evasion and immune-regulation capacities. Accumulating evidence demonstrates that WJ-derived stem cells possess many potential advantages as transplantable cells for treatment of various diseases (e.g., cancer, chronic liver disease, cardiovascular diseases, nerve, cartilage and tendon injury). Additional studies are warranted to translate the use of WJ-derived stem cells for clinical applications.
Collapse
|
79
|
Abstract
The theory of chemotaxis has been widely accepted, but its mechanisms are disputed. Chemotactic growth of peripheral nerves may be tissue, topographic and end-organ specific. Recent studies indicated that peripheral nerve regeneration lacks topographic specificity, but whether it has end-organ specificity is disputed. Chemotaxis in nerve regeneration is affected by the distance between stumps, volume, and neurotrophic support, as well as the structure of distal nerve stumps. It can be applied to achieve precise repair of nerves and complete recovery of end organ function. Small gap sleeve bridging technique, which is based on this theory shows promising effects but it is still challenging to find the perfect combination of nerve conduits, cells and neurotrophic factors to put it intoits best use. In this paper, we made a comprehensive review of mechanisms, effect factors and applications of chemotaxis.
Collapse
|
80
|
Lindenmair A, Hatlapatka T, Kollwig G, Hennerbichler S, Gabriel C, Wolbank S, Redl H, Kasper C. Mesenchymal stem or stromal cells from amnion and umbilical cord tissue and their potential for clinical applications. Cells 2012; 1:1061-88. [PMID: 24710543 PMCID: PMC3901122 DOI: 10.3390/cells1041061] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/29/2012] [Accepted: 11/05/2012] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem or stromal cells (MSC) have proven to offer great promise for cell-based therapies and tissue engineering applications, as these cells are capable of extensive self-renewal and display a multilineage differentiation potential. Furthermore, MSC were shown to exhibit immunomodulatory properties and display supportive functions through parakrine effects. Besides bone marrow (BM), still today the most common source of MSC, these cells were found to be present in a variety of postnatal and extraembryonic tissues and organs as well as in a large variety of fetal tissues. Over the last decade, the human umbilical cord and human amnion have been found to be a rich and valuable source of MSC that is bio-equivalent to BM-MSC. Since these tissues are discarded after birth, the cells are easily accessible without ethical concerns.
Collapse
Affiliation(s)
- Andrea Lindenmair
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna/Linz 1200, Austria.
| | - Tim Hatlapatka
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna 1190, Austria.
| | - Gregor Kollwig
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna 1190, Austria.
| | | | | | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna/Linz 1200, Austria.
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna/Linz 1200, Austria.
| | - Cornelia Kasper
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna 1190, Austria.
| |
Collapse
|
81
|
Lee EJ, Xu L, Kim GH, Kang SK, Lee SW, Park SH, Kim S, Choi TH, Kim HS. Regeneration of peripheral nerves by transplanted sphere of human mesenchymal stem cells derived from embryonic stem cells. Biomaterials 2012; 33:7039-46. [PMID: 22795857 DOI: 10.1016/j.biomaterials.2012.06.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 06/22/2012] [Indexed: 12/13/2022]
Abstract
In cell therapy, the most important factor for therapeutic efficacy is the stable supply of cells with best engraftment efficiency. To meet this requirement, we have developed a culture strategy such as three-dimensional sphere of human embryonic stem cell-derived mesenchymal stem cells (hESC-MSCs) in serum-free medium. To investigate the in vivo therapeutic efficacy of hESC-MSC spheres in nerve injury model, we transected the sciatic nerve in athymic nude mice and created a 2-mm gap. Transplantation of hESC-MSC as sphere repaired the injured nerve significantly better than transplantation of hESC-MSC as suspended single cells in regard to 1) nerve conduction (sphere; 28.81 ± 3.55 vs. single cells; 18.04 ± 2.10, p < 0.05) and 2) susceptibility of nerve stimulation at low voltage (sphere; 0.38 ± 0.08 vs. single cells; 0.66 ± 0.11, p < 0.05) at 8 weeks. Recovery after sphere transplantation was near-complete when compared with the data of normal control (sphere 28.81 ± 3.55 vs normal 32.62 ± 2.85 in nerve conduction : sphere 0.38 ± 0.08 vs normal 0.36 ± 0.67 in susceptibility of nerve stimulation, no significant difference, respectively). Recovery in function of the injured nerve was well corroborated by the histologic evidence of regenerated nerve. In the mechanistic analysis, the supernatant of sphere-forming hESC-MSC contains hepatocyte growth factor and insulin-like growth factor-binding protein-1 significantly more than the supernatant of the single cells of hESC-MSC has, which might be the key factors for the improved engraftment efficiency and greater regeneration of injured peripheral nerve.
