51
|
Adhesion of enteropathogenic, enterotoxigenic and commensal Escherichia coli to the Major Zymogen Granule Membrane Glycoprotein 2. Appl Environ Microbiol 2022; 88:e0227921. [PMID: 35020452 PMCID: PMC8904060 DOI: 10.1128/aem.02279-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic bacteria, such as enteropathogenic Escherichia coli (EPEC) and enterotoxigenic E. coli (ETEC), cause diarrhea in mammals. In particular, E. coli colonizes and infects the gastrointestinal tract via type 1 fimbriae (T1F). Here, the major zymogen granule membrane glycoprotein 2 (GP2) acts as a host cell receptor. GP2 is also secreted by the pancreas and various mucous glands, interacting with luminal type 1 fimbriae-positive E. coli. It is unknown whether GP2 isoforms demonstrate specific E. coli pathotype binding. In this study, we investigated interactions of human, porcine, and bovine EPEC and ETEC, as well as commensal E. coli isolates with human, porcine, and bovine GP2. We first defined pathotype- and host-associated FimH variants. Second, we could prove that GP2 isoforms bound to FimH variants to various degrees. However, the GP2-FimH interactions did not seem to be influenced by the host specificity of E. coli. In contrast, soluble GP2 affected ETEC infection and phagocytosis rates of macrophages. Preincubation of the ETEC pathotype with GP2 reduced the infection of cell lines. Furthermore, preincubation of E. coli with GP2 improved the phagocytosis rate of macrophages. Our findings suggest that GP2 plays a role in the defense against E. coli infection and in the corresponding host immune response. IMPORTANCE Infection by pathogenic bacteria, such as certain Escherichia coli pathotypes, results in diarrhea in mammals. Pathogens, including zoonotic agents, can infect different hosts or show host specificity. There are Escherichia coli strains which are frequently transmitted between humans and animals, whereas other Escherichia coli strains tend to colonize only one host. This host specificity is still not fully understood. We show that glycoprotein 2 is a selective receptor for particular Escherichia coli strains or variants of the adhesin FimH but not a selector for a species-specific Escherichia coli group. We demonstrate that GP2 is involved in the regulation of colonization and infection and thus represents a molecule of interest for the prevention or treatment of disease.
Collapse
|
52
|
Lee JB, Kim SK, Yoon JW. Pathophysiology of enteropathogenic Escherichia coli during a host infection. J Vet Sci 2022; 23:e28. [PMID: 35187883 PMCID: PMC8977535 DOI: 10.4142/jvs.21160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhea in developing countries. However, sporadic outbreaks caused by this microorganism in developed countries are frequently reported recently. As an important zoonotic pathogen, EPEC is being monitored annually in several countries. Hallmark of EPEC infection is formation of attaching and effacing (A/E) lesions on the small intestine. To establish A/E lesions during a gastrointestinal tract (GIT) infeciton, EPEC must thrive in diverse GIT environments. A variety of stress responses by EPEC have been reported. These responses play significant roles in helping E. coli pass through GIT environments and establishing E. coli infection. Stringent response is one of those responses. It is mediated by guanosine tetraphosphate. Interestingly, previous studies have demonstrated that stringent response is a universal virulence regulatory mechanism present in many bacterial pathogens including EPEC. However, biological signficance of a bacterial stringent response in both EPEC and its interaction with the host during a GIT infection is unclear. It needs to be elucidated to broaden our insight to EPEC pathogenesis. In this review, diverse responses, including stringent response, of EPEC during a GIT infection are discussed to provide a new insight into EPEC pathophysiology in the GIT.
Collapse
Affiliation(s)
- Jun Bong Lee
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Se Kye Kim
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Jang Won Yoon
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
53
|
Kim TY, La TM, Kim T, Yun SA, Lee SW, Huh HJ, Lee NY. Whole-Genome Sequencing Analysis of a stx-Negative Escherichia coli O63:H6 Isolate Associated with Hemolytic Uremic Syndrome. Diagnostics (Basel) 2021; 11:diagnostics11101823. [PMID: 34679522 PMCID: PMC8534868 DOI: 10.3390/diagnostics11101823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Shiga toxin-encoding genes (stx) of enterohemorrhagic Escherichia coli (EHEC) can be lost during infection or in vitro cultivation, and in clinical practice, it is difficult to distinguish EHEC that have lost stx (EHEC-LST) from enteropathogenic E. coli (EPEC), as both are stx-negative and eae-positive. In this study, we performed whole-genome sequencing (WGS) of a stx-negative, eae-positive E. coli O63:H6 isolate from a child with hemolytic uremic syndrome and compared its genome with those of nine E. coli O63:H6 strains in public databases. Virulence gene profiles were analyzed and core-genome multilocus sequence typing (cgMLST) was conducted. The virulence gene profile of our isolate was consistent with EHEC, except for the absence of stx, and the isolate clustered with seven EHEC strains but was distant from two EPEC strains in cgMLST. In genome alignment, our isolate exhibited a high nucleotide identity with EHEC strain 377323_2f but displayed a gap corresponding to the stx-harboring prophage sequence. Overall, our isolate was genetically closely related to EHEC strains, consistent with this being an EHEC-LST strain. As EHEC-LST may be misdiagnosed as EPEC in routine laboratories, comparative genomic analysis using WGS can be useful to determine whether stx-negative and eae-positive isolates are EHEC-LST or EPEC.
Collapse
Affiliation(s)
- Tae Yeul Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (T.Y.K.); (N.Y.L.)
| | - Tae-Min La
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (T.-M.L.); (T.K.)
| | - Taesoo Kim
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (T.-M.L.); (T.K.)
| | - Sun Ae Yun
- Center for Clinical Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Korea;
| | - Sang-Won Lee
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (T.-M.L.); (T.K.)
- Correspondence: (S.-W.L.); (H.J.H.); Tel.: +82-2-450-0445 (S.-W.L.); +82-2-3410-1836 (H.J.H.); Fax: +82-2-3437-1941 (S.-W.L.); +82-2-3410-2719 (H.J.H.)
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (T.Y.K.); (N.Y.L.)
- Correspondence: (S.-W.L.); (H.J.H.); Tel.: +82-2-450-0445 (S.-W.L.); +82-2-3410-1836 (H.J.H.); Fax: +82-2-3437-1941 (S.-W.L.); +82-2-3410-2719 (H.J.H.)
| | - Nam Yong Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (T.Y.K.); (N.Y.L.)
| |
Collapse
|
54
|
Kattner AA. We refuse to die - T cells causing havoc. Biomed J 2021; 44:377-382. [PMID: 34508914 PMCID: PMC8514847 DOI: 10.1016/j.bj.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/28/2022] Open
Abstract
This issue of the Biomedical Journal offers insights into the origin and consequences of different lymphoproliferative disorders and autoimmunity. Furthermore we learn about RASopathies, a group of congenital disorders that occur rather frequently. Then the current ELISA assays for measuring antibody avidity are critically examined, the relationship between female sex steroid hormones and cardiovascular disease is explored, and an assessment of persistent diarrhea as a leading cause of child death in India is performed. Additionally, there are several articles about COVID-19, presenting its connection to neutrophil recruitment and acute respiratory distress syndrome, as well as its relation to changes in the vascular glycocalyx. A COVID-19 case study from the emergency room is presented. We are also introduced to novel treatment approaches against COVID-19 like the construction of peptide-based vaccines, or targeting the respiratory tract microbiome. Finally, there is an assessment about how prepared medical students at a Taiwan University feel for independent practice, and another article about the treatment of intravascular large B cell lymphoma in a Taiwanese institution. Lastly, we discover possible surgery techniques in the case of external auditory canal osteoma.
Collapse
|
55
|
Hajra D, Nair AV, Chakravortty D. An elegant nano-injection machinery for sabotaging the host: Role of Type III secretion system in virulence of different human and animal pathogenic bacteria. Phys Life Rev 2021; 38:25-54. [PMID: 34090822 DOI: 10.1016/j.plrev.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 01/22/2023]
Abstract
Various Gram-negative bacteria possess a specialized membrane-bound protein secretion system known as the Type III secretion system (T3SS), which transports the bacterial effector proteins into the host cytosol thereby helping in bacterial pathogenesis. The T3SS has a special needle-like translocon that can sense the contact with the host cell membrane and translocate effectors. The export apparatus of T3SS recognizes these effector proteins bound to chaperones and translocates them into the host cell. Once in the host cell cytoplasm, these effector proteins result in modulation of the host system and promote bacterial localization and infection. Using molecular biology, bioinformatics, genetic techniques, electron microscopic studies, and mathematical modeling, the structure and function of the T3SS and the corresponding effector proteins in various bacteria have been studied. The strategies used by different human pathogenic bacteria to modulate the host system and thereby enhance their virulence mechanism using T3SS have also been well studied. Here we review the history, evolution, and general structure of the T3SS, highlighting the details of its comparison with the flagellar export machinery. Also, this article provides mechanistic details about the common role of T3SS in subversion and manipulation of host cellular processes. Additionally, this review describes specific T3SS apparatus and the role of their specific effectors in bacterial pathogenesis by considering several human and animal pathogenic bacteria.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
56
|
Angulo-Zamudio UA, Gutiérrez-Jiménez J, Monroy-Higuera L, Flores-Villaseñor H, Leon-Sicairos N, Velazquez-Roman J, Vidal JE, Tapia-Pastrana G, Canizalez-Roman A. Non-diarrheagenic and diarrheagenic E. coli carrying supplementary virulence genes (SVG) are associated with diarrhea in children from Mexico. Microb Pathog 2021; 157:104994. [PMID: 34044054 DOI: 10.1016/j.micpath.2021.104994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022]
Abstract
Escherichia coli strains, including diarrheagenic E. coli (DEC), are among the most important causes of childhood diarrhea in developing countries. Since these strains also colonize healthy children, additional factors leading to diarrhea remains to be discovered. We therefore conducted a comprehensive study to investigate if supplementary virulence genes (SVG) carried by DEC strains and non-DEC strains, contribute to diarrhea in Mexican children. E. coli strains were isolated from n = 317 children between 6 and 12 years, n = 114 with diarrhea and n = 203 asymptomatic children from Northwestern Mexico, PCR was used to identify SVG, then virulence score and cytotoxic assay in HT-29 cells were performed to evaluate virulence of E. coli strains. DEC prevalence was 18.6% and its presence was significantly associated with diarrhea cases. aEPEC, tEAEC, ETEC, DAEC, aEAEC, tEPEC, and EIEC pathotypes were identified. aEPEC strains were significantly associated with asymptomatic children, whereas ETEC was only identified in children with diarrhea. E. coli strains carrying colonization-related SVG and/or proteolysis-related SVG were significantly associated with diarrhea. DEC strains were associated to diarrhea if strains carried SVG ehaC, kps, nleB, and/or espC. Virulence score was significantly higher in E. coli from diarrhea cases than asymptomatic. In addition, DEC strains carrying SVG+ were more virulent, followed by non-DEC SVG+ strains, and correlated with the cytotoxicity assay. Nearly 50% of DEC strains were MDR, and ~10% were XDR. In conclusion the findings of this work provide evidence that the presence of E. coli strains (regardless if strains are DEC or non-DEC) with SVG were associated with diarrhea in Mexican children.
