51
|
Circulating Tumor Cells: From the Laboratory to the Cancer Clinic. Cancers (Basel) 2020; 12:cancers12103065. [PMID: 33092279 PMCID: PMC7589818 DOI: 10.3390/cancers12103065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022] Open
|
52
|
Notch Transduction in Non-Small Cell Lung Cancer. Int J Mol Sci 2020; 21:ijms21165691. [PMID: 32784481 PMCID: PMC7461113 DOI: 10.3390/ijms21165691] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily-conserved Notch signaling pathway plays critical roles in cell communication, function and homeostasis equilibrium. The pathway serves as a cell-to-cell juxtaposed molecular transducer and is crucial in a number of cell processes including cell fate specification, asymmetric cell division and lateral inhibition. Notch also plays critical roles in organismal development, homeostasis, and regeneration, including somitogenesis, left-right asymmetry, neurogenesis, tissue repair, self-renewal and stemness, and its dysregulation has causative roles in a number of congenital and acquired pathologies, including cancer. In the lung, Notch activity is necessary for cell fate specification and expansion, and its aberrant activity is markedly linked to various defects in club cell formation, alveologenesis, and non-small cell lung cancer (NSCLC) development. In this review, we focus on the role this intercellular signaling device plays during lung development and on its functional relevance in proximo-distal cell fate specification, branching morphogenesis, and alveolar cell determination and maturation, then revise its involvement in NSCLC formation, progression and treatment refractoriness, particularly in the context of various mutational statuses associated with NSCLC, and, lastly, conclude by providing a succinct outlook of the therapeutic perspectives of Notch targeting in NSCLC therapy, including an overview on prospective synthetic lethality approaches.
Collapse
|
53
|
Bocci F, Onuchic JN, Jolly MK. Understanding the Principles of Pattern Formation Driven by Notch Signaling by Integrating Experiments and Theoretical Models. Front Physiol 2020; 11:929. [PMID: 32848867 PMCID: PMC7411240 DOI: 10.3389/fphys.2020.00929] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Notch signaling is an evolutionary conserved cell-cell communication pathway. Besides regulating cell-fate decisions at an individual cell level, Notch signaling coordinates the emergent spatiotemporal patterning in a tissue through ligand-receptor interactions among transmembrane molecules of neighboring cells, as seen in embryonic development, angiogenesis, or wound healing. Due to its ubiquitous nature, Notch signaling is also implicated in several aspects of cancer progression, including tumor angiogenesis, stemness of cancer cells and cellular invasion. Here, we review experimental and computational models that help understand the operating principles of cell patterning driven by Notch signaling. First, we discuss the basic mechanisms of spatial patterning via canonical lateral inhibition and lateral induction mechanisms, including examples from angiogenesis, inner ear development and cancer metastasis. Next, we analyze additional layers of complexity in the Notch pathway, including the effect of varying cell sizes and shapes, ligand-receptor binding within the same cell, variable binding affinity of different ligand/receptor subtypes, and filopodia. Finally, we discuss some recent evidence of mechanosensitivity in the Notch pathway in driving collective epithelial cell migration and cardiovascular morphogenesis.
Collapse
Affiliation(s)
- Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Physics and Astronomy, Rice University, Houston, TX, United States
- Department of Chemistry, Rice University, Houston, TX, United States
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
54
|
Celià-Terrassa T, Jolly MK. Cancer Stem Cells and Epithelial-to-Mesenchymal Transition in Cancer Metastasis. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036905. [PMID: 31570380 DOI: 10.1101/cshperspect.a036905] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cancer stem cell (CSC) concept stands for undifferentiated tumor cells with the ability to initiate heterogeneous tumors. It is also relevant in metastasis and can explain how metastatic tumors mirror the heterogeneity of primary tumors. Cellular plasticity, including the epithelial-to-mesenchymal transition (EMT), enables the generation of CSCs at different steps of the metastatic process including metastatic colonization. In this review, we update the concept of CSCs and provide evidence of the existence of metastatic stem cells (MetSCs). In addition, we highlight the nuanced understanding of EMT that has been gained recently and the association of mesenchymal-to-epithelial transition (MET) with the acquisition of CSCs properties during metastasis. We also comment on the computational approaches that have profoundly influenced our understanding of CSCs and EMT; and how these studies and new experimental technologies can yield a deeper understanding of the biological aspects of metastasis.
Collapse
Affiliation(s)
- Toni Celià-Terrassa
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
55
|
Genna A, Vanwynsberghe AM, Villard AV, Pottier C, Ancel J, Polette M, Gilles C. EMT-Associated Heterogeneity in Circulating Tumor Cells: Sticky Friends on the Road to Metastasis. Cancers (Basel) 2020; 12:E1632. [PMID: 32575608 PMCID: PMC7352430 DOI: 10.3390/cancers12061632] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) generate hybrid phenotypes with an enhanced ability to adapt to diverse microenvironments encountered during the metastatic spread. Accordingly, EMTs play a crucial role in the biology of circulating tumor cells (CTCs) and contribute to their heterogeneity. Here, we review major EMT-driven properties that may help hybrid Epithelial/Mesenchymal CTCs to survive in the bloodstream and accomplish early phases of metastatic colonization. We then discuss how interrogating EMT in CTCs as a companion biomarker could help refine cancer patient management, further supporting the relevance of CTCs in personalized medicine.
Collapse
Affiliation(s)
- Anthony Genna
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Aline M. Vanwynsberghe
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Amélie V. Villard
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Charles Pottier
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
- Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium
| | - Julien Ancel
- CHU (Centre Hopitalier Universitaire) de Reims, Hôpital Maison Blanche, Service de Pneumologie, 51092 Reims, France;
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
| | - Myriam Polette
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
- CHU de Reims, Hôpital Maison Blanche, Laboratoire de Pathologie, 51092 Reims, France
| | - Christine Gilles
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| |
Collapse
|
56
|
Ranganathan S, Kumar S, Mohanty SS, Jolly MK, Rangarajan A. Cellular Plasticity in Matrix-attached and -Detached Cells: Implications in Metastasis. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00179-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
57
|
Cortesi M, Liverani C, Mercatali L, Ibrahim T, Giordano E. Computational models to explore the complexity of the epithelial to mesenchymal transition in cancer. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1488. [PMID: 32208556 DOI: 10.1002/wsbm.1488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 01/06/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a complex biological process that plays a key role in cancer progression and metastasis formation. Its activation results in epithelial cells losing adhesion and polarity and becoming capable of migrating from their site of origin. At this step the disease is generally considered incurable. As EMT execution involves several individual molecular components, connected by nontrivial relations, in vitro techniques are often inadequate to capture its complexity. Computational models can be used to complement experiments and provide additional knowledge difficult to build up in a wetlab. Indeed in silico analysis gives the user total control on the system, allowing to identify the contribution of each independent element. In the following, two kinds of approaches to the computational study of EMT will be presented. The first relies on signal transduction networks description and details how changes in gene expression could influence this process, both focusing on specific aspects of the EMT and providing a general frame for this phenomenon easily comparable with experimental data. The second integrates single cell and population level descriptions in a multiscale model that can be considered a more accurate representation of the EMT. The advantages and disadvantages of each approach will be highlighted, together with the importance of coupling computational and experimental results. Finally, the main challenges that need to be addressed to improve our knowledge of the role of EMT in the neoplastic disease and the scientific and translational value of computational models in this respect will be presented. This article is categorized under: Analytical and Computational Methods > Computational Methods.
Collapse
Affiliation(s)
- Marilisa Cortesi
- Laboratory of Cellular and Molecular Engineering "S. Cavalcanti", Department of Electrical, Electronic and Information Engineering "G. Marconi" (DEI), Alma Mater Studiorum - University of Bologna, Cesena, Italy
| | - Chiara Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Emanuele Giordano
- Laboratory of Cellular and Molecular Engineering "S. Cavalcanti", Department of Electrical, Electronic and Information Engineering "G. Marconi" (DEI), Alma Mater Studiorum - University of Bologna, Cesena, Italy.,BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum - University of Bologna, Bologna, Italy.,Advanced Research Center on Electronic Systems (ARCES), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
58
|
Tripathi S, Chakraborty P, Levine H, Jolly MK. A mechanism for epithelial-mesenchymal heterogeneity in a population of cancer cells. PLoS Comput Biol 2020; 16:e1007619. [PMID: 32040502 PMCID: PMC7034928 DOI: 10.1371/journal.pcbi.1007619] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 02/21/2020] [Accepted: 12/20/2019] [Indexed: 12/15/2022] Open
Abstract
Epithelial-mesenchymal heterogeneity implies that cells within the same tumor can exhibit different phenotypes-epithelial, mesenchymal, or one or more hybrid epithelial-mesenchymal phenotypes. This behavior has been reported across cancer types, both in vitro and in vivo, and implicated in multiple processes associated with metastatic aggressiveness including immune evasion, collective dissemination of tumor cells, and emergence of cancer cell subpopulations with stem cell-like properties. However, the ability of a population of cancer cells to generate, maintain, and propagate this heterogeneity has remained a mystifying feature. Here, we used a computational modeling approach to show that epithelial-mesenchymal heterogeneity can emerge from the noise in the partitioning of biomolecules (such as RNAs and proteins) among daughter cells during the division of a cancer cell. Our model captures the experimentally observed temporal changes in the fractions of different phenotypes in a population of murine prostate cancer cells, and describes the hysteresis in the population-level dynamics of epithelial-mesenchymal plasticity. The model is further able to predict how factors known to promote a hybrid epithelial-mesenchymal phenotype can alter the phenotypic composition of a population. Finally, we used the model to probe the implications of phenotypic heterogeneity and plasticity for different therapeutic regimens and found that co-targeting of epithelial and mesenchymal cells is likely to be the most effective strategy for restricting tumor growth. By connecting the dynamics of an intracellular circuit to the phenotypic composition of a population, our study serves as a first step towards understanding the generation and maintenance of non-genetic heterogeneity in a population of cancer cells, and towards the therapeutic targeting of phenotypic heterogeneity and plasticity in cancer cell populations.
