51
|
Toledo-Silva B, de Souza FN, Mertens K, Piepers S, Haesebrouck F, De Vliegher S. Bovine-associated non-aureus staphylococci suppress Staphylococcus aureus biofilm dispersal in vitro yet not through agr regulation. Vet Res 2021; 52:114. [PMID: 34479647 PMCID: PMC8414718 DOI: 10.1186/s13567-021-00985-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
Biofilm formation is a significant virulence factor in Staphylococcus (S.) aureus strains causing subclinical mastitis in dairy cows. A role of environmental signals and communication systems in biofilm development, such as the agr system in S. aureus, is suggested. In the context of multispecies biofilm communities, the presence of non-aureus staphylococci (NAS) might influence S. aureus colonization of the bovine mammary gland, yet, such interspecies interactions have been poorly studied. We determined whether 34 S. chromogenes, 11 S. epidermidis, and 14 S. simulans isolates originating from bovine milk samples and teat apices (TA) were able to affect biofilm formation and dispersion of S. aureus, and if so, how isolate traits such as the capacity to regulate the S. aureus agr quorum sensing system are determinants in this process. The capacity of an agr-positive S. aureus strain to form biofilm was increased more in the presence of S. chromogenes than in the presence of S. simulans and S. epidermidis isolates and in the presence of NAS isolates that do not harbor biofilm related genes. On the other hand, biofilm dispersion of this particular S. aureus strain was suppressed by NAS as a group, an effect that was more pronounced by isolates from TA. Furthermore, the observed effects on biofilm formation and dispersion of the agr-positive S. aureus strain as well as of an agr-negative S. aureus strain did not depend on the capacity of NAS to repress the agr system.
Collapse
Affiliation(s)
- Bruno Toledo-Silva
- M-Team & Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Ghent, Belgium.
| | - Fernando N de Souza
- Veterinary Clinical Immunology Research Group, Department of Clinical Science, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Prof. Orlando Marques de Paiva Av. 87, São Paulo, 05508-270, Brazil.,Postgraduate Program in Animal Science, Department of Veterinary Medicine, Federal University of Paraiba, Rodovia PB-079 12, Areia, João Pessoa, 58397-000, Brazil
| | - Kristien Mertens
- M-Team & Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Ghent, Belgium
| | - Sofie Piepers
- M-Team & Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Ghent, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Ghent, Belgium
| | - Sarne De Vliegher
- M-Team & Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Ghent, Belgium
| |
Collapse
|
52
|
Mugita Y, Minematsu T, Nakagami G, Sanada H. Promoting effect of acylated homoserine lactone on the healing of tissue damage in model rats with incontinence-associated dermatitis. J Wound Care 2021; 30:XIi-XIxi. [PMID: 34597169 DOI: 10.12968/jowc.2021.30.sup9a.xi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE One of the most common complications in patients with incontinence is incontinence-associated dermatitis (IAD). This study was conducted to determine the pathophysiology of the healing process of IAD and to develop an effective therapeutic approach according to its pathophysiology. METHOD IAD was reproduced on a dorsal rat skin by applying agarose gel containing water and enzymes, and inoculating it with bacteria. Examination of the IAD healing process suggested that the promotion of keratinocyte migration and improvement of basement membrane enhance keratinocyte layer elongations, which contribute to IAD healing. A therapeutic approach using N-(3-oxotetradecanoyl)-L-homoserine lactone, which is one of the acylated homoserine lactones (AHLs) and can promote keratinocyte migration in vitro, was applied on the IAD area in rats. RESULTS AHL treatment after IAD development resulted in an earlier tipping point for recovery than the vehicle treatment. Histological and immunohistological analyses revealed that the tissue surface was already covered by the epidermis, indicating the results of elongation of the keratinocyte layer from hair follicles. The characteristics of the alignment of basal keratinocytes, the existence of stratum corneum, and the membrane-like distribution of the components of basement membrane were similar to those of a normal epidermis. CONCLUSION These results suggested that AHL application possibly contributed to earlier IAD healing before progressing to a severe state. Although elongation of the keratinocyte layer was observed in both the AHL and vehicle groups, the possibility that AHL application promotes IAD healing was suggested. The new concept of the enhancement of keratinocyte migration as a therapeutic approach for IAD would change the skin care strategy for IAD in the healthcare setting.
Collapse
Affiliation(s)
- Yuko Mugita
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeo Minematsu
- Department of Skincare Science, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Gojiro Nakagami
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiromi Sanada
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
53
|
Joshi JR, Khazanov N, Charkowski A, Faigenboim A, Senderowitz H, Yedidia I. Interkingdom Signaling Interference: The Effect of Plant-Derived Small Molecules on Quorum Sensing in Plant-Pathogenic Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:153-190. [PMID: 33951403 DOI: 10.1146/annurev-phyto-020620-095740] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the battle between bacteria and plants, bacteria often use a population density-dependent regulatory system known as quorum sensing (QS) to coordinate virulence gene expression. In response, plants use innate and induced defense mechanisms that include low-molecular-weight compounds, some of which serve as antivirulence agents by interfering with the QS machinery. The best-characterized QS system is driven by the autoinducer N-acyl-homoserine lactone (AHL), which is produced by AHL synthases (LuxI homologs) and perceived by response regulators (LuxR homologs). Several plant compounds have been shown to directly inhibit LuxI or LuxR. Gaining atomic-level insight into their mode of action and how they interfere with QS enzymes supports the identification and design of novel QS inhibitors.Such information can be gained by combining experimental work with molecular modeling and docking simulations. The summary of these findings shows that plant-derived compounds act as interkingdom cues and that these allomones specifically target bacterial communication systems.
Collapse
Affiliation(s)
- Janak Raj Joshi
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Lezion, Israel 7528809;
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel 5290002;
| | - Amy Charkowski
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Adi Faigenboim
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Lezion, Israel 7528809;
| | - Hanoch Senderowitz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel 5290002;
| | - Iris Yedidia
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Lezion, Israel 7528809;
| |
Collapse
|
54
|
Warrier A, Satyamoorthy K, Murali TS. Quorum-sensing regulation of virulence factors in bacterial biofilm. Future Microbiol 2021; 16:1003-1021. [PMID: 34414776 DOI: 10.2217/fmb-2020-0301] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic polymicrobial wound infections are often characterized by the presence of bacterial biofilms. They show considerable structural and functional heterogeneity, which influences the choice of antimicrobial therapy and wound healing dynamics. The hallmarks of biofilm-associated bacterial infections include elevated antibiotic resistance and extreme pathogenicity. Biofilm helps bacteria to evade the host defense mechanisms and persist longer in the host. Quorum-sensing (QS)-mediated cell signaling primarily regulates biofilm formation in chronic infections and plays a major role in eliciting virulence. This review focuses on the QS mechanisms of two major bacterial pathogens, Staphylococcus aureus and Pseudomonas aeruginosa and explains how they interact in the wound microenvironment to regulate biofilm development and virulence. The review also provides an insight into the treatment modalities aimed at eradicating polymicrobial biofilms. This information will help us develop better diagnostic modalities and devise effective treatment regimens to successfully manage and overcome severe life-threatening bacterial infections.
