51
|
Sun M, Li Z, Wang S, Maryu G, Yang Q. Building Dynamic Cellular Machineries in Droplet-Based Artificial Cells with Single-Droplet Tracking and Analysis. Anal Chem 2019; 91:9813-9818. [PMID: 31284720 PMCID: PMC7260773 DOI: 10.1021/acs.analchem.9b01481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although the application of droplet microfluidics has grown exponentially in chemistry and biology over the past decades, robust universal platforms for the routine generation and comprehensive analysis of droplet-based artificial cells are still rare. Here we report using microfluidic droplets to reproduce a variety of types of cellular machinery in in vitro artificial cells. In combination with a unique image-based analysis method, the system enables full automation in tracking single droplets with high accuracy, high throughput, and high sensitivity. These powerful performances allow broad applicability evident in three representative droplet-based analytical prototypes that we develop for (i) droplet digital detection, (ii) in vitro transcription and translation reactions, and (iii) spatiotemporal dynamics of cell-cycle oscillations. The capacities of this platform to generate, incubate, track, and analyze individual microdroplets via real-time, long-term imaging unleash its great potential in accelerating cell-free synthetic biology. Moreover, the wide scope covering from digital to analog to morphological detections makes this droplet analysis technique adaptable for many other divergent types of droplet-based chemical and biological assays.
Collapse
Affiliation(s)
- Meng Sun
- Department of Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhengda Li
- Department of Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Shiyuan Wang
- Department of Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Gembu Maryu
- Department of Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Qiong Yang
- Department of Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
52
|
Aufinger L, Simmel FC. Establishing Communication Between Artificial Cells. Chemistry 2019; 25:12659-12670. [DOI: 10.1002/chem.201901726] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/23/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Lukas Aufinger
- Physics Department and ZNNTechnische Universität München Am Coulombwall 4a 85748 Garching Germany
| | - Friedrich C. Simmel
- Physics Department and ZNNTechnische Universität München Am Coulombwall 4a 85748 Garching Germany
| |
Collapse
|
53
|
Fornell A, Johannesson C, Searle SS, Happstadius A, Nilsson J, Tenje M. An acoustofluidic platform for non-contact trapping of cell-laden hydrogel droplets compatible with optical microscopy. BIOMICROFLUIDICS 2019; 13:044101. [PMID: 31312286 PMCID: PMC6624123 DOI: 10.1063/1.5108583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/20/2019] [Indexed: 05/16/2023]
Abstract
Production of cell-laden hydrogel droplets as miniaturized niches for 3D cell culture provides a new route for cell-based assays. Such production can be enabled by droplet microfluidics and here we present a droplet trapping system based on bulk acoustic waves for handling hydrogel droplets in a continuous flow format. The droplet trapping system consists of a glass capillary equipped with a small piezoelectric transducer. By applying ultrasound (4 MHz), a localized acoustic standing wave field is generated in the capillary, trapping the droplets in a well-defined cluster above the transducer area. The results show that the droplet cluster can be retained at flow rates of up to 76 μl/min, corresponding to an average flow speed of 3.2 mm/s. The system allows for important operations such as continuous perfusion and/or addition of chemical reagents to the encapsulated cells with in situ optical access. This feature is demonstrated by performing on-chip staining of the cell nuclei. The key advantages of this trapping method are that it is label-free and gentle and thus well-suited for biological applications. Moreover, the droplets can easily be released on-demand, which facilitates downstream analysis. It is envisioned that the presented droplet trapping system will be a valuable tool for a wide range of multistep assays as well as long-term monitoring of cells encapsulated in gel-based droplets.
Collapse
Affiliation(s)
- Anna Fornell
- Department of Engineering Sciences, Science for Life Laboratory, Uppsala University, Box 534, 751 21 Uppsala, Sweden
| | - Carl Johannesson
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| | | | - Axel Happstadius
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| | - Johan Nilsson
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden
| | - Maria Tenje
- Department of Engineering Sciences, Science for Life Laboratory, Uppsala University, Box 534, 751 21 Uppsala, Sweden
| |
Collapse
|
54
|
Robinson T. Microfluidic Handling and Analysis of Giant Vesicles for Use as Artificial Cells: A Review. ACTA ACUST UNITED AC 2019; 3:e1800318. [PMID: 32648705 DOI: 10.1002/adbi.201800318] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/22/2019] [Indexed: 01/04/2023]
Abstract
One of the goals of synthetic biology is the bottom-up construction of an artificial cell, the successful realization of which could shed light on how cellular life emerged and could also be a useful tool for studying the function of modern cells. Using liposomes as biomimetic containers is particularly promising because lipid membranes are biocompatible and much of the required machinery can be reconstituted within them. Giant lipid vesicles have been used extensively in other fields such as biophysics and drug discovery, but their use as artificial cells has only recently seen an increase. Despite the prevalence of giant vesicles, many experiments remain challenging or impossible due to their delicate nature compared to biological cells. This review aims to highlight the effectiveness of microfluidic technologies in handling and analyzing giant vesicles. The advantages and disadvantages of different microfluidic approaches and what new insights can be gained from various applications are introduced. Finally, future directions are discussed in which the unique combination of microfluidics and giant lipid vesicles can push forward the bottom-up construction of artificial cells.
Collapse
Affiliation(s)
- Tom Robinson
- Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, 14424, Germany
| |
Collapse
|
55
|
Supramaniam P, Ces O, Salehi-Reyhani A. Microfluidics for Artificial Life: Techniques for Bottom-Up Synthetic Biology. MICROMACHINES 2019; 10:E299. [PMID: 31052344 PMCID: PMC6562628 DOI: 10.3390/mi10050299] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 01/08/2023]
Abstract
Synthetic biology is a rapidly growing multidisciplinary branch of science that exploits the advancement of molecular and cellular biology. Conventional modification of pre-existing cells is referred to as the top-down approach. Bottom-up synthetic biology is an emerging complementary branch that seeks to construct artificial cells from natural or synthetic components. One of the aims in bottom-up synthetic biology is to construct or mimic the complex pathways present in living cells. The recent, and rapidly growing, application of microfluidics in the field is driven by the central tenet of the bottom-up approach-the pursuit of controllably generating artificial cells with precisely defined parameters, in terms of molecular and geometrical composition. In this review we survey conventional methods of artificial cell synthesis and their limitations. We proceed to show how microfluidic approaches have been pivotal in overcoming these limitations and ushering in a new generation of complexity that may be imbued in artificial cells and the milieu of applications that result.