Collapse
Affiliation(s)
- Shubham Tripathi
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, United States of America
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States of America
- Department of Physics, Northeastern University, Boston, MA, United States of America
| | - Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States of America
- Department of Physics, Northeastern University, Boston, MA, United States of America
- * E-mail: (H.L.); (M.K.J.)
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
- * E-mail: (H.L.); (M.K.J.)
| |
Collapse
|
59
|
Notch signaling and taxis mechanisms regulate early stage angiogenesis: A mathematical and computational model. PLoS Comput Biol 2020; 16:e1006919. [PMID: 31986145 PMCID: PMC7021322 DOI: 10.1371/journal.pcbi.1006919] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 02/14/2020] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
During angiogenesis, new blood vessels sprout and grow from existing ones. This process plays a crucial role in organ development and repair, in wound healing and in numerous pathological processes such as cancer progression or diabetes. Here, we present a mathematical model of early stage angiogenesis that permits exploration of the relative importance of mechanical, chemical and cellular cues. Endothelial cells proliferate and move over an extracellular matrix by following external gradients of Vessel Endothelial Growth Factor, adhesion and stiffness, which are incorporated to a Cellular Potts model with a finite element description of elasticity. The dynamics of Notch signaling involving Delta-4 and Jagged-1 ligands determines tip cell selection and vessel branching. Through their production rates, competing Jagged-Notch and Delta-Notch dynamics determine the influence of lateral inhibition and lateral induction on the selection of cellular phenotypes, branching of blood vessels, anastomosis (fusion of blood vessels) and angiogenesis velocity. Anastomosis may be favored or impeded depending on the mechanical configuration of strain vectors in the ECM near tip cells. Numerical simulations demonstrate that increasing Jagged production results in pathological vasculatures with thinner and more abundant vessels, which can be compensated by augmenting the production of Delta ligands. Angiogenesis is the process by which new blood vessels grow from existing ones. This process plays a crucial role in organ development, in wound healing and in numerous pathological processes such as cancer growth or in diabetes. Angiogenesis is a complex, multi-step and well regulated process where biochemistry and physics are intertwined. The process entails signaling in vessel cells being driven by both chemical and mechanical mechanisms that result in vascular cell movement, deformation and proliferation. Mathematical models have the ability to bring together these mechanisms in order to explore their relative relevance in vessel growth. Here, we present a mathematical model of early stage angiogenesis that is able to explore the role of biochemical signaling and tissue mechanics. We use this model to unravel the regulating role of Jagged, Notch and Delta dynamics in vascular cells. These membrane proteins have an important part in determining the leading cell in each neo-vascular sprout. Numerical simulations demonstrate that increasing Jagged production results in pathological vasculatures with thinner and more abundant vessels, which can be compensated by augmenting the production of Delta ligands.
Collapse
|
60
|
Jolly MK, Celià-Terrassa T. Dynamics of Phenotypic Heterogeneity Associated with EMT and Stemness during Cancer Progression. J Clin Med 2019; 8:E1542. [PMID: 31557977 PMCID: PMC6832750 DOI: 10.3390/jcm8101542] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic and phenotypic heterogeneity contribute to the generation of diverse tumor cell populations, thus enhancing cancer aggressiveness and therapy resistance. Compared to genetic heterogeneity, a consequence of mutational events, phenotypic heterogeneity arises from dynamic, reversible cell state transitions in response to varying intracellular/extracellular signals. Such phenotypic plasticity enables rapid adaptive responses to various stressful conditions and can have a strong impact on cancer progression. Herein, we have reviewed relevant literature on mechanisms associated with dynamic phenotypic changes and cellular plasticity, such as epithelial-mesenchymal transition (EMT) and cancer stemness, which have been reported to facilitate cancer metastasis. We also discuss how non-cell-autonomous mechanisms such as cell-cell communication can lead to an emergent population-level response in tumors. The molecular mechanisms underlying the complexity of tumor systems are crucial for comprehending cancer progression, and may provide new avenues for designing therapeutic strategies.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Toni Celià-Terrassa
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain.
| |
Collapse
|
61
|
Jia W, Deshmukh A, Mani SA, Jolly MK, Levine H. A possible role for epigenetic feedback regulation in the dynamics of the epithelial-mesenchymal transition (EMT). Phys Biol 2019; 16:066004. [PMID: 31342918 DOI: 10.1088/1478-3975/ab34df] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The epithelial-mesenchymal transition (EMT) often plays a critical role in cancer metastasis and chemoresistance, and decoding its dynamics is crucial to design effective therapeutics. EMT is regulated at multiple levels-transcriptional, translational, protein stability and epigenetics; the mechanisms by which epigenetic regulation can alter the dynamics of EMT remain elusive. Here, to identify the possible effects of epigenetic regulation in EMT, we incorporate a feedback term in our previously proposed model of EMT regulation of the miR-200/ZEB/miR-34/SNAIL circuit. This epigenetic feedback that stabilizes long-term transcriptional activity can alter the relative stability and distribution of states in a given cell population, particularly when incorporated in the inhibitory effect on miR-200 from ZEB. This feedback can stabilize the mesenchymal state, thus making transitions out of that state difficult. Conversely, epigenetic regulation of the self-activation of ZEB has only minor effects. Our model predicts that this effect could be seen in experiments, when epithelial cells are treated with an external EMT-inducing signal for a sufficiently long period of time and then allowed to recover. Our preliminary experimental data indicates that a chronic TGF-β exposure gives rise to irreveversible EMT state; i.e. unable to reverse back to the epithelial state. Thus, this integrated theoretical-experimental approach yields insights into how an epigenetic feedback may alter the dynamics of EMT.
Collapse
Affiliation(s)
- Wen Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America. Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States of America. These authors contributed equally
| | | | | | | | | |
Collapse
|
62
|
Goldman A, Khiste S, Freinkman E, Dhawan A, Majumder B, Mondal J, Pinkerton AB, Eton E, Medhi R, Chandrasekar V, Rahman MM, Ichimura T, Gopinath KS, Majumder P, Kohandel M, Sengupta S. Targeting tumor phenotypic plasticity and metabolic remodeling in adaptive cross-drug tolerance. Sci Signal 2019; 12:12/595/eaas8779. [PMID: 31431543 DOI: 10.1126/scisignal.aas8779] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metastable phenotypic state transitions in cancer cells can lead to the development of transient adaptive resistance or tolerance to chemotherapy. Here, we report that the acquisition of a phenotype marked by increased abundance of CD44 (CD44Hi) by breast cancer cells as a tolerance response to routinely used cytotoxic drugs, such as taxanes, activated a metabolic switch that conferred tolerance against unrelated standard-of-care chemotherapeutic agents, such as anthracyclines. We characterized the sequence of molecular events that connected the induced CD44Hi phenotype to increased activity of both the glycolytic and oxidative pathways and glucose flux through the pentose phosphate pathway (PPP). When given in a specific order, a combination of taxanes, anthracyclines, and inhibitors of glucose-6-phosphate dehydrogenase (G6PD), an enzyme involved in glucose metabolism, improved survival in mouse models of breast cancer. The same sequence of the three-drug combination reduced the viability of patient breast tumor samples in an explant system. Our findings highlight a convergence between phenotypic and metabolic state transitions that confers a survival advantage to cancer cells against clinically used drug combinations. Pharmacologically targeting this convergence could overcome cross-drug tolerance and could emerge as a new paradigm in the treatment of cancer.
Collapse
Affiliation(s)
- Aaron Goldman
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. .,Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Mitra Biotech, Integrative Immuno-Oncology Center, Woburn, MA 01801, USA
| | - Sachin Khiste
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Elizaveta Freinkman
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Andrew Dhawan
- School of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Biswanath Majumder
- Mitra Biotech, Integrative Immuno-Oncology Center, Woburn, MA 01801, USA.,Mitra Biotech, 7, Service Road, Pragathi Nagar, Electronic City, Bengaluru, Karnataka 560100, India
| | - Jayanta Mondal
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.,Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Elliot Eton
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ragini Medhi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vineethkrishna Chandrasekar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - M Mamunur Rahman
- Medical and Biological Laboratories International, Woburn, MA 01801, USA
| | - Takaharu Ichimura
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kodaganur S Gopinath
- Department of Surgical Oncology, HCG Bangalore Institute of Oncology Specialty Center, Bengaluru, Karnataka 560027, India
| | - Pradip Majumder
- Mitra Biotech, Integrative Immuno-Oncology Center, Woburn, MA 01801, USA
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Shiladitya Sengupta
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. .,Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.,Dana Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
63
|
Putti M, de Jong SMJ, Stassen OMJA, Sahlgren CM, Dankers PYW. A Supramolecular Platform for the Introduction of Fc-Fusion Bioactive Proteins on Biomaterial Surfaces. ACS APPLIED POLYMER MATERIALS 2019; 1:2044-2054. [PMID: 31423488 PMCID: PMC6691680 DOI: 10.1021/acsapm.9b00334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/13/2019] [Indexed: 06/10/2023]
Abstract
Bioorthogonal chemistry is an excellent method for functionalization of biomaterials with bioactive molecules, as it allows for decoupling of material processing and bioactivation. Here, we report on a modular system created by means of tetrazine/trans-cyclooctene (Tz/TCO) click chemistry undergoing an inverse electron demand Diels-Alder cycloaddition. A reactive supramolecular surface based on ureido-pyrimidinones (UPy) is generated via a UPy-Tz additive, in order to introduce a versatile TCO-protein G conjugate for immobilization of Fc-fusion proteins. As a model bioactive protein, we introduced Fc-Jagged1, a Notch ligand, to induce Notch signaling activity on the material. Interestingly, HEK293 FLN1 cells expressing the Notch1 receptor were repelled by films modified with TCO-protein G but adhered and spread on functionalized electrospun meshes. This indicates that the material processing method influences the biocompatibility of the postmodification. Notch signaling activity was upregulated 5.6-fold with respect to inactive controls on electrospun materials modified with TCO-protein G/Fc-Jagged1. Furthermore, downstream effects of Notch signaling were detected on the gene level in vascular smooth muscle cells expressing the Notch3 receptor. Taken together, our results demonstrate the successful use of a modular supramolecular system for the postprocessing modification of solid materials with functional proteins.
