51
|
Fozo EM. New type I toxin-antitoxin families from "wild" and laboratory strains of E. coli: Ibs-Sib, ShoB-OhsC and Zor-Orz. RNA Biol 2012. [PMID: 23182878 DOI: 10.4161/rna.22568] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Type I toxin-antitoxin loci consist of two genes: one encodes a small, toxic protein and the second encodes a small RNA antitoxin that represses toxin gene expression. These pairs were first described on plasmids where they regulate plasmid maintenance. However, recent discoveries have found novel type I loci, with no homology to plasmid sequences, in the chromosome of Escherichia coli and closely related species. The Ibs-Sib, ShoB-OhsC and Zor-Orz loci are examples of these new loci. For these toxic proteins, much more is known about how their expression is regulated than their biological function. Although all are found in E. coli and closely related bacteria, there is great variation among species as to which loci they possess. Herein, I discuss how these sRNA antitoxins prevent toxin production and how the distribution of these loci across species may be providing insights into their true function.
Collapse
Affiliation(s)
- Elizabeth M Fozo
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee USA.
| |
Collapse
|
52
|
Characterization of a mazEF toxin-antitoxin homologue from Staphylococcus equorum. J Bacteriol 2012; 195:115-25. [PMID: 23104807 DOI: 10.1128/jb.00400-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxin-antitoxin (TA) systems encoded in prokaryotic genomes fall into five types, typically composed of two distinct small molecules, an endotoxic protein and a cis-encoded antitoxin of ribonucleic or proteinaceous nature. In silico analysis revealed seven putative type I and three putative type II TA systems in the genome of the nonpathogenic species strain Staphylococcus equorum SE3. Among these, a MazEF system orthologue termed MazEF(seq) was further characterized. 5' rapid amplification of cDNA ends (RACE) revealed the expression and the transcriptional start site of mazE(seq), indicating an immediately upstream promoter. Heterologous expression of the putative toxin-encoding mazF(seq) gene imposed growth cessation but not cell death on Escherichia coli. In vivo and in vitro, MazF(seq) was shown to cleave at UACAU motifs, which are remarkably abundant in a number of putative metabolic and regulatory S. equorum gene transcripts. Specific interaction between MazF(seq) and the putative cognate antitoxin MazE(seq) was demonstrated by bacterial two-hybrid analyses. These data strongly suggest that MazEF(seq) represents the first characterized TA system in a nonpathogenic Staphylococcus species and indicate that MazEF modules in staphylococci may also control processes beyond pathogenicity.
Collapse
|
53
|
Weaver KE. The par toxin-antitoxin system from Enterococcus faecalis plasmid pAD1 and its chromosomal homologs. RNA Biol 2012; 9:1498-503. [PMID: 23059908 DOI: 10.4161/rna.22311] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The par post-segregational killing locus present on Enterococcus faecalis plasmid pAD1 was the first Type I toxin-antitoxin system described in Gram-positive bacteria. Translation of the 33 amino acid Fst toxin, encoded on RNA I, is suppressed by a 66 nucleotide regulatory RNA, RNA II. RNA I and RNA II are transcribed convergently and interact at dispersed regions of complementarity, establishing a stable complex that accumulates in plasmid-containing cells. RNA II is slowly removed from the complex, allowing translation of RNA I in plasmid-free segregants. Intramolecular structures are also important for regulating translation of RNA I. The Fst toxin contains a putative transmembrane domain and is believed to exert its function at the bacterial cytoplasmic membrane, although its precise target and mode of action have yet to be determined. Numerous chromosomal homologs of pAD1 par have been identified in Gram-positive bacteria suggesting that this locus may play important roles in cellular function.
Collapse
Affiliation(s)
- Keith E Weaver
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD USA.
| |
Collapse
|
54
|
Brantl S. Acting antisense: plasmid- and chromosome-encoded sRNAs from Gram-positive bacteria. Future Microbiol 2012; 7:853-71. [DOI: 10.2217/fmb.12.59] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
sRNAs that act by base pairing were first discovered in plasmids, phages and transposons, where they control replication, maintenance and transposition. Since 2001, however, computational searches were applied that led to the discovery of a plethora of sRNAs in bacterial chromosomes. Whereas the majority of these chromsome-encoded sRNAs have been investigated in Escherichia coli, Salmonella and other Gram-negative bacteria, only a few well-studied examples are known from Gram-positive bacteria. Here, the author summarizes our current knowledge on plasmid- and chromosome-encoded sRNAs from Gram-positive species, thereby focusing on regulatory mechanisms used by these RNAs and their biological role in complex networks. Furthermore, regulatory factors that control the expression of these RNAs will be discussed and differences between sRNAs from Gram-positive and Gram-negative bacteria highlighted. The main emphasis of this review is on sRNAs that act by base pairing (i.e., by an antisense mechanism). Thereby, both plasmid-encoded and chromosome-encoded sRNAs will be considered.
