51
|
Simon N, Scholz SM, Moreira CK, Templeton TJ, Kuehn A, Dude MA, Pradel G. Sexual stage adhesion proteins form multi-protein complexes in the malaria parasite Plasmodium falciparum. J Biol Chem 2009; 284:14537-46. [PMID: 19304662 DOI: 10.1074/jbc.m808472200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The sexual phase of the malaria parasite Plasmodium falciparum is accompanied by the coordinated expression of stage-specific adhesive proteins. Among these are six secreted proteins with multiple adhesion domains, termed P. falciparum LCCL domain-containing protein (PfCCp) proteins, which are expressed in the parasitophorous vacuole of the differentiating gametocytes and which are later associated with macrogametes. Although the majority of the PfCCp proteins are implicated in parasite development in the mosquito vector, their functions remain unknown. In the present study we investigated the molecular interactions between the PfCCp proteins during gametocyte development and emergence. Using five different gene-disruptant parasite lines, we show that the lack of one PfCCp protein leads to the loss of other PfCCp family members. Co-immunoprecipitation assays on gametocyte lysates revealed formation of complexes involving all PfCCp proteins, and affinity chromatography co-elution binding assays with recombinant PfCCp domains further indicated direct binding between distinct adhesion domains. PfCCp-coated latex beads bind to newly formed macrogametes but not to gametocytes or older macrogametes 6 or 24 h post-activation. In view of these data, we propose that the PfCCp proteins form multi-protein complexes that are exposed during gametogenesis, thereby mediating cell contacts of macrogametes.
Collapse
Affiliation(s)
- Nina Simon
- Research Center for Infectious Diseases, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
52
|
Yuda M, Iwanaga S, Shigenobu S, Mair GR, Janse CJ, Waters AP, Kato T, Kaneko I. Identification of a transcription factor in the mosquito-invasive stage of malaria parasites. Mol Microbiol 2009; 71:1402-14. [DOI: 10.1111/j.1365-2958.2009.06609.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
53
|
Qian F, Aebig JA, Reiter K, Barnafo E, Zhang Y, Shimp RL, Rausch KM, Jones DS, Zhu D, Lambert L, Mullen GED, Narum DL, Miller LH, Wu Y. Enhanced antibody responses to Plasmodium falciparum Pfs28 induced in mice by conjugation to ExoProtein A of Pseudomonas aeruginosa with an improved procedure. Microbes Infect 2009; 11:408-12. [PMID: 19146977 PMCID: PMC2761608 DOI: 10.1016/j.micinf.2008.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 11/06/2008] [Accepted: 12/10/2008] [Indexed: 11/30/2022]
Abstract
In this paper we report our efforts to enhance the immunogenicity of Pfs28, a transmission blocking vaccine candidate of Plasmodium falciparum, using a strategy of chemical conjugation. With an improved procedure, Pfs28 was covalently coupled to the mutant and non-toxic ExoProtein A of Pseudomonas aeruginosa by the reaction between thiolated antigen and maleimide modified carrier protein. The optimized process resulted in a higher antigen-carrier conjugation ratio, and the conjugation product could be purified using single-step size-exclusion chromatography. A significant increase in immunogenicity measured by ELISA was observed in mice immunized with conjugated Pfs28 as compared to unconjugated Pfs28.