Collapse
Affiliation(s)
- Matilde Putti
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Simone M. J. de Jong
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Oscar M. J. A. Stassen
- Department
of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Cecilia M. Sahlgren
- Institute
for Complex Molecular Systems, Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Faculty
for Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- Turku
Centre for Biotechnology, University of
Turku and Åbo Akademi University, Turku, Finland
| | - Patricia Y. W. Dankers
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
64
|
Jolly MK, Ware KE, Xu S, Gilja S, Shetler S, Yang Y, Wang X, Austin RG, Runyambo D, Hish AJ, Bartholf DeWitt S, George JT, Kreulen RT, Boss MK, Lazarides AL, Kerr DL, Gerber DG, Sivaraj D, Armstrong AJ, Dewhirst MW, Eward WC, Levine H, Somarelli JA. E-Cadherin Represses Anchorage-Independent Growth in Sarcomas through Both Signaling and Mechanical Mechanisms. Mol Cancer Res 2019; 17:1391-1402. [PMID: 30862685 PMCID: PMC6548594 DOI: 10.1158/1541-7786.mcr-18-0763] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/16/2018] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
CDH1 (also known as E-cadherin), an epithelial-specific cell-cell adhesion molecule, plays multiple roles in maintaining adherens junctions, regulating migration and invasion, and mediating intracellular signaling. Downregulation of E-cadherin is a hallmark of epithelial-to-mesenchymal transition (EMT) and correlates with poor prognosis in multiple carcinomas. Conversely, upregulation of E-cadherin is prognostic for improved survival in sarcomas. Yet, despite the prognostic benefit of E-cadherin expression in sarcoma, the mechanistic significance of E-cadherin in sarcomas remains poorly understood. Here, by combining mathematical models with wet-bench experiments, we identify the core regulatory networks mediated by E-cadherin in sarcomas, and decipher their functional consequences. Unlike carcinomas, E-cadherin overexpression in sarcomas does not induce a mesenchymal-to-epithelial transition (MET). However, E-cadherin acts to reduce both anchorage-independent growth and spheroid formation of sarcoma cells. Ectopic E-cadherin expression acts to downregulate phosphorylated CREB1 (p-CREB) and the transcription factor, TBX2, to inhibit anchorage-independent growth. RNAi-mediated knockdown of TBX2 phenocopies the effect of E-cadherin on CREB levels and restores sensitivity to anchorage-independent growth in sarcoma cells. Beyond its signaling role, E-cadherin expression in sarcoma cells can also strengthen cell-cell adhesion and restricts spheroid growth through mechanical action. Together, our results demonstrate that E-cadherin inhibits sarcoma aggressiveness by preventing anchorage-independent growth. IMPLICATIONS: We highlight how E-cadherin can restrict aggressive behavior in sarcomas through both biochemical signaling and biomechanical effects.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Kathryn E Ware
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Shengnan Xu
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Shivee Gilja
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Samantha Shetler
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Yanjun Yang
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
- Department of Applied Physics, Rice University, Houston, Texas
| | - Xueyang Wang
- School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - R Garland Austin
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Daniella Runyambo
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Alexander J Hish
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | - Jason T George
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
- Department of Bioengineering, Rice University, Houston, Texas
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - R Timothy Kreulen
- Department of Orthopedics, Duke University Medical Center, Durham, North Carolina
| | - Mary-Keara Boss
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | | | - David L Kerr
- Department of Orthopedics, Duke University Medical Center, Durham, North Carolina
| | - Drew G Gerber
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Dharshan Sivaraj
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Andrew J Armstrong
- Solid Tumor Program, Duke University Medical Center, Durham, North Carolina
- Duke Prostate Center, Duke University Medical Center, Durham, North Carolina
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - William C Eward
- Department of Orthopedics, Duke University Medical Center, Durham, North Carolina
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
- Department of Bioengineering, Rice University, Houston, Texas
| | - Jason A Somarelli
- Department of Medicine, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
65
|
Jia D, Li X, Bocci F, Tripathi S, Deng Y, Jolly MK, Onuchic JN, Levine H. Quantifying Cancer Epithelial-Mesenchymal Plasticity and its Association with Stemness and Immune Response. J Clin Med 2019; 8:E725. [PMID: 31121840 PMCID: PMC6572429 DOI: 10.3390/jcm8050725] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer cells can acquire a spectrum of stable hybrid epithelial/mesenchymal (E/M) states during epithelial-mesenchymal transition (EMT). Cells in these hybrid E/M phenotypes often combine epithelial and mesenchymal features and tend to migrate collectively commonly as small clusters. Such collectively migrating cancer cells play a pivotal role in seeding metastases and their presence in cancer patients indicates an adverse prognostic factor. Moreover, cancer cells in hybrid E/M phenotypes tend to be more associated with stemness which endows them with tumor-initiation ability and therapy resistance. Most recently, cells undergoing EMT have been shown to promote immune suppression for better survival. A systematic understanding of the emergence of hybrid E/M phenotypes and the connection of EMT with stemness and immune suppression would contribute to more effective therapeutic strategies. In this review, we first discuss recent efforts combining theoretical and experimental approaches to elucidate mechanisms underlying EMT multi-stability (i.e., the existence of multiple stable phenotypes during EMT) and the properties of hybrid E/M phenotypes. Following we discuss non-cell-autonomous regulation of EMT by cell cooperation and extracellular matrix. Afterwards, we discuss various metrics that can be used to quantify EMT spectrum. We further describe possible mechanisms underlying the formation of clusters of circulating tumor cells. Last but not least, we summarize recent systems biology analysis of the role of EMT in the acquisition of stemness and immune suppression.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
| | - Xuefei Li
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
| | - Shubham Tripathi
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX 77005, USA.
| | - Youyuan Deng
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Applied Physics Graduate Program, Rice University, Houston, TX 77005, USA.
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
- Department of Biosciences, Rice University, Houston, TX 77005, USA.
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
- Department of Physics, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
66
|
Zañudo JGT, Guinn MT, Farquhar K, Szenk M, Steinway SN, Balázsi G, Albert R. Towards control of cellular decision-making networks in the epithelial-to-mesenchymal transition. Phys Biol 2019; 16:031002. [PMID: 30654341 PMCID: PMC6405305 DOI: 10.1088/1478-3975/aaffa1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present the epithelial-to-mesenchymal transition (EMT) from two perspectives: experimental/technological and theoretical. We review the state of the current understanding of the regulatory networks that underlie EMT in three physiological contexts: embryonic development, wound healing, and metastasis. We describe the existing experimental systems and manipulations used to better understand the molecular participants and factors that influence EMT and metastasis. We review the mathematical models of the regulatory networks involved in EMT, with a particular emphasis on the network motifs (such as coupled feedback loops) that can generate intermediate hybrid states between the epithelial and mesenchymal states. Ultimately, the understanding gained about these networks should be translated into methods to control phenotypic outcomes, especially in the context of cancer therapeutic strategies. We present emerging theories of how to drive the dynamics of a network toward a desired dynamical attractor (e.g. an epithelial cell state) and emerging synthetic biology technologies to monitor and control the state of cells.
Collapse
Affiliation(s)
- Jorge Gómez Tejeda Zañudo
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Medical Oncology, Dana-Farber Cancer Center, Boston, MA 02215, USA
- Cancer Program, Eli and Edythe L. Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - M. Tyler Guinn
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794 USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Medical Scientist Training Program, 101 Nicolls Road, Stony Brook, NY 11794, USA
| | - Kevin Farquhar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mariola Szenk
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794 USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Steven N. Steinway
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Gábor Balázsi
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794 USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Réka Albert
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
67
|
Deciphering the Dynamics of Epithelial-Mesenchymal Transition and Cancer Stem Cells in Tumor Progression. CURRENT STEM CELL REPORTS 2019. [DOI: 10.1007/s40778-019-0150-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
68
|
Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc Natl Acad Sci U S A 2019; 116:148-157. [PMID: 30587589 PMCID: PMC6320545 DOI: 10.1073/pnas.1815345116] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) formation are two paramount processes driving tumor progression, therapy resistance, and cancer metastasis. Recent experiments show that cells with varying EMT and CSC phenotypes are spatially segregated in the primary tumor. The underlying mechanisms generating such spatiotemporal dynamics in the tumor microenvironment, however, remain largely unexplored. Here, we show through a mechanism-based dynamical model that the diffusion of EMT-inducing signals such as TGF-β, together with noncell autonomous control of EMT and CSC decision making via the Notch signaling pathway, can explain experimentally observed disparate localization of subsets of CSCs with varying EMT phenotypes in the tumor. Our simulations show that the more mesenchymal CSCs lie at the invasive edge, while the hybrid epithelial/mesenchymal (E/M) CSCs reside in the tumor interior. Further, motivated by the role of Notch-Jagged signaling in mediating EMT and stemness, we investigated the microenvironmental factors that promote Notch-Jagged signaling. We show that many inflammatory cytokines such as IL-6 that can promote Notch-Jagged signaling can (i) stabilize a hybrid E/M phenotype, (ii) increase the likelihood of spatial proximity of hybrid E/M cells, and (iii) expand the fraction of CSCs. To validate the predicted connection between Notch-Jagged signaling and stemness, we knocked down JAG1 in hybrid E/M SUM149 human breast cancer cells in vitro. JAG1 knockdown significantly restricted tumor organoid formation, confirming the key role that Notch-Jagged signaling can play in tumor progression. Together, our integrated computational-experimental framework reveals the underlying principles of spatiotemporal dynamics of EMT and CSCs.