Collapse
Affiliation(s)
- Anjali Warrier
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Thokur Sreepathy Murali
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Manipal Center for Infectious Diseases (MAC ID), Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
55
|
Lu L, Zhao Y, Yi G, Li M, Liao L, Yang C, Cho C, Zhang B, Zhu J, Zou K, Cheng Q. Quinic acid: a potential antibiofilm agent against clinical resistant Pseudomonas aeruginosa. Chin Med 2021; 16:72. [PMID: 34362401 PMCID: PMC8343939 DOI: 10.1186/s13020-021-00481-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/29/2021] [Indexed: 11/11/2022] Open
Abstract
Background The biofilm state of pathogens facilitates antimicrobial resistance which makes difficult-to-treat infections. In this regard, it has been found that the compounds screened from plant extracts represent one category of the most promising antibiofilm agents. However, the antibiofilm activities and the active ingredients of plant extracts remain largely unexplored. In this background, the study is (1) to screen out the plant extracts with antibiofilm ability against Pseudomonas aeruginosa, and (2) to identify the active ingredients in the plant extracts and elucidate the underlying mechanism of the antibiofilm activities. Methods Micro-broth dilution method, in vitro biofilm model, LC–MS/MS analysis and P. aeruginosa-mouse infection model were adopted to assess the antibiofilm activity. GC–MS analysis was performed to detect the active ingredients in plasma. RNA-Seq, GO analysis, KEGG analysis and RT-qPCR were adopted to elucidate the underlying mechanism of antibiofilm activities against P. aeruginosa. Results Lonicerae Japonicae Flos (LJF) among 13 plants could exert significant inhibitory effects on bacterial biofilm formation, mobility and toxin release in vitro, and it could exert antibiofilm effect in vivo too. Moreover, quinic acid, as one metabolite of chlorogenic acid, was found as an active ingredient in LJF against the biofilm of P. aeruginosa. The active ingredient significantly inhibited EPS secretion in biofilm formation and maturity and could achieve synergistic antibiofilm effect with levofloxacin. It reduced the biofilm formation by regulating core targets in quorum sensing system. In GO process, it was found that the core targets were significantly enriched in multiple biological processes involving locomotion, chemotaxis and motility mediated by flagellum/cilium, which was related to KEGG pathways such as bacterial chemotaxis, oxidative phosphorylation, ribosome, biofilm formation, cyanoamino acid metabolism and quorum sensing. Finally, the binding of quinic acid with core targets rhlA, rhlR and rhlB were validated by molecular docking and RT-qPCR. Conclusions In summary, the study verified the in vitro and in vivo antibiofilm effects of LJF against P. aeruginosa and elucidated the active ingredients in LJF and its conceivable pharmacological mechanism, indicating that quinic acid could have the potential of an antibiofilm agent against P. aeruginosa and related infections. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00481-8.
Collapse
Affiliation(s)
- Lan Lu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Yuting Zhao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Guojuan Yi
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Li Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Chen Yang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Chihin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Bin Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Jie Zhu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Kun Zou
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, People's Republic of China
| | - Qiang Cheng
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
56
|
Abstract
Quorum sensing (QS) is one of the most studied cell-cell communication mechanisms in fungi. Research in the last 20 years has explored various fungal QS systems that are involved in a wide range of biological processes, especially eukaryote- or fungus-specific behaviors, mirroring the significant contribution of QS regulation to fungal biology and evolution. Based on recent progress, we summarize in this review fungal QS regulation, with an emphasis on its functional role in behaviors unique to fungi or eukaryotes. We suggest that using fungi as genetically amenable eukaryotic model systems to address why and how QS regulation is integrated into eukaryotic reproductive strategies and molecular or cellular processes could be an important direction for QS research. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hao Ding
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Weixin Ke
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
57
|
Wu S, Li S, Yin J, Yu Z. Hfq and sRNA00002 positively regulate the LuxI/LuxR-type quorum sensing system in Pseudoalteromonas. Biochem Biophys Res Commun 2021; 571:1-7. [PMID: 34298336 DOI: 10.1016/j.bbrc.2021.07.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022]
Abstract
Pseudoalteromonas spp. are Gram-negative bacteria which are ubiquitous in marine environments. Our previous work found that there is a classic LuxI/LuxR-type quorum sensing (QS) system which was named YasI/YasR in Pseudoalteromonas sp. R3, but the factors that control QS in strain R3 are unclear yet. Here, we found that the deficiency of hfq encoding RNA chaperon Hfq down-regulated the transcription levels of yasI encoding acyl-homoserine lactones (AHLs) synthase and yasR encoding AHLs receptor in strain R3. The assay based on fusion reporter of yasI-lacZ showed that Hfq regulates the expression of yasR at both transcriptional and translational levels. In addition, Hfq affects the expression of yasI via yasR. Further analysis indicated that the 5'UTR region of yasR is necessary for Hfq to control QS. In addition, the deletion of hfq increases the unstability of the target yasR mRNA. Based on transcriptome sequencing and bioinformatic analysis together with molecular experiments, Hfq-dependent sRNA00002 was identified to be involved in positively regulating QS in Pseudoalternas sp. R3. It was found that sRNA00002 deficiency causes the decrease in expression of yasI and yasR, and thus abolishes the production of AHLs in strain R3. It was concluded that Hfq-dependent sRNA00002 regulates yasR expression by base-pairing with target yasR mRNA at 5'UTR region and altering the stability of yasR mRNA. Our work paves the way for understanding the regulation mechanism of Hfq-dependent sRNAs on QS in Pseudoalteromonas.
Collapse
Affiliation(s)
- Shijun Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Shuangjia Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianhua Yin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhiliang Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
58
|
Pacheco T, Gomes AÉI, Siqueira NMG, Assoni L, Darrieux M, Venter H, Ferraz LFC. SdiA, a Quorum-Sensing Regulator, Suppresses Fimbriae Expression, Biofilm Formation, and Quorum-Sensing Signaling Molecules Production in Klebsiella pneumoniae. Front Microbiol 2021; 12:597735. [PMID: 34234747 PMCID: PMC8255378 DOI: 10.3389/fmicb.2021.597735] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative pathogen that has become a worldwide concern due to the emergence of multidrug-resistant isolates responsible for various invasive infectious diseases. Biofilm formation constitutes a major virulence factor for K. pneumoniae and relies on the expression of fimbrial adhesins and aggregation of bacterial cells on biotic or abiotic surfaces in a coordinated manner. During biofilm aggregation, bacterial cells communicate with each other through inter- or intra-species interactions mediated by signallng molecules, called autoinducers, in a mechanism known as quorum sensing (QS). In most Gram-negative bacteria, intra-species communication typically involves the LuxI/LuxR system: LuxI synthase produces N-acyl homoserine lactones (AHLs) as autoinducers and the LuxR transcription factor is their cognate receptor. However, K. pneumoniae does not produce AHL but encodes SdiA, an orphan LuxR-type receptor that responds to exogenous AHL molecules produced by other bacterial species. While SdiA regulates several cellular processes and the expression of virulence factors in many pathogens, the role of this regulator in K. pneumoniae remains unknown. In this study, we describe the characterization of sdiA mutant strain of K. pneumoniae. The sdiA mutant strain has increased biofilm formation, which correlates with the increased expression of type 1 fimbriae, thus revealing a repressive role of SdiA in fimbriae expression and bacterial cell adherence and aggregation. On the other hand, SdiA acts as a transcriptional activator of cell division machinery assembly in the septum, since cells lacking SdiA regulator exhibited a filamentary shape rather than the typical rod shape. We also show that K. pneumoniae cells lacking SdiA regulator present constant production of QS autoinducers at maximum levels, suggesting a putative role for SdiA in the regulation of AI-2 production. Taken together, our results demonstrate that SdiA regulates cell division and the expression of virulence factors such as fimbriae expression, biofilm formation, and production of QS autoinducers in K. pneumoniae.