Collapse
Affiliation(s)
- Feng Qian
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Joan A. Aebig
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Karine Reiter
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Emma Barnafo
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Yanling Zhang
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Richard L. Shimp
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Kelly M. Rausch
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - David S. Jones
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Daming Zhu
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Lynn Lambert
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Gregory E. D. Mullen
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - David L. Narum
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Louis H. Miller
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Yimin Wu
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
54
|
Targett GA, Greenwood BM. Malaria vaccines and their potential role in the elimination of malaria. Malar J 2008; 7 Suppl 1:S10. [PMID: 19091034 PMCID: PMC2604874 DOI: 10.1186/1475-2875-7-s1-s10] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Research on malaria vaccines is currently directed primarily towards the development of vaccines that prevent clinical malaria. Malaria elimination, now being considered seriously in some epidemiological situations, requires a different vaccine strategy, since success will depend on killing all parasites in the community in order to stop transmission completely. The feature of the life-cycles of human malarias that presents the greatest challenge to an elimination programme is the persistence of parasites as asymptomatic infections. These are an important source from which transmission to mosquitoes can occur. Consequently, an elimination strategy requires a community-based approach covering all individuals and not just those who are susceptible to clinical malaria. The progress that has been made in development of candidate malaria vaccines is reviewed. It is unlikely that many of these will have the efficacy required for complete elimination of parasites, though they may have an important role to play as part of future integrated control programmes. Vaccines for elimination must have a high level of efficacy in order to stop transmission to mosquitoes. This might be achieved with some pre-erythrocytic stage candidate vaccines or by targeting the sexual stages directly with transmission-blocking vaccines. An expanded malaria vaccine programme with such objectives is now a priority.
Collapse
Affiliation(s)
- Geoffrey A Targett
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | | |
Collapse
|
55
|
Angel DI, Mongui A, Ardila J, Vanegas M, Patarroyo MA. The Plasmodium vivax Pv41 surface protein: identification and characterization. Biochem Biophys Res Commun 2008; 377:1113-7. [PMID: 18983983 DOI: 10.1016/j.bbrc.2008.10.129] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 10/21/2008] [Indexed: 11/28/2022]
Abstract
Recently, Plasmodium vivax has been related to nearly 81% of malaria cases reported in Central America and the Mediterranean. Due to the difficulty of culturing this parasite species in vitro, most studies on P. vivax have focused on the identification of new antigens by homology comparison with P. falciparum vaccine candidate proteins. In this study, we have identified and characterized a Pf41 homologue in P. vivax, hence named Pv41, by following such approach and using web-available bioinformatics databases, molecular techniques and immunochemistry assays. Pv41 protein is a 384-amino-acid-long antigen encoded by a single exon that exhibits two s48/45 domains characteristic of gametocyte surface proteins. We have also demonstrated Pv41 transcription and expression during late intra-erythrocytic parasite stages and defined its subcellular localization on the parasite surface.
Collapse
Affiliation(s)
- Diana I Angel
- Molecular Biology Department, Fundación Instituto de Inmunología de Colombia, Carrera 50#26-20, Bogotá, Colombia
| | | | | | | | | |
Collapse
|
56
|
Abstract
For many pathogens the availability of genome sequence, permitting genome-dependent methods of research, can partially substitute for powerful forward genetic methods (genome-independent) that have advanced model organism research for decades. In 2002 the genome sequence of Plasmodium falciparum, the parasite causing the most severe type of human malaria, was completed, eliminating many of the barriers to performing state-of-the-art molecular biological research on malaria parasites. Although new, licensed therapies may not yet have resulted from genome-dependent experiments, they have produced a wealth of new observations about the basic biology of malaria parasites, and it is likely that these will eventually lead to new therapeutic approaches. This review will focus on the basic research discoveries that have depended, in part, on the availability of the Plasmodium genome sequences.