Collapse
Affiliation(s)
- Uriel A Angulo-Zamudio
- CIASaP, School of Medicine, Autonomous University of Sinaloa, 80246, Culiacan, Sinaloa, Mexico
| | - Javier Gutiérrez-Jiménez
- CIASaP, School of Medicine, Autonomous University of Sinaloa, 80246, Culiacan, Sinaloa, Mexico; Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla, Gutiérrez, Mexico
| | - Luis Monroy-Higuera
- CIASaP, School of Medicine, Autonomous University of Sinaloa, 80246, Culiacan, Sinaloa, Mexico; Programa de Maestría en Ciencias en Biomedicina Molecular, UAS, 80246, Culiacan, Sinaloa, Mexico
| | - Hector Flores-Villaseñor
- CIASaP, School of Medicine, Autonomous University of Sinaloa, 80246, Culiacan, Sinaloa, Mexico; The Sinaloa State Public Health Laboratory, Secretariat of Health, 80020, Culiacan, Sinaloa, Mexico
| | - Nidia Leon-Sicairos
- CIASaP, School of Medicine, Autonomous University of Sinaloa, 80246, Culiacan, Sinaloa, Mexico; Pediatric Hospital of Sinaloa, 80200, Culiacan, Sinaloa, Mexico
| | - Jorge Velazquez-Roman
- CIASaP, School of Medicine, Autonomous University of Sinaloa, 80246, Culiacan, Sinaloa, Mexico
| | - Jorge E Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gabriela Tapia-Pastrana
- Laboratorio de Investigación Biomédica, Hospital Regional de Alta Especialidad de Oaxaca, Oaxaca, 71256, Mexico
| | - Adrian Canizalez-Roman
- CIASaP, School of Medicine, Autonomous University of Sinaloa, 80246, Culiacan, Sinaloa, Mexico; The Women's Hospital, Secretariat of Health, 80127, Culiacan, Sinaloa, Mexico.
| |
Collapse
|
57
|
Ali DA, Tesema TS, Belachew YD. RETRACTED ARTICLE: Molecular detection of pathogenic Escherichia coli strains and their antibiogram associated with risk factors from diarrheic calves in Jimma Ethiopia. Sci Rep 2021; 11:14356. [PMID: 34257358 PMCID: PMC8277816 DOI: 10.1038/s41598-021-93688-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Diarrheagenic Escherichia coli are a number of pathogenic E. coli strains that cause diarrheal infection both in animal and human hosts due to their virulence factors. A cross sectional study was conducted between November, 2016 and April, 2017 to isolate and molecularly detect pathogenic E. coli from diarrheic calves to determine the pathogenic strains, antibiogram and associated risk factors in Jimma town. Purposive sampling technique was used to collect 112 fecal samples from diarrheic calves. Conventional culture and biochemical methods were conducted to isolate E. coli isolates. Molecular method was followed to identify virulence factors of pathogenic E. coli strains. Antimicrobial sensitivity patterns of the isolates were tested using the Kirby-Bauer disk diffusion method. A structured questionnaire was also used to collect information from dairy farms and socio-demographic data. The overall isolation rate of E. coli in calves was 51.8% (58/112) (95% CI 42.0-61.0). The occurrence of the bacterium differed significantly by age, colostrum feeding time, amount of milk given per time and navel treatment (P < 0.05). Multivariable analysis revealed that the odds of being infected was significantly highest in calves which fed 1-1.5 L amount of milk per a time (OR 5.38, 95% CI 1.66-17.45, P = 0.005). The overall virulence genes detection rate was 53.5% (95% CI 40.0-67.0). Eleven (19.6%) of eaeA, 6 (10.7%) of Stx1 and 13 (23.2%) of Stx2 genes were detected from calves isolates. Except ciprofloxacillin, all isolates were resistant to at least one drug. Multi drug resistance was recorded in 68.0% (38/56) of calves isolates. Neomycin, 83.3% (25/30), followed by amoxicillin, 53.3% (16/30) were the highest resisted virulence genes. The study demonstrated considerable isolation rate, multiple antimicrobial resistant isolates and high resistant virulent genes in diarrheic calves. It also indicated that the potential importance of calves as source of pathogenic E. coli strains and resistant genes for human diarrhea infection. Improving the hygienic practice of farms and wise use of antimicrobials could help to reduce the occurrence of pathogenic E. coli in farms. Hence, further studies are needed to describe all virulent factors and serotypes associated with the emergence of drug resistant pathogenic E. coli strains in calves.
Collapse
Affiliation(s)
- Destaw Asfaw Ali
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia.
| | | | | |
Collapse
|
58
|
Synthesis of the pentasaccharide repeating unit of the O-antigenic polysaccharide of enteroaggregative Escherichia coli O44:H18 strain. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
59
|
Abstract
PURPOSE OF REVIEW Several types of Escherichia coli cause acute diarrhea in humans and are responsible for a large burden of disease globally. The purpose of this review is to summarize diarrheagenic Escherichia coli (DEC) pathotype definitions and discuss existing and emerging molecular, genomic, and gut microbiome methods to detect, define, and study DEC pathotypes. RECENT FINDINGS DEC pathotypes are currently diagnosed by molecular detection of unique virulence genes. However, some pathotypes have defied coherent molecular definitions because of imperfect gene targets, and pathotype categories are complicated by hybrid strains and isolation of pathotypes from asymptomatic individuals. Recent progress toward more efficient, sensitive, and multiplex DEC pathotype detection has been made using emerging PCR-based technologies. Genomics and gut microbiome detection methods continue to advance rapidly and are contributing to a better understanding of DEC pathotype diversity and functional potential. SUMMARY DEC pathotype categorizations and detection methods are useful but imperfect. The implementation of molecular and sequence-based methods and well designed epidemiological studies will continue to advance understanding of DEC pathotypes. Additional emphasis is needed on sequencing DEC genomes from regions of the world where they cause the most disease and from the pathotypes that cause the greatest burden of disease globally.
Collapse
|
60
|
Jia M, Geornaras I, Martin JN, Belk KE, Yang H. Comparative Whole Genome Analysis of Escherichia coli O157:H7 Isolates From Feedlot Cattle to Identify Genotypes Associated With the Presence and Absence of stx Genes. Front Microbiol 2021; 12:647434. [PMID: 33868205 PMCID: PMC8046923 DOI: 10.3389/fmicb.2021.647434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/28/2021] [Indexed: 11/13/2022] Open
Abstract
A comparative whole genome analysis was performed on three newly sequenced Escherichia coli O157:H7 strains with different stx profiles, previously isolated from feedlot cattle [C1-010 (stx1-, stx2c+), C1-057 (stx-), and C1-067 (stx1+, stx2a+)], as well as five foodborne outbreak strains and six stx-negative strains from NCBI. Phylogenomic analysis demonstrated that the stx2c-carrying C1-010 and stx-negative C1-057 strains were grouped with the six NCBI stx-negative E. coli O157:H7 strains in Cluster 1, whereas the stx2a-carrying C1-067 and five foodborne outbreak strains were clustered together in Cluster 2. Based on different clusters, we selected the three newly sequenced strains, one stx2a-carrying strain, and the six NCBI stx-negative strains and identify their prophages at the stx insertion sites. All stx-carrying prophages contained both the three Red recombination genes (exo, bet, gam) and their repressor cI. On the other hand, the majority of the stx-negative prophages carried only the three Red recombination genes, but their repressor cI was absent. In the absence of the repressor cI, the consistent expression of the Red recombination genes in prophages might result in more frequent gene exchanges, potentially increasing the probability of the acquisition of stx genes. We further investigated each of the 10 selected E. coli O157:H7 strains for their respective unique metabolic pathway genes. Seven unique metabolic pathway genes in the two stx2a-carrying strains and one in the single stx2c-carrying and seven stx-negative strains were found to be associated with an upstream insertion sequence 629 within a conserved region among these strains. The presence of more unique metabolic pathway genes in stx2a-carrying E. coli O157:H7 strains may potentially increase their competitiveness in complex environments, such as feedlot cattle. For the stx2c-carrying and stx-negative E. coli O157:H7 strains, the fact that they were grouped into the same phylogenomic cluster and had the same unique metabolic pathway genes suggested that they may also share closely related evolutionary pathways. As a consequence, gene exchange between them is more likely to occur. Results from this study could potentially serve as a basis to help develop strategies to reduce the prevalence of pathogenic E. coli O157:H7 in livestock and downstream food production environments.
Collapse
Affiliation(s)
- Mo Jia
- Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Ifigenia Geornaras
- Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Jennifer N Martin
- Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Keith E Belk
- Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Hua Yang
- Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
61
|
Munhoz DD, Santos FF, Mitsunari T, Schüroff PA, Elias WP, Carvalho E, Piazza RMF. Hybrid Atypical Enteropathogenic and Extraintestinal Escherichia coli (aEPEC/ExPEC) BA1250 Strain: A Draft Genome. Pathogens 2021; 10:475. [PMID: 33919948 PMCID: PMC8070890 DOI: 10.3390/pathogens10040475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 01/02/2023] Open
Abstract
Diarrheagenic Escherichia coli is the major bacterial etiological agent of severe diarrhea and a major concern of public health. These pathogens have acquired genetic characteristics from other pathotypes, leading to unusual and singular genetic combinations, known as hybrid strains and may be more virulent due to a set of virulence factors from more than one pathotype. One of the possible combinations is with extraintestinal E. coli (ExPEC), a leading cause of urinary tract infection, often lethal after entering the bloodstream and atypical enteropathogenic E. coli (aEPEC), responsible for death of thousands of people every year, mainly children under five years old. Here we report the draft genome of a strain originally classified as aEPEC (BA1250) isolated from feces of a child with acute diarrhea. Phylogenetic analysis indicates that BA1250 genome content is genetically closer to E. coli strains that cause extraintestinal infections, other than intestinal infections. A deeper analysis showed that in fact this is a hybrid strain, due to the presence of a set of genes typically characteristic of ExPEC. These genomic findings expand our knowledge about aEPEC heterogeneity allowing further studies concerning E. coli pathogenicity and may be a source for future comparative studies, virulence characteristics, and evolutionary biology.