Collapse
Affiliation(s)
- Thaisy Pacheco
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Ana Érika Inácio Gomes
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | | | - Lucas Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Lúcio Fábio Caldas Ferraz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
59
|
Efficacy of a Next Generation Quaternary Ammonium Chloride Sanitizer on Staphylococcus and Pseudomonas Biofilms and Practical Application in a Food Processing Environment. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Foodborne pathogens are known to adhere strongly to surfaces and can form biofilms in food processing facilities; therefore, their potential to contaminate manufactured foods underscores the importance of sanitation. The objectives of this study were to (1) examine the efficacy of a new-generation sanitizer (Decon7) on Staphylococcus and Pseudomonas biofilms, (2) identify biofilm bacteria from workers’ boots in relation to previous sanitizer chemistry, (3) validate the efficacy of Decon7 on biofilm from workers’ boots from an abattoir/food processing environment, and (4) compare the sensitivity of isolated boot biofilm bacteria to new- and early (Bi-Quat)-generation QAC sanitizers. Decon7 was applied at two concentrations (5%, 10%) and was shown to be effective within 1 min of exposure against enhanced biofilms of Staphylococcus spp. and Pseudomonas spp. in 96-well microplates. Decon7 was also used to treat workers’ boots that had accumulated high levels of biofilm bacteria due to ineffective sanitization. Bacteria isolated before enzyme/sanitizer treatment were identified through 16S rRNA PCR and DNA sequencing. All treatments were carried out in triplicate and analyzed by one-way RM-ANOVA or ANOVA using the Holm–Sidak test for pairwise multiple comparisons to determine significant differences (p < 0.05). The data show a significant difference between Decon7 sanitizer treatment and untreated control groups. There was a ~4–5 log reduction in Staphylococcus spp. and Pseudomonas spp. (microplate assay) within the first 1 min of treatment and also a > 3-log reduction in the bacterial population observed in the biofilms from workers’ boots. The new next-generation QAC sanitizers are more effective than prior QAC sanitizers, and enzyme pre-treatment can facilitate biofilm sanitizer penetration on food contact surfaces. The rotation of sanitizer chemistries may prevent the selective retention of chemistry-tolerant microorganisms in processing facilities.
Collapse
|
60
|
de Pina LC, da Silva FSH, Galvão TC, Pauer H, Ferreira RBR, Antunes LCM. The role of two-component regulatory systems in environmental sensing and virulence in Salmonella. Crit Rev Microbiol 2021; 47:397-434. [PMID: 33751923 DOI: 10.1080/1040841x.2021.1895067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adaptation to environments with constant fluctuations imposes challenges that are only overcome with sophisticated strategies that allow bacteria to perceive environmental conditions and develop an appropriate response. The gastrointestinal environment is a complex ecosystem that is home to trillions of microorganisms. Termed microbiota, this microbial ensemble plays important roles in host health and provides colonization resistance against pathogens, although pathogens have evolved strategies to circumvent this barrier. Among the strategies used by bacteria to monitor their environment, one of the most important are the sensing and signalling machineries of two-component systems (TCSs), which play relevant roles in the behaviour of all bacteria. Salmonella enterica is no exception, and here we present our current understanding of how this important human pathogen uses TCSs as an integral part of its lifestyle. We describe important aspects of these systems, such as the stimuli and responses involved, the processes regulated, and their roles in virulence. We also dissect the genomic organization of histidine kinases and response regulators, as well as the input and output domains for each TCS. Lastly, we explore how these systems may be promising targets for the development of antivirulence therapeutics to combat antibiotic-resistant infections.
Collapse
Affiliation(s)
- Lucindo Cardoso de Pina
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Biociências, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Ciência para o Desenvolvimento, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Teca Calcagno Galvão
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Heidi Pauer
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil
| | | | - L Caetano M Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil.,Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
61
|
Barlow RS, Fitzgerald AG, Hughes JM, McMillan KE, Moore SC, Sikes AL, Tobin AB, Watkins PJ. Rapid Evaporative Ionization Mass Spectrometry: A Review on Its Application to the Red Meat Industry with an Australian Context. Metabolites 2021; 11:171. [PMID: 33804276 PMCID: PMC8000567 DOI: 10.3390/metabo11030171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 01/01/2023] Open
Abstract
The red meat supply chain is a complex network transferring product from producers to consumers in a safe and secure way. There can be times when fragmentation can arise within the supply chain, which could be exploited. This risk needs reduction so that meat products enter the market with the desired attributes. Rapid Evaporative Ionisation Mass Spectrometry (REIMS) is a novel ambient mass spectrometry technique originally developed for rapid and accurate classification of biological tissue which is now being considered for use in a range of additional applications. It has subsequently shown promise for a range of food provenance, quality and safety applications with its ability to conduct ex vivo and in situ analysis. These are regarded as critical characteristics for technologies which can enable real-time decision making in meat processing plants and more broadly throughout the sector. This review presents an overview of the REIMS technology, and its application to the areas of provenance, quality and safety to the red meat industry, particularly in an Australian context.
Collapse
Affiliation(s)
- Robert S. Barlow
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, QLD 4108, Australia; (A.G.F.); (J.M.H.); (K.E.M.); (A.L.S.); (A.B.T.)
| | - Adam G. Fitzgerald
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, QLD 4108, Australia; (A.G.F.); (J.M.H.); (K.E.M.); (A.L.S.); (A.B.T.)
| | - Joanne M. Hughes
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, QLD 4108, Australia; (A.G.F.); (J.M.H.); (K.E.M.); (A.L.S.); (A.B.T.)
| | - Kate E. McMillan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, QLD 4108, Australia; (A.G.F.); (J.M.H.); (K.E.M.); (A.L.S.); (A.B.T.)
| | - Sean C. Moore
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Werribee, VIC 3030, Australia; (S.C.M.); (P.J.W.)
| | - Anita L. Sikes
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, QLD 4108, Australia; (A.G.F.); (J.M.H.); (K.E.M.); (A.L.S.); (A.B.T.)
| | - Aarti B. Tobin
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Coopers Plains, QLD 4108, Australia; (A.G.F.); (J.M.H.); (K.E.M.); (A.L.S.); (A.B.T.)
| | - Peter J. Watkins
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Werribee, VIC 3030, Australia; (S.C.M.); (P.J.W.)