Collapse
Affiliation(s)
- Pashiini Supramaniam
- Department of Chemistry, White City Campus, Imperial College London, London SW7 2AZ, UK.
| | - Oscar Ces
- Department of Chemistry, White City Campus, Imperial College London, London SW7 2AZ, UK.
- FabriCELL, Imperial College London, London SW7 2AZ, UK.
| | - Ali Salehi-Reyhani
- FabriCELL, Imperial College London, London SW7 2AZ, UK.
- Department of Chemistry, King's College London, Britannia House, London SE1 1DB, UK.
| |
Collapse
|
56
|
Stano P. Gene Expression Inside Liposomes: From Early Studies to Current Protocols. Chemistry 2019; 25:7798-7814. [DOI: 10.1002/chem.201806445] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA)University of Salento, Ecotekne 73100 Lecce Italy
| |
Collapse
|
57
|
Ichihashi N. What can we learn from the construction of in vitro replication systems? Ann N Y Acad Sci 2019; 1447:144-156. [PMID: 30957237 DOI: 10.1111/nyas.14042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 01/08/2023]
Abstract
Replication is a central function of living organisms. Several types of replication systems have been constructed in vitro from various molecules, including peptides, DNA, RNA, and proteins. In this review, I summarize the progress in the construction of replication systems over the past few decades and discuss what we can learn from their construction. I introduce various types of replication systems, supporting the feasibility of the spontaneous appearance of replication early in Earth's history. In the latter part of the review, I focus on parasitic replicators, one of the largest obstacles for sustainable replication. Compartmentalization is discussed as a possible solution.
Collapse
Affiliation(s)
- Norikazu Ichihashi
- Graduate School of Arts and Sciences and Komaba Institute for Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
58
|
Sato Y, Takinoue M. Creation of Artificial Cell-Like Structures Promoted by Microfluidics Technologies. MICROMACHINES 2019; 10:E216. [PMID: 30934758 PMCID: PMC6523379 DOI: 10.3390/mi10040216] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023]
Abstract
The creation of artificial cells is an immensely challenging task in science. Artificial cells contribute to revealing the mechanisms of biological systems and deepening our understanding of them. The progress of versatile biological research fields has clarified many biological phenomena, and various artificial cell models have been proposed in these fields. Microfluidics provides useful technologies for the study of artificial cells because it allows the fabrication of cell-like compartments, including water-in-oil emulsions and giant unilamellar vesicles. Furthermore, microfluidics also allows the mimicry of cellular functions with chip devices based on sophisticated chamber design. In this review, we describe contributions of microfluidics to the study of artificial cells. Although typical microfluidic methods are useful for the creation of artificial-cell compartments, recent methods provide further benefits, including low-cost fabrication and a reduction of the sample volume. Microfluidics also allows us to create multi-compartments, compartments with artificial organelles, and on-chip artificial cells. We discuss these topics and the future perspective of microfluidics for the study of artificial cells and molecular robotics.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Computer Science, Tokyo Institute of Technology, Kanagawa 226-8502, Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, Kanagawa 226-8502, Japan
| |
Collapse
|
59
|
Rideau E, Wurm FR, Landfester K. Self‐Assembly of Giant Unilamellar Vesicles by Film Hydration Methodologies. ACTA ACUST UNITED AC 2019; 3:e1800324. [DOI: 10.1002/adbi.201800324] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/01/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Emeline Rideau
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Frederik R. Wurm
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | | |
Collapse
|
60
|
Dopp JL, Rothstein SM, Mansell TJ, Reuel NF. Rapid prototyping of proteins: Mail order gene fragments to assayable proteins within 24 hours. Biotechnol Bioeng 2019; 116:667-676. [DOI: 10.1002/bit.26912] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/08/2018] [Accepted: 12/26/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Jared Lynn Dopp
- Iowa State University Chemical and Biological EngineeringAmes Iowa
| | | | | | | |
Collapse
|
61
|
Dong J, Meissner M, Faers MA, Eggers J, Seddon AM, Royall CP. Opposed flow focusing: evidence of a second order jetting transition. SOFT MATTER 2018; 14:8344-8351. [PMID: 30298898 DOI: 10.1039/c8sm00700d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We propose a novel microfluidic "opposed-flow" geometry in which the continuous fluid phase is fed into a junction in a direction opposite to the dispersed phase. This pulls out the dispersed phase into a micron-sized jet, which decays into micron-sized droplets. As the driving pressure is tuned to a critical value, the jet radius vanishes as a power law down to sizes below 1 μm. By contrast, the conventional "coflowing" junction leads to a first order jetting transition, in which the jet disappears at a finite radius of several μm, to give way to a "dripping" state, resulting in much larger droplets. We demonstrate the effectiveness of our method by producing the first microfluidic silicone oil emulsions with a sub micron particle radius, and utilize these droplets to produce colloidal clusters.
Collapse
Affiliation(s)
- Jun Dong
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK. and Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol, BS8 1FD, UK
| | - Max Meissner
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK. and Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol, BS8 1FD, UK
| | | | - Jens Eggers
- Mathematics Department, University of Bristol, BS8 1TW, Bristol, UK
| | - Annela M Seddon
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK. and Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol, BS8 1FD, UK and Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, BS8 1TL, UK
| | - C Patrick Royall
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK. and Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol, BS8 1FD, UK and Chemistry Department, University of Bristol, Bristol, BS8 1TS, UK
| |
Collapse
|
62
|
Crowe CD, Keating CD. Liquid-liquid phase separation in artificial cells. Interface Focus 2018; 8:20180032. [PMID: 30443328 PMCID: PMC6227770 DOI: 10.1098/rsfs.2018.0032] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) in biology is a recently appreciated means of intracellular compartmentalization. Because the mechanisms driving phase separations are grounded in physical interactions, they can be recreated within less complex systems consisting of only a few simple components, to serve as artificial microcompartments. Within these simple systems, the effect of compartmentalization and microenvironments upon biological reactions and processes can be studied. This review will explore several approaches to incorporating LLPS as artificial cytoplasms and in artificial cells, including both segregative and associative phase separation.