Collapse
Affiliation(s)
- Danielle D. Munhoz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (T.M.); (P.A.S.); (W.P.E.); (E.C.)
| | - Fernanda F. Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
| | - Thais Mitsunari
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (T.M.); (P.A.S.); (W.P.E.); (E.C.)
| | - Paulo A. Schüroff
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (T.M.); (P.A.S.); (W.P.E.); (E.C.)
| | - Waldir P. Elias
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (T.M.); (P.A.S.); (W.P.E.); (E.C.)
| | - Eneas Carvalho
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (T.M.); (P.A.S.); (W.P.E.); (E.C.)
| | - Roxane M. F. Piazza
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil; (T.M.); (P.A.S.); (W.P.E.); (E.C.)
| |
Collapse
|
62
|
Horesh G, Blackwell GA, Tonkin-Hill G, Corander J, Heinz E, Thomson NR. A comprehensive and high-quality collection of Escherichia coli genomes and their genes. Microb Genom 2021; 7:000499. [PMID: 33417534 PMCID: PMC8208696 DOI: 10.1099/mgen.0.000499] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/07/2020] [Indexed: 01/25/2023] Open
Abstract
Escherichia coli is a highly diverse organism that includes a range of commensal and pathogenic variants found across a range of niches and worldwide. In addition to causing severe intestinal and extraintestinal disease, E. coli is considered a priority pathogen due to high levels of observed drug resistance. The diversity in the E. coli population is driven by high genome plasticity and a very large gene pool. All these have made E. coli one of the most well-studied organisms, as well as a commonly used laboratory strain. Today, there are thousands of sequenced E. coli genomes stored in public databases. While data is widely available, accessing the information in order to perform analyses can still be a challenge. Collecting relevant available data requires accessing different sources, where data may be stored in a range of formats, and often requires further manipulation and processing to apply various analyses and extract useful information. In this study, we collated and intensely curated a collection of over 10 000 E. coli and Shigella genomes to provide a single, uniform, high-quality dataset. Shigella were included as they are considered specialized pathovars of E. coli. We provide these data in a number of easily accessible formats that can be used as the foundation for future studies addressing the biological differences between E. coli lineages and the distribution and flow of genes in the E. coli population at a high resolution. The analysis we present emphasizes our lack of understanding of the true diversity of the E. coli species, and the biased nature of our current understanding of the genetic diversity of such a key pathogen.
Collapse
Affiliation(s)
- Gal Horesh
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1RQ, UK
| | - Grace A. Blackwell
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1RQ, UK
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Gerry Tonkin-Hill
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1RQ, UK
| | - Jukka Corander
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1RQ, UK
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology (HIIT), University of Helsinki, Helsinki, Finland
| | - Eva Heinz
- Department of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Nicholas R. Thomson
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1RQ, UK
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
63
|
Abstract
Diarrheal disease is still a major public health concern, as it is still considered an important cause of death in children under five years of age. A few decades ago, the detection of enteropathogenic E. coli was made by detecting the O, H, and K antigens, mostly by agglutination. The recent protocols recommend the molecular methods for diagnosing EPEC, as they can distinguish between typical and atypical EPEC by identifying the presence/absence of specific virulence factors. EPEC are defined as diarrheagenic strains of E. coli that can produce attaching and effacing lesions on the intestinal epithelium while being incapable of producing Shiga toxins and heat-labile or heat-stable enterotoxins. The ability of these strains to produce attaching and effacing lesions enable them to cause localized lesions by attaching tightly to the surface of the intestinal epithelial cells, disrupting the surfaces of the cells, thus leading to the effacement of the microvilli. EPEC are classified on typical and atypical isolates, based on the presence or absence of E. coli adherence factor plasmids. All the EPEC strains are eae positive; typical EPEC strains are eae+, bfpA+, while atypical strains are eae+, bfpA−. No vaccines are currently available to prevent EPEC infections.
Collapse
|
64
|
Soutar CD, Stavrinides J. Phylogenetic analysis supporting the taxonomic revision of eight genera within the bacterial order Enterobacterales. Int J Syst Evol Microbiol 2020; 70:6524-6530. [DOI: 10.1099/ijsem.0.004542] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The diverse members of the
Enterobacterales
are agriculturally and medically relevant species that have continued to undergo taxonomic revision. To assess the current taxonomy of 64 genera of the
Enterobacterales
, we carried out a phylogenetic analysis using 32 single-copy core proteins. The resulting phylogeny was robust, and shows that eight genera –
Biostraticola
,
Enterobacillus
,
Gibbsiella
,
Limnobaculum
,
Izhakiella
, ‘Nissabacter’,
Rosenbergiella
and
Samsonia
– are currently assigned to incorrect families. Taxonomic reassignment of these genera was also supported by average amino acid identity comparisons. We propose taxonomic revision of these genera to reflect their phylogenetic position within the
Enterobacterales
.
Collapse
Affiliation(s)
- Craig D. Soutar
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada
| | - John Stavrinides
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada
| |
Collapse
|
65
|
Factors associated with typical enteropathogenic Escherichia coli infection among children <5 years old with moderate-to-severe diarrhoea in rural western Kenya, 2008-2012. Epidemiol Infect 2020; 148:e281. [PMID: 33190663 PMCID: PMC7770376 DOI: 10.1017/s0950268820002794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Typical enteropathogenic Escherichia coli (tEPEC) infection is a major cause of diarrhoea and contributor to mortality in children <5 years old in developing countries. Data were analysed from the Global Enteric Multicenter Study examining children <5 years old seeking care for moderate-to-severe diarrhoea (MSD) in Kenya. Stool specimens were tested for enteric pathogens, including by multiplex polymerase chain reaction for gene targets of tEPEC. Demographic, clinical and anthropometric data were collected at enrolment and ~60-days later; multivariable logistic regressions were constructed. Of 1778 MSD cases enrolled from 2008 to 2012, 135 (7.6%) children tested positive for tEPEC. In a case-to-case comparison among MSD cases, tEPEC was independently associated with presentation at enrolment with a loss of skin turgor (adjusted odds ratio (aOR) 2.08, 95% confidence interval (CI) 1.37–3.17), and convulsions (aOR 2.83, 95% CI 1.12–7.14). At follow-up, infants with tEPEC compared to those without were associated with being underweight (OR 2.2, 95% CI 1.3–3.6) and wasted (OR 2.5, 95% CI 1.3–4.6). Among MSD cases, tEPEC was associated with mortality (aOR 2.85, 95% CI 1.47–5.55). This study suggests that tEPEC contributes to morbidity and mortality in children. Interventions aimed at defining and reducing the burden of tEPEC and its sequelae should be urgently investigated, prioritised and implemented.
Collapse
|
66
|
Nycz BT, Pretty K, Gomez-Trujillo A, Sanchez B, Dominguez SR. Description of Enteropathic Escherichia coli Species in Pediatric Patients at a Quaternary Children's Hospital. J Pediatric Infect Dis Soc 2020; 9:573-579. [PMID: 31803928 DOI: 10.1093/jpids/piz081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/08/2019] [Indexed: 11/14/2022]
Abstract
BACKGROUND The epidemiology, demographics, clinical presentations, and outcomes associated with enteroaggregative Escherichia coli (EAEC), enteropathogenic E. coli (EPEC), and enterotoxigenic E. coli (ETEC) pathotypes in US children are not well understood. METHODS This study was a retrospective chart review of all pediatric patients with a stool sample submitted to the Children's Hospital Colorado clinical microbiology laboratory for testing with the BioFire FilmArray Gastrointestinal Pathogen Panel from October 2015 through October 2017. RESULTS During the study period, 5692 patient stool samples were submitted; 679 (13%) were positive for EAEC, EPEC, or ETEC. Of note, 163/232 (70%) patients with EAEC, 282/493 (57%) with EPEC, and 49/58 (85%) with ETEC had detection of at least 1 other pathogen. Of all E. coli-positive stool samples, only 158/679 (23%) were from low-risk patients who were singly infected with EAEC, EPEC, or ETEC. In this cohort, most cases were associated with acute diarrhea (50%), abdominal pain (61%), and/or cramping (49%) and presented without fever (14%), emesis (28%), or lethargy (7%). Thirteen (8%) of these 158 patients received antibiotics at the time of their initial presentation to care. Of the 145 patients who did not receive antibiotics at their initial visit, 23 (16%) returned to care due to persistence of symptoms. CONCLUSIONS Our results suggest that the majority of patients singly infected with EAEC, EPEC, or ETEC present with mild, self-limited, gastrointestinal (GI) complaints. Further research is needed to determine what role these pathogens might play in children who present with chronic or inflammatory GI symptoms.
Collapse
Affiliation(s)
- Bryan T Nycz
- Department of Pediatrics, Division of Infectious Diseases, Aurora, Colorado, USA
| | - Kristin Pretty
- Department of Pediatrics, Division of Pathology and Laboratory Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Angel Gomez-Trujillo
- Department of Pediatrics, Division of Pathology and Laboratory Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Brenda Sanchez
- Department of Pediatrics, Division of Pathology and Laboratory Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Samuel R Dominguez
- Department of Pediatrics, Division of Infectious Diseases, Aurora, Colorado, USA.,Department of Pediatrics, Division of Pathology and Laboratory Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
67
|
EPEC Recruits a Cdc42-Specific GEF, Frabin, To Facilitate PAK Activation and Host Cell Colonization. mBio 2020; 11:mBio.01423-20. [PMID: 33144373 PMCID: PMC7642674 DOI: 10.1128/mbio.01423-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a leading cause of diarrhea in children, especially in the developing world. EPEC initiates infection by attaching to cells in the host intestine, triggering the formation of actin-rich “pedestal” structures directly beneath the adherent pathogen. These bacteria inject their own receptor into host cells, which upon binding to a protein on the pathogen surface triggers pedestal formation. Multiple other proteins are also delivered into the cells of the host intestine, which work together to hijack host signaling pathways to drive pedestal production. Here we show how EPEC hijacks a host protein, Frabin, which creates the conditions in the cell necessary for the pathogen to manipulate a specific pathway that promotes pedestal formation. This provides new insights into this essential early stage in disease caused by EPEC. Enteropathogenic Escherichia coli (EPEC) is an extracellular pathogen that tightly adheres to host cells by forming “actin pedestals” beneath the bacteria, a critical step in pathogenesis. EPEC injects effector proteins that manipulate host cell signaling cascades to trigger pedestal assembly. We have recently shown that one such effector, EspG, hijacks p21-activated kinase (PAK) and sustains its activated state to drive the cytoskeletal changes necessary for attachment of the pathogen to target cells. This EspG subversion of PAK required active Rho family small GTPases in the host cell. Here we show that EPEC itself promotes the activation of Rho GTPases by recruiting Frabin, a host guanine nucleotide exchange factor (GEF) for the Rho GTPase Cdc42. Cells devoid of Frabin showed significantly lower EPEC-induced PAK activation, pedestal formation, and bacterial attachment. Frabin recruitment to sites of EPEC attachment was driven by EspG and required localized enrichment of phosphatidylinositol 4,5-bisphosphate (PIP2) and host Arf6. Our findings identify Frabin as a key target for EPEC to ensure the activation status of cellular GTPases required for actin pedestal formation.
Collapse
|
68
|
Jafari E, Mostaan S, Bouzari S. Characterization of Antimicrobial Susceptibility, Extended-Spectrum β-Lactamase Genes and Phylogenetic Groups of Enteropathogenic Escherichia coli Isolated from Patients with Diarrhea. Osong Public Health Res Perspect 2020; 11:327-333. [PMID: 33117638 PMCID: PMC7577383 DOI: 10.24171/j.phrp.2020.11.5.09] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objectives Infectious diarrhea is one of the most common causes of pediatric death worldwide and enteropathogenic Escherichia coli (EPEC) is one of the main causes. There are 2 subgroups of EPEC, typical and atypical, based on the presence or absence of bundle forming pili (bfp), of which atypical EPEC is considered less virulent, but not less pathogenic. Antimicrobial resistance towards atypical EPEC among children is growing and is considered a major problem. In this study the pattern of antibiotic resistance in clinical isolates was determined. Methods Using 130 isolates, antibiotic resistance patterns and phenotypes were assessed, and genotypic profiles of extended spectrum β-lactamase (ESBL) production using disc diffusion and PCR was carried out. Phylogenetic groups were analyzed using quadruplex PCR. Results There were 65 E. coli isolates identified as atypical EPEC by PCR, among which the highest antibiotic resistance was towards ampicillin, followed by trimethoprim-sulfamethoxazole, and tetracycline. Multidrug resistance was detected in 44.6% of atypical EPEC isolates. Around 33% of isolates were determined to be extended spectrum β-lactamase producers, and in 90% of isolates, genes responsible for ESBL production could be detected. Moreover, the majority of atypical EPEC strains belonged to Group E, followed by Groups B1, B2 and C. Conclusion High rates of multidrug resistance and ESBL production among atypical EPEC isolates warrant periodical surveillance studies to select effective antibiotic treatment for patients. It is considered a critical step to manage antibiotic resistance by avoiding unnecessary prescriptions for antibiotics.