| |
Collapse
|
62
|
Henly EL, Norris K, Rawson K, Zoulias N, Jaques L, Chirila PG, Parkin KL, Kadirvel M, Whiteoak C, Lacey MM, Smith TJ, Forbes S. Impact of long-term quorum sensing inhibition on uropathogenic Escherichia coli. J Antimicrob Chemother 2021; 76:909-919. [PMID: 33406232 DOI: 10.1093/jac/dkaa517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Quorum sensing is an extracellular bacterial communication system used in the density-dependent regulation of gene expression and development of biofilms. Biofilm formation has been implicated in the establishment of catheter-associated urinary tract infections and therefore quorum sensing inhibitors (QSIs) have been suggested as anti-biofilm catheter coating agents. The long-term effects of QSIs in uropathogens is, however, not clearly understood. OBJECTIVES We evaluated the effects of repeated exposure to the QSIs cinnamaldehyde, (Z)-4-bromo-5(bromomethylene)-2(5H)-furanone-C30 (furanone-C30) and 4-fluoro-5-hydroxypentane-2,3-dione (F-DPD) on antimicrobial susceptibility, biofilm formation and relative pathogenicity in eight uropathogenic Escherichia coli (UPEC) isolates. METHODS MICs, MBCs and minimum biofilm eradication concentrations and antibiotic susceptibility were determined. Biofilm formation was quantified using crystal violet. Relative pathogenicity was assessed in a Galleria mellonella model. To correlate changes in phenotype to gene expression, transcriptomic profiles were created through RNA sequencing and variant analysis of genomes was performed in strain EC958. RESULTS Cinnamaldehyde and furanone-C30 led to increases in susceptibility in planktonic and biofilm-associated UPEC. Relative pathogenicity increased after cinnamaldehyde exposure (4/8 isolates), decreased after furanone-C30 exposure (6/8 isolates) and varied after F-DPD exposure (one increased and one decreased). A total of 9/96 cases of putative antibiotic cross-resistance were generated. Exposure to cinnamaldehyde or F-DPD reduced expression of genes associated with locomotion, whilst cinnamaldehyde caused an increase in genes encoding fimbrial and afimbrial-like adhesins. Furanone-C30 caused a reduction in genes involved in cellular biosynthetic processes, likely though impaired ribonucleoprotein assembly. CONCLUSIONS The multiple phenotypic adaptations induced during QSI exposure in UPEC should be considered when selecting an anti-infective catheter coating agent.
Collapse
Affiliation(s)
- E L Henly
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - K Norris
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - K Rawson
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - N Zoulias
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - L Jaques
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - P G Chirila
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - K L Parkin
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - M Kadirvel
- Manchester Pharmacy School, University of Manchester, Manchester, UK
| | - C Whiteoak
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - M M Lacey
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - T J Smith
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - S Forbes
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
63
|
Oziat J, Cohu T, Elsen S, Gougis M, Malliaras GG, Mailley P. Electrochemical detection of redox molecules secreted by Pseudomonas aeruginosa - Part 1: Electrochemical signatures of different strains. Bioelectrochemistry 2021; 140:107747. [PMID: 33618190 DOI: 10.1016/j.bioelechem.2021.107747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
During infections, fast identification of the microorganisms is critical to improve patient treatment and to better manage antibiotics use. Electrochemistry exhibits several advantages for rapid diagnostic: it enables easy, cheap and in situ analysis of redox molecules in most liquids. In this work, several culture supernatants of different Pseudomonas aeruginosa strains (including PAO1 and its isogenic mutants PAO1ΔpqsA, PA14, PAK and CHA) were analyzed by square wave voltammetry on glassy carbon electrode during the bacterial growth. The obtained voltamograms shown complex traces exhibiting numerous redox peaks with potential repartitions and current amplitudes depending on the studied bacterium and/or growth time. Among them, some peaks were clearly associated to the well-known redox toxin Pyocyanin (PYO) and the autoinducer Pseudomonas Quinolone Signal (PQS). Other peaks were observed that are not yet attributed to known secreted species. Each complex electrochemical response (number of peaks, peak potential and amplitude) can be interpreted as a fingerprint or "ID-card" of the studied strain that may be implemented for fast bacteria strain identification.
Collapse
Affiliation(s)
- Julie Oziat
- Univ. Grenoble-Alpes, CEA Leti, MINATEC Campus, F-38054 Grenoble, France; Department of Bioelectronics, Ecole Nationale Supérieure des Mines de Saint-Etienne, F-13541 Gardanne, France; Bioserenity, Institut du Cerveau et de la Moelle Epinière, 47 Bd de l'Hôpital, 75013 Paris, France
| | - Thibaut Cohu
- Univ. Grenoble-Alpes, CEA Leti, MINATEC Campus, F-38054 Grenoble, France
| | - Sylvie Elsen
- UMR 1036, INSERM-CEA-UJF, CNRS ERL5261, BIG, CEA-Grenoble, F-38054 Grenoble, France
| | - Maxime Gougis
- Univ. Grenoble-Alpes, CEA Leti, MINATEC Campus, F-38054 Grenoble, France
| | - George G Malliaras
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines de Saint-Etienne, F-13541 Gardanne, France; Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - Pascal Mailley
- Univ. Grenoble-Alpes, CEA Leti, MINATEC Campus, F-38054 Grenoble, France.
| |
Collapse
|
64
|
Doekes HM, Mulder GA, Hermsen R. Repeated outbreaks drive the evolution of bacteriophage communication. eLife 2021; 10:58410. [PMID: 33459590 PMCID: PMC7935489 DOI: 10.7554/elife.58410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Recently, a small-molecule communication mechanism was discovered in a range of Bacillus-infecting bacteriophages, which these temperate phages use to inform their lysis-lysogeny decision. We present a mathematical model of the ecological and evolutionary dynamics of such viral communication and show that a communication strategy in which phages use the lytic cycle early in an outbreak (when susceptible host cells are abundant) but switch to the lysogenic cycle later (when susceptible cells become scarce) is favoured over a bet-hedging strategy in which cells are lysogenised with constant probability. However, such phage communication can evolve only if phage-bacteria populations are regularly perturbed away from their equilibrium state, so that acute outbreaks of phage infections in pools of susceptible cells continue to occur. Our model then predicts the selection of phages that switch infection strategy when half of the available susceptible cells have been infected. Bacteriophages, or phages for short, are viruses that need to infect bacteria to multiply. Once inside a cell, phages follow one of two strategies. They either start to replicate quickly, killing the host in the process; or they lay dormant, their genetic material slowly duplicating as the bacterium divides. These two strategies are respectively known as a ‘lytic’ or a ‘lysogenic’ infection. In 2017, scientists discovered that, during infection, some phages produce a signalling molecule that influences the strategy other phages will use. Generally, a high concentration of the signal triggers lysogenic infection, while a low level prompts the lytic type. However, it is still unclear what advantages this communication system brings to the viruses, and how it has evolved. Here, Doekes et al. used a mathematical model to explore how communication changes as phages infect a population of bacteria, rigorously testing earlier theories. The simulations showed that early in an outbreak, when only a few cells have yet been infected, the signalling molecule levels are low: lytic infections are therefore triggered and the phages quickly multiply, killing their hosts in the process. This is an advantageous strategy since many bacteria are available for the viruses to prey on. Later on, as more phages are being produced and available bacteria become few and far between, the levels of the signalling molecule increase. The viruses then switch to lysogenic infections, which allows them to survive dormant, inside their host. Doekes et al. also discovered that this communication system only evolves if phages regularly cause large outbreaks in new, uninfected bacterial populations. From there, the model was able to predict that phages switch from lytic to lysogenic infections when about half the available bacteria have been infected. As antibiotic resistance rises around the globe, phages are increasingly considered as a new way to fight off harmful bacteria. Deciphering the way these viruses communicate could help to understand how they could be harnessed to control the spread of bacteria.