Collapse
Affiliation(s)
- Eun Ju Lee
- National Research Laboratory for Stem Cell Niche and IRICT, Seoul National University Hospital, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Rutten MJ, Janes MA, Chang IR, Gregory CR, Gregory KW. Development of a functional schwann cell phenotype from autologous porcine bone marrow mononuclear cells for nerve repair. Stem Cells Int 2012; 2012:738484. [PMID: 22792117 PMCID: PMC3388598 DOI: 10.1155/2012/738484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/29/2012] [Indexed: 01/10/2023] Open
Abstract
Adult bone marrow mononuclear cells (BM-MNCs) are a potential resource for making Schwann cells to repair damaged peripheral nerves. However, many methods of producing Schwann-like cells can be laborious with the cells lacking a functional phenotype. The objective of this study was to develop a simple and rapid method using autologous BM-MNCs to produce a phenotypic and functional Schwann-like cell. Adult porcine bone marrow was collected and enriched for BM-MNCs using a SEPAX device, then cells cultured in Neurobasal media, 4 mM L-glutamine and 20% serum. After 6-8 days, the cultures expressed Schwann cell markers, S-100, O4, GFAP, were FluoroMyelin positive, but had low p75(NGF) expression. Addition of neuregulin (1-25 nM) increased p75(NGF) levels at 24-48 hrs. We found ATP dose-dependently increased intracellular calcium [Ca(2+)](i), with nucleotide potency being UTP = ATP > ADP > AMP > adenosine. Suramin blocked the ATP-induced [Ca(2+)](i) but α, β,-methylene-ATP had little effect suggesting an ATP purinergic P2Y2 G-protein-coupled receptor is present. Both the Schwann cell markers and ATP-induced [Ca(2+)](i) sensitivity decreased in cells passaged >20 times. Our studies indicate that autologous BM-MNCs can be induced to form a phenotypic and functional Schwann-like cell which could be used for peripheral nerve repair.
Collapse
Affiliation(s)
- Michael J. Rutten
- Providence Health and Services, 9555 SW Barnes Rd., Portland, OR 97225, USA
- OHSU Center for Regenerative Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
| | - Michael Ann Janes
- Providence Health and Services, 9555 SW Barnes Rd., Portland, OR 97225, USA
| | - Ivy R. Chang
- Providence Health and Services, 9555 SW Barnes Rd., Portland, OR 97225, USA
| | - Cynthia R. Gregory
- OHSU Center for Regenerative Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
- Oregon Biomedical Engineering Institute, 25999 SW Canyon Creek Rd., Wilsonville, OR 97070, USA
- Portland VA Medical Center, 3710 SW U.S. Veterans Hospital Rd., Portland, OR 97239, USA
| | - Kenton W. Gregory
- Providence Health and Services, 9555 SW Barnes Rd., Portland, OR 97225, USA
- OHSU Center for Regenerative Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
- Oregon Biomedical Engineering Institute, 25999 SW Canyon Creek Rd., Wilsonville, OR 97070, USA
| |
Collapse
|
83
|
Fibrin conduit supplemented with human mesenchymal stem cells and immunosuppressive treatment enhances regeneration after peripheral nerve injury. Neurosci Lett 2012; 516:171-6. [PMID: 22465323 DOI: 10.1016/j.neulet.2012.03.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 02/28/2012] [Accepted: 03/14/2012] [Indexed: 12/21/2022]
Abstract
To address the need for the development of bioengineered replacement of a nerve graft, a novel two component fibrin glue conduit was combined with human mesenchymal stem cells (MSC) and immunosupressive treatment with cyclosporine A. The effects of MSC on axonal regeneration in the conduit and reaction of activated macrophages were investigated using sciatic nerve injury model. A 10mm gap in the sciatic nerve of a rat was created and repaired either with fibrin glue conduit containing diluted fibrin matrix or fibrin glue conduit containing fibrin matrix with MSC at concentration of 80×10(6) cells/ml. Cells were labeled with PKH26 prior to transplantation. The animals received daily injections of cyclosporine A. After 3 weeks the distance of regeneration and area occupied by regenerating axons and ED1 positives macrophages was measured. MSC survived in the conduit and enhanced axonal regeneration only when transplantation was combined with cyclosporine A treatment. Moreover, addition of cyclosporine A to the conduits with transplanted MSC significantly reduced the ED1 macrophage reaction.