Collapse
Affiliation(s)
| | - Christine D. Keating
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
63
|
Garni M, Einfalt T, Goers R, Palivan CG, Meier W. Live Follow-Up of Enzymatic Reactions Inside the Cavities of Synthetic Giant Unilamellar Vesicles Equipped with Membrane Proteins Mimicking Cell Architecture. ACS Synth Biol 2018; 7:2116-2125. [PMID: 30145889 DOI: 10.1021/acssynbio.8b00104] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Compartmentalization of functional biological units, cells, and organelles serves as an inspiration for the development of biomimetic materials with unprecedented properties and applications in biosensing and medicine. Because of the complexity of cells, the design of ideal functional materials remains a challenge. An elegant strategy to obtain cell-like compartments as novel materials with biofunctionality is the combination of synthetic micrometer-sized giant unilamellar vesicles (GUVs) with biomolecules because it enables studying the behavior of biomolecules and processes within confined cavities. Here we introduce a functional cell-mimetic compartment formed by insertion of the model biopore bacterial membrane protein OmpF in thick synthetic membranes of an artificial GUV compartment that encloses-as a model-the oxidative enzyme horseradish peroxidase. In this manner, a simple and robust cell mimic is designed: the biopore serves as a gate that allows substrates to enter cavities of the GUVs, where they are converted into products by the encapsulated enzyme and then released in the environments of GUVs. Our bioequipped GUVs facilitate the control of specific catalytic reactions in confined microscale spaces mimicking cell size and architecture and thus provide a straightforward approach serving to obtain deeper insights into biological processes inside cells in real time.
Collapse
Affiliation(s)
- Martina Garni
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4002 Basel, Switzerland
| | - Tomaz Einfalt
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4002 Basel, Switzerland
| | - Roland Goers
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4002 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4002 Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4002 Basel, Switzerland
| |
Collapse
|
64
|
Debski PR, Sklodowska K, Michalski JA, Korczyk PM, Dolata M, Jakiela S. Continuous Recirculation of Microdroplets in a Closed Loop Tailored for Screening of Bacteria Cultures. MICROMACHINES 2018; 9:E469. [PMID: 30424402 PMCID: PMC6187375 DOI: 10.3390/mi9090469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 01/29/2023]
Abstract
Emerging microfluidic technology has introduced new precision controls over reaction conditions. Owing to the small amount of reagents, microfluidics significantly lowers the cost of carrying a single reaction. Moreover, in two-phase systems, each part of a dispersed fluid can be treated as an independent chemical reactor with a volume from femtoliters to microliters, increasing the throughput. In this work, we propose a microfluidic device that provides continuous recirculation of droplets in a closed loop, maintaining low consumption of oil phase, no cross-contamination, stabilized temperature, a constant condition of gas exchange, dynamic feedback control on droplet volume, and a real-time optical characterization of bacterial growth in a droplet. The channels (tubing) and junction cubes are made of Teflon fluorinated ethylene propylene (FEP) to ensure non-wetting conditions and to prevent the formation of biofilm, which is particularly crucial for biological experiments. We show the design and operation of a novel microfluidic loop with the circular motion of microdroplet reactors monitored with optical sensors and precision temperature controls. We have employed the proposed system for long term monitoring of bacterial growth during the antibiotic chloramphenicol treatment. The proposed system can find applications in a broad field of biomedical diagnostics and therapy.
Collapse
Affiliation(s)
- Pawel R Debski
- Department of Biophysics, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02776 Warsaw, Poland.
| | - Karolina Sklodowska
- Department of Biophysics, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02776 Warsaw, Poland.
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02776 Warsaw, Poland.
| | - Jacek A Michalski
- Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, 17 Lukasiewicza Street, 09400 Plock, Poland.
| | - Piotr M Korczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02106 Warsaw, Poland.
| | - Miroslaw Dolata
- Department of Econophysics and Physics Application, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02776 Warsaw, Poland.
| | - Slawomir Jakiela
- Department of Biophysics, Warsaw University of Life Sciences, 159 Nowoursynowska Street, 02776 Warsaw, Poland.
| |
Collapse
|
65
|
Schwille P, Spatz J, Landfester K, Bodenschatz E, Herminghaus S, Sourjik V, Erb TJ, Bastiaens P, Lipowsky R, Hyman A, Dabrock P, Baret JC, Vidakovic-Koch T, Bieling P, Dimova R, Mutschler H, Robinson T, Tang TYD, Wegner S, Sundmacher K. MaxSynBio: Wege zur Synthese einer Zelle aus nicht lebenden Komponenten. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802288] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Petra Schwille
- Zelluläre und molekulare Biophysik; MPI für Biochemie; Am Klopferspitz 18 82152 Martinsried Deutschland
| | - Joachim Spatz
- MPI für medizinische Forschung; Jahnstraße 29 69120 Heidelberg Deutschland
| | | | - Eberhard Bodenschatz
- MPI für Dynamik und Selbstorganisation; Am Fassberg 17 37077 Göttingen Deutschland
| | - Stephan Herminghaus
- MPI für Dynamik und Selbstorganisation; Am Fassberg 17 37077 Göttingen Deutschland
| | - Victor Sourjik
- MPI für terrestrische Mikrobiologie; Karl-von-Frisch-Str. 16 35043 Marburg Deutschland
| | - Tobias J. Erb
- MPI für terrestrische Mikrobiologie; Karl-von-Frisch-Str. 16 35043 Marburg Deutschland
| | - Philippe Bastiaens
- MPI für molekulare Physiologie; Otto-Hahn-Str. 11 44227 Dortmund Deutschland
| | - Reinhard Lipowsky
- MPI für Kolloide und Grenzflächen; Wissenschaftspark Golm 14424 Potsdam Deutschland
| | - Anthony Hyman
- MPI für molekulare Zellbiologie und Genetik; Pfotenhauerstraße 108 01307 Dresden Deutschland
| | - Peter Dabrock
- Friedrich-Alexander-Universität Erlangen-Nürnberg; Fachbereich Theologie; Kochstraße 6 91054 Erlangen Deutschland
| | - Jean-Christophe Baret
- University of Bordeaux - Centre de Recherches Paul Pascal; 115 Avenue Schweitze 33600 Pessac Frankreich
| | - Tanja Vidakovic-Koch
- MPI für Dynamik komplexer technischer Systeme; Sandtorstraße 1 39106 Magdeburg Deutschland
| | - Peter Bieling