Collapse
|
69
|
Bocci F, Jolly MK, Levine H, Onuchic JN. Quantitative Characteristic of ncRNA Regulation in Gene Regulatory Networks. Methods Mol Biol 2019; 1912:341-366. [PMID: 30635901 DOI: 10.1007/978-1-4939-8982-9_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RNA is mostly known for its role in protein synthesis, where it encodes information for protein sequence in its messenger RNA (mRNA) form (translation). Yet, RNA molecules regulate several cellular processes other than translation. Here, we present an overview of several mathematical models that help understanding and characterizing the role of noncoding RNA molecules (ncRNAs) in regulating gene expression and protein synthesis. First, we discuss relatively simple models where ncRNAs can modulate protein synthesis via targeting a mRNA. Then, we consider the case of feedback interactions between ncRNAs and their target proteins, and discuss several biological applications where these feedback architectures modulate a cellular phenotype and control the levels of intrinsic and extrinsic noise. Building from these simple circuit motifs, we examine feed-forward circuit motifs involving ncRNAs that generate precise spatial and temporal patterns of protein expression. Further, we investigate the competition between ncRNAs and other endogenous RNA molecules and show that the cross talk between coding and noncoding RNAs can form large genetic circuits that involve up to hundreds of chemical species. Finally, we discuss the role of ncRNAs in modulating cell-cell signaling pathways and therefore the dynamics of spatiotemporal pattern formation in a tissue.
Collapse
Affiliation(s)
- Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.,Department of Chemistry, Rice University, Houston, TX, USA
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA. .,Department of Chemistry, Rice University, Houston, TX, USA. .,Department of Bioengineering, Rice University, Houston, TX, USA. .,Department of Physics and Astronomy, Rice University, Houston, TX, USA.
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA. .,Department of Chemistry, Rice University, Houston, TX, USA. .,Department of Physics and Astronomy, Rice University, Houston, TX, USA. .,Department of Biosciences, Rice University, Houston, TX, USA.
| |
Collapse
|
70
|
Hamidi S, Sheng G. Epithelial-mesenchymal transition in haematopoietic stem cell development and homeostasis. J Biochem 2018; 164:265-275. [PMID: 30020470 DOI: 10.1093/jb/mvy063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/14/2018] [Indexed: 01/03/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a morphogenetic process of cells that adopt an epithelial organization in their developmental ontogeny or homeostatic maintenance. Abnormalities in EMT regulation result in many malignant tumours in the human body. Tumours associated with the haematopoietic system, however, are traditionally not considered to involve EMT and haematopoietic stem cells (HSCs) are generally not associated with epithelial characteristics. In this review, we discuss the ontogeny and homeostasis of adult HSCs in the context of EMT intermediate states. We provide evidence that cell polarity regulation is critical for both HSC formation from embryonic dorsal aorta and HSC self-renewal and differentiation in adult bone marrow. HSC polarity is controlled by the same set of surface and transcriptional regulators as those described in canonical EMT processes. With an emphasis on partial EMT, we propose that the concept of EMT can be similarly applied in the study of HSC generation, maintenance and pathogenesis.
Collapse
Affiliation(s)
- Sofiane Hamidi
- Laboratory of Developmental Morphogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Guojun Sheng
- Laboratory of Developmental Morphogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
71
|
Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, Hanash SM, Bapat SA, Rangarajan A, Levine H. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther 2018; 194:161-184. [PMID: 30268772 DOI: 10.1016/j.pharmthera.2018.09.007] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer metastasis and therapy resistance are the major unsolved clinical challenges, and account for nearly all cancer-related deaths. Both metastasis and therapy resistance are fueled by epithelial plasticity, the reversible phenotypic transitions between epithelial and mesenchymal phenotypes, including epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). EMT and MET have been largely considered as binary processes, where cells detach from the primary tumor as individual units with many, if not all, traits of a mesenchymal cell (EMT) and then convert back to being epithelial (MET). However, recent studies have demonstrated that cells can metastasize in ways alternative to traditional EMT paradigm; for example, they can detach as clusters, and/or occupy one or more stable hybrid epithelial/mesenchymal (E/M) phenotypes that can be the end point of a transition. Such hybrid E/M cells can integrate various epithelial and mesenchymal traits and markers, facilitating collective cell migration. Furthermore, these hybrid E/M cells may possess higher tumor-initiation and metastatic potential as compared to cells on either end of the EMT spectrum. Here, we review in silico, in vitro, in vivo and clinical evidence for the existence of one or more hybrid E/M phenotype(s) in multiple carcinomas, and discuss their implications in tumor-initiation, tumor relapse, therapy resistance, and metastasis. Together, these studies drive the emerging notion that cells in a hybrid E/M phenotype may occupy 'metastatic sweet spot' in multiple subtypes of carcinomas, and pathways linked to this (these) hybrid E/M state(s) may be relevant as prognostic biomarkers as well as a promising therapeutic targets.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| | - Jason A Somarelli
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Maya Sheth
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Adrian Biddle
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Andrew J Armstrong
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Sharmila A Bapat
- National Center for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| |
Collapse
|
72
|
Jolly MK, Mani SA, Levine H. Hybrid epithelial/mesenchymal phenotype(s): The 'fittest' for metastasis? Biochim Biophys Acta Rev Cancer 2018; 1870:151-157. [PMID: 29997040 DOI: 10.1016/j.bbcan.2018.07.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022]
Abstract
Metastasis is the leading cause of mortality among cancer patients. Dissemination enabled by an epithelial-to-mesenchymal transition (EMT) of carcinoma cells has long been considered to be the predominant mechanism for carcinoma metastasis, based on overexpression studies of many EMT-inducing transcription factors. Individual CTCs - and a binary framework of EMT - have been long considered to be sufficient and necessary condition for metastasis. However, recent studies have shown that collective migration and invasion through tumor buds and clusters of Circulating Tumor Cells (CTCs) as possibly being the prevalent mode of metastasis, although individual CTCs may still contribute to metastasis. These strands and clusters have been proposed to often exhibit a hybrid epithelial/mesenchymal (E/M) phenotype where cells retain epithelial traits of cell-cell adhesion and simultaneously gain mesenchymal characteristics of migration and invasion. To highlight the crucial questions regarding metastasis, we define EMT in a non-binary and context-specific manner, suggest that it can be viewed as a trans-differentiation process, and illustrate the implications of hybrid E/M phenotype(s) and cluster-based dissemination in metastasis.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
73
|
Bocci F, Jolly MK, George JT, Levine H, Onuchic JN. A mechanism-based computational model to capture the interconnections among epithelial-mesenchymal transition, cancer stem cells and Notch-Jagged signaling. Oncotarget 2018; 9:29906-29920. [PMID: 30042822 PMCID: PMC6057462 DOI: 10.18632/oncotarget.25692] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) and cancer stem cell (CSCs) formation are two fundamental and well-studied processes contributing to cancer metastasis and tumor relapse. Cells can undergo a partial EMT to attain a hybrid epithelial/mesenchymal (E/M) phenotype or a complete EMT to attain a mesenchymal one. Similarly, cells can reversibly gain or lose 'stemness'. This plasticity in cell states is modulated by signaling pathways such as Notch. However, the interconnections among the cell states enabled by EMT, CSCs and Notch signaling remain elusive. Here, we devise a computational model to investigate the coupling among the core decision-making circuits for EMT, CSCs and Notch. Our model predicts that hybrid E/M cells are most likely to associate with stem-like traits and enhanced Notch-Jagged signaling – a pathway implicated in therapeutic resistance. Further, we show that the position of the 'stemness window' on the 'EMT axis' is varied by altering the coupling strength between EMT and CSC circuits, and/or modulating Notch signaling. Finally, we analyze the gene expression profile of CSCs from several cancer types and observe a heterogeneous distribution along the 'EMT axis', suggesting that different subsets of CSCs may exist with varying phenotypes along the epithelial-mesenchymal axis. We further investigate therapeutic perturbations such as treatment with metformin, a drug associated with decreased cancer incidence and increased lifespan of patients. Our mechanism-based model explains how metformin can both inhibit EMT and blunt the aggressive potential of CSCs simultaneously, by driving the cells out of a hybrid E/M stem-like state with enhanced Notch-Jagged signaling.