Collapse
Affiliation(s)
- Hilje M Doekes
- Theoretical Biology, Department of Biology, Utrecht University, Utrecht, Netherlands.,Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Glenn A Mulder
- Theoretical Biology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Rutger Hermsen
- Theoretical Biology, Department of Biology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
65
|
|
66
|
Bux K, Hofer TS, Moin ST. Exploring interfacial dynamics in homodimeric S-ribosylhomocysteine lyase (LuxS) from Vibrio cholerae through molecular dynamics simulations. RSC Adv 2021; 11:1700-1714. [PMID: 35424088 PMCID: PMC8693604 DOI: 10.1039/d0ra08809a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/22/2020] [Indexed: 11/21/2022] Open
Abstract
To the best of our knowledge, this is the first molecular dynamics simulation study on the dimeric form of the LuxS enzyme from Vibrio cholerae to evaluate its structural and dynamical properties including the dynamics of the interface formed by the two monomeric chains of the enzyme. The dynamics of the interfacial region were investigated in terms of inter-residual contacts and the associated interface area of the enzyme in its ligand-free and ligand–bound states which produced characteristics contrast in the interfacial dynamics. Moreover, the binding patterns of the two inhibitors (RHC and KRI) to the enzyme forming two different enzyme–ligand complexes were analyzed which pointed towards a varying inhibition potential of the inhibitors as also revealed by the free energies of ligand binding. It is shown that KRI is a more potent inhibitor than RHC – a substrate analogue, showing correlation with experimental data. Moreover, the role of a loop in chain B of the enzyme was found to facilitate the binding of RHC similar to that of the substrate, while KRI demonstrates a differing binding pattern. The computation of the free energy of binding for the two ligands was also carried out via thermodynamic integration which ultimately served to correlate the dynamical properties with the inhibition potential of two different ligands against the enzyme. Furthermore, this successful study provides a rational to suggest novel LuxS inhibitors which could become promising candidates to treat the diseases caused by a broad variety of bacterial species. To the best of our knowledge, this is the first molecular dynamics simulation study on the dimeric form of the LuxS enzyme from Vibrio cholerae to evaluate its structural and dynamical properties including the dynamics of the interface formed by the two monomeric chains of the enzyme.![]()
Collapse
Affiliation(s)
- Khair Bux
- H.E.J. Research Institute of Chemistry
- International Center for Chemical and Biological Sciences
- University of Karachi
- Karachi-75270
- Pakistan
| | - Thomas S. Hofer
- Theoretical Chemistry Division
- Institute of General, Inorganic and Theoretical Chemistry
- University of Innsbruck
- A-6020 Innsbruck
- Austria
| | - Syed Tarique Moin
- H.E.J. Research Institute of Chemistry
- International Center for Chemical and Biological Sciences
- University of Karachi
- Karachi-75270
- Pakistan
| |
Collapse
|
67
|
Zaynab M, Chen H, Chen Y, Ouyang L, Yang X, Hu Z, Li S. Signs of biofilm formation in the genome of Labrenzia sp . PO1. Saudi J Biol Sci 2020; 28:1900-1912. [PMID: 33732076 PMCID: PMC7938128 DOI: 10.1016/j.sjbs.2020.12.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Labrenzia sp. are important components of marine ecology which play a key role in biochemical cycling. In this study, we isolated the Labrenzia sp. PO1 strain capable of forming biofilm, from the A. sanguinea culture. Growth analysis revealed that strain reached a logarithmic growth period at 24 hours. The whole genome of 6.21813 Mb of Labrezia sp. PO1 was sequenced and assembled into 15 scaffolds and 16 contigs, each with minimum and maximum lengths of 644 and 1,744,114 Mb. A total of 3,566 genes were classified into five pathways and 31 pathway groups. Of them, 521 genes encoded biofilm formation proteins, quorum sensing (QS) proteins, and ABC transporters. Gene Ontology annotation identified 49,272 genes that were involved in biological processes (33,425 genes), cellular components (7,031genes), and molecular function (7,816 genes). We recognised genes involved in bacterial quorum sensing, attachment, motility, and chemotaxis to investigate bacteria's ability to interact with the diatom phycosphere. As revealed by KEGG pathway analysis, several genes encoding ABC transporters exhibited a significant role during the growth and development of Labrenzia sp. PO1, indicating that ABC transporters may be involved in signalling pathways that enhance growth and biofilm formation.
Collapse
Affiliation(s)
- Madiha Zaynab
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Huirong Chen
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Yufei Chen
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Liao Ouyang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Xuewei Yang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, China
| |
Collapse
|
68
|
Linciano P, Cavalloro V, Martino E, Kirchmair J, Listro R, Rossi D, Collina S. Tackling Antimicrobial Resistance with Small Molecules Targeting LsrK: Challenges and Opportunities. J Med Chem 2020; 63:15243-15257. [PMID: 33152241 PMCID: PMC8016206 DOI: 10.1021/acs.jmedchem.0c01282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 12/20/2022]
Abstract
Antimicrobial resistance (AMR) is a growing threat with severe health and economic consequences. The available antibiotics are losing efficacy, and the hunt for alternative strategies is a priority. Quorum sensing (QS) controls biofilm and virulence factors production. Thus, the quenching of QS to prevent pathogenicity and to increase bacterial susceptibility to antibiotics is an appealing therapeutic strategy. The phosphorylation of autoinducer-2 (a mediator in QS) by LsrK is a crucial step in triggering the QS cascade. Thus, LsrK represents a valuable target in fighting AMR. Few LsrK inhibitors have been reported so far, allowing ample room for further exploration. This perspective aims to provide a comprehensive analysis of the current knowledge about the structural and biological properties of LsrK and the state-of-the-art technology for LsrK inhibitor design. We elaborate on the challenges in developing novel LsrK inhibitors and point out promising avenues for further research.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Valeria Cavalloro
- Department
of Earth and Environmental Science, University
of Pavia, Via Sant’Epifanio 14, 27100 Pavia, Italy
| | - Emanuela Martino
- Department
of Earth and Environmental Science, University
of Pavia, Via Sant’Epifanio 14, 27100 Pavia, Italy
| | - Johannes Kirchmair
- Department
of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Roberta Listro
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Daniela Rossi
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Simona Collina
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
69
|
S LP, A U, S J GF. Investigation on the biofilm eradication potential of selected medicinal plants against methicillin-resistant Staphylococcus aureus. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00523. [PMID: 32995315 PMCID: PMC7502823 DOI: 10.1016/j.btre.2020.e00523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 11/25/2022]
Abstract
Biofilms are multi-species bacterial communities with complex structures that create antibiotic resistance, cause life-threatening infections, thereby considerable economic loss; needed new approaches. Medicinal plants are focused as new alternatives for their therapeutic and antimicrobial effects. Our present study, Azadirachta indica, Moringa oleifera, Murraya koenigii, and Psidium guajava extracts were investigated against MRSA. The preliminary antimicrobial study showed pet. ether extract of A. indica and ethanolic extract of P. guajava showed a MIC value of 125 μg/mL and MBC value of 500 μg/mL. These extracts showed biofilm inhibition in the range of 60.0-83.9 % and did not possess any hemolytic activity to the human erythrocytes. The plant species investigated in this study had different degrees of antibiofilm activity against MRSA. However, we suggest that A. indica and P. guajava are promising candidates and further investigation is needed to isolate the antimicrobial compounds for the management of MRSA and its mechanism of activity.