- MPI für molekulare Physiologie; Otto-Hahn-Str. 11 44227 Dortmund Deutschland
| | - Rumiana Dimova
- MPI für Kolloide und Grenzflächen; Wissenschaftspark Golm 14424 Potsdam Deutschland
| | - Hannes Mutschler
- Zelluläre und molekulare Biophysik; MPI für Biochemie; Am Klopferspitz 18 82152 Martinsried Deutschland
| | - Tom Robinson
- MPI für Kolloide und Grenzflächen; Wissenschaftspark Golm 14424 Potsdam Deutschland
| | - T.-Y. Dora Tang
- MPI für molekulare Zellbiologie und Genetik; Pfotenhauerstraße 108 01307 Dresden Deutschland
| | - Seraphine Wegner
- MPI für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Kai Sundmacher
- MPI für Dynamik komplexer technischer Systeme; Sandtorstraße 1 39106 Magdeburg Deutschland
| |
Collapse
|
66
|
Schwille P, Spatz J, Landfester K, Bodenschatz E, Herminghaus S, Sourjik V, Erb TJ, Bastiaens P, Lipowsky R, Hyman A, Dabrock P, Baret JC, Vidakovic-Koch T, Bieling P, Dimova R, Mutschler H, Robinson T, Tang TYD, Wegner S, Sundmacher K. MaxSynBio: Avenues Towards Creating Cells from the Bottom Up. Angew Chem Int Ed Engl 2018; 57:13382-13392. [PMID: 29749673 DOI: 10.1002/anie.201802288] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/03/2018] [Indexed: 12/18/2022]
Abstract
A large German research consortium mainly within the Max Planck Society ("MaxSynBio") was formed to investigate living systems from a fundamental perspective. The research program of MaxSynBio relies solely on the bottom-up approach to synthetic biology. MaxSynBio focuses on the detailed analysis and understanding of essential processes of life through modular reconstitution in minimal synthetic systems. The ultimate goal is to construct a basic living unit entirely from non-living components. The fundamental insights gained from the activities in MaxSynBio could eventually be utilized for establishing a new generation of biotechnological processes, which would be based on synthetic cell constructs that replace the natural cells currently used in conventional biotechnology.
Collapse
Affiliation(s)
- Petra Schwille
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Joachim Spatz
- MPI for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
| | | | - Eberhard Bodenschatz
- MPI for Dynamics and Self-Organization, Am Fassberg 17, 37077, Göttingen, Germany
| | - Stephan Herminghaus
- MPI for Dynamics and Self-Organization, Am Fassberg 17, 37077, Göttingen, Germany
| | - Victor Sourjik
- MPI for Terrestrial Microbiology, Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| | - Tobias J Erb
- MPI for Terrestrial Microbiology, Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| | - Philippe Bastiaens
- MPI for Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Reinhard Lipowsky
- MPI of Colloids and Interfaces, Wissenschaftspark Golm, 14424, Potsdam, Germany
| | - Anthony Hyman
- MPI of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Peter Dabrock
- Friedrich-Alexander University Erlangen-Nuremberg, Department of Theology, Kochstraße 6, 91054, Erlangen, Germany
| | - Jean-Christophe Baret
- University of Bordeaux -Centre de Recherches Paul Pascal, 115 Avenue Schweitze, 33600, Pessac, France
| | - Tanja Vidakovic-Koch
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Peter Bieling
- MPI for Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Rumiana Dimova
- MPI of Colloids and Interfaces, Wissenschaftspark Golm, 14424, Potsdam, Germany
| | - Hannes Mutschler
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Tom Robinson
- MPI of Colloids and Interfaces, Wissenschaftspark Golm, 14424, Potsdam, Germany
| | - T-Y Dora Tang
- MPI of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Seraphine Wegner
- MPI for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Kai Sundmacher
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| |
Collapse
|
67
|
Yoon DH, Tanaka D, Sekiguchi T, Shoji S. Structural Formation of Oil-in-Water (O/W) and Water-in-Oil-in-Water (W/O/W) Droplets in PDMS Device Using Protrusion Channel without Hydrophilic Surface Treatment. MICROMACHINES 2018; 9:E468. [PMID: 30424401 PMCID: PMC6187530 DOI: 10.3390/mi9090468] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 11/18/2022]
Abstract
This paper presents a simple method of droplet formation using liquids that easily wet polydimethylsiloxane (PDMS) surfaces without any surface treatment. Using only structural features and uniform flow focusing, Oil-in-Water (O/W) and Water-in-Oil-in-Water (W/O/W) droplets were formed in the full PDMS structure. Extrusion channel and three-dimensional flow focusing resulted in effective fluidic conditions for droplet formation and the droplet size could be precisely controlled by controlling the flow rate of each phase. The proposed structure can be utilized as an important element for droplet based research, as well as a droplet generator.
Collapse
Affiliation(s)
- Dong Hyun Yoon
- Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Daiki Tanaka
- Research Organization for Nano & Life Innovation, Waseda University, 513, Tsurumaki-cho, Waseda, Shinjuku-ku, Tokyo 162-0041, Japan.
| | - Tetsushi Sekiguchi
- Research Organization for Nano & Life Innovation, Waseda University, 513, Tsurumaki-cho, Waseda, Shinjuku-ku, Tokyo 162-0041, Japan.
| | - Shuichi Shoji
- Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| |
Collapse
|
68
|
Ding Y, Contreras-Llano LE, Morris E, Mao M, Tan C. Minimizing Context Dependency of Gene Networks Using Artificial Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30137-30146. [PMID: 30113814 DOI: 10.1021/acsami.8b10029] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The functioning of synthetic gene circuits depends on their local chemical context defined by the types and concentrations of biomolecules in the surrounding milieu that influences gene transcription and translation. This chemical-context dependence of synthetic gene circuits arises from significant yet unknown cross talk between engineered components, host cells, and environmental factors and has been a persistent challenge for synthetic biology. Here, we show that the sensitivity of synthetic gene networks to their extracellular chemical contexts can be minimized, and their designed functions rendered robust using artificial cells, which are synthetic biomolecular compartments engineered from the bottom-up using liposomes that encapsulate the gene networks. Our artificial cells detect, interact with, and kill bacteria in simulated external environments with different chemical complexity. Our work enables the engineering of synthetic gene networks with minimal dependency on their extracellular chemical context and creates a new frontier in controlling robustness of synthetic biological systems using bioinspired mechanisms.