Collapse
Affiliation(s)
- Erfaneh Jafari
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Mostaan
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Bouzari
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
69
|
Use of the Multiplex Diagnostic PCR Panel in Diarrheal Disease: Expert Guidance on the Interpretation of Results With a Focus on Travelers' Diarrhea. Am J Gastroenterol 2020; 115:1553-1555. [PMID: 32558686 DOI: 10.14309/ajg.0000000000000735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
70
|
Molecular Characterization and Antimicrobial Resistance of Enteropathogenic Escherichia coli in Children from Ahvaz, Iran. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.100877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Enteropathogenic Escherichia coli (EPEC) is one of the most important pathogens among young children worldwide. Both eae and bfp genes have been used to identify EPEC strains and categorize them into typical and atypical strains. They may be an emerging pathogen in both developing and developed countries. Objectives: This study was primarily conducted to assess the epidemiology, drug resistance, and β-lactamase distribution of EPEC, as well as the detection of efa1/lifA in atypical strains. Methods: A total of 251 E. coli strains isolated from children with diarrhea were evaluated for their EPEC pathotype by PCR for the presence of eae, stx1, stx2, and bfp genes. Serogrouping with polyvalent antisera was performed to confirm EPEC strains. Atypical EPEC-containing samples were evaluated for the efa1/lifA gene. EPEC isolates were assessed to recognize the antibiotic resistance and screened to detect extended-spectrum β-lactamases (ESBLs). Results: Enteropathogenic E. coli strains were detected in 17 (6.78%) of E. coli isolates by PCR. The prevalence of typical and atypical strains was determined at 35.3% and 64.7%. All strains were completely susceptible to colistin, imipenem, and meropenem. The prevalence of blaCTX-M and blaTEM genes was calculated at 70.58% and 58.82%, respectively. Conclusions: Enteropathogenic E. coli isolates are completely sensitive to carbapenems, and precise therapeutic strategies are required to prevent the spread of these beta-lactamase genes among diarrheagenic E. coli.
Collapse
|
71
|
Desvaux M, Dalmasso G, Beyrouthy R, Barnich N, Delmas J, Bonnet R. Pathogenicity Factors of Genomic Islands in Intestinal and Extraintestinal Escherichia coli. Front Microbiol 2020; 11:2065. [PMID: 33101219 PMCID: PMC7545054 DOI: 10.3389/fmicb.2020.02065] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli is a versatile bacterial species that includes both harmless commensal strains and pathogenic strains found in the gastrointestinal tract in humans and warm-blooded animals. The growing amount of DNA sequence information generated in the era of "genomics" has helped to increase our understanding of the factors and mechanisms involved in the diversification of this bacterial species. The pathogenic side of E. coli that is afforded through horizontal transfers of genes encoding virulence factors enables this bacterium to become a highly diverse and adapted pathogen that is responsible for intestinal or extraintestinal diseases in humans and animals. Many of the accessory genes acquired by horizontal transfers form syntenic blocks and are recognized as genomic islands (GIs). These genomic regions contribute to the rapid evolution, diversification and adaptation of E. coli variants because they are frequently subject to rearrangements, excision and transfer, as well as to further acquisition of additional DNA. Here, we review a subgroup of GIs from E. coli termed pathogenicity islands (PAIs), a concept defined in the late 1980s by Jörg Hacker and colleagues in Werner Goebel's group at the University of Würzburg, Würzburg, Germany. As with other GIs, the PAIs comprise large genomic regions that differ from the rest of the genome by their G + C content, by their typical insertion within transfer RNA genes, and by their harboring of direct repeats (at their ends), integrase determinants, or other mobility loci. The hallmark of PAIs is their contribution to the emergence of virulent bacteria and to the development of intestinal and extraintestinal diseases. This review summarizes the current knowledge on the structure and functional features of PAIs, on PAI-encoded E. coli pathogenicity factors and on the role of PAIs in host-pathogen interactions.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, Clermont-Ferrand, France
| | - Guillaume Dalmasso
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Racha Beyrouthy
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas Barnich
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julien Delmas
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Richard Bonnet
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
72
|
Prah I, Ayibieke A, Nguyen TTH, Iguchi A, Mahazu S, Sato W, Hayashi T, Yamaoka S, Suzuki T, Iwanaga S, Ablordey A, Saito R. Virulence Profiles of Diarrheagenic Escherichia coli Isolated from the Western Region of Ghana. Jpn J Infect Dis 2020; 74:115-121. [PMID: 32863350 DOI: 10.7883/yoken.jjid.2020.356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diarrheagenic Escherichia coli (DEC), an important agent of infectious diarrhea, is constantly evolving, making its periodic monitoring necessary. However, the DEC genotypes in Ghana remain uncharacterized. We focused on characterizing the molecular serotypes, virulence factors, multilocus sequence types, and the phylogenetic relatedness among different DEC pathotypes recovered from stool samples of pediatric patients with symptoms of diarrhea from the Western region of Ghana. We detected all five common DEC pathotypes, with the majority of the isolates being enterotoxigenic E. coli (ETEC) harboring the heat-labile enterotoxin gene. The DEC strains exhibited diverse serotypic identity with novel and previously reported outbreak strains. Sequence types (ST) ST38, ST316, and ST1722 were most prevalent, and clonal complex 10 (CC10) was the most common CC. A close evolutionary distance was observed among most of the isolates. Coli surface antigen 6 was the most prevalent (44%, n = 11) ETEC-specific colonization factor. Nearly all the isolates harbored lpfA, and the frequencies of other virulence genes such as pap and cnf1 were 7.9% and 18.4%, respectively. This study provides insights into the important and novel genotypes circulating in the Western region of Ghana that should be monitored for public health.
Collapse
Affiliation(s)
- Isaac Prah
- Department of Molecular Microbiology, Tokyo Medical and Dental University, Japan.,Department of Molecular Virology, Tokyo Medical and Dental University, Japan
| | - Alafate Ayibieke
- Department of Molecular Microbiology, Tokyo Medical and Dental University, Japan
| | - Thi Thu Huong Nguyen
- Interdisciplinary Graduate school of Agriculture and Engineering, University of Miyazaki, Japan
| | | | - Samiratu Mahazu
- Department of Molecular Microbiology, Tokyo Medical and Dental University, Japan.,Department of Bacterial Pathogenesis, Tokyo Medical and Dental University, Japan
| | - Wakana Sato
- Department of Molecular Microbiology, Tokyo Medical and Dental University, Japan
| | - Takaya Hayashi
- Department of Molecular Virology, Tokyo Medical and Dental University, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Tokyo Medical and Dental University, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Pathogenesis, Tokyo Medical and Dental University, Japan
| | - Shiroh Iwanaga
- Department of Environmental Parasitology, Tokyo Medical and Dental University, Japan
| | - Anthony Ablordey
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana
| | - Ryoichi Saito
- Department of Molecular Microbiology, Tokyo Medical and Dental University, Japan
| |
Collapse
|
73
|
Patel M, Kumar A, Jayawardena D, Priyamvada S, Anbazhagan AN, Alrefai WA, Gill RK, Dudeja PK, Saksena S. Citrobacter rodentium Infection Inhibits Colonic P-glycoprotein Expression. GENE REPORTS 2020; 18. [PMID: 32864506 DOI: 10.1016/j.genrep.2019.100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
P-glycoprotein (Pgp/MDR1) serves as a biological barrier that protects intestinal epithelial cells (IECs) by transporting out xenobiotics and bacterial toxins. Decreased Pgp function and expression has been seen in mouse models of inflammatory colitis and also in patients with IBD. Pgp knockout mice spontaneously develop severe colitis, which is also seen in human patients with ulcerative colitis. However, whether Pgp is also altered in infectious colitis is not known. Citrobacter rodentium (CR), a murine pathogen has been shown to cause colonic hyperplasia and colitis in mice by attaching to IECs. The current study investigated the direct effects of Citrobacter rodentium infection on intestinal Pgp expression in mice. Mice were challenged with a single dose of C. rodentium (1 × 109 CFU) by oral gavage for 9 days and Pgp expression in the ileum and colon was measured by real time qRT-PCR and immunofluorescence studies. Our results showed that C. rodentium infection significantly decreased Pgp mRNA and protein expression in the colon, although no significant change was observed in the ileum of mice. These findings suggest that inhibition of the efflux protein, Pgp by C. rodentium can cause perturbations in the intestinal epithelial integrity, which could further lead to the pathogenesis of intestinal inflammation as observed in infectious colitis.
Collapse
Affiliation(s)
- Mitul Patel
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Anoop Kumar
- Jesse Brown VA Medical Center, University of Illinois at Chicago, Chicago, IL.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Dulari Jayawardena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Shubha Priyamvada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Arivarasu N Anbazhagan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Waddah A Alrefai
- Jesse Brown VA Medical Center, University of Illinois at Chicago, Chicago, IL.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Ravinder K Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Pradeep K Dudeja
- Jesse Brown VA Medical Center, University of Illinois at Chicago, Chicago, IL.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Seema Saksena
- Jesse Brown VA Medical Center, University of Illinois at Chicago, Chicago, IL.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
74
|
Gajdács M, Ábrók M, Lázár A, Burián K. Differential epidemiology and antibiotic resistance of lactose-fermenting and non-fermenting Escherichia coli: Is it just a matter of taste? Biol Futur 2020; 71:175-182. [PMID: 34554531 DOI: 10.1007/s42977-020-00016-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/20/2020] [Indexed: 02/01/2023]
Abstract
Urinary tract infections (UTIs) are some of the most common infections affecting humans worldwide. Occurrence of atypical, lactose non-fermenting, biochemically "inactive" strains of E. coli in clinical material has been described in the literature, which may cause a significant diagnostic challenge. The present retrospective microbiological study was carried out using isolates and data collected between January 1, 2013, and December 31, 2017, at the Institute of Clinical Microbiology. n = 24,285 positive urine samples were noted during the study period, out of which, samples positive for either lac + and lac- E. coli were included in the analysis. E. coli represented n = 7075 (55.8% ± 4.6%) of outpatient and n = 4916 (42.4% ± 3.6%) of inpatient isolates. n = 401 (3.3%; 80.2 ± 14.6/year) lac- E. coli isolates were identified from urinary tract infections. The ratio of lac- E. coli isolates was significantly higher in outpatient samples (262 vs. 139). Resistance levels of lac- isolates for antibiotics commonly used for treating UTIs were significantly higher for both inpatient and outpatient isolates: norfloxacin, ciprofloxacin, fosfomycin and nitrofurantoin. It is essential to pay attention to the presence of lac- strains, and their omission from clinical material during diagnostic procedures may have significant consequences for epidemiological studies and therapy.