Collapse
Affiliation(s)
- Lakshmana Prabu S
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli, India
| | - Umamaheswari A
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli, India
| | - Grace Felciya S J
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli, India
| |
Collapse
|
70
|
Afonso TB, Simões LC, Lima N. Occurrence of filamentous fungi in drinking water: their role on fungal-bacterial biofilm formation. Res Microbiol 2020; 172:103791. [PMID: 33197515 DOI: 10.1016/j.resmic.2020.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
Water is indispensable to life and safe and accessible supply must be available to all. The presence of microorganisms is a threat to this commitment. Biofilms are the main reservoir of microorganisms inside water distribution systems and they are extremely ecologically diverse. Filamentous fungi and bacteria can coexist inside these systems forming inter-kingdom biofilms. This review has the goal of summarizing the most relevant and recent reports on the occurrence of filamentous fungi in water distribution systems along with the current knowledge and gaps about filamentous fungal biofilm formation. Special focus is given on fungal-bacterial interactions in water biofilms.
Collapse
Affiliation(s)
| | | | - Nelson Lima
- CEB, Centre of Biological Engineering, University of Minho, Braga, Portugal.
| |
Collapse
|
71
|
Wang R, Ding W, Long L, Lan Y, Tong H, Saha S, Wong YH, Sun J, Li Y, Zhang W, Qian PY. Exploring the Influence of Signal Molecules on Marine Biofilms Development. Front Microbiol 2020; 11:571400. [PMID: 33281767 PMCID: PMC7691533 DOI: 10.3389/fmicb.2020.571400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/27/2020] [Indexed: 01/10/2023] Open
Abstract
Microbes respond to environmental stimuli through complicated signal transduction systems. In microbial biofilms, because of complex multiple species interactions, signals transduction systems are of an even higher complexity. Here, we performed a signal-molecule-treatment experiment to study the role of different signal molecules, including N-hexanoyl-L-homoserine lactone (C6-HSL), N-dodecanoyl-L-homoserine lactone (C12-HSL), Pseudomonas quinolone signal (PQS), and cyclic di-GMP (c-di-GMP), in the development of marine biofilms. Comparative metagenomics suggested a distinctive influence of these molecules on the microbial structure and function of multi-species biofilm communities in its developing stage. The PQS-treated biofilms shared the least similarity with the control and initial biofilms. The role of PQS in biofilm development was further explored experimentally with the strain Erythrobacter sp. HKB8 isolated from marine biofilms. Comparative transcriptomic analysis showed that 314 genes, such as those related to signal transduction and biofilm formation, were differentially expressed in the untreated and PQS-treated Erythrobacter sp. HKB8 biofilms. Our study demonstrated the different roles of signal molecules in marine biofilm development. In particular, the PQS-based signal transduction system, which is frequently detected in marine biofilms, may play an important role in regulating microbe-microbe interactions and the assemblage of biofilm communities.
Collapse
Affiliation(s)
- Ruojun Wang
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Wei Ding
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lexin Long
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yi Lan
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Haoya Tong
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Subhasish Saha
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Yue Him Wong
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jin Sun
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Yongxin Li
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam, Hong Kong.,The Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Weipeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Pei-Yuan Qian
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.,Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
72
|
Ohta T, Fukumoto A, Iizaka Y, Kato F, Koyama Y, Anzai Y. Quorum Sensing Inhibitors against Chromobacterium violaceum CV026 Derived from an Actinomycete Metabolite Library. Biol Pharm Bull 2020; 43:179-183. [PMID: 31902923 DOI: 10.1248/bpb.b19-00564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Quorum sensing (QS) is a microbial signaling system that regulates the expression of many virulence genes. Herein, we studied five compounds-No. 1: (E)-2-methyl-3- (4-nitro-phenyl)-acrylaldehyde; No. 29-2: pimprinine [5-(1H-indol-3-yl)-2-methyloxazole]; No. 48: (2E,4E)-2-methyl-5-phenyl-2,4-pentadienoic acid; No. 74: (3E,5E)-5-methyl-6-(4-nitrophenyl)-hexa-3,5-dien-2-ol; and No. 130: methyphenazine-1-carboxylate-derived from an actinomycete metabolite library. These compounds were confirmed to be QS inhibitors that reduced violacein production in Chromobacterium violaceum CV026. Additionally, compounds No. 1, No. 74, and No. 130 significantly reduced fluorescent pigment production in Pseudomonas aeruginosa ATCC 27853.
Collapse
Affiliation(s)
- Toshiko Ohta
- Faculty of Pharmaceutical Sciences, Toho University
| | | | - Yohei Iizaka
- Faculty of Pharmaceutical Sciences, Toho University
| | - Fumio Kato
- Faculty of Pharmaceutical Sciences, Toho University
| | | | - Yojiro Anzai
- Faculty of Pharmaceutical Sciences, Toho University
| |
Collapse
|
73
|
Yekani M, Baghi HB, Naghili B, Vahed SZ, Sóki J, Memar MY. To resist and persist: Important factors in the pathogenesis of Bacteroides fragilis. Microb Pathog 2020; 149:104506. [PMID: 32950639 DOI: 10.1016/j.micpath.2020.104506] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/15/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Bacteroides fragilis is a most frequent anaerobic pathogen isolated from human infections, particularly found in the abdominal cavity. Different factors contribute to the pathogenesis and persistence of B. fragilis at infection sites. The knowledge of the virulence factors can provide applicable information for finding alternative options for the antibiotic therapy and treatment of B. fragilis caused infections. Herein, a comprehensive review of the important B. fragilis virulence factors was prepared. In addition to B. fragilis toxin (BFT) and its potential role in the diarrhea and cancer development, some other important virulence factors and characteristics of B. fragilis are described including capsular polysaccharides, iron acquisition, resistance to antimicrobial agents, and survival during the prolonged oxidative stress, quorum sensing, and secretion systems.
Collapse
Affiliation(s)
- Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee,Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - József Sóki
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Microbiology Department, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
74
|
Fei C, Ochsenkühn MA, Shibl AA, Isaac A, Wang C, Amin SA. Quorum sensing regulates 'swim-or-stick' lifestyle in the phycosphere. Environ Microbiol 2020; 22:4761-4778. [PMID: 32896070 PMCID: PMC7693213 DOI: 10.1111/1462-2920.15228] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
Abstract
Interactions between phytoplankton and bacteria play major roles in global biogeochemical cycles and oceanic nutrient fluxes. These interactions occur in the microenvironment surrounding phytoplankton cells, known as the phycosphere. Bacteria in the phycosphere use either chemotaxis or attachment to benefit from algal excretions. Both processes are regulated by quorum sensing (QS), a cell–cell signalling mechanism that uses small infochemicals to coordinate bacterial gene expression. However, the role of QS in regulating bacterial attachment in the phycosphere is not clear. Here, we isolated a Sulfitobacter pseudonitzschiae F5 and a Phaeobacter sp. F10 belonging to the marine Roseobacter group and an Alteromonas macleodii F12 belonging to Alteromonadaceae, from the microbial community of the ubiquitous diatom Asterionellopsis glacialis. We show that only the Roseobacter group isolates (diatom symbionts) can attach to diatom transparent exopolymeric particles. Despite all three bacteria possessing genes involved in motility, chemotaxis, and attachment, only S. pseudonitzschiae F5 and Phaeobacter sp. F10 possessed complete QS systems and could synthesize QS signals. Using UHPLC–MS/MS, we identified three QS molecules produced by both bacteria of which only 3‐oxo‐C16:1‐HSL strongly inhibited bacterial motility and stimulated attachment in the phycosphere. These findings suggest that QS signals enable colonization of the phycosphere by algal symbionts.