Collapse
Affiliation(s)
- Sabine Brantl
- AG Bakteriengenetik, Friedrich-Schiller-Universität Jena, Philosophenweg 12, D-07743 Jena, Germany
| |
Collapse
|
55
|
Jahn N, Preis H, Wiedemann C, Brantl S. BsrG/SR4 from Bacillus subtilis--the first temperature-dependent type I toxin-antitoxin system. Mol Microbiol 2012; 83:579-98. [PMID: 22229825 DOI: 10.1111/j.1365-2958.2011.07952.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Here, we describe bsrG/SR4, a novel type I toxin-antitoxin system from the SPβ prophage region of the Bacillus subtilis chromosome. The 294-nucleotide bsrG RNA encodes a 38-amino-acid toxin, whereas SR4 is a 180-nucleotide antisense RNA that acts as the antitoxin. Both genes overlap by 123 nucleotides. BsrG expression increases at the onset of stationary phase. The sr4 promoter is 6- to 10-fold stronger than the bsrG promoter. Deletion of sr4 stabilizes bsrG mRNA and causes cell lysis on agar plates, which is due to the BsrG peptide and not the bsrG mRNA. SR4 overexpression could compensate cell lysis caused by overexpression of bsrG. SR4 interacts with the 3' UTR of bsrG RNA, thereby promoting its degradation. RNase III cleaves the bsrG RNA/SR4 duplex at position 185 of bsrG RNA, but is not essential for the function of the toxin-antitoxin system. Endoribonuclease Y and 3'-5' exoribonuclease R participate in the degradation of both bsrG RNA and SR4, whereas PnpA processes three SR4 precursors to the mature RNA. A heat shock at 48°C results in faster degradation and, therefore, significantly decreased amounts of bsrG RNA.
Collapse
Affiliation(s)
- Natalie Jahn
- Friedrich-Schiller-Universität Jena, Biologisch-Pharmazeutische Fakultät, AG Bakteriengenetik, Philosophenweg 12, Jena, Germany
| | | | | | | |
Collapse
|
56
|
Shioya K, Michaux C, Kuenne C, Hain T, Verneuil N, Budin-Verneuil A, Hartsch T, Hartke A, Giard JC. Genome-wide identification of small RNAs in the opportunistic pathogen Enterococcus faecalis V583. PLoS One 2011; 6:e23948. [PMID: 21912655 PMCID: PMC3166299 DOI: 10.1371/journal.pone.0023948] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 07/28/2011] [Indexed: 01/29/2023] Open
Abstract
Small RNA molecules (sRNAs) are key mediators of virulence and stress inducible gene expressions in some pathogens. In this work we identify sRNAs in the gram positive opportunistic pathogen Enterococcus faecalis. We characterized 11 sRNAs by tiling microarray analysis, 5' and 3' RACE-PCR, and Northern blot analysis. Six sRNAs were specifically expressed at exponential phase, two sRNAs were observed at stationary phase, and three were detected during both phases. Searches of putative functions revealed that three of them (EFA0080_EFA0081 and EFB0062_EFB0063 on pTF1 and pTF2 plasmids, respectively, and EF0408_EF04092 located on the chromosome) are similar to antisense RNA involved in plasmid addiction modules. Moreover, EF1097_EF1098 shares strong homologies with tmRNA (bi-functional RNA acting as both a tRNA and an mRNA) and EF2205_EF2206 appears homologous to 4.5S RNA member of the Signal Recognition Particle (SRP) ribonucleoprotein complex. In addition, proteomic analysis of the ΔEF3314_EF3315 sRNA mutant suggests that it may be involved in the turnover of some abundant proteins. The expression patterns of these transcripts were evaluated by tiling array hybridizations performed with samples from cells grown under eleven different conditions some of which may be encountered during infection. Finally, distribution of these sRNAs among genome sequences of 54 E. faecalis strains was assessed. This is the first experimental genome-wide identification of sRNAs in E. faecalis and provides impetus to the understanding of gene regulation in this important human pathogen.