Collapse
Affiliation(s)
- Yunfeng Ding
- Department of Biomedical Engineering , University of California Davis , Davis 95616 , California , United States
| | - Luis E Contreras-Llano
- Department of Biomedical Engineering , University of California Davis , Davis 95616 , California , United States
| | - Eliza Morris
- Department of Biomedical Engineering , University of California Davis , Davis 95616 , California , United States
| | - Michelle Mao
- Department of Biomedical Engineering , University of California Davis , Davis 95616 , California , United States
| | - Cheemeng Tan
- Department of Biomedical Engineering , University of California Davis , Davis 95616 , California , United States
| |
Collapse
|
69
|
Altamura E, Carrara P, D'Angelo F, Mavelli F, Stano P. Extrinsic stochastic factors (solute partition) in gene expression inside lipid vesicles and lipid-stabilized water-in-oil droplets: a review. Synth Biol (Oxf) 2018; 3:ysy011. [PMID: 32995519 PMCID: PMC7445889 DOI: 10.1093/synbio/ysy011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 06/18/2018] [Accepted: 06/21/2018] [Indexed: 11/13/2022] Open
Abstract
The encapsulation of transcription-translation (TX-TL) machinery inside lipid vesicles and water-in-oil droplets leads to the construction of cytomimetic systems (often called 'synthetic cells') for synthetic biology and origins-of-life research. A number of recent reports have shown that protein synthesis inside these microcompartments is highly diverse in terms of rate and amount of synthesized protein. Here, we discuss the role of extrinsic stochastic effects (i.e. solute partition phenomena) as relevant factors contributing to this pattern. We evidence and discuss cases where between-compartment diversity seems to exceed the expected theoretical values. The need of accurate determination of solute content inside individual vesicles or droplets is emphasized, aiming at validating or rejecting the predictions calculated from the standard fluctuations theory. At the same time, we promote the integration of experiments and stochastic modeling to reveal the details of solute encapsulation and intra-compartment reactions.
Collapse
Affiliation(s)
- Emiliano Altamura
- Chemistry Department, University of Bari, Via E. Orabona 4, I-70126, Bari, Italy
| | - Paolo Carrara
- Department of Sciences, Roma Tre University, Viale G. Marconi 446, I-00146, Rome, Italy
| | - Francesca D'Angelo
- Department of Sciences, Roma Tre University, Viale G. Marconi 446, I-00146, Rome, Italy
| | - Fabio Mavelli
- Chemistry Department, University of Bari, Via E. Orabona 4, I-70126, Bari, Italy
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Ecotekne, I-73100, Lecce, Italy
| |
Collapse
|
70
|
Zhou X, Wu H, Cui M, Lai SN, Zheng B. Long-lived protein expression in hydrogel particles: towards artificial cells. Chem Sci 2018; 9:4275-4279. [PMID: 29780558 PMCID: PMC5944208 DOI: 10.1039/c8sc00383a] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/14/2018] [Indexed: 12/20/2022] Open
Abstract
Herein we report a new type of cell-mimic particle capable of long-lived protein expression. We constructed the cell-mimic particles by immobilizing the proteinaceous factors of the cell-free transcription and translation system on the polymer backbone of hydrogel particles and encapsulating the plasmid template and ribosome inside the hydrogel. With the continuous supply of nutrients and energy, the protein expression in the cell-mimic particles remained stable for at least 11 days. We achieved the regulation of protein expression in the cell-mimic particles by the usage of lac operon. The cell-mimic particles quickly responded to the concentration change of isopropyl β-d-1-thiogalactopyranoside (IPTG) in the feeding buffer to regulate the mCherry expression level. We also constructed an in vitro genetic oscillator in the cell-mimic particles. Protein LacI provided a negative feedback to the expression of both LacI itself and eGFP, and the expression level change of eGFP presented an oscillation. We expect the cell-mimic particles to be a useful platform for gene circuit engineering, metabolic engineering, and biosensors.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , Hong Kong , P. R. China .
| | - Han Wu
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , Hong Kong , P. R. China .
| | - Miao Cui
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , Hong Kong , P. R. China .
| | - Sze Nga Lai
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , Hong Kong , P. R. China .
| | - Bo Zheng
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , Hong Kong , P. R. China .
| |
Collapse
|
71
|
Okano T, Inoue K, Koseki K, Suzuki H. Deformation Modes of Giant Unilamellar Vesicles Encapsulating Biopolymers. ACS Synth Biol 2018; 7:739-747. [PMID: 29382193 DOI: 10.1021/acssynbio.7b00460] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The shapes of giant unilamellar vesicles (GUVs) enclosing polymer molecules at relatively high concentration, used as a model cytoplasm, significantly differ from those containing only small molecules. Here, we investigated the effects of the molecular weights and concentrations of polymers such as polyethylene glycol (PEG), bovine serum albumin (BSA), and DNA on the morphology of GUVs deflated by osmotic pressure. Although small PEG (MW < 1000) does not alter the mode of shape transformation even at >10% (w/w), PEG with MW > 6000 induces budding and pearling transformation at above 1% (w/w). Larger PEG frequently induced small buddings and tubulation from the membrane of mother GUVs. A similar trend was observed with BSA, indicating that the effect is irrelevant to the chemical nature of polymers. More surprisingly, long strands of DNA (>105 bp) enclosed in GUVs induced budding transformation at concentrations as low as 0.01-0.1% (w/w). We expect that this molecular size dependency arises mainly from the depletion volume effect. Our results showed that curving, budding, and tubulation of lipid membranes, which are ubiquitous in living cells, can result from simple cell-mimics consisting of the membrane and cytosolic macromolecules, but without specific shape-determining proteins.