Collapse
Affiliation(s)
- Cong Fei
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,College of Resources and Environmental Science, Nanjing Agriculture University, Nanjing, China
| | - Michael A Ochsenkühn
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ahmed A Shibl
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ashley Isaac
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,International Max Planck Research School of Marine Microbiology, University of Bremen, Bremen, Germany
| | - Changhai Wang
- College of Resources and Environmental Science, Nanjing Agriculture University, Nanjing, China
| | - Shady A Amin
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
75
|
Subhaswaraj P, Syed A, Siddhardha B. Novel Nanotherapeutics as Next-generation Anti-infective Agents: Current Trends and Future Prospectives. Curr Drug Discov Technol 2020; 17:457-468. [PMID: 31309893 DOI: 10.2174/1570163816666190715120708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/08/2019] [Accepted: 04/30/2019] [Indexed: 12/16/2022]
Abstract
With the ever-increasing population and improvement in the healthcare system in the 21st century, the incidence of chronic microbial infections and associated health disorders has also increased at a striking pace. The ability of pathogenic microorganisms to form biofilm matrix aggravates the situation due to antibiotic resistance phenomenon resulting in resistance against conventional antibiotic therapy which has become a public health concern. The canonical Quorum Sensing (QS) signaling system hierarchically regulates the expression of an array of virulence phenotypes and controls the development of biofilm dynamics. It is imperative to develop an alternative, yet effective and non-conventional therapeutic approach, popularly known as "anti-infective therapy" which seems to be interesting. In this regard, targeting microbial QS associated virulence and biofilm development proves to be a quite astonishing approach in counteracting the paucity of traditional antibiotics. A number of synthetic and natural compounds are exploited for their efficacy in combating QS associated microbial infections but the bioavailability and biocompatibility limit their widespread applications. In this context, the nanotechnological intervention offers a new paradigm for widespread biomedical applications starting from targeted drug delivery to diagnostics for the diagnosis and treatment of infectious diseases, particularly to fight against microbial infections and antibiotics resistance in biofilms. A wide range of nanomaterials ranging from metallic nanoparticles to polymeric nanoparticles and recent advances in the development of carbon-based nanomaterials such as Carbon Nanotubes (CNTs), Graphene Oxide (GO) also immensely exhibited intrinsic antiinfective properties when targeted towards microbial infections and associated MDR phenomenon. In addition, the use of nano-based platforms as carriers emphatically increases the efficacy of targeted and sitespecific delivery of potential drug candidates for preventing microbial infections.
Collapse
Affiliation(s)
- Pattnaik Subhaswaraj
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry-605 014, India
| | - Asad Syed
- Botany and Microbiology Department, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Busi Siddhardha
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry-605 014, India
| |
Collapse
|
76
|
Ibrahim YM, Abouwarda AM, Omar FA. Effect of kitasamycin and nitrofurantoin at subinhibitory concentrations on quorum sensing regulated traits of Chromobacterium violaceum. Antonie van Leeuwenhoek 2020; 113:1601-1615. [PMID: 32889593 DOI: 10.1007/s10482-020-01467-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Quorum sensing (QS) is a mechanism of intercellular communication in bacteria that received substantial attention as alternate strategy for combating bacterial resistance and the development of new anti-infective agents. The present investigation reports on the assessment of using subinhibitory concentrations of antibiotics for the inhibition of QS-regulated phenotypes in Chromobacterium violaceum. Primarily, the minimum inhibitory concentrations of a series of antibiotics were determined by a microdilution method. Subsequently, the inhibitory effects of selected antibiotics on QS-regulated traits, namely violacein and chitinase production, biofilm formation and motility were evaluated using C. violaceum CV026 and C. violaceum ATCC 12472. Results revealed that kitasamycin and nitrofurantoin exhibited the highest quorum sensing inhibitory (QSI) activity. The amount of violacein produced by C. violaceum was significantly reduced in the presence of either kitasamycin or nitrofurantoin. Moreover, the chitinolytic activity, biofilm formation, and motility were also impaired in kitasamycin or nitrofurantoin-treated cultures. We further confirmed QSI effects at the molecular level using molecular docking and real-time quantitative polymerase chain reaction (RT-qPCR). Results of molecular docking suggested that both antibiotics can interact with CviR transcriptional regulator of C. violaceum. Furthermore, RT-qPCR revealed the suppressive effect of kitasamycin and nitrofurantoin on five genes under the control of the CviI/CviR system: cviI, cviR, vioB, vioC, and vioD. Giving that kitasamycin and nitrofurantoin are being safely used for decades, this study emphasizes their potential application as antivirulence agents to disarm resistant bacterial strains, making their removal an easier task for the immune system or for another antibacterial agent.
Collapse
Affiliation(s)
- Yasser Musa Ibrahim
- Department of Microbiology, General Division of Basic Medical Sciences, National Organization for Drug Control and Research (NODCAR), Giza, 12611, Egypt.
| | - Ahmed Megahed Abouwarda
- Department of Microbiology, General Division of Basic Medical Sciences, National Organization for Drug Control and Research (NODCAR), Giza, 12611, Egypt
| | | |
Collapse
|
77
|
Afonso TB, Simões LC, Lima N. Effect of quorum sensing and quenching molecules on inter-kingdom biofilm formation by Penicillium expansum and bacteria. BIOFOULING 2020; 36:965-976. [PMID: 33078624 DOI: 10.1080/08927014.2020.1836162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
The ecology of a biofilm is a complex function of different factors, including the presence of microbial metabolites excreted by the inhabitants of the biofilm. This study aimed to assess the effect of patulin, and N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) on inter-kingdom biofilm formation between a filamentous fungus and bacteria isolated from drinking water. The filamentous fungus Penicillium expansum and the bacteria Acinetobacter calcoaceticus and Methylobacterium oryzae were used as model species. M. oryzae biofilm formation and development was more susceptible to the presence of the quenching molecules than A. calcoaceticus biofilms. Patulin reduced M. oryzae biofilm growth while 3-oxo-C12-HSL caused an increase after 48 h. The presence of P. expansum had a detrimental effect on M. oryzae cell numbers, while an advantageous effect was observed with A. calcoaceticus. The overall results reveal that quorum sensing and quenching molecules have a significant effect on inter-kingdom biofilm formation, especially on bacterial numbers.