Collapse
Affiliation(s)
- Márió Gajdács
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös Utca 6., Szeged, 6720, Hungary.
| | - Marianna Ábrók
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Semmelweis utca 6., Szeged, 6725, Hungary
| | - Andrea Lázár
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Semmelweis utca 6., Szeged, 6725, Hungary
| | - Katalin Burián
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Semmelweis utca 6., Szeged, 6725, Hungary
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10., Szeged, 6720, Hungary
| |
Collapse
|
75
|
Silva SS, Monfardini MV, Scaletsky ICA. Large plasmids encoding antibiotic resistance and localized-like adherence in atypical enteropathogenic Escherichia coli strains. BMC Microbiol 2020; 20:138. [PMID: 32471348 PMCID: PMC7257209 DOI: 10.1186/s12866-020-01809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/30/2020] [Indexed: 12/05/2022] Open
Abstract
Background In previous studies, we have shown that atypical enteropathogenic Escherichia coli (aEPEC) strains are important diarrheal pathogens among Brazilian children. In the characterization of a collection of 126 aEPEC strains, we identified 29 strains expressing the localized-like adherence (LAL) pattern on HEp-2 cells and harboring large plasmids in the range of 60 to 98 MDa. In this study, we examined 18 of these strains for their ability to transfer the LAL phenotype to a E. coli K-12 C600 strain. Results In conjugation experiments, using eight strains which were resistant to one or more antimicrobials and positive for F-pili genes (traA), we were able to cotransfer antimicrobial resistance markers along with adhesion genes. By transforming E. coli DH5α with plasmid DNA from strains A46 (pIS46), A66 (pIS66) and A102 (pIS102), we were able to demonstrate that genes encoding ampicillin, tetracycline and LAL were encoded on a 98-MDa conjugative plasmid. To identify a gene responsible for LAL, we constructed a transposon mutant library of A102 strain. Among 18 mutants that did not adhere to HeLa cells, four carried insertions within fimbrial genes (fimA and traJ) and agglutinin genes (tia and hek). Using these Tn5 mutants as donors, we were able to obtain kanamycin-resistant E. coli MA3456 transconjugants. Sequence analysis of the plasmid genes revealed a region exhibit to 80 and 73% amino acid similarities to the agglutinins Tia and Hek, respectively. Conclusion In this study, we have identified three large conjugative plasmids, pIS46, pIS66 and pIS102, coding for antimicrobial resistance and localized-like adherence (LAL) to HeLa cells. In addition, we identified a tia/hek homolog encoded on the pIS102 plasmid, which seems to be involved in adhesion of A102 strain.
Collapse
Affiliation(s)
- Scarlat S Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu, 862, 3 andar, São Paulo, 04023-062, Brazil
| | - Mariane V Monfardini
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu, 862, 3 andar, São Paulo, 04023-062, Brazil
| | - Isabel C A Scaletsky
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Botucatu, 862, 3 andar, São Paulo, 04023-062, Brazil.
| |
Collapse
|
76
|
Walpole GFW, Grinstein S. Endocytosis and the internalization of pathogenic organisms: focus on phosphoinositides. F1000Res 2020; 9. [PMID: 32494357 PMCID: PMC7233180 DOI: 10.12688/f1000research.22393.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Despite their comparatively low abundance in biological membranes, phosphoinositides are key to the regulation of a diverse array of signaling pathways and direct membrane traffic. The role of phosphoinositides in the initiation and progression of endocytic pathways has been studied in considerable depth. Recent advances have revealed that distinct phosphoinositide species feature prominently in clathrin-dependent and -independent endocytosis as well as in phagocytosis and macropinocytosis. Moreover, a variety of intracellular and cell-associated pathogens have developed strategies to commandeer host cell phosphoinositide metabolism to gain entry and/or metabolic advantage, thereby promoting their survival and proliferation. Here, we briefly survey the current knowledge on the involvement of phosphoinositides in endocytosis, phagocytosis, and macropinocytosis and highlight several examples of molecular mimicry employed by pathogens to either “hitch a ride” on endocytic pathways endogenous to the host or create an entry path of their own.
Collapse
Affiliation(s)
- Glenn F W Walpole
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
77
|
In-Vitro Growth Inhibition of Bacterial Pathogens by Probiotics and a Synbiotic: Product Composition Matters. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093332. [PMID: 32403297 PMCID: PMC7246756 DOI: 10.3390/ijerph17093332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 12/29/2022]
Abstract
A variety of activities potentially contribute to the beneficial effects of probiotic bacteria observed in humans. Among these is a direct inhibition of the growth of pathogenic bacteria in the gut. The present study characterizes head-to-head the in-vitro pathogen growth inhibition of clinically relevant infectious bacterial strains by different types of probiotics and a synbiotic. In-vitro growth inhibition of Escherichia (E.) coli EPEC, Shigella (Sh.) sonnei, Salmonella (S.) typhimurium, Klebsiella (K.) pneumoniae and Clostridioides (C.) difficile were determined. Investigated products were a yeast mono strain probiotic containing Saccharomyces (Sac.) boulardii, bacterial mono strain probiotics containing either Lactobacillus (L.) rhamnosus GG or L. reuteri DSM 17938, a multi strain probiotic containing three L. rhamnosus strains (E/N, Oxy, Pen), and a multi strain synbiotic containing nine different probiotic bacterial strains and the prebiotic fructooligosaccharides (FOS). Inhibition of pathogens was moderate by Sac. boulardii and L. rhamnosus GG, medium by L. reuteri DSM 17938 and the L. rhamnosus E/N, Oxy, Pen mixture and strong by the multi strain synbiotic. Head-to-head in-vitro pathogen growth inhibition experiments can be used to differentiate products from different categories containing probiotic microorganisms and can support the selection process of products for further clinical evaluation.
Collapse
|
78
|
Minami M, Takase H, Nakamura M, Makino T. Methanol extract of Lonicera caerulea var. emphyllocalyx fruit has anti-motility and anti-biofilm activity against enteropathogenic Escherichia coli. Drug Discov Ther 2020; 13:335-342. [PMID: 31956232 DOI: 10.5582/ddt.2019.01087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Foodborne diseases have become a worldwide problem that threatens public health and welfare. Enteropathogenic Escherichia coli (EPEC) is one of major pathogens of moderate to severe diarrhea. The increased prevalence of EPEC strains that produce extended spectrum β-lactamase (ESBL) has deepened the problem. The fruit of Lonicera caerulea var. emphyllocalyx (LCE) has been used as a traditional food preservative and medicine in northern temperate zones such as Hokkaido Island, Japan. In this study, we investigated the antibacterial effect of LCE fruit extract (LCEE) against EPEC. The antibacterial activities of LCEE were examined by bacterial growth, time-kill curve, soft-agar motility, electron microscopy, and 96 well-microplate biofilm assays. We also investigated the bacterial mRNA expression of biofilm-associated genes (fliC, csgA, and fimA) by quantitative real-time PCR assays. LCEE was found to suppress the growth, time-kill curve, and spread of EPEC. It also reduced the biofilm formation in a dose-dependent manner. Morphological analysis using transmission and scanning electron microscopy revealed that LCEE diminished the function of flagella resulting in reduced motility and biofilm formation. The mRNA expression of all three biofilm associated genes was downregulated under LCEE treatment. Extracts of the fruit of LCE inhibit the motility and biofilm formation of EPEC as a result of the inhibition of flagella development and function. We propose LCEE as a therapeutic candidate for the effective therapy of EPEC-associated infectious diseases.
Collapse
Affiliation(s)
- Masaaki Minami
- Department of Bacteriology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japann
| | - Hiroshi Takase
- Core Laboratory, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | | | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
79
|
Typical and atypical enteropathogenic Escherichia coli in children with acute diarrhoea: Changing trend in East Delhi. Biomed J 2020; 44:471-478. [PMID: 32330679 PMCID: PMC8514793 DOI: 10.1016/j.bj.2020.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background Worldwide around 2 million deaths occur every year due to diarrhoeal illnesses among children less than 5 years of age. Among diarrhoeagenic Escherichia coli, Enteropathogenic E. coli (EPEC) is highly prevalent in both community and hospital settings and is one of the main causes of persistent diarrhea in children in developing countries. EPEC remains underdiagnosed in India due to lack of conventional tools for identification. Methods We in this study investigated the prevalence and regional variation of EPEC in paediatric population suffering from diarrhoea in East Delhi, India. Two hundred stool samples were collected from children, aged between 0.5 and 5 years, with acute diarrhoea. E. coli were identified by conventional tests and PCR. Results We observed 7% atypical EPEC (aEPEC) and 2.5% typical EPEC (tEPEC), with an overall 9.5% EPEC prevalence amongst total samples. E. coli phylogenetic group A was the predominant. The most common age group affected was 6–23 months with common symptoms being vomiting, watery diarrhoea and severe dehydration. High drug resistance pattern was observed in EPEC isolates. Conclusion The study depicts a changing trend of aEPEC over tEPEC in children less than 5 years with diarrhoea, an emerging drug resistant enteropathogen and a public health concern demanding monitoring and surveillance.
Collapse
|
80
|
Characterization of Enterotoxigenic and Entero-hemorrhagic Escherichia coli in Paediatric Patients. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
81
|
Arbefeville S, Ferrieri P. Role of Multiplex Molecular Diagnosis for Acute Gastroenteritis. Curr Infect Dis Rep 2020. [DOI: 10.1007/s11908-020-0718-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
82
|
Giardia spp. promote the production of antimicrobial peptides and attenuate disease severity induced by attaching and effacing enteropathogens via the induction of the NLRP3 inflammasome. Int J Parasitol 2020; 50:263-275. [PMID: 32184085 DOI: 10.1016/j.ijpara.2019.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 12/28/2019] [Indexed: 12/14/2022]
Abstract
Polymicrobial infections of the gastro-intestinal tract are common in areas with poor sanitation. Disease outcome is the result of complex interactions between the host and pathogens. Such interactions lie at the core of future management strategies of enteric diseases. In developed countries of the world, Giardia duodenalis is a common cause of diarrheal disease. In contrast, giardiasis appears to protect children against diarrhea in countries with poor sanitation, via obscure mechanisms. We hypothesized that Giardia may protect its host from disease induced by a co-infecting pathogen such as attaching and effacing Escherichia coli. This enteropathogen is commonly implicated in pediatric diarrhea in developing countries. The findings indicate that co-infection with Giardia attenuates the severity of disease induced by Citrobacter rodentium, an equivalent of A/E E. coli in mice. Co-infection with Giardia reduced colitis, blood in stools, fecal softening, bacterial invasion, and weight loss; the protective effects were lost when co-infection occurred in Nod-like receptor pyrin-containing 3 knockout mice. In co-infected mice, elevated levels of antimicrobial peptides Murine β defensin 3 and Trefoil Factor 3, and enhanced bacterial killing, were NLRP3-dependent. Inhibition of the NLRP3 inflammasome in human enterocytes blocked the activation of AMPs and bacterial killing. The findings uncover novel NLRP3-dependent modulatory mechanisms during co-infections with Giardia spp. and A/E enteropathogens, and demonstrate how these interactions may regulate the severity of enteric disease.