Collapse
|
84
|
Wang Y, Zhao Z, Ren Z, Zhao B, Zhang L, Chen J, Xu W, Lu S, Zhao Q, Peng J. Recellularized nerve allografts with differentiated mesenchymal stem cells promote peripheral nerve regeneration. Neurosci Lett 2012; 514:96-101. [PMID: 22405891 DOI: 10.1016/j.neulet.2012.02.066] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/30/2012] [Accepted: 02/18/2012] [Indexed: 12/17/2022]
Abstract
Chemical-extracted acellular nerve allografting, containing the natural nerve structure and elementary nerve extracellular matrix (ECM), has been used for peripheral nerve-defect treatment experimentally and clinically. However, functional outcome with acellular nerve allografting decreases with increased size of gap in nerve defects. Cell-based therapy is a good strategy for repairing long nerve defects. Bone-marrow-derived mesenchymal stem cells (BMSCs) and adipose-derived mesenchymal stem cells (ADSCs) can be induced to differentiate into cells with Schwann cell-like properties (BMSC-SCs or ADSC-SCs), which have myelin-forming ability in vitro and secrete trophic nerve growth factors. Here, we aimed to determine whether BMSC-SCs or ADSC-SCs are a promising cell type for enriching acellular grafts in nerve repair. We evaluated axonal regeneration distance by immunofluorescence staining after 2-week implantation. We used functional and histomorphometric analysis to evaluate 3-month regeneration of the novel cell-supplemented tissue-engineered nerve graft used to bridge a 15-mm-long sciatic nerve gap in rats. Introducing BMSC-SCs or ADSC-SCs to the acellular nerve graft promoted sciatic nerve regeneration and functional recovery. Nerve regeneration with BMSC-SCs or ADSC-SCs was comparable to that with autografting and Schwann cells alone and better than that with acellular nerve allografting alone. Differentiated bone-marrow-or adipose-derived MSCs may be a promising cell source for tissue-engineered nerve grafts and promote functional recovery after peripheral nerve injury.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing 100853, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Calenda G, Strong TD, Pavlovich CP, Schaeffer EM, Burnett AL, Yu W, Davies KP, Bivalacqua TJ. Whole genome microarray of the major pelvic ganglion after cavernous nerve injury: new insights into molecular profile changes after nerve injury. BJU Int 2012; 109:1552-64. [DOI: 10.1111/j.1464-410x.2011.10705.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
86
|
Kitada M. Mesenchymal cell populations: development of the induction systems for Schwann cells and neuronal cells and finding the unique stem cell population. Anat Sci Int 2012; 87:24-44. [PMID: 22237924 DOI: 10.1007/s12565-011-0128-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 12/20/2011] [Indexed: 01/01/2023]
Abstract
Mesenchymal cell populations, referred to as mesenchymal stem cells or multipotent stromal cells (MSCs), which include bone marrow stromal cells (BMSCs), umbilical cord stromal cells and adipose stromal cells (ASCs), participate in tissue repair when transplanted into damaged or degenerating tissues. The trophic support and immunomodulation provided by MSCs can protect against tissue damage, and the differentiation potential of these cells may help to replace lost cells. MSCs are easily accessible and can be expanded on a large scale. In addition, BMSCs and ASCs can be harvested from the patient himself. Thus, MSCs are considered promising candidates for cell therapy. In this review, I will discuss recently discovered high-efficiency induction systems for deriving Schwann cells and neurons from MSCs. Other features of MSCs that are important for tissue repair include the self-renewing property of stem cells and their potential for differentiation. Thus, I will also discuss the stemness of MSCs and describe the discovery of a certain stem cell type among adult MSCs that can self-renew and differentiate into cells of all three germ layers. Furthermore, I will explore the prospects of using this cell population for cell therapy.
Collapse
Affiliation(s)
- Masaaki Kitada
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
87
|
Xue G, He M, Zhao J, Chen Y, Tian Y, Zhao B, Niu B. Intravenous umbilical cord mesenchymal stem cell infusion for the treatment of combined malnutrition nonunion of the humerus and radial nerve injury. Regen Med 2011; 6:733-41. [DOI: 10.2217/rme.11.83] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nonunion and nerve injury are the most severe and common complications of bone fracture treatments. There is still no ideal therapy for these two complications. In this report, we first applied umbilical cord mesenchymal stem cell (UC-MSC) therapy to one patient with both nonunion and nerve injury, and observed the therapeutic effects. UC-MSCs were produced and expanded according to a clinical-grade technique using serum-free medium enriched in human platelet lysate. Flow cytometry was performed to evaluate the purity of UC-MSCs, which were then intravenously injected. At 60 days postinjection, clinical examinations were performed to evaluate the therapeutic effects. Compared with before treatment, the patient’s nerve reflex was present, and their muscle tone and strength increased, and x-ray and electromyography analysis further showed that the fracture gap disappeared and the nerve conduction velocity increased with shorter latency and higher amplitude. Furthermore, the clinical evolution was favorable and no side effects were observed during the 1-year follow-up. Overall, this novel treatment might open up a new strategy for the treatment of bone fracture complications.