Collapse
Affiliation(s)
- Taiji Okano
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Koya Inoue
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kaoru Koseki
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hiroaki Suzuki
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
72
|
Čejková J, Hanczyc MM, Štěpánek F. Multi-Armed Droplets as Shape-Changing Protocells. ARTIFICIAL LIFE 2018; 24:71-79. [PMID: 29369709 DOI: 10.1162/artl_a_00255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Protocells are objects that mimic one or several functions of biological cells and may be embodied as solid particles, lipid vesicles, or droplets. Our work is based on using decanol droplets in an aqueous solution of sodium decanoate in the presence of salt. A decanol droplet under such conditions bears many qualitative similarities with living cells, such as the ability to move chemotactically, divide and fuse, or change its shape. This article focuses on the description of a shape-changing process induced by the evaporation of water from the decanoate solution. Under these conditions, the droplets perform complex shape changes, whereby the originally round decanol droplets grow into branching patterns and mimic the growth of appendages in bacteria or axon growth of neuronal cells. We report two outcomes: (i) the morphological changes are reversible, and (ii) multiple protocells avoid contact between each other during the morphological transformation. The importance of these morphological changes in the context of artificial life are discussed.
Collapse
Affiliation(s)
- Jitka Čejková
- * Chemical Robotics Laboratory, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28, Czech Republic. E-mail:
| | - Martin M Hanczyc
- Laboratory for Artificial Biology, Centre for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, I-38123 Povo (TN), Italy; Chemical and Biological Engineering, University of New Mexico, USA. E-mail:
| | - František Štěpánek
- Chemical Robotics Laboratory, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28, Czech Republic. E-mail:
| |
Collapse
|
73
|
Weiss M, Frohnmayer JP, Benk LT, Haller B, Janiesch JW, Heitkamp T, Börsch M, Lira RB, Dimova R, Lipowsky R, Bodenschatz E, Baret JC, Vidakovic-Koch T, Sundmacher K, Platzman I, Spatz JP. Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. NATURE MATERIALS 2018; 17:89-96. [PMID: 29035355 DOI: 10.1038/nmat5005] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/12/2017] [Indexed: 05/21/2023]
Abstract
Compartments for the spatially and temporally controlled assembly of biological processes are essential towards cellular life. Synthetic mimics of cellular compartments based on lipid-based protocells lack the mechanical and chemical stability to allow their manipulation into a complex and fully functional synthetic cell. Here, we present a high-throughput microfluidic method to generate stable, defined sized liposomes termed 'droplet-stabilized giant unilamellar vesicles (dsGUVs)'. The enhanced stability of dsGUVs enables the sequential loading of these compartments with biomolecules, namely purified transmembrane and cytoskeleton proteins by microfluidic pico-injection technology. This constitutes an experimental demonstration of a successful bottom-up assembly of a compartment with contents that would not self-assemble to full functionality when simply mixed together. Following assembly, the stabilizing oil phase and droplet shells are removed to release functional self-supporting protocells to an aqueous phase, enabling them to interact with physiologically relevant matrices.
Collapse
Affiliation(s)
- Marian Weiss
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Johannes Patrick Frohnmayer
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Lucia Theresa Benk
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Barbara Haller
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Jan-Willi Janiesch
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Thomas Heitkamp
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Rafael B Lira
- Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Rumiana Dimova
- Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Reinhard Lipowsky
- Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Eberhard Bodenschatz
- Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Jean-Christophe Baret
- Droplets, Membranes and Interfaces, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Soft Micro Systems, CNRS, Univ. Bordeaux, CRPP, UPR 8641, 115 Avenue Schweitzer, 33600 Pessac, France
| | - Tanja Vidakovic-Koch
- Process System Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Kai Sundmacher
- Process System Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
- Otto-von-Guericke University Magdeburg, Process Systems Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Ilia Platzman
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| |
Collapse
|
74
|
Rideau E, Wurm FR, Landfester K. Giant polymersomes from non-assisted film hydration of phosphate-based block copolymers. Polym Chem 2018. [DOI: 10.1039/c8py00992a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polybutadiene-block-poly(ethyl ethylene phosphate) can reproducibly self-assemble in large number into giant unilamellar vesicles (GUVs) by non-assisted film hydration, representing a stepping stone for better liposomes – substitutes towards the generation of artificial cells.
Collapse
Affiliation(s)
- Emeline Rideau
- Max-Planck-Institut für Polymerforschung
- 55128 Mainz
- Germany
| | | | | |
Collapse
|
75
|
Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem Soc Rev 2018; 47:8572-8610. [DOI: 10.1039/c8cs00162f] [Citation(s) in RCA: 521] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Minimal cells: we compare and contrast liposomes and polymersomes for a bettera priorichoice and design of vesicles and try to understand the advantages and shortcomings associated with using one or the other in many different aspects (properties, synthesis, self-assembly, applications).
Collapse
Affiliation(s)
- Emeline Rideau
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Rumiana Dimova
- Max Planck Institute for Colloids and Interfaces
- Wissenschaftspark Potsdam-Golm
- 14476 Potsdam
- Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry
- 82152 Martinsried
- Germany
| | | | | |
Collapse
|
76
|
Choi JW, Lee JM, Kim TH, Ha JH, Ahrberg CD, Chung BG. Dual-nozzle microfluidic droplet generator. NANO CONVERGENCE 2018; 5:12. [PMID: 29755924 PMCID: PMC5938299 DOI: 10.1186/s40580-018-0145-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/21/2018] [Indexed: 05/10/2023]
Abstract
The droplet-generating microfluidics has become an important technique for a variety of applications ranging from single cell analysis to nanoparticle synthesis. Although there are a large number of methods for generating and experimenting with droplets on microfluidic devices, the dispensing of droplets from these microfluidic devices is a challenge due to aggregation and merging of droplets at the interface of microfluidic devices. Here, we present a microfluidic dual-nozzle device for the generation and dispensing of uniform-sized droplets. The first nozzle of the microfluidic device is used for the generation of the droplets, while the second nozzle can accelerate the droplets and increase the spacing between them, allowing for facile dispensing of droplets. Computational fluid dynamic simulations were conducted to optimize the design parameters of the microfluidic device.