Collapse
Affiliation(s)
- Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Jason Thomas George
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Department of Bioengineering, Rice University, Houston, TX 77005, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Department of Chemistry, Rice University, Houston, TX 77005, USA.,Department of Bioengineering, Rice University, Houston, TX 77005, USA.,Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Department of Chemistry, Rice University, Houston, TX 77005, USA.,Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.,Department of Biosciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
74
|
Zacharias M, Brcic L, Eidenhammer S, Popper H. Bulk tumour cell migration in lung carcinomas might be more common than epithelial-mesenchymal transition and be differently regulated. BMC Cancer 2018; 18:717. [PMID: 29976164 PMCID: PMC6034257 DOI: 10.1186/s12885-018-4640-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/27/2018] [Indexed: 11/26/2022] Open
Abstract
Background Epithelial-to-mesenchymal transition (EMT) is one mechanism of carcinoma migration, while complex tumour migration or bulk migration is another - best demontrated by tumour cells invading blood vessels. Methods Thirty cases of non-small cell lung carcinomas were used for identifying genes responsible for bulk cell migration, 232 squamous cell and adenocarcinomas to identify bulk migration rates. Genes expressed differently in the primary tumour and in the invasion front were regarded as relevant in migration and further validated in 528 NSCLC cases represented on tissue microarrays (TMAs) and metastasis TMAs. Results Markers relevant for bulk cancer cell migration were regulated differently when compared with EMT: Twist expressed in primary tumour, invasion front, and metastasis was not associated with TGFβ1 and canonical Wnt, as Slug, Snail, and Smads were negative and β-Catenin expressed membraneously. In the majority of tumours, E-Cadherin was downregulated at the invasive front, but not absent, but, coexpressed with N-Cadherin. Vimentin was coexpressed with cytokeratins at the invasion site in few cases, whereas fascin expression was seen in a majority. Expression of ERK1/2 was downregulated, PLCγ was only expressed at the invasive front and in metastasis. Brk and Mad, genes identified in Drosophila border cell migration, might be important for bulk migration and metastasis, together with invadipodia proteins Tks5 and Rab40B, which were only upregulated at the invasive front and in metastasis. CXCR1 was expressed equally in all carcinomas, as opposed to CXCR2 and 4, which were only expressed in few tumours. Conclusion Bulk cancer cell migration seems predominant in AC and SCC. Twist, vimentin, fascin, Mad, Brk, Tsk5, Rab40B, ERK1/2 and PLCγ are associated with bulk cancer cell migration. This type of migration requires an orchestrated activation of proteins to keep the cells bound to each other and to coordinate movement. This hypothesis needs to be proven experimentally. Electronic supplementary material The online version of this article (10.1186/s12885-018-4640-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Zacharias
- Diagnostic and Research Center, Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8036, Austria
| | - Luka Brcic
- Diagnostic and Research Center, Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8036, Austria
| | - Sylvia Eidenhammer
- Diagnostic and Research Center, Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8036, Austria
| | - Helmut Popper
- Diagnostic and Research Center, Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8036, Austria.
| |
Collapse
|
75
|
Tripathi S, Jolly MK, Woodward WA, Levine H, Deem MW. Analysis of Hierarchical Organization in Gene Expression Networks Reveals Underlying Principles of Collective Tumor Cell Dissemination and Metastatic Aggressiveness of Inflammatory Breast Cancer. Front Oncol 2018; 8:244. [PMID: 30023340 PMCID: PMC6039554 DOI: 10.3389/fonc.2018.00244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/18/2018] [Indexed: 01/06/2023] Open
Abstract
Clusters of circulating tumor cells (CTCs), despite being rare, may account for more than 90% of metastases. Cells in these clusters do not undergo a complete epithelial-to-mesenchymal transition (EMT), but retain some epithelial traits as compared to individually disseminating tumor cells. Determinants of single cell dissemination versus collective dissemination remain elusive. Inflammatory breast cancer (IBC), a highly aggressive breast cancer subtype that chiefly metastasizes via CTC clusters, is a promising model for studying mechanisms of collective tumor cell dissemination. Previous studies, motivated by a theory that suggests physical systems with hierarchical organization tend to be more adaptable, have found that the expression of metastasis-associated genes is more hierarchically organized in cases of successful metastases. Here, we used the cophenetic correlation coefficient (CCC) to quantify the hierarchical organization in the expression of two distinct gene sets, collective dissemination-associated genes and IBC-associated genes, in cancer cell lines and in tumor samples from breast cancer patients. Hypothesizing that a higher CCC for collective dissemination-associated genes and for IBC-associated genes would be associated with retention of epithelial traits enabling collective dissemination and with worse disease progression in breast cancer patients, we evaluated the correlation of CCC with different phenotypic groups. The CCC of both the abovementioned gene sets, the collective dissemination-associated genes and the IBC-associated genes, was higher in (a) epithelial cell lines as compared to mesenchymal cell lines and (b) tumor samples from IBC patients as compared to samples from non-IBC breast cancer patients. A higher CCC of both gene sets was also correlated with a higher rate of metastatic relapse in breast cancer patients. In contrast, neither the levels of CDH1 gene expression nor gene set enrichment analysis (GSEA) of the abovementioned gene sets could provide similar insights. These results suggest that retention of some epithelial traits in disseminating tumor cells as IBC progresses promotes successful breast cancer metastasis. The CCC provides additional information regarding the organizational complexity of gene expression in comparison to GSEA. We have shown that the CCC may be a useful metric for investigating the collective dissemination phenotype and a prognostic factor for IBC.
Collapse
Affiliation(s)
- Shubham Tripathi
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, United States
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Wendy A. Woodward
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- MD Anderson Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Herbert Levine
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, United States
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Physics and Astronomy, Rice University, Houston, TX, United States
| | - Michael W. Deem
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, United States
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Physics and Astronomy, Rice University, Houston, TX, United States
| |
Collapse
|
76
|
Padua MB, Bhat-Nakshatri P, Anjanappa M, Prasad MS, Hao Y, Rao X, Liu S, Wan J, Liu Y, McElyea K, Jacobsen M, Sandusky G, Althouse S, Perkins S, Nakshatri H. Dependence receptor UNC5A restricts luminal to basal breast cancer plasticity and metastasis. Breast Cancer Res 2018; 20:35. [PMID: 29720215 PMCID: PMC5932758 DOI: 10.1186/s13058-018-0963-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
Background The majority of estrogen receptor-positive (ERα+) breast cancers respond to endocrine therapies. However, resistance to endocrine therapies is common in 30% of cases, which may be due to altered ERα signaling and/or enhanced plasticity of cancer cells leading to breast cancer subtype conversion. The mechanisms leading to enhanced plasticity of ERα-positive cancer cells are unknown. Methods We used short hairpin (sh)RNA and/or the CRISPR/Cas9 system to knockdown the expression of the dependence receptor UNC5A in ERα+ MCF7 and T-47D cell lines. RNA-seq, quantitative reverse transcription polymerase chain reaction, chromatin immunoprecipitation, and Western blotting were used to measure the effect of UNC5A knockdown on basal and estradiol (E2)-regulated gene expression. Mammosphere assay, flow cytometry, and immunofluorescence were used to determine the role of UNC5A in restricting plasticity. Xenograft models were used to measure the effect of UNC5A knockdown on tumor growth and metastasis. Tissue microarray and immunohistochemistry were utilized to determine the prognostic value of UNC5A in breast cancer. Log-rank test, one-way, and two-way analysis of variance (ANOVA) were used for statistical analyses. Results Knockdown of the E2-inducible UNC5A resulted in altered basal gene expression affecting plasma membrane integrity and ERα signaling, as evident from ligand-independent activity of ERα, altered turnover of phosphorylated ERα, unique E2-dependent expression of genes effecting histone demethylase activity, enhanced upregulation of E2-inducible genes such as BCL2, and E2-independent tumorigenesis accompanied by multiorgan metastases. UNC5A depletion led to the appearance of a luminal/basal hybrid phenotype supported by elevated expression of basal/stem cell-enriched ∆Np63, CD44, CD49f, epidermal growth factor receptor (EGFR), and the lymphatic vessel permeability factor NTN4, but lower expression of luminal/alveolar differentiation-associated ELF5 while maintaining functional ERα. In addition, UNC5A-depleted cells acquired bipotent luminal progenitor characteristics based on KRT14+/KRT19+ and CD49f+/EpCAM+ phenotype. Consistent with in vitro results, UNC5A expression negatively correlated with EGFR expression in breast tumors, and lower expression of UNC5A, particularly in ERα+/PR+/HER2− tumors, was associated with poor outcome. Conclusion These studies reveal an unexpected role of the axon guidance receptor UNC5A in fine-tuning ERα and EGFR signaling and the luminal progenitor status of hormone-sensitive breast cancers. Furthermore, UNC5A knockdown cells provide an ideal model system to investigate metastasis of ERα+ breast cancers. Electronic supplementary material The online version of this article (10.1186/s13058-018-0963-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria B Padua
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Present Address: Department of Pediatrics and Herman B. Wells Center for Pediatrics Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Manjushree Anjanappa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mayuri S Prasad
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yangyang Hao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xi Rao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kyle McElyea
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sandra Althouse
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Susan Perkins
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,VA Roudebush Medical Center, C218C, 980 West Walnut St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
77
|
Colacino JA, Azizi E, Brooks MD, Harouaka R, Fouladdel S, McDermott SP, Lee M, Hill D, Madden J, Boerner J, Cote ML, Sartor MA, Rozek LS, Wicha MS. Heterogeneity of Human Breast Stem and Progenitor Cells as Revealed by Transcriptional Profiling. Stem Cell Reports 2018; 10:1596-1609. [PMID: 29606612 PMCID: PMC5995162 DOI: 10.1016/j.stemcr.2018.03.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 01/10/2023] Open
Abstract