Collapse
Affiliation(s)
- Guofang Xue
- Department of Endocrinology, The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Meilan He
- Medicine Department, University of Southern California, Los Angeles, CA, USA
| | - Jie Zhao
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China; Biotechnology Research Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Yan Chen
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China; Biotechnology Research Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Yun Tian
- Department of Orthopedics, The Third Affiliated Hospital, Peking University, Beijing, China
| | - Baozhen Zhao
- Department of Endocrinology, The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | | |
Collapse
|
88
|
Krick K, Tammia M, Martin R, Höke A, Mao HQ. Signaling cue presentation and cell delivery to promote nerve regeneration. Curr Opin Biotechnol 2011; 22:741-6. [PMID: 21531127 DOI: 10.1016/j.copbio.2011.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/01/2011] [Indexed: 01/09/2023]
Abstract
Limitations in current nerve regeneration techniques have stimulated the development of various approaches to mimic the extrinsic cues available in the natural nerve regeneration environment. Biomaterials approaches modulate the microenvironment of a regenerating nerve through tailored presentation of signaling molecules, creating physical and biochemical guidance cues to direct axonal regrowth across nerve lesion sites. Cell-based approaches center on increasing the neurotrophic support, adhesion guidance and myelination capacity of Schwann cells and other alternative cell types to enhance nerve regrowth and functional recovery. Recent advances in presenting directional guidance cues in nerve guidance conduits and improving the regenerative outcomes of cell delivery provide inspirations to engineering the next generation of nerve repair solutions.
Collapse
Affiliation(s)
- Kellin Krick
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
89
|
Latasa MJ, Cosgaya JM. Regulation of retinoid receptors by retinoic acid and axonal contact in Schwann cells. PLoS One 2011; 6:e17023. [PMID: 21386894 PMCID: PMC3046125 DOI: 10.1371/journal.pone.0017023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/18/2011] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Schwann cells (SCs) are the cell type responsible for the formation of the myelin sheath in the peripheral nervous system (PNS). As retinoic acid (RA) and other retinoids have a profound effect as regulators of the myelination program, we sought to investigate how their nuclear receptors levels were regulated in this cell type. METHODOLOGY/PRINCIPAL FINDINGS In the present study, by using Schwann cells primary cultures from neonatal Wistar rat pups, as well as myelinating cocultures of Schwann cells with embryonic rat dorsal root ganglion sensory neurons, we have found that sustained expression of RXR-γ depends on the continuous presence of a labile activator, while axonal contact mimickers produced an increase in RXR-γ mRNA and protein levels, increment that could be prevented by RA. The upregulation by axonal contact mimickers and the transcriptional downregulation by RA were dependent on de novo protein synthesis and did not involve changes in mRNA stability. On the other hand, RAR-β mRNA levels were only slightly modulated by axonal contact mimickers, while RA produced a strong transcriptional upregulation that was independent of de novo protein synthesis without changes in mRNA stability. CONCLUSIONS/SIGNIFICANCE All together, our results show that retinoid receptors are regulated in a complex manner in Schwann cells, suggesting that they could have a prominent role as regulators of Schwann cell physiology.
Collapse
Affiliation(s)
- Maria-Jesus Latasa
- Department of Endocrine and Nervous System Physiopathology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose Miguel Cosgaya
- Department of Endocrine and Nervous System Physiopathology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
90
|
|
91
|
Martínez de Albornoz P, Delgado PJ, Forriol F, Maffulli N. Non-surgical therapies for peripheral nerve injury. Br Med Bull 2011; 100:73-100. [PMID: 21429947 DOI: 10.1093/bmb/ldr005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Non-surgical approaches have been developed to enhance nerve recovery, which are complementary to surgery and are an adjunct to the reinnervation process. SOURCES OF DATA A search of PubMed, Medline, CINAHL, DH data and Embase databases was performed using the keywords 'peripheral nerve injury' and 'treatment'. AREAS OF CONTROVERSY Most of the conservative therapies are focused to control neuropathic pain after nerve tissue damage. Only physical therapy modalities have been studied in humans and their effectiveness is not proved. GROWING POINTS Many modalities have been experimented with to promote nerve healing and restore function in animal models and in vitro studies. Despite this, none have been actually translated into clinical practice. AREAS TIMELY FOR DEVELOPING RESEARCH The hypotheses proved in animals and in vitro should be translated to human clinical practice.
Collapse
Affiliation(s)
- Pilar Martínez de Albornoz
- Department of Trauma and Orthopaedic Surgery, FREMAP Hospital, Ctra de Pozuelo 61, 28220 Majadahonda, Madrid, Spain
| | | | | | | |
Collapse
|