Collapse
Affiliation(s)
- Ji Wook Choi
- Department of Mechanical Engineering, Sogang University, Seoul, 04107 Republic of Korea
| | - Jong Min Lee
- Department of Mechanical Engineering, Sogang University, Seoul, 04107 Republic of Korea
| | - Tae Hyun Kim
- Department of Mechanical Engineering, Sogang University, Seoul, 04107 Republic of Korea
| | - Jang Ho Ha
- Department of Mechanical Engineering, Sogang University, Seoul, 04107 Republic of Korea
| | | | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, 04107 Republic of Korea
| |
Collapse
|
77
|
Gach PC, Iwai K, Kim PW, Hillson NJ, Singh AK. Droplet microfluidics for synthetic biology. LAB ON A CHIP 2017; 17:3388-3400. [PMID: 28820204 DOI: 10.1039/c7lc00576h] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Synthetic biology is an interdisciplinary field that aims to engineer biological systems for useful purposes. Organism engineering often requires the optimization of individual genes and/or entire biological pathways (consisting of multiple genes). Advances in DNA sequencing and synthesis have recently begun to enable the possibility of evaluating thousands of gene variants and hundreds of thousands of gene combinations. However, such large-scale optimization experiments remain cost-prohibitive to researchers following traditional molecular biology practices, which are frequently labor-intensive and suffer from poor reproducibility. Liquid handling robotics may reduce labor and improve reproducibility, but are themselves expensive and thus inaccessible to most researchers. Microfluidic platforms offer a lower entry price point alternative to robotics, and maintain high throughput and reproducibility while further reducing operating costs through diminished reagent volume requirements. Droplet microfluidics have shown exceptional promise for synthetic biology experiments, including DNA assembly, transformation/transfection, culturing, cell sorting, phenotypic assays, artificial cells and genetic circuits.
Collapse
Affiliation(s)
- Philip C Gach
- Technology Division, DOE Joint BioEnergy Institute, Emeryville, California 94608, USA
| | | | | | | | | |
Collapse
|
78
|
Petriashvili G, De Santo MP, Hernandez RJ, Barberi R, Cipparrone G. Mixed emulsion of liquid crystal microresonators: towards white laser systems. SOFT MATTER 2017; 13:6227-6233. [PMID: 28805217 DOI: 10.1039/c7sm01068k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microdroplet systems have attracted great interest because of their wide range of applications, easiness in processing and handling, feasibility in developing miniaturized devices with high performances and large flexibility. In this study, a stable emulsion based on different dye-doped chiral liquid crystal droplets has been engineered in order to achieve simultaneous omnidirectional lasing at different wavelengths. To obtain the mixed emulsion of dye doped Bragg onion-type microresonators the twofold action, as a surfactant and a droplet stabilizer, of the polyvinyl alcohol dissolved in water has been exploited. Multiple wavelengths lasing in all directions around the mixed emulsion is demonstrated. By water evaporation, a plastic sheet including different types of chiral droplets is also obtained, retaining all the emission characteristic of the precursor emulsion. A relevant feature is the large flexibility of the preparation method that enables an easy and full control of the lasing spectrum addressing white laser systems. However, the simplicity of the procedure based on a single-step process as well as the high stability of the mixed emulsion is a relevant result, envisaging strong potentiality for developing easy and friendly technologies useful in the field of identification, sensing, imaging, coating and lab-on-a-chip architectures.
Collapse
Affiliation(s)
- Gia Petriashvili
- Institute of Cybernetics, Georgian Technical University, 0175 Tbilisi, Georgia
| | | | | | | | | |
Collapse
|
79
|
Itel F, Schattling PS, Zhang Y, Städler B. Enzymes as key features in therapeutic cell mimicry. Adv Drug Deliv Rev 2017; 118:94-108. [PMID: 28916495 DOI: 10.1016/j.addr.2017.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/21/2017] [Accepted: 09/07/2017] [Indexed: 11/19/2022]
Abstract
Cell mimicry is a nature inspired concept that aims to substitute for missing or lost (sub)cellular function. This review focuses on the latest advancements in the use of enzymes in cell mimicry for encapsulated catalysis and artificial motility in synthetic bottom-up assemblies with emphasis on the biological response in cell culture or more rarely in animal models. Entities across the length scale from nano-sized enzyme mimics, sub-micron sized artificial organelles and self-propelled particles (swimmers) to micron-sized artificial cells are discussed. Although the field remains in its infancy, the primary aim of this review is to illustrate the advent of nature-mimicking artificial molecules and assemblies on their way to become a complementary alternative to their role models for diverse biomedical purposes.
Collapse
Affiliation(s)
- Fabian Itel
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Philipp S Schattling
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Yan Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark.
| |
Collapse
|
80
|
Huang Y, Kim SH, Arriaga LR. Emulsion templated vesicles with symmetric or asymmetric membranes. Adv Colloid Interface Sci 2017; 247:413-425. [PMID: 28802479 DOI: 10.1016/j.cis.2017.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
Emulsion droplets with well-controlled topologies are used as templates for forming vesicles with either symmetric or asymmetric membranes. This review summarizes the available technology to produce these templates, the strategies and critical parameters involved in the transformation of emulsion droplets into vesicles, and the properties of the generated vesicles, with a special focus on the composition and material distribution of the vesicle membrane. Here, we also address limitations in the field and point to future fundamental and applied research in the area.
Collapse
|
81
|
Doran D, Rodriguez-Garcia M, Turk-MacLeod R, Cooper GJT, Cronin L. A recursive microfluidic platform to explore the emergence of chemical evolution. Beilstein J Org Chem 2017; 13:1702-1709. [PMID: 28904613 PMCID: PMC5564272 DOI: 10.3762/bjoc.13.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/01/2017] [Indexed: 11/23/2022] Open
Abstract
We propose that a chemically agnostic approach to explore the origin of life, using an automated recursive platform based on droplet microfluidics, could be used to induce artificial chemical evolution by iterations of growth, speciation, selection, and propagation. To explore this, we set about designing an open source prototype of a fully automated evolution machine, comprising seven modules. These modules are a droplet generator, droplet transfer, passive and active size sorting, splitter, incubation chamber, reservoir, and injectors, all run together via a LabVIEWTM program integration system. Together we aim for the system to be used to drive cycles of droplet birth, selection, fusion, and propagation. As a proof of principle, in addition to the working individual modules, we present data showing the osmotic exchange of glycylglycine containing and pure aqueous droplets, showing that the fittest droplets exhibit higher osomolarity relative to their neighbours, and increase in size compared to their neighbours. This demonstrates the ability of our platform to explore some different physicochemical conditions, combining the efficiency and unbiased nature of automation with our ability to select droplets as functional units based on simple criteria.