Collapse
|
83
|
Chukwu MO, Abia ALK, Ubomba-Jaswa E, Dewar JB, Obi C. Mixed Aetiology of Diarrhoea in Infants Attending Clinics in the North-West Province of South Africa: Potential for Sub-Optimal Treatment. Pathogens 2020; 9:E198. [PMID: 32155961 PMCID: PMC7157715 DOI: 10.3390/pathogens9030198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 11/17/2022] Open
Abstract
Routine diagnostic methods for the aetiologic agents of diarrhoea in most developing countries are usually not sensitive enough, leading to under-diagnosis. Thus, this study investigated possible mixed diarrhoeal aetiology by using cultures and real-time polymerase chain reactions (PCR) in children younger than four years old in the Northwest Province, South Africa. In total, 505 stool samples were collected from symptomatic and asymptomatic children who were attending three clinics and the Brits hospital in Madibeng District, between September 2016 and December 2017. Rotavirus, norovirus, Campylobacter, Arcobacter, and diarrhoeagenic Escherichia coli (DEC) were targeted. Campylobacter spp. (24.6%), Arcobacter (15.8%) and DEC (19.6%) were detected using PCR; only Campylobacter spp. (29.7%) and DEC (26.9%) were detected through the culture. Campylobacter jejuni (36%), Campylobacter coli (28%), Campylobacter upsalensis (12%), and Arcobacter butzleri (15.8%) were the only spp. of Campylobacter and Arcobacter identified. The eaeA gene (31.4%) of enteropathogenic E. coli/enterohaemorrhagic E. coli (EPEC/EHEC) was the most prevalent DEC virulence gene (VG) identified. Rotavirus and norovirus were detected at 23.4% and 20%, respectively. Mixed viral aetiology (7.3%) and the co-infection of A. butzleri and Campylobacter (49%) were recorded. A mixed bacterial-viral aetiology was observed in 0.6% of the specimens. Sensitive diagnostic procedures like PCR should be considered to provide the best treatment to children experiencing diarrhoea.
Collapse
Affiliation(s)
- Martina O. Chukwu
- Department of Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Corner Christiaan De wet and Pioneer Avenue, Florida Park, Roodepoort 1724, Gauteng, South Africa;
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| | - Eunice Ubomba-Jaswa
- Department of Biotechnology, University of Johannesburg, 37 Nind Street, Doornfontein 2094, Gauteng, South Africa;
- Water Research Commission, Lynnwood Bridge Office Park, Bloukrans Building, 4 Daventry Street, Lynnwood Manor, Pretoria 0081, South Africa
| | - John Barr Dewar
- Department of Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Corner Christiaan De wet and Pioneer Avenue, Florida Park, Roodepoort 1724, Gauteng, South Africa;
| | - C.L. Obi
- School of Science and Technology, Sefako Makgatho Health Science University, Ga-Rankuwa 0208, South Africa;
| |
Collapse
|
84
|
Antibiotic resistance and virulence patterns of pathogenic Escherichia coli strains associated with acute gastroenteritis among children in Qatar. BMC Microbiol 2020; 20:54. [PMID: 32143566 PMCID: PMC7060563 DOI: 10.1186/s12866-020-01732-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/21/2020] [Indexed: 12/29/2022] Open
Abstract
Background The treatment of Enterobacteriaceae family including diarrheagenic E. coli (DEC) has been increasingly complicated due to the emergence of resistant strains. Here we report on the phenotypic resistance profiles and ESBL genotype and virulence profiles of Enteroaggregative E. coli (EAEC) and Enteropathogenic E. coli (EPEC) isolated from children hospitalized with acute gastroenteritis in Qatar (AGE). Results E. coli were isolated and characterized from 76 diarrheagenic stool positive samples, collected from hospitalized children less than 10 years old. Isolates were tested for antibiotic susceptibility against eighteen clinically relevant antibiotics using E-test method. Conventional PCR was performed to detect genes encoding ESBL and virulence factors. Chi-square test was performed to compare the individual antibiotic resistance between EPEC and EAEC. A significant percentage (73.7%) of isolates were resistant to at least one antibiotic. Overall, high resistance (70%) was reported to the first-line antibiotics such as ampicillin, tetracycline (46.4%), and sulfamethoxazole-trimethoprim (42.9%). Further, 39.5% of the isolates were multidrug resistant (MDR), with 22.4% being ESBL producers. On the other hand, all isolates were susceptible to carbapenem, fosfomycin, amikacin and colistin. The incidences of resistance to the 18 antibiotics between EPEC and EAEC were not significantly different by Pearson chi -square test (P > 0.05). Genetic analysis revealed that 88.23% of ESBL production was blaCTX-M-G1 (blaCTX-M-15, blaCTX-M-3) - encoded. Several different combinations of virulence markers were observed, however, there was no specific trend among the isolates apart from absence of the bundle-forming pilus (bfpA) gene, which encodes the type IV fimbriae in EPEC adherence factor (EAF) plasmid (pEAF), among all EPEC (atypical). 15% of the EAEC strains were positive for a combination of astA, aap & capU, while 10% were positive for three different combinations. The aap, aatA, capU and aggR virulence genes showed the highest frequency of 65, 60, 55 and 55% respectively. Others genes, east, astA, and aai, showed frequencies of 35, 30 and 20% respectively. Conclusions Atypical EPEC and EAEC were the primary etiological agents of diarrhea in children among DEC pathotypes. Our results indicated high rate of antimicrobial resistance pattern of DEC strains, which necessities the development of regulatory programs and reporting systems of antimicrobial resistance in DEC and other AGE-associated bacteria to insure effective control of diarrheal diseases. Results from this study demand a further research on identifying the phenotypic and genotypic profiles of more DEC pathotypes in various clinical samples.
Collapse
|
85
|
Truncated Class 1 Integron Gene Cassette Arrays Contribute to Antimicrobial Resistance of Diarrheagenic Escherichia coli. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4908189. [PMID: 32090095 PMCID: PMC7013361 DOI: 10.1155/2020/4908189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/30/2019] [Indexed: 11/17/2022]
Abstract
Class 1 integrons (c1-integrons) are associated with multidrug resistance in diarrheagenic Escherichia coli (DEC). However, little is known about gene cassettes located within these c1-integrons, particularly truncated c1-integrons, in DEC strains. Therefore, the aims of the present study were to reveal the relationship between antimicrobial resistance and the presence of truncated c1-integrons in DEC isolates derived from human stool samples in Japan. A total of 162 human stool-derived DEC isolates from Japan were examined by antimicrobial susceptibility testing, PCR-based gene detection, and next-generation sequencing analyses. Results showed that 44.4% (12/27) of c1-integrons identified in the DEC isolates harbored only intI1 (an element of c1-integrons) and were truncated by IS26, Tn3, or IS1-group insertion sequences. No difference in the frequency of antimicrobial resistance was recorded between intact and truncated c1-integron-positive DEC isolates. Isolates containing intact/truncated c1-integrons, particularly enteroaggregative E. coli isolates, were resistant to a greater number of antimicrobials than isolates without c1-integrons. aadA and dfrA were the most prevalent antimicrobial resistance genes in the intact/truncated c1-integrons examined in this study. Therefore, gene cassettes located within these intact/truncated c1-integrons may only play a limited role in conferring antimicrobial resistance among DEC. However, DEC harboring truncated c1-integrons may be resistant to a greater number of antimicrobials than c1-integron-negative DEC, similar to strains harboring intact c1-integrons.
Collapse
|
86
|
Woodward SE, Krekhno Z, Finlay BB. Here, there, and everywhere: How pathogenicEscherichia colisense and respond to gastrointestinal biogeography. Cell Microbiol 2019; 21:e13107. [DOI: 10.1111/cmi.13107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sarah E. Woodward
- Department of Microbiology and ImmunologyUniversity of British Columbia Vancouver British Columbia Canada
- Michael Smith LaboratoriesUniversity of British Columbia Vancouver British Columbia Canada
| | - Zakhar Krekhno
- Department of Microbiology and ImmunologyUniversity of British Columbia Vancouver British Columbia Canada
- Michael Smith LaboratoriesUniversity of British Columbia Vancouver British Columbia Canada
| | - B. Brett Finlay
- Department of Microbiology and ImmunologyUniversity of British Columbia Vancouver British Columbia Canada
- Michael Smith LaboratoriesUniversity of British Columbia Vancouver British Columbia Canada
- Department of Biochemistry and Molecular BiologyUniversity of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
87
|
Abstract
Enteropathogenic Escherichia coli is a prevalent Gram-negative bacterium that can lead to fatal complications from infection in humans. Here, we present the isolation and complete annotation of the 52,329-bp genome of enteropathogenic E. coli ATCC 23545 myophage Mangalitsa. Predicted terminal repeats and temperature sensitivity for plaque formation place Mangalitsa with similar unclassified myoviruses. Enteropathogenic Escherichia coli is a prevalent Gram-negative bacterium that can lead to fatal complications from infection in humans. Here, we present the isolation and complete annotation of the 52,329-bp genome of enteropathogenic E. coli ATCC 23545 myophage Mangalitsa. Predicted terminal repeats and temperature sensitivity for plaque formation place Mangalitsa with similar unclassified myoviruses.
Collapse
|
88
|
The Complete Genome of the Atypical Enteropathogenic Escherichia coli Archetype Isolate E110019 Highlights a Role for Plasmids in Dissemination of the Type III Secreted Effector EspT. Infect Immun 2019; 87:IAI.00412-19. [PMID: 31358567 DOI: 10.1128/iai.00412-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a leading cause of moderate to severe diarrhea among young children in developing countries, and EPEC isolates can be subdivided into two groups. Typical EPEC (tEPEC) bacteria are characterized by the presence of both the locus of enterocyte effacement (LEE) and the plasmid-encoded bundle-forming pilus (BFP), which are involved in adherence and translocation of type III effectors into the host cells. Atypical EPEC (aEPEC) bacteria also contain the LEE but lack the BFP. In the current report, we describe the complete genome of outbreak-associated aEPEC isolate E110019, which carries four plasmids. Comparative genomic analysis demonstrated that the type III secreted effector EspT gene, an autotransporter gene, a hemolysin gene, and putative fimbrial genes are all carried on plasmids. Further investigation of 65 espT-containing E. coli genomes demonstrated that different espT alleles are associated with multiple plasmids that differ in their overall gene content from the E110019 espT-containing plasmid. EspT has been previously described with respect to its role in the ability of E110019 to invade host cells. While other type III secreted effectors of E. coli have been identified on insertion elements and prophages of the chromosome, we demonstrated in the current study that the espT gene is located on multiple unique plasmids. These findings highlight a role of plasmids in dissemination of a unique E. coli type III secreted effector that is involved in host invasion and severe diarrheal illness.