During development, the mammary gland undergoes extensive remodeling driven by stem cells. Breast cancers are also hierarchically organized and driven by cancer stem cells characterized by CD44+CD24low/− or aldehyde dehydrogenase (ALDH) expression. These markers identify mesenchymal and epithelial populations both capable of tumor initiation. Less is known about these populations in non-cancerous mammary glands. From RNA sequencing, ALDH+ and ALDH−CD44+CD24− human mammary cells have epithelial-like and mesenchymal-like characteristics, respectively, with some co-expressing ALDH+ and CD44+CD24− by flow cytometry. At the single-cell level, these cells have the greatest mammosphere-forming capacity and express high levels of stemness and epithelial-to-mesenchymal transition-associated genes including ID1, SOX2, TWIST1, and ZEB2. We further identify single ALDH+ cells with a hybrid epithelial/mesenchymal phenotype that express genes associated with aggressive triple-negative breast cancers. These results highlight single-cell analyses to characterize tissue heterogeneity, even in marker-enriched populations, and identify genes and pathways that define this heterogeneity. Isolation and RNA-seq of ALDH+ and CD44+CD24− breast cells Unlike in cancer, there is substantial overlap in ALDH+ and CD44+CD24− populations Single-cell analysis of ALDH+ cells identifies unexpected subpopulation structure Hybrid epithelial/mesenchymal ALDH+ cells have a cancer-like expression signature
Collapse
Affiliation(s)
- Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| | - Ebrahim Azizi
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael D Brooks
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ramdane Harouaka
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shamileh Fouladdel
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sean P McDermott
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael Lee
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David Hill
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Julie Madden
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julie Boerner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michele L Cote
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Population Sciences and Health Disparities Program, Karmanos Cancer Institute, Detroit, MI, USA
| | - Maureen A Sartor
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Max S Wicha
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
78
|
Jolly MK, Kulkarni P, Weninger K, Orban J, Levine H. Phenotypic Plasticity, Bet-Hedging, and Androgen Independence in Prostate Cancer: Role of Non-Genetic Heterogeneity. Front Oncol 2018; 8:50. [PMID: 29560343 PMCID: PMC5845637 DOI: 10.3389/fonc.2018.00050] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/19/2018] [Indexed: 12/21/2022] Open
Abstract
It is well known that genetic mutations can drive drug resistance and lead to tumor relapse. Here, we focus on alternate mechanisms-those without mutations, such as phenotypic plasticity and stochastic cell-to-cell variability that can also evade drug attacks by giving rise to drug-tolerant persisters. The phenomenon of persistence has been well-studied in bacteria and has also recently garnered attention in cancer. We draw a parallel between bacterial persistence and resistance against androgen deprivation therapy in prostate cancer (PCa), the primary standard care for metastatic disease. We illustrate how phenotypic plasticity and consequent mutation-independent or non-genetic heterogeneity possibly driven by protein conformational dynamics can stochastically give rise to androgen independence in PCa, and suggest that dynamic phenotypic plasticity should be considered in devising therapeutic dosing strategies designed to treat and manage PCa.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Prakash Kulkarni
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC, United States
| | - John Orban
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, United States
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Physics and Astronomy, Rice University, Houston, TX, United States
| |
Collapse
|
79
|
George JT, Jolly MK, Xu S, Somarelli JA, Levine H. Survival Outcomes in Cancer Patients Predicted by a Partial EMT Gene Expression Scoring Metric. Cancer Res 2017; 77:6415-6428. [PMID: 28947416 PMCID: PMC5690883 DOI: 10.1158/0008-5472.can-16-3521] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/12/2017] [Accepted: 09/19/2017] [Indexed: 12/19/2022]
Abstract
Metastasis is a significant contributor to morbidity and mortality for many cancer patients and remains a major obstacle for effective treatment. In many tissue types, metastasis is fueled by the epithelial-to-mesenchymal transition (EMT)-a dynamic process characterized by phenotypic and morphologic changes concomitant with increased migratory and invasive potential. Recent experimental and theoretical evidence suggests that cells can be stably halted en route to EMT in a hybrid E/M phenotype. Cells in this phenotype tend to move collectively, forming clusters of circulating tumor cells that are key tumor-initiating agents. Here, we developed an inferential model built on the gene expression of multiple cancer subtypes to devise an EMT metric that characterizes the degree to which a given cell line exhibits hybrid E/M features. Our model identified drivers and fine-tuners of epithelial-mesenchymal plasticity and recapitulated the behavior observed in multiple in vitro experiments across cancer types. We also predicted and experimentally validated the hybrid E/M status of certain cancer cell lines, including DU145 and A549. Finally, we demonstrated the relevance of predicted EMT scores to patient survival and observed that the role of the hybrid E/M phenotype in characterizing tumor aggressiveness is tissue and subtype specific. Our algorithm is a promising tool to quantify the EMT spectrum, to investigate the correlation of EMT score with cancer treatment response and survival, and to provide an important metric for systematic clinical risk stratification and treatment. Cancer Res; 77(22); 6415-28. ©2017 AACR.
Collapse
Affiliation(s)
- Jason T George
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
- Department of Bioengineering, Rice University, Houston, Texas
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Shengnan Xu
- Duke Cancer Institute & Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jason A Somarelli
- Duke Cancer Institute & Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, Texas.
- Department of Bioengineering, Rice University, Houston, Texas
- Department of Physics and Astronomy, Rice University, Houston, Texas
| |
Collapse
|
80
|
Bocci F, Jolly MK, Tripathi SC, Aguilar M, Hanash SM, Levine H, Onuchic JN. Numb prevents a complete epithelial-mesenchymal transition by modulating Notch signalling. J R Soc Interface 2017; 14:20170512. [PMID: 29187638 PMCID: PMC5721160 DOI: 10.1098/rsif.2017.0512] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/02/2017] [Indexed: 12/31/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays key roles during embryonic development, wound healing and cancer metastasis. Cells in a partial EMT or hybrid epithelial/mesenchymal (E/M) phenotype exhibit collective cell migration, forming clusters of circulating tumour cells-the primary drivers of metastasis. Activation of cell-cell signalling pathways such as Notch fosters a partial or complete EMT, yet the mechanisms enabling cluster formation remain poorly understood. Using an integrated computational-experimental approach, we examine the role of Numb-an inhibitor of Notch intercellular signalling-in mediating EMT and clusters formation. We show via an mathematical model that Numb inhibits a full EMT by stabilizing a hybrid E/M phenotype. Consistent with this observation, knockdown of Numb in stable hybrid E/M cells H1975 results in a full EMT, thereby showing that Numb acts as a brake for a full EMT and thus behaves as a 'phenotypic stability factor' by modulating Notch-driven EMT. By generalizing the mathematical model to a multi-cell level, Numb is predicted to alter the balance of hybrid E/M versus mesenchymal cells in clusters, potentially resulting in a higher tumour-initiation ability. Finally, Numb correlates with a worse survival in multiple independent lung and ovarian cancer datasets, hence confirming its relationship with increased cancer aggressiveness.
Collapse
Affiliation(s)
- Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Mohit K Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Mitzi Aguilar
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
81
|
Abstract
Background The Epithelial-Mesenchymal Transition (EMT) endows epithelial-looking cells with enhanced migratory ability during embryonic development and tissue repair. EMT can also be co-opted by cancer cells to acquire metastatic potential and drug-resistance. Recent research has argued that epithelial (E) cells can undergo either a partial EMT to attain a hybrid epithelial/mesenchymal (E/M) phenotype that typically displays collective migration, or a complete EMT to adopt a mesenchymal (M) phenotype that shows individual migration. The core EMT regulatory network - miR-34/SNAIL/miR-200/ZEB1 - has been identified by various studies, but how this network regulates the transitions among the E, E/M, and M phenotypes remains controversial. Two major mathematical models - ternary chimera switch (TCS) and cascading bistable switches (CBS) - that both focus on the miR-34/SNAIL/miR-200/ZEB1 network, have been proposed to elucidate the EMT dynamics, but a detailed analysis of how well either or both of these two models can capture recent experimental observations about EMT dynamics remains to be done. Results Here, via an integrated experimental and theoretical approach, we first show that both these two models can be used to understand the two-step transition of EMT - E→E/M→M, the different responses of SNAIL and ZEB1 to exogenous TGF-β and the irreversibility of complete EMT. Next, we present new experimental results that tend to discriminate between these two models. We show that ZEB1 is present at intermediate levels in the hybrid E/M H1975 cells, and that in HMLE cells, overexpression of SNAIL is not sufficient to initiate EMT in the absence of ZEB1 and FOXC2. Conclusions These experimental results argue in favor of the TCS model proposing that miR-200/ZEB1 behaves as a three-way decision-making switch enabling transitions among the E, hybrid E/M and M phenotypes.
Collapse
|
82
|
Klymenko Y, Kim O, Stack MS. Complex Determinants of Epithelial: Mesenchymal Phenotypic Plasticity in Ovarian Cancer. Cancers (Basel) 2017; 9:cancers9080104. [PMID: 28792442 PMCID: PMC5575607 DOI: 10.3390/cancers9080104] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/02/2017] [Accepted: 08/06/2017] [Indexed: 02/07/2023] Open
Abstract
Unlike most epithelial malignancies which metastasize hematogenously, metastasis of epithelial ovarian cancer (EOC) occurs primarily via transcoelomic dissemination, characterized by exfoliation of cells from the primary tumor, avoidance of detachment-induced cell death (anoikis), movement throughout the peritoneal cavity as individual cells and multi-cellular aggregates (MCAs), adhesion to and disruption of the mesothelial lining of the peritoneum, and submesothelial matrix anchoring and proliferation to generate widely disseminated metastases. This exceptional microenvironment is highly permissive for phenotypic plasticity, enabling mesenchymal-to-epithelial (MET) and epithelial-to-mesenchymal (EMT) transitions. In this review, we summarize current knowledge on EOC heterogeneity in an EMT context, outline major regulators of EMT in ovarian cancer, address controversies in EMT and EOC chemoresistance, and highlight computational modeling approaches toward understanding EMT/MET in EOC.