Collapse
Affiliation(s)
- David Doran
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Marc Rodriguez-Garcia
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Rebecca Turk-MacLeod
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Geoffrey J T Cooper
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Leroy Cronin
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
82
|
|
83
|
Salehi-Reyhani A, Ces O, Elani Y. Artificial cell mimics as simplified models for the study of cell biology. Exp Biol Med (Maywood) 2017; 242:1309-1317. [PMID: 28580796 PMCID: PMC5528198 DOI: 10.1177/1535370217711441] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Living cells are hugely complex chemical systems composed of a milieu of distinct chemical species (including DNA, proteins, lipids, and metabolites) interconnected with one another through a vast web of interactions: this complexity renders the study of cell biology in a quantitative and systematic manner a difficult task. There has been an increasing drive towards the utilization of artificial cells as cell mimics to alleviate this, a development that has been aided by recent advances in artificial cell construction. Cell mimics are simplified cell-like structures, composed from the bottom-up with precisely defined and tunable compositions. They allow specific facets of cell biology to be studied in isolation, in a simplified environment where control of variables can be achieved without interference from a living and responsive cell. This mini-review outlines the core principles of this approach and surveys recent key investigations that use cell mimics to address a wide range of biological questions. It will also place the field in the context of emerging trends, discuss the associated limitations, and outline future directions of the field. Impact statement Recent years have seen an increasing drive to construct cell mimics and use them as simplified experimental models to replicate and understand biological phenomena in a well-defined and controlled system. By summarizing the advances in this burgeoning field, and using case studies as a basis for discussion on the limitations and future directions of this approach, it is hoped that this minireview will spur others in the experimental biology community to use artificial cells as simplified models with which to probe biological systems.
Collapse
Affiliation(s)
| | - Oscar Ces
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Yuval Elani
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
84
|
Bermudez JG, Chen H, Einstein LC, Good MC. Probing the biology of cell boundary conditions through confinement of Xenopus cell-free cytoplasmic extracts. Genesis 2017; 55. [PMID: 28132422 DOI: 10.1002/dvg.23013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 11/11/2022]
Abstract
Cell-free cytoplasmic extracts prepared from Xenopus eggs and embryos have for decades provided a biochemical system with which to interrogate complex cell biological processes in vitro. Recently, the application of microfabrication and microfluidic strategies in biology has narrowed the gap between in vitro and in vivo studies by enabling formation of cell-size compartments containing functional cytoplasm. These approaches provide numerous advantages over traditional biochemical experiments performed in a test tube. Most notably, the cell-free cytoplasm is confined using a two- or three-dimensional boundary, which mimics the natural configuration of a cell. This strategy enables characterization of the spatial organization of a cell, and the role that boundaries play in regulating intracellular assembly and function. In this review, we describe the marriage of Xenopus cell-free cytoplasm and confinement technologies to generate synthetic cell-like systems, the recent biological insights they have enabled, and the promise they hold for future scientific discovery.
Collapse
Affiliation(s)
- Jessica G Bermudez
- Department of Bioengineering, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| | - Hui Chen
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| | - Lily C Einstein
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| | - Matthew C Good
- Department of Bioengineering, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104.,Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
85
|
Abstract
A three-dimensional (3D) tissue model has significant advantages over the conventional two-dimensional (2D) model. A 3D model mimics the relevant in-vivo physiological conditions, allowing a cell culture to serve as an effective tool for drug discovery, tissue engineering, and the investigation of disease pathology. The present reviews highlight the recent advances and the development of microfluidics based methods for the generation of cell spheroids. The paper emphasizes on the application of microfluidic technology for tissue engineering including the formation of multicellular spheroids (MCS). Further, the paper discusses the recent technical advances in the integration of microfluidic devices for MCS-based high-throughput drug screening. The review compares the various microfluidic techniques and finally provides a perspective for the future opportunities in this research area.
Collapse
|
86
|
Mohammadi M, Ramezani M, Abnous K, Alibolandi M. Biocompatible polymersomes-based cancer theranostics: Towards multifunctional nanomedicine. Int J Pharm 2017; 519:287-303. [DOI: 10.1016/j.ijpharm.2017.01.037] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 01/20/2023]
|
87
|
Armada-Moreira A, Taipaleenmäki E, Itel F, Zhang Y, Städler B. Droplet-microfluidics towards the assembly of advanced building blocks in cell mimicry. NANOSCALE 2016; 8:19510-19522. [PMID: 27858045 DOI: 10.1039/c6nr07807a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Therapeutic cell mimicry is an approach in nanomedicine aiming at substituting for missing or lost cellular functions employing nature-inspired concepts. Pioneered decades ago, only now is this technology empowered with the arsenal of nanotechnological tools and ready to provide radically new solutions such as assembling synthetic organelles and artificial cells. One of these tools is droplet microfluidics (D-μF), which provides the flexibility to generate cargo-loaded particles with tunable size and shape in a fast and reliable manner, an essential requirement in cell mimicry. This minireview aims at outlining the developments in D-μF from the past four years focusing on the assembly of nanoparticles, Janus-shaped and other non-spherical particles as well as their loading with biological payloads.
Collapse
Affiliation(s)
- Adam Armada-Moreira
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark. and Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal and Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Essi Taipaleenmäki
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Fabian Itel
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Yan Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| |
Collapse
|
88
|
Thiele J. Polymer Material Design by Microfluidics Inspired by Cell Biology and Cell-Free Biotechnology. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Julian Thiele
- Leibniz-Institut für Polymerforschung Dresden e. V; Leibniz Research Cluster (LRC); Hohe Straße 6 01069 Dresden Germany
| |
Collapse
|
89
|
Kaminski CF, da Cruz Vasconcellos F, Hadeler O. Introduction to ‘Sensors in technology and nature’. Interface Focus 2016. [DOI: 10.1098/rsfs.2016.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|