Collapse
Affiliation(s)
- Elizabeth Ann Winzeler
- Genomics Institute of the Novartis Research Foundation, San Diego, California and The Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
57
|
Penny MA, Maire N, Studer A, Schapira A, Smith TA. What should vaccine developers ask? Simulation of the effectiveness of malaria vaccines. PLoS One 2008; 3:e3193. [PMID: 18784833 PMCID: PMC2527129 DOI: 10.1371/journal.pone.0003193] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 08/18/2008] [Indexed: 11/18/2022] Open
Abstract
Background A number of different malaria vaccine candidates are currently in pre-clinical or clinical development. Even though they vary greatly in their characteristics, it is unlikely that any of them will provide long-lasting sterilizing immunity against the malaria parasite. There is great uncertainty about what the minimal vaccine profile should be before registration is worthwhile; how to allocate resources between different candidates with different profiles; which candidates to consider combining; and what deployment strategies to consider. Methods and Findings We use previously published stochastic simulation models, calibrated against extensive epidemiological data, to make quantitative predictions of the population effects of malaria vaccines on malaria transmission, morbidity and mortality. The models are fitted and simulations obtained via volunteer computing. We consider a range of endemic malaria settings with deployment of vaccines via the Expanded program on immunization (EPI), with and without additional booster doses, and also via 5-yearly mass campaigns for a range of coverages. The simulation scenarios account for the dynamic effects of natural and vaccine induced immunity, for treatment of clinical episodes, and for births, ageing and deaths in the cohort. Simulated pre-erythrocytic vaccines have greatest benefits in low endemic settings (<EIR of 10.5) where between 12% and 14% of all deaths are averted when initial efficacy is 50%. In some high transmission scenarios (>EIR of 84) PEV may lead to increased incidence of severe disease in the long term, if efficacy is moderate to low (<70%). Blood stage vaccines (BSV) are most useful in high transmission settings, and are comparable to PEV for low transmission settings. Combinations of PEV and BSV generally perform little better than the best of the contributing components. A minimum half-life of protection of 2–3 years appears to be a precondition for substantial epidemiological effects. Herd immunity effects can be achieved with even moderately effective (>20%) malaria vaccines (either PEV or BSV) when deployed through mass campaigns targeting all age-groups as well as EPI, and especially if combined with highly efficacious transmission-blocking components. Conclusions We present for the first time a stochastic simulation approach to compare likely effects on morbidity, mortality and transmission of a range of malaria vaccines and vaccine combinations in realistic epidemiological and health systems settings. The results raise several issues for vaccine clinical development, in particular appropriateness of vaccine types for different transmission settings; the need to assess transmission to the vector and duration of protection; and the importance of deployment additional to the EPI, which again may make the issue of number of doses required more critical. To test the validity and robustness of our conclusions there is a need for further modeling (and, of course, field research) using alternative formulations for both natural and vaccine induced immunity. Evaluation of alternative deployment strategies outside EPI needs to consider the operational implications of different approaches to mass vaccination.
Collapse
Affiliation(s)
- Melissa A. Penny
- Swiss Tropical Institute, Basel, Switzerland
- Department of Public Health & Epidemiology, Swiss Tropical Institute, Basel, Switzerland
| | - Nicolas Maire
- Swiss Tropical Institute, Basel, Switzerland
- Department of Public Health & Epidemiology, Swiss Tropical Institute, Basel, Switzerland
| | - Alain Studer
- Swiss Tropical Institute, Basel, Switzerland
- Department of Public Health & Epidemiology, Swiss Tropical Institute, Basel, Switzerland
| | - Allan Schapira
- Swiss Tropical Institute, Basel, Switzerland
- Department of Public Health & Epidemiology, Swiss Tropical Institute, Basel, Switzerland
| | - Thomas A. Smith
- Swiss Tropical Institute, Basel, Switzerland
- Department of Public Health & Epidemiology, Swiss Tropical Institute, Basel, Switzerland
- * E-mail:
| |
Collapse
|
58
|
Dinglasan RR, Jacobs-Lorena M. Flipping the paradigm on malaria transmission-blocking vaccines. Trends Parasitol 2008; 24:364-70. [PMID: 18599352 DOI: 10.1016/j.pt.2008.05.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 03/28/2008] [Accepted: 05/02/2008] [Indexed: 10/21/2022]
Abstract
The idea of malaria transmission-blocking vaccines (TBVs) surfaced more than two decades ago. Since then, the research paradigm focused on developing TBVs that target surface antigens of parasite sexual stages. Only recently has an effort emerged that flipped this paradigm, targeting antigens of the parasite's obligate invertebrate vector, the Anopheles mosquito. Here, we review the current state of knowledge of mosquito-based TBVs and discuss the utility of this approach for future vaccine development.