Collapse
Affiliation(s)
- Yuliya Klymenko
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA.
| | - Oleg Kim
- Department of Applied and Computational Mathematics and Statistics, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
- Department of Mathematics, University of California Riverside, Riverside, CA 92521, USA.
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
| |
Collapse
|
83
|
Burger GA, Danen EHJ, Beltman JB. Deciphering Epithelial-Mesenchymal Transition Regulatory Networks in Cancer through Computational Approaches. Front Oncol 2017; 7:162. [PMID: 28824874 PMCID: PMC5540937 DOI: 10.3389/fonc.2017.00162] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/18/2017] [Indexed: 12/14/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT), the process by which epithelial cells can convert into motile mesenchymal cells, plays an important role in development and wound healing but is also involved in cancer progression. It is increasingly recognized that EMT is a dynamic process involving multiple intermediate or “hybrid” phenotypes rather than an “all-or-none” process. However, the role of EMT in various cancer hallmarks, including metastasis, is debated. Given the complexity of EMT regulation, computational modeling has proven to be an invaluable tool for cancer research, i.e., to resolve apparent conflicts in experimental data and to guide experiments by generating testable hypotheses. In this review, we provide an overview of computational modeling efforts that have been applied to regulation of EMT in the context of cancer progression and its associated tumor characteristics. Moreover, we identify possibilities to bridge different modeling approaches and point out outstanding questions in which computational modeling can contribute to advance our understanding of pathological EMT.
Collapse
Affiliation(s)
- Gerhard A Burger
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Erik H J Danen
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Joost B Beltman
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
84
|
Jolly MK, Ward C, Eapen MS, Myers S, Hallgren O, Levine H, Sohal SS. Epithelial-mesenchymal transition, a spectrum of states: Role in lung development, homeostasis, and disease. Dev Dyn 2017. [DOI: 10.1002/dvdy.24541] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics; Rice University; Houston Texas
| | - Chris Ward
- Institute of Cellular Medicine; Newcastle University; Newcastle upon Tyne United Kingdom
| | - Mathew Suji Eapen
- School of Health Sciences; Faculty of Health, University of Tasmania, Launceston, University of Tasmania; Hobart Tasmania Australia
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease; University of Tasmania; Hobart Tasmania Australia
| | - Stephen Myers
- School of Health Sciences; Faculty of Health, University of Tasmania, Launceston, University of Tasmania; Hobart Tasmania Australia
| | - Oskar Hallgren
- Department of Experimental Medical Sciences; Department of Respiratory Medicine and Allergology, Lund University; Sweden
| | - Herbert Levine
- Center for Theoretical Biological Physics; Rice University; Houston Texas
| | - Sukhwinder Singh Sohal
- School of Health Sciences; Faculty of Health, University of Tasmania, Launceston, University of Tasmania; Hobart Tasmania Australia
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease; University of Tasmania; Hobart Tasmania Australia
| |
Collapse
|
85
|
Tripathi SC, Fahrmann JF, Celiktas M, Aguilar M, Marini KD, Jolly MK, Katayama H, Wang H, Murage EN, Dennison JB, Watkins DN, Levine H, Ostrin EJ, Taguchi A, Hanash SM. MCAM Mediates Chemoresistance in Small-Cell Lung Cancer via the PI3K/AKT/SOX2 Signaling Pathway. Cancer Res 2017. [PMID: 28646020 DOI: 10.1158/0008-5472.can-16-2874] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite favorable responses to initial therapy, small-cell lung cancer (SCLC) relapse occurs within a year and exhibits resistance to multiple drugs. Because of limited accessibility of patient tissues for research purposes, SCLC patient-derived xenografts (PDX) have provided the best opportunity to address this limitation. Here, we sought to identify novel mechanisms involved in SCLC chemoresistance. Through in-depth proteomic profiling, we identified MCAM as a markedly upregulated surface receptor in chemoresistant SCLC cell lines and in chemoresistant PDX compared with matched treatment-naïve tumors. MCAM depletion in chemoresistant cells reduced cell proliferation and reduced the IC50 inhibitory concentration of chemotherapeutic drugs in vitro This MCAM-mediated sensitization to chemotherapy occurred via SOX2-dependent upregulation of mitochondrial 37S ribosomal protein 1/ATP-binding cassette subfamily C member 1 (MRP1/ABCC1) and the PI3/AKT pathway. Metabolomic profiling revealed that MCAM modulated lactate production in chemoresistant cells that exhibit a distinct metabolic phenotype characterized by low oxidative phosphorylation. Our results suggest that MCAM may serve as a novel therapeutic target to overcome chemoresistance in SCLC. Cancer Res; 77(16); 4414-25. ©2017 AACR.
Collapse
Affiliation(s)
- Satyendra C Tripathi
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Muge Celiktas
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mitzi Aguilar
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kieren D Marini
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Mohit K Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Wang
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eunice N Murage
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - D Neil Watkins
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, Texas
| | - Edwin J Ostrin
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ayumu Taguchi
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
86
|
Jia D, Jolly MK, Kulkarni P, Levine H. Phenotypic Plasticity and Cell Fate Decisions in Cancer: Insights from Dynamical Systems Theory. Cancers (Basel) 2017; 9:E70. [PMID: 28640191 PMCID: PMC5532606 DOI: 10.3390/cancers9070070] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 01/11/2023] Open
Abstract
Waddington's epigenetic landscape, a famous metaphor in developmental biology, depicts how a stem cell progresses from an undifferentiated phenotype to a differentiated one. The concept of "landscape" in the context of dynamical systems theory represents a high-dimensional space, in which each cell phenotype is considered as an "attractor" that is determined by interactions between multiple molecular players, and is buffered against environmental fluctuations. In addition, biological noise is thought to play an important role during these cell-fate decisions and in fact controls transitions between different phenotypes. Here, we discuss the phenotypic transitions in cancer from a dynamical systems perspective and invoke the concept of "cancer attractors"-hidden stable states of the underlying regulatory network that are not occupied by normal cells. Phenotypic transitions in cancer occur at varying levels depending on the context. Using epithelial-to-mesenchymal transition (EMT), cancer stem-like properties, metabolic reprogramming and the emergence of therapy resistance as examples, we illustrate how phenotypic plasticity in cancer cells enables them to acquire hybrid phenotypes (such as hybrid epithelial/mesenchymal and hybrid metabolic phenotypes) that tend to be more aggressive and notoriously resilient to therapies such as chemotherapy and androgen-deprivation therapy. Furthermore, we highlight multiple factors that may give rise to phenotypic plasticity in cancer cells, such as (a) multi-stability or oscillatory behaviors governed by underlying regulatory networks involved in cell-fate decisions in cancer cells, and (b) network rewiring due to conformational dynamics of intrinsically disordered proteins (IDPs) that are highly enriched in cancer cells. We conclude by discussing why a therapeutic approach that promotes "recanalization", i.e., the exit from "cancer attractors" and re-entry into "normal attractors", is more likely to succeed rather than a conventional approach that targets individual molecules/pathways.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX 77005, USA.
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
| | - Prakash Kulkarni
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
- Department of Bioengineering, Rice University, Houston, TX 77005, USA.
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.
- Department of Biosciences, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
87
|
Jolly MK, Tripathi SC, Somarelli JA, Hanash SM, Levine H. Epithelial/mesenchymal plasticity: how have quantitative mathematical models helped improve our understanding? Mol Oncol 2017; 11:739-754. [PMID: 28548388 PMCID: PMC5496493 DOI: 10.1002/1878-0261.12084] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/11/2017] [Accepted: 05/18/2017] [Indexed: 12/17/2022] Open
Abstract
Phenotypic plasticity, the ability of cells to reversibly alter their phenotypes in response to signals, presents a significant clinical challenge to treating solid tumors. Tumor cells utilize phenotypic plasticity to evade therapies, metastasize, and colonize distant organs. As a result, phenotypic plasticity can accelerate tumor progression. A well‐studied example of phenotypic plasticity is the bidirectional conversions among epithelial, mesenchymal, and hybrid epithelial/mesenchymal (E/M) phenotype(s). These conversions can alter a repertoire of cellular traits associated with multiple hallmarks of cancer, such as metabolism, immune evasion, invasion, and metastasis. To tackle the complexity and heterogeneity of these transitions, mathematical models have been developed that seek to capture the experimentally verified molecular mechanisms and act as ‘hypothesis‐generating machines’. Here, we discuss how these quantitative mathematical models have helped us explain existing experimental data, guided further experiments, and provided an improved conceptual framework for understanding how multiple intracellular and extracellular signals can drive E/M plasticity at both the single‐cell and population levels. We also discuss the implications of this plasticity in driving multiple aggressive facets of tumor progression.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jason A Somarelli
- Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| |
Collapse
|
88
|
Jolly MK, Ware KE, Gilja S, Somarelli JA, Levine H. EMT and MET: necessary or permissive for metastasis? Mol Oncol 2017; 11:755-769. [PMID: 28548345 PMCID: PMC5496498 DOI: 10.1002/1878-0261.12083] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/11/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022] Open
Abstract
Epithelial‐to‐mesenchymal transition (EMT) and its reverse mesenchymal‐to‐epithelial transition (MET) have been suggested to play crucial roles in metastatic dissemination of carcinomas. These phenotypic transitions between states are not binary. Instead, carcinoma cells often exhibit a spectrum of epithelial/mesenchymal phenotype(s). While epithelial/mesenchymal plasticity has been observed preclinically and clinically, whether any of these phenotypic transitions are indispensable for metastatic outgrowth remains an unanswered question. Here, we focus on epithelial/mesenchymal plasticity in metastatic dissemination and propose alternative mechanisms for successful dissemination and metastases beyond the traditional EMT/MET view. We highlight multiple hypotheses that can help reconcile conflicting observations, and outline the next set of key questions that can offer valuable insights into mechanisms of metastasis in multiple tumor models.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Kathryn E Ware
- Duke Cancer Institute & Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Shivee Gilja
- Duke Cancer Institute & Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jason A Somarelli
- Duke Cancer Institute & Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| |
Collapse
|
89
|
Abstract
Metastases claim more than 90% of cancer-related patient deaths and are usually seeded by a subset of circulating tumor cells shed off from the primary tumor. In circulation, circulating tumor cells are found both as single cells and as clusters of cells. The clusters of circulating tumor cells, although many fewer in number, possess much higher metastatic potential as compared to that of individual circulating tumor cells. In this review, we highlight recent insights into molecular mechanisms that can enable the formation of these clusters—(a) hybrid epithelial/mesenchymal phenotype of cells that couples their ability to migrate and adhere, and (b) intercellular communication that can spatially coordinate the cluster formation and provide survival signals to cancer cells. Building upon these molecular mechanisms, we also offer a possible mechanistic understanding of why clusters are endowed with a higher metastatic potential. Finally, we discuss the highly aggressive Inflammatory Breast Cancer as an example of a carcinoma that can metastasize via clusters and corroborates the proposed molecular mechanisms.