Collapse
Affiliation(s)
- Kouki Shioya
- Laboratoire de Microbiologie de l'Environnement, EA956-USC INRA 2017-IFR146 ICORE, University of Caen, Caen, France
| | - Charlotte Michaux
- Laboratoire de Microbiologie de l'Environnement, EA956-USC INRA 2017-IFR146 ICORE, University of Caen, Caen, France
| | - Carsten Kuenne
- Institute of Medical Microbiology, Justus-Liebig-University, Giessen, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus-Liebig-University, Giessen, Germany
| | - Nicolas Verneuil
- Laboratoire de Microbiologie de l'Environnement, EA956-USC INRA 2017-IFR146 ICORE, University of Caen, Caen, France
| | - Aurélie Budin-Verneuil
- Laboratoire de Microbiologie de l'Environnement, EA956-USC INRA 2017-IFR146 ICORE, University of Caen, Caen, France
| | | | - Axel Hartke
- Laboratoire de Microbiologie de l'Environnement, EA956-USC INRA 2017-IFR146 ICORE, University of Caen, Caen, France
| | - Jean-Christophe Giard
- Laboratoire de Microbiologie de l'Environnement, EA956-USC INRA 2017-IFR146 ICORE, University of Caen, Caen, France
- * E-mail:
| |
Collapse
|
57
|
Göbl C, Kosol S, Stockner T, Rückert HM, Zangger K. Solution structure and membrane binding of the toxin fst of the par addiction module. Biochemistry 2010; 49:6567-75. [PMID: 20677831 PMCID: PMC2914490 DOI: 10.1021/bi1005128] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
The par toxin−antitoxin system is required for the stable inheritance of the plasmid pAD1 in its native host Enterococcus faecalis. It codes for the toxin Fst and a small antisense RNA which inhibits translation of toxin mRNA, and it is the only known antisense regulated toxin−antitoxin system in Gram-positive bacteria. This study presents the structure of the par toxin Fst, the first atomic resolution structure of a component of an antisense regulated toxin−antitoxin system. The mode of membrane binding was determined by relaxation enhancements in a paramagnetic environment and molecular dynamics simulation. Fst forms a membrane-binding α-helix in the N-terminal part and contains an intrinsically disordered region near the C-terminus. It binds in a transmembrane orientation with the C-terminus likely pointing toward the cytosol. Membrane-bound, α-helical peptides are frequently found in higher organisms as components of the innate immune system. Despite similarities to these antimicrobial peptides, Fst shows neither hemolytic nor antimicrobial activity when applied externally to a series of bacteria, fungal cells, and erythrocytes. Moreover, its charge distribution, orientation in the membrane, and structure distinguish it from antimicrobial peptides.
Collapse
Affiliation(s)
- Christoph Göbl
- Institute of Chemistry/Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | | | | | | | | |
Collapse
|
58
|
Jensen SO, Apisiridej S, Kwong SM, Yang YH, Skurray RA, Firth N. Analysis of the prototypical Staphylococcus aureus multiresistance plasmid pSK1. Plasmid 2010; 64:135-42. [PMID: 20547176 DOI: 10.1016/j.plasmid.2010.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 05/26/2010] [Accepted: 06/06/2010] [Indexed: 11/16/2022]
Abstract
The Staphylococcus aureus multiresistance plasmid pSK1 is the prototype of a family of structurally related plasmids that were first identified in epidemic S. aureus strains isolated in Australia during the 1980s and subsequently in Europe. Here we present the complete 28.15kb nucleotide sequence of pSK1 and discuss the genetic content and evolution of the 14kb region that is conserved throughout the pSK1 plasmid family. In addition to the previously characterized plasmid maintenance functions, this backbone region encodes 12 putative gene products, including a lipoprotein, teichoic acid translocation permease, cell wall anchored surface protein and an Fst-like toxin as part of a Type I toxin-antitoxin system. Furthermore, transcriptional profiling has revealed that plasmid carriage most likely has a minimal impact on the host, a factor that may contribute to the ability of pSK1 family plasmids to carry multiple resistance determinants.
Collapse
Affiliation(s)
- Slade O Jensen
- School of Biological Sciences, University of Sydney, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
59
|
Prevalence of Fst-like toxin–antitoxin systems – author's response. Microbiology (Reading) 2010. [DOI: 10.1099/mic.0.039198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
60
|
Fozo EM, Makarova KS, Shabalina SA, Yutin N, Koonin EV, Storz G. Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Res 2010; 38:3743-59. [PMID: 20156992 PMCID: PMC2887945 DOI: 10.1093/nar/gkq054] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Small, hydrophobic proteins whose synthesis is repressed by small RNAs (sRNAs), denoted type I toxin-antitoxin modules, were first discovered on plasmids where they regulate plasmid stability, but were subsequently found on a few bacterial chromosomes. We used exhaustive PSI-BLAST and TBLASTN searches across 774 bacterial genomes to identify homologs of known type I toxins. These searches substantially expanded the collection of predicted type I toxins, revealed homology of the Ldr and Fst toxins, and suggested that type I toxin-antitoxin loci are not spread by horizontal gene transfer. To discover novel type I toxin-antitoxin systems, we developed a set of search parameters based on characteristics of known loci including the presence of tandem repeats and clusters of charged and bulky amino acids at the C-termini of short proteins containing predicted transmembrane regions. We detected sRNAs for three predicted toxins from enterohemorrhagic Escherichia coli and Bacillus subtilis, and showed that two of the respective proteins indeed are toxic when overexpressed. We also demonstrated that the local free-energy minima of RNA folding can be used to detect the positions of the sRNA genes. Our results suggest that type I toxin-antitoxin modules are much more widely distributed among bacteria than previously appreciated.
Collapse
Affiliation(s)
- Elizabeth M Fozo
- Eunice Kennedy Shriver National Institute of Child Health and Human Development and National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | | | | | |
Collapse
|
61
|
Kwong SM, Jensen SO, Firth N. Prevalence of Fst-like toxin-antitoxin systems. MICROBIOLOGY-SGM 2010; 156:975-977. [PMID: 20150240 DOI: 10.1099/mic.0.038323-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Stephen M Kwong
- School of Biological Sciences, The University of Sydney, NSW 2006, Australia
| | - Slade O Jensen
- School of Biological Sciences, The University of Sydney, NSW 2006, Australia
| | - Neville Firth
- School of Biological Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|