Collapse
Affiliation(s)
- Rhoel R Dinglasan
- Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | |
Collapse
|
59
|
Mosquito-based transmission blocking vaccines for interrupting Plasmodium development. Microbes Infect 2008; 10:845-9. [PMID: 18656409 DOI: 10.1016/j.micinf.2008.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 05/09/2008] [Accepted: 05/15/2008] [Indexed: 11/23/2022]
Abstract
Reduction of transmission is critical for effective malaria control. Transmission blocking vaccines, which are intended to prevent the parasites from infecting the mosquito vectors, could target mosquito antigens that are required for the successful development of the parasite in its vector. Here we review recent advances in the identification of promising candidate antigens for a mosquito-based transmission blocking vaccine.
Collapse
|
60
|
Liu Y, Tewari R, Ning J, Blagborough AM, Garbom S, Pei J, Grishin NV, Steele RE, Sinden RE, Snell WJ, Billker O. The conserved plant sterility gene HAP2 functions after attachment of fusogenic membranes in Chlamydomonas and Plasmodium gametes. Genes Dev 2008; 22:1051-68. [PMID: 18367645 PMCID: PMC2335326 DOI: 10.1101/gad.1656508] [Citation(s) in RCA: 250] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 02/22/2008] [Indexed: 12/17/2022]
Abstract
The cellular and molecular mechanisms that underlie species-specific membrane fusion between male and female gametes remain largely unknown. Here, by use of gene discovery methods in the green alga Chlamydomonas, gene disruption in the rodent malaria parasite Plasmodium berghei, and distinctive features of fertilization in both organisms, we report discovery of a mechanism that accounts for a conserved protein required for gamete fusion. A screen for fusion mutants in Chlamydomonas identified a homolog of HAP2, an Arabidopsis sterility gene. Moreover, HAP2 disruption in Plasmodium blocked fertilization and thereby mosquito transmission of malaria. HAP2 localizes at the fusion site of Chlamydomonas minus gametes, yet Chlamydomonas minus and Plasmodium hap2 male gametes retain the ability, using other, species-limited proteins, to form tight prefusion membrane attachments with their respective gamete partners. Membrane dye experiments show that HAP2 is essential for membrane merger. Thus, in two distantly related eukaryotes, species-limited proteins govern access to a conserved protein essential for membrane fusion.
Collapse
Affiliation(s)
- Yanjie Liu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Rita Tewari
- Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
- Institute of Genetics, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Jue Ning
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Andrew M. Blagborough
- Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 SA1, United Kingdom
| | - Sara Garbom
- Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jimin Pei
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Nick V. Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | - Robert E. Steele
- Department of Biological Chemistry and the Developmental Biology Center, University of California, Irvine, California 92697, USA
| | - Robert E. Sinden
- Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - William J. Snell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Oliver Billker
- Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 SA1, United Kingdom
| |
Collapse
|
61
|
Abstract
Vaccines that target antigens found on the mosquito stages of Plasmodium falciparum and Plasmodium vivax parasites are under development as transmission blocking vaccines. Antisera from vaccinated animals and humans are able to block oocyst development in artificially fed mosquitoes but it is not clear from these data what level of antibody response would be required for a useful vaccine in a field setting. This paper describes a mathematical model that takes into account the relationship between antibody levels and blocking of oocyst levels in artificial feeds, the distribution of antibody responses seen in human populations and the distribution of oocyst densities in infected mosquitoes in the field to calculate the levels of antibody in the host population that would be required to achieve a level of herd immunity in a vaccinated human population that would give an operationally useful level of transmission blocking. The model predicts that current formulations of Pfs25 are likely to achieve useful reductions in transmission when tested in human field trials.
Collapse
|