Collapse
|
90
|
Jolly MK, Levine H. Computational systems biology of epithelial-hybrid-mesenchymal transitions. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
91
|
Francart ME, Lambert J, Vanwynsberghe AM, Thompson EW, Bourcy M, Polette M, Gilles C. Epithelial-mesenchymal plasticity and circulating tumor cells: Travel companions to metastases. Dev Dyn 2017; 247:432-450. [PMID: 28407379 DOI: 10.1002/dvdy.24506] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 12/11/2022] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) associated with metastatic progression may contribute to the generation of hybrid phenotypes capable of plasticity. This cellular plasticity would provide tumor cells with an increased potential to adapt to the different microenvironments encountered during metastatic spread. Understanding how EMT may functionally equip circulating tumor cells (CTCs) with an enhanced competence to survive in the bloodstream and niche in the colonized organs has thus become a major cancer research axis. We summarize here clinical data with CTC endpoints involving EMT. We then review the work functionally linking EMT programs to CTC biology and deciphering molecular EMT-driven mechanisms supporting their metastatic competence. Developmental Dynamics 247:432-450, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marie-Emilie Francart
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Justine Lambert
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Aline M Vanwynsberghe
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, and Translational Research Institute Brisbane, and University of Melbourne Department of Surgery, St Vincent's Hospital, Melbourne, Australia
| | - Morgane Bourcy
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Myriam Polette
- Inserm UMR-S 903, University of Reims Champagne-Ardenne, Biopathology Laboratory, CHU of Reims, Reims, France
| | - Christine Gilles
- GIGA-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| |
Collapse
|
92
|
Zhang L, Fang Y, Feng JY, Cai QY, Wei LH, Lin S, Peng J. Chloroform fraction of Scutellaria barbata D. Don inhibits the growth of colorectal cancer cells by activating miR‑34a. Oncol Rep 2017; 37:3695-3701. [PMID: 28498458 DOI: 10.3892/or.2017.5625] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/19/2017] [Indexed: 11/06/2022] Open
Abstract
Scutellaria barbata D. Don (SB) is a well known formula in traditional Chinese medicine, which exhibits potent anticancer effects on various cancers. Many miRNAs play crucial roles in the regulation of cancer, for instance, miR‑34a functions as a tumor suppressor, and is often downregulated during cancer. In this study, we investigated the role of ECSB in suppressing the growth of human colon cancer HCT‑8 cells, and whether this is mediated by regulation of miR‑34a and its downstream target genes, using real-time PCR and western blot analysis. ECSB treatment significantly inhibited the proliferation of HCT‑8 cells and promoted apoptosis in a dose-dependent manner. In addition, ECSB treatment significantly increased the level of miR‑34a expression and decreased the levels of Bcl-2, Notch1/2 and Jagged1 expression. Furthermore, knockdown of miR‑34a expression through transfection of anti-miR‑34a oligonucleotide was significantly reversed by ECSB treatment. Likewise, knockdown of miR‑34a resulted in significant upregulation of Bcl-2, Notch1/2 and Jagged1 expression, which was reversed following ECSB treatment. Therefore, this study reveals that ECSB inhibited cancer cell growth via promoting apoptosis and inhibiting proliferation, through regulation of miR‑34a. These findings further support the use of ECSB as an effective therapeutic agent against colon cancer.
Collapse
Affiliation(s)
- Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yi Fang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jian-Yu Feng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Qiao-Yan Cai
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Li-Hui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Shan Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
93
|
Zheng X, Fan L, Zhou P, Ma H, Huang S, Yu D, Zhao L, Yang S, Liu J, Huang A, Cai C, Dai X, Zhang T. Detection of Circulating Tumor Cells and Circulating Tumor Microemboli in Gastric Cancer. Transl Oncol 2017; 10:431-441. [PMID: 28448959 PMCID: PMC5406582 DOI: 10.1016/j.tranon.2017.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 02/06/2023] Open
Abstract
PURPOSE: Gastric cancer studies indicated a potential correlation between circulating tumor cells (CTCs) in peripheral blood and tumor relapse/metastasis. The prevalence and significance of circulating tumor microemboli (CTM) in gastric cancer remain unknown. We investigated the prevalence and prognostic value of CTCs and CTM for progression-free survival (PFS) and overall survival (OS) in gastric cancer patients. METHODS:Eighty-one gastric cancer patients consented to provide 5 ml of peripheral blood before systematic therapy. CTCs and CTM were isolated using isolation by size of epithelial tumor cells and characterized by cytopathologists. For 41 stage IV gastric cancer patients, CTM was investigated as a potential biomarker to predict prognosis. RESULTS:CTCs were detected in 51 patients; the average count was 1.81. In clinical stage I, II, III, and IV patients, the average CTC counts were 1.40, 0.67, 1.24, and 2.71, respectively. CTM were detected in 3 of 33 clinical stage I to IIIb patients, at an average of 0.12 (0-2). CTM were detected in 13 of 53 clinical stage IIIc to IV patients, at an average of 1.26 (0-22). In stage IV patients, CTM positivity correlated with the CA125 level. PFS and OS in CTM-positive patients were significantly lower than in CTM-negative patients (P < .001). CTM positivity was an independent factor for determining the PFS (P = .016) and OS (P = .003) of stage IV patients in multivariate analysis. Using markers of the epithelial-mesenchymal transition, single CTCs were divided into three phenotypes including epithelial CTCs, biphenotypic epithelial/mesenchymal CTCs, and mesenchymal CTCs. For CTM, CK−/Vimentin+/CD45− and CK+/Vimentin+/CD45− phenotypes were observed, but the CK+/Vimentin−/CD45− CTM phenotype was not. CA125 was detected in gastric cancer cell lines BGC823 and MGC803. CONCLUSIONS: In stage IV patients, CTM positivity was correlated with serum CA125 level. CTM were an independent predictor of shorter PFS and OS in stage IV patients. Thus, CTM detection may be a useful tool to predict prognosis in stage IV patients.
Collapse
Affiliation(s)
- Xiumei Zheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Li Fan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Pengfei Zhou
- Wuhan YZY Medical Science & Technology Co., Ltd., biolake, No.666 Gaoxin Road, Wuhan, China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Shaoyi Huang
- Wuhan YZY Medical Science & Technology Co., Ltd., biolake, No.666 Gaoxin Road, Wuhan, China
| | - Dandan Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Lei Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Shengli Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Jun Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Ai Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Congli Cai
- Wuhan YZY Medical Science & Technology Co., Ltd., biolake, No.666 Gaoxin Road, Wuhan, China
| | - Xiaomeng Dai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan 430022, China.
| |
Collapse
|
94
|
Garg M. Epithelial, mesenchymal and hybrid epithelial/mesenchymal phenotypes and their clinical relevance in cancer metastasis. Expert Rev Mol Med 2017; 19:e3. [PMID: 28322181 DOI: 10.1017/erm.2017.6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer metastasis occurs through local invasion of circulating tumour cells (CTCs), intravasation, transportation to distant sites, and their extravasation followed by colonisation at secondary sites. Epithelial-mesenchymal transition (EMT) is a normal developmental phenomenon, but its aberrant activation confers tumour cells with enhanced cell motility, metastatic properties, resistant to therapies and cancer stem cell (CSC) phenotype in epithelium-derived carcinoma. Experimental studies from various research papers have been reviewed to determine the factors, which interlink cancer stemness and cellular plasticity with EMT. Although existence of CSCs has been linked with EMT, nevertheless, there are controversies with the involvement of type of tumour cells, including cells with E (epithelial) and M (mesenchymal) phenotype alone or hybrid E/M phenotype in different types of cancers. Studies on CTCs with hybrid E/M phenotypes during different stages of cancer metastasis reveal strong association with tumour -initiation potential, cellular plasticity and types of cancer cells. Cells with the hybrid E/M state are strictly controlled by phenotypic stability factors coupled to core EMT decision-making circuits, miR200/ZEB and miR-34/Snail. Understanding the regulatory functions of EMT program in cancer metastasis can help us to characterise the biomarkers of prognostic and therapeutic potential. These biomarkers when targeted may act as metastatic suppressors, inhibit cellular plasticity and stemness ability of tumour cells and can block metastatic growth.
Collapse
Affiliation(s)
- Minal Garg
- Department of Biochemistry,University of Lucknow,Lucknow - 226007,UP,India
| |
Collapse
|