Collapse
|
89
|
Zhang J, Guan H, Zhao W, Zhang H, Wang W, Ling X, Xiao Y, Guo J, Huang Z, Xu Y, Zhang L, He Z, Zhou S, Kan B. Evaluation of the BioFire FilmArray Gastrointestinal Panel and Real-Time Polymerase Chain Reaction Assays for the Detection of Major Diarrheagenic Pathogens by a Multicenter Diarrheal Disease Surveillance Program in China. Foodborne Pathog Dis 2019; 16:788-798. [PMID: 31478765 DOI: 10.1089/fpd.2019.2642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In the field of the detection of pathogens responsible for infectious diarrhea, multiplex nucleic acids detection technology has attracted attention due to its ability to simultaneously screen a wide range of pathogens, its simplicity to operate and a faster turnaround time. We conducted a three-center evaluation that compared the BioFire FilmArray gastrointestinal panel (FA GI) and real-time polymerase chain reaction (PCR) assays for the detection of pathogens from 462 clinical diarrhea specimens, and characterized the distribution of various pathogens that were analyzed. The sensitivity of FA GI was 100% for 13 pathogens and 93.8-98.3% for 4 pathogens, but low for Salmonella (60.5%) and adenovirus (88.9%). The sensitivity per pathogen of real-time PCR assays was lower than that observed with FA GI. The specificity of FA GI and real-time PCR assays per pathogen was greater than 94.5% and 99%, respectively. FA GI and real-time PCR assays detected ≥1 pathogen in 339 (73.4%) and 297 (64.3%) samples, respectively, and 324 (70.1%) samples were considered as positive according to the reference standard. Multiple pathogens were detected in 37.2% and 24.9% of samples by FA GI and real-time PCR assays, respectively. Norovirus GI/GII and Campylobacter were less associated with coinfections. The positive rates of some pathogens varied among the three regions of China. Molecular methods can help squickly identify the cause of diarrhea and provide valuable information for early diagnosis and optimal patient therapy.
Collapse
Affiliation(s)
- Jingyun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongxia Guan
- Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Wensui Zhao
- Shanghai Changning District Center for Disease Control and Prevention, Shanghai, China
| | - Hong Zhang
- Hunan Provincial Center for Disease Control and Prevention, Changsha City, China
| | - Wei Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xia Ling
- Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Yong Xiao
- Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Jiayin Guo
- Shanghai Changning District Center for Disease Control and Prevention, Shanghai, China
| | - Zheng Huang
- Shanghai Changning District Center for Disease Control and Prevention, Shanghai, China
| | - Yang Xu
- Shanghai Changning District Center for Disease Control and Prevention, Shanghai, China
| | - Ling Zhang
- Shanghai Changning District Center for Disease Control and Prevention, Shanghai, China
| | - Zixiang He
- Hunan Provincial Center for Disease Control and Prevention, Changsha City, China
| | - Shuaifeng Zhou
- Hunan Provincial Center for Disease Control and Prevention, Changsha City, China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
90
|
Arimizu Y, Kirino Y, Sato MP, Uno K, Sato T, Gotoh Y, Auvray F, Brugere H, Oswald E, Mainil JG, Anklam KS, Döpfer D, Yoshino S, Ooka T, Tanizawa Y, Nakamura Y, Iguchi A, Morita-Ishihara T, Ohnishi M, Akashi K, Hayashi T, Ogura Y. Large-scale genome analysis of bovine commensal Escherichia coli reveals that bovine-adapted E. coli lineages are serving as evolutionary sources of the emergence of human intestinal pathogenic strains. Genome Res 2019; 29:1495-1505. [PMID: 31439690 PMCID: PMC6724679 DOI: 10.1101/gr.249268.119] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/03/2019] [Indexed: 01/15/2023]
Abstract
How pathogens evolve their virulence to humans in nature is a scientific issue of great medical and biological importance. Shiga toxin (Stx)–producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) are the major foodborne pathogens that can cause hemolytic uremic syndrome and infantile diarrhea, respectively. The locus of enterocyte effacement (LEE)–encoded type 3 secretion system (T3SS) is the major virulence determinant of EPEC and is also possessed by major STEC lineages. Cattle are thought to be the primary reservoir of STEC and EPEC. However, genome sequences of bovine commensal E. coli are limited, and the emerging process of STEC and EPEC is largely unknown. Here, we performed a large-scale genomic comparison of bovine commensal E. coli with human commensal and clinical strains, including EPEC and STEC, at a global level. The analyses identified two distinct lineages, in which bovine and human commensal strains are enriched, respectively, and revealed that STEC and EPEC strains have emerged in multiple sublineages of the bovine-associated lineage. In addition to the bovine-associated lineage-specific genes, including fimbriae, capsule, and nutrition utilization genes, specific virulence gene communities have been accumulated in stx- and LEE-positive strains, respectively, with notable overlaps of community members. Functional associations of these genes probably confer benefits to these E. coli strains in inhabiting and/or adapting to the bovine intestinal environment and drive their evolution to highly virulent human pathogens under the bovine-adapted genetic background. Our data highlight the importance of large-scale genome sequencing of animal strains in the studies of zoonotic pathogens.
Collapse
Affiliation(s)
- Yoko Arimizu
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yumi Kirino
- Laboratory of Veterinary Radiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Mitsuhiko P Sato
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Koichi Uno
- Japan Microbiological Laboratory, Sendai, Miyagi 983-0034, Japan
| | - Toshio Sato
- Japan Microbiological Laboratory, Sendai, Miyagi 983-0034, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Frédéric Auvray
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31300 Toulouse, France
| | - Hubert Brugere
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31300 Toulouse, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, 31300 Toulouse, France.,CHU de Toulouse, Hôpital Purpan, 31300 Toulouse, France
| | - Jacques G Mainil
- Bacteriology, Department of Infectious Diseases, Faculty of Veterinary Medicine and Institute for Fundamental and Applied Research in Animal Health (FARAH), University of Liège, 4000 Liège, Belgium
| | - Kelly S Anklam
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53705, USA
| | - Dörte Döpfer
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53705, USA
| | - Shuji Yoshino
- Department of Microbiology, Miyazaki Prefectural Institute for Public Health and Environment, Miyazaki 889-2155, Japan
| | - Tadasuke Ooka
- Department of Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Yasuhiro Tanizawa
- Center for Information Biology, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Yasukazu Nakamura
- Center for Information Biology, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Atsushi Iguchi
- Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Tomoko Morita-Ishihara
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
91
|
Singh V, Davidson A, Hume PJ, Koronakis V. Pathogenic Escherichia coli Hijacks GTPase-Activated p21-Activated Kinase for Actin Pedestal Formation. mBio 2019; 10:e01876-19. [PMID: 31431554 PMCID: PMC6703428 DOI: 10.1128/mbio.01876-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/24/2019] [Indexed: 12/26/2022] Open
Abstract
Enteropathogenic Escherichia coli and enterohemorrhagic E. coli (EPEC and EHEC, respectively) are extracellular pathogens that reorganize the host cell cytoskeleton to form "actin pedestals" beneath the tightly adherent bacteria, a critical step in pathogenesis. EPEC and EHEC inject effector proteins that manipulate host cell signaling cascades to trigger pedestal assembly. One such effector, EspG, has been reported to bind and activate p21-activated kinase (PAK), a key cytoskeletal regulator, but the function of this interaction and whether it impacts pedestal assembly are unknown. Here, we demonstrate that deletion of espG significantly impairs pedestal formation and attachment by both EPEC and EHEC. This role of EspG is shown to be dependent on its interaction with PAK. Unexpectedly, EspG was able to subvert PAK only in the presence of Rho family small GTPases, which function to both concentrate PAK at the membrane and stimulate PAK activation. Our findings reveal a novel mechanism by which EspG hijacks PAK and sustains its active state to drive bacterial attachment to host cells.IMPORTANCE Enteropathogenic E. coli and enterohemorrhagic E. coli (EPEC and EHEC, respectively) remain a significant global health problem. Both EPEC and EHEC initiate infection by attaching to cells in the host intestine, triggering the formation of actin-rich "pedestal" structures directly beneath the adherent pathogen. These bacteria inject their own receptor into host cells, which upon binding to a protein on the pathogen surface triggers pedestal formation. Multiple other proteins are also delivered into the cells of the host intestine, but how they contribute to disease is often less clear. Here, we show how one of these injected proteins, EspG, hijacks a host signaling pathway for pedestal production. This provides new insights into this essential early stage in EPEC and EHEC disease.
Collapse
Affiliation(s)
- Vikash Singh
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Anthony Davidson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Peter J Hume
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
92
|
Assessment of bioactivities of the human milk lactoferrin–osteopontin complex in vitro. J Nutr Biochem 2019; 69:10-18. [DOI: 10.1016/j.jnutbio.2019.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/28/2019] [Accepted: 03/14/2019] [Indexed: 02/02/2023]
|
93
|
González-Escalona N, Kase JA. Virulence gene profiles and phylogeny of Shiga toxin-positive Escherichia coli strains isolated from FDA regulated foods during 2010-2017. PLoS One 2019; 14:e0214620. [PMID: 30934002 PMCID: PMC6443163 DOI: 10.1371/journal.pone.0214620] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/15/2019] [Indexed: 11/19/2022] Open
Abstract
Illnesses caused by Shiga toxin-producing Escherichia coli (STECs) can be life threatening, such as hemolytic uremic syndrome (HUS). The STECs most frequently identified by USDA's Microbiological Data Program (MDP) carried toxin gene subtypes stx1a and/or stx2a. Here we described the genome sequences of 331 STECs isolated from foods regulated by the FDA 2010-2017, and determined their genomic identity, serotype, sequence type, virulence potential, and prevalence of antimicrobial resistance. Isolates were selected from the MDP archive, routine food testing by FDA field labs (ORA), and food testing by a contract company. Only 276 (83%) strains were confirmed as STECs by in silico analysis. Foods from which STECs were recovered included cilantro (6%), spinach (25%), lettuce (11%), and flour (9%). Phylogenetic analysis using core genome MLST revealed these STEC genomes were highly variable, with some clustering associated with ST types and serotypes. We detected 95 different sequence types (ST); several ST were previously associated with HUS: ST21 and ST29 (O26:H11), ST11 (O157:H7), ST33 (O91:H14), ST17 (O103:H2), and ST16 (O111:H-). in silico virulome analyses showed ~ 51% of these strains were potentially pathogenic [besides stx gene they also carried eae (25%) or 26% saa (26%)]. Virulence gene prevalence was also determined: stx1 only (19%); stx2 only (66%); and stx1/sxt2 (15%). Our data form a new WGS dataset that can be used to support food safety investigations and monitor the recurrence/emergence of E. coli in foods.
Collapse
Affiliation(s)
- Narjol González-Escalona
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States of America
| | - Julie Ann Kase
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States of America
| |
Collapse
|
94
|
Antibiotic Resistance Profile and Clonality of E. coli Isolated from Water and Paediatric Stool Samples in the North-West, Province South Africa. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.58] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
95
|
Host Range-Associated Clustering Based on Multilocus Variable-Number Tandem-Repeat Analysis, Phylotypes, and Virulence Genes of Atypical Enteropathogenic Escherichia coli Strains. Appl Environ Microbiol 2019; 85:AEM.02796-18. [PMID: 30658974 DOI: 10.1128/aem.02796-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/02/2019] [Indexed: 12/23/2022] Open
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) strains (36 Japanese and 50 Bangladeshi) obtained from 649 poultry fecal samples were analyzed by molecular epidemiological methods. Clermont's phylogenetic typing showed that group A was more prevalent (58%, 50/86) than B1 (31%, 27/86). Intimin type β1, which is prevalent among human diarrheal patients, was predominant in both phylogroups B1 (81%, 22/27) and A (70%, 35/50). However, about 95% of B1-β1 strains belonged to virulence group I, and 77% of them were Japanese strains, while 17% (6/35) of A-β1 strains did. Multilocus variable-number tandem-repeat analysis (MLVA) distributed the strains into 52 distinct profiles, with Simpson's index of diversity (D) at 73%. When the data were combined with those of 142 previous strains from different sources, the minimum spanning tree formed five zones for porcine strains, poultry strains (excluding B1-β1), strains from healthy humans, bovine and human patient strains, and the B1-β1 poultry strains. Antimicrobial resistance to nalidixic acid was most common (74%) among the isolates. Sixty-eight percent of them demonstrated resistance to ≥3 antimicrobial agents, and most of them (91%) were from Bangladesh. The strains were assigned into two groups by hierarchical clustering. Correlation matrix analysis revealed that the virulence genes were negatively associated with antimicrobial resistance. The present study suggested that poultry, particularly Japanese poultry, could be another reservoir of aEPEC (phylogroup B1, virulence group I, and intimin type β1); however, poultry strains seem to be apart from patient strains that were closer to bovine strains. Bangladeshi aEPEC may be less virulent for humans but more resistant to antibiotics.IMPORTANCE Atypical enteropathogenic Escherichia coli (aEPEC) is a diarrheagenic type of E. coli, as it possesses the intimin gene (eae) for attachment and effacement on epithelium. Since aEPEC is ubiquitous even in developed countries, we previously used molecular epidemiological methods to discriminate aEPEC as a human pathogen. The present study assessed poultry as another source of human diarrheagenic aEPEC. Poultry could be the source of aEPEC (phylogroup B1, virulence group I, and intimin type β1) found among patient strains in Japan. However, the minimum spanning tree (MST) suggested that the strains from Japanese poultry were far from Japanese patient strains compared with the distance between bovine and patient strains. Bangladeshi avian strains seemed to be less diarrheagenic but are hazardous as a source of drug resistance genes.
Collapse
|
96
|
O'Flaherty E, Solimini A, Pantanella F, Cummins E. The potential human exposure to antibiotic resistant-Escherichia coli through recreational water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:786-795. [PMID: 30308854 DOI: 10.1016/j.scitotenv.2018.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
It is important that bathing water sites are free as possible from antibiotic resistant bacteria (ARB) to prevent the spread of difficult to treat infections throughout the population. This study examines the possible human exposure to antibiotic resistant Escherichia coli (AR-E. coli) through recreational activities at two different bathing water sites located near wastewater treatment plants (WWTPs). A quantitative risk assessment model was created to model the pathway of the AR-E. coli from the WWTPs effluent water through to the bathing water sites. Both sampling data and data from scientific literature were used. The main steps considered for the model were: the dilution and decay of the AR-E. coli from the WWTPs effluent water into the river; the dilution of the river into the bathing water sites and the human exposure to AR-E. coli through recreational activities at the bathing water sites (as a result of water ingestion). The results show the mean predicted human exposure levels ranged between 0.45 and 345.09 cfu/100 ml. A back calculation method determined that in accordance with the European Bathing Water Directive (2006/7/EC) (BWD) to be considered "poor" water quality, the concentration of AR-E. coli in WWTP effluent water would need to exceed 2.45 log cfu/ml at site 1 and exceed 2.71 log cfu/ml at site 2. This study provides valuable information for regulatory bodies and policy makers on the possible human exposure levels to AR-E. coli and the maximum permissible concentrations in WWTP effluent water to ensure compliance with relevant bathing water legislation.
Collapse
Affiliation(s)
- E O'Flaherty
- University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| | - A Solimini
- Department of Public Health, Sapienza University of Rome, Italy
| | - F Pantanella
- Department of Public Health, Sapienza University of Rome, Italy
| | - E Cummins
- University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland
| |
Collapse
|
97
|
Virulence-Related Genes and Coenteropathogens Associated with Clinical Outcomes of Enteropathogenic Escherichia coli Infections in Children from the Brazilian Semiarid Region: a Case-Control Study of Diarrhea. J Clin Microbiol 2019; 57:JCM.01777-18. [PMID: 30728193 DOI: 10.1128/jcm.01777-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/26/2019] [Indexed: 12/26/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrhea in children from developing countries and presents high genetic variability. We aimed to characterize the EPEC virulence-related gene (VRG) distribution and copathogens associated with diarrhea and nutrition-related outcomes in children from the low-income Brazilian semiarid region. A cross-sectional case-control study of diarrhea was conducted in 1,191 children aged 2 to 36 months from the northeast region of Brazil. Stool samples were collected and clinical, epidemiological, and anthropometric data were identified from each child. A broad molecular evaluation of enteropathogens was performed, and EPEC-positive samples were further investigated for 18 VRGs using five multiplex PCRs. EPEC was detected in 28.2% of the study population, with similar proportions among cases and controls. Typical EPEC (tEPEC) infections were more often associated with diarrhea than atypical EPEC (aEPEC) infections, while aEPEC infections presented a higher prevalence. The VRG ler, a negative regulator of the locus of enterocyte effacement, was associated with the absence of diarrhea in aEPEC-positive children; espB, a major component of the type 3 secretion system, was associated with diarrhea in tEPEC-positive children; the presence of procolonization VRGs-the combination of cesT positivity, espP negativity, and the presence of the map gene-was associated with undernutrition; and Campylobacter spp., norovirus, and enteroaggregative E. coli (EAEC) coinfections were associated with increased clinical severity in EPEC-infected children. These data identified tEPEC strains associated with diarrhea and specific VRGs of EPEC (ler, espB, cesT, and map genes) and Campylobacter spp., norovirus, and EAEC to be major contributors to diarrhea and undernutrition in children from a low-income Brazilian region.
Collapse
|
98
|
Liu C, Yang L, Han Y, Ouyang W, Yin W, Xu F. Mast cells participate in regulation of lung-gut axis during Staphylococcus aureus pneumonia. Cell Prolif 2019; 52:e12565. [PMID: 30729611 PMCID: PMC6496676 DOI: 10.1111/cpr.12565] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022] Open
Abstract
Objectives The lung‐gut axis is known to be involved in the pathogenesis of Staphylococcus aureus pneumonia. However, the underlying mechanisms remain unclear. We examined the role of pulmonary mast cells (MCs) in the regulation of the lung‐gut axis during S. aureus pneumonia. Materials and Methods We created a mouse model of S. aureus pneumonia using MC‐deficient mice (KitW‐sh/W‐sh) and examined the level of inflammation, bacterial burden, expression of cathelicidin‐related antimicrobial peptide (CRAMP) and composition of the gut microbiota. We further evaluated anti‐bacterial immunity by administering bone marrow MCs (BMMCs) or CRAMP into the lungs of KitW‐sh/W‐sh mice. Results After S. aureus challenge, the MC‐deficient mice, compared with wild‐type (WT) mice, displayed attenuated lung inflammation, decreased expression of CRAMP, higher bacterial lung load and disturbance of the intestinal microbiota. Adoptive transfer of BMMCs into the lung effectively reconstituted the host defence against S. aureus in KitW‐sh/W‐sh mice, thus resulting in recovery of S. aureus pneumonia‐induced intestinal dysfunction. Similarly, exogenous administration of CRAMP significantly enhanced anti‐bacterial immunity in the lungs of MC‐deficient mice. Conclusions This study provides evidence for the involvement of MCs in the regulation of the lung‐gut axis during S. aureus pneumonia.
Collapse
Affiliation(s)
- Chao Liu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Yang
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Han
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Ouyang
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Yin
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
99
|
Mathew S, Smatti MK, Al Ansari K, Nasrallah GK, Al Thani AA, Yassine HM. Mixed Viral-Bacterial Infections and Their Effects on Gut Microbiota and Clinical Illnesses in Children. Sci Rep 2019; 9:865. [PMID: 30696865 PMCID: PMC6351549 DOI: 10.1038/s41598-018-37162-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023] Open
Abstract
Acute gastroenteritis remains a major cause of morbidity and mortality among young children worldwide. It accounts for approximately 1.34 million deaths annually in children younger than five years. Infection can be caused by viral, bacterial and/or parasitic microorganisms. Dysbiosis due to such infections could dramatically affect disease prognosis as well as development of chronic illness. The aim of this study was to analyze gut microbiome and clinical outcomes in young children suffering from viral or mixed viral-bacterial infection. We evaluated gut microbiota composition in children suffering from viral or mixed viral-bacterial infection with two major viruses rotavirus (RV) and norovirus (NoV) and two pathogenic bacteria [Enteroaggregative E. coli (EAEC), and Enteropathogenic E. coli (EPEC)]. We sequenced 16S ribosomal RNA (V4 region) genes using Illumina MiSeq in 70 hospitalized children suffering from gastroenteric infections plus nine healthy controls. The study summarized Operational Taxonomic Unit (OTU) abundances with the Bray-Curtis index and performed a non-metric multidimensional scaling analysis to visualize microbiome similarities. We used a permutational multivariate analyses of variance to test the significance of group differences. We also analyzed the correlation between microbiome changes and clinical outcomes. Our data demonstrated a significant increase in the severity score in children with viral-bacterial mixed infections compared to those with virus infections alone. Statistical analysis by overall relative abundance denoted lesser proportions of Bacteroides in the infected children, whereas Bifidobacteriaceae richness was more prominent in the bacterial-viral mixed infections. Pairwise differences of gut microbiota were significantly higher in RV + EAEC (P = 0.009) and NoV + EAEC (P = 0.009) co-infections, compared to EPEC mixed infection with both, RV (P = 0.045) and NoV (P = 0.188). Shannon diversity index showed considerable more variation in microbiome diversity in children infected with RV cohort compared to NoV cohort. Our results highlight that richness of Bifidobacteriaceae, which acts as probiotics, increased with the severity of the viral-bacterial mixed infections. As expected, significant reduction of relative numbers of Bacteroides was characterized in both RV and NoV infections, with more reduction observed in co-infection pathogenic E. coli. Although mixed infection with EAEC resulted in significant microbiota differences compared to viral infection only or mixed infection with EPEC, the clinical condition of the children were worsened with both pathogenic E.coli co-infections. Further, in comparison with RV cohort, augmented number of differential abundant pathogenic OTUs were peculiarly noticed only with NoV mixed infection.
Collapse
Affiliation(s)
- Shilu Mathew
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| | - Maria K Smatti
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| | - Khalid Al Ansari
- Pediatric Emergency Center, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar.,Department of Biomedical Science, College of Health Science, Qatar University, Doha, 2713, Qatar
| | - Asmaa A Al Thani
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar.,Department of Biomedical Science, College of Health Science, Qatar University, Doha, 2713, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar. .,Department of Biomedical Science, College of Health Science, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
100
|
Molecular Diagnosis of Diarrheagenic E. coli Infections Among the Pediatric Patients in Wasit Province, Iraq. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|