Collapse
Affiliation(s)
| | | | - Nelson Lima
- CEB, Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
78
|
AL Marjani MF, Ali FS, Authman SH, AL Kadmy IM, Abdul Amir RM. Identification of novel 1, 3-oxazole and imidazole-5-one that inhibits bacterial biofilm formation of Acinetobacter baumannii. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
79
|
Du P, Zhao H, Zhang H, Wang R, Huang J, Tian Y, Luo X, Luo X, Wang M, Xiang Y, Qian L, Chen Y, Tao Y, Lou C. De novo design of an intercellular signaling toolbox for multi-channel cell-cell communication and biological computation. Nat Commun 2020; 11:4226. [PMID: 32839450 PMCID: PMC7445162 DOI: 10.1038/s41467-020-17993-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Intercellular signaling is indispensable for single cells to form complex biological structures, such as biofilms, tissues and organs. The genetic tools available for engineering intercellular signaling, however, are quite limited. Here we exploit the chemical diversity of biological small molecules to de novo design a genetic toolbox for high-performance, multi-channel cell-cell communications and biological computations. By biosynthetic pathway design for signal molecules, rational engineering of sensing promoters and directed evolution of sensing transcription factors, we obtain six cell-cell signaling channels in bacteria with orthogonality far exceeding the conventional quorum sensing systems and successfully transfer some of them into yeast and human cells. For demonstration, they are applied in cell consortia to generate bacterial colony-patterns using up to four signaling channels simultaneously and to implement distributed bio-computation containing seven different strains as basic units. This intercellular signaling toolbox paves the way for engineering complex multicellularity including artificial ecosystems and smart tissues.
Collapse
Affiliation(s)
- Pei Du
- CAS Key Laboratory of Microbial, Physiological, and Metabolic Engineering and Institute of Microbiology, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huiwei Zhao
- CAS Key Laboratory of Microbial, Physiological, and Metabolic Engineering and Institute of Microbiology, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Science, Beijing, 100149, China
| | - Haoqian Zhang
- Bluepha Co., Ltd, ZGC Science Park, Changping, Beijing, 102206, China.,Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Ruisha Wang
- CAS Key Laboratory of Microbial, Physiological, and Metabolic Engineering and Institute of Microbiology, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Science, Beijing, 100149, China
| | - Jianyi Huang
- CAS Key Laboratory of Microbial, Physiological, and Metabolic Engineering and Institute of Microbiology, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Science, Beijing, 100149, China
| | - Ye Tian
- CAS Key Laboratory of Microbial, Physiological, and Metabolic Engineering and Institute of Microbiology, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xudong Luo
- CAS Key Laboratory of Microbial, Physiological, and Metabolic Engineering and Institute of Microbiology, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xunxun Luo
- CAS Key Laboratory of Microbial, Physiological, and Metabolic Engineering and Institute of Microbiology, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Science, Beijing, 100149, China
| | - Min Wang
- CAS Key Laboratory of Microbial, Physiological, and Metabolic Engineering and Institute of Microbiology, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanhui Xiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, University Town, Nanshan, Shenzhen, 518055, China
| | - Long Qian
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Yihua Chen
- CAS Key Laboratory of Microbial, Physiological, and Metabolic Engineering and Institute of Microbiology, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Science, Beijing, 100149, China
| | - Yong Tao
- CAS Key Laboratory of Microbial, Physiological, and Metabolic Engineering and Institute of Microbiology, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Science, University of Chinese Academy of Science, Beijing, 100149, China.
| | - Chunbo Lou
- College of Life Science, University of Chinese Academy of Science, Beijing, 100149, China. .,CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, University Town, Nanshan, Shenzhen, 518055, China.
| |
Collapse
|
80
|
Bose SK, Nirbhavane P, Batra M, Chhibber S, Harjai K. Nanolipoidal α-terpineol modulates quorum sensing regulated virulence and biofilm formation in Pseudomonas aeruginosa. Nanomedicine (Lond) 2020; 15:1743-1760. [DOI: 10.2217/nnm-2020-0134] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Pseudomonas aeruginosa has emerged as a major opportunistic pathogen meaning there is an immediate need to develop efficient antivirulence agents which offer a new class of superior therapeutics. Methods: Nanostructured lipid carriers (NLCs) containing α-terpineol (αT) were developed and characterized to determine expression profiles of quorum sensing regulated genes, antivirulence activity and antibiofilm effects against P. aeruginosa. Results: The αT-NLCs had a size of 145.4 nm, polydispersity index of 0.242 and ζ-potential of -31.4 mV. They exhibited pronounced effects on the inhibition of quorum sensing mediated virulence and biofilm formation which were confirmed by molecular docking analysis and gene expression profiles. Conclusion: αT-NLCs show promise as effective antivirulence agents against P. aeruginosa in the postantibiotic era.
Collapse
Affiliation(s)
- Sunil Kumar Bose
- Department of Microbiology, BMS Block-I, Panjab University, Chandigarh, 160014, India
| | - Pradip Nirbhavane
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Mahak Batra
- Centre for Systems Biology & Bioinformatics, Panjab University, Chandigarh, 160014, India
| | - Sanjay Chhibber
- Department of Microbiology, BMS Block-I, Panjab University, Chandigarh, 160014, India
| | - Kusum Harjai
- Department of Microbiology, BMS Block-I, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
81
|
Khan F, Javaid A, Kim YM. Functional Diversity of Quorum Sensing Receptors in Pathogenic Bacteria: Interspecies, Intraspecies and Interkingdom Level. Curr Drug Targets 2020; 20:655-667. [PMID: 30468123 DOI: 10.2174/1389450120666181123123333] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 01/17/2023]
Abstract
The formation of biofilm by pathogenic bacteria is considered as one of the most powerful mechanisms/modes of resistance against the action of several antibiotics. Biofilm is formed as a structural adherent over the surfaces of host, food and equipments etc. and is further functionally coordinated by certain chemicals produced itself. These chemicals are known as quorum sensing (QS) signaling molecules and are involved in the cross talk at interspecies, intraspecies and interkingdom levels thus resulting in the production of virulence factors leading to pathogenesis. Bacteria possess receptors to sense these chemicals, which interact with the incoming QS molecules. It is followed by the secretion of virulence molecules, regulation of bioluminescence, biofilm formation, antibiotic resistance development and motility behavioral responses. In the natural environment, different bacterial species (Gram-positive and Gram-negative) produce QS signaling molecules that are structurally and functionally different. Recent and past research shows that various antagonistic molecules (naturally and chemically synthesized) are characterized to inhibit the formation of biofilm and attenuation of bacterial virulence by blocking the QS receptors. This review article describes about the diverse QS receptors at their structural, functional and production levels. Thus, by blocking these receptors with inhibitory molecules can be a potential therapeutic approach to control pathogenesis. Furthermore, these receptors can also be used as a structural platform to screen the most potent inhibitors with the help of bioinformatics approaches.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea.,Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, U.P, India
| | - Aqib Javaid
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, U.P, India
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea.,Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
82
|
Hernández-Ramírez KC, Valerio-Arellano B, Valle-Maldonado MI, Ruíz-Herrera LF, Meza-Carmen V, Ramírez-Díaz MI. Virulence Conferred by PumA Toxin from the Plasmid-Encoded PumAB Toxin-Antitoxin System is Regulated by Quorum System. Curr Microbiol 2020; 77:2535-2543. [PMID: 32556478 DOI: 10.1007/s00284-020-02083-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/08/2020] [Indexed: 12/01/2022]
Abstract
Toxin-antitoxin (TA) systems are small genetic elements composed of a toxin gene and its cognate antitoxin that are important for plasmid stabilization (plasmid-encoded) and bacterial virulence (chromosome-encoded). These systems are also related to biofilm and persister cell formations. Pseudomonas aeruginosa is an antibiotic-resistant human pathogen that produces virulence factors modulated by quorum sensing (QS) and can form biofilms. The type II PumAB TA system of pUM505, isolated from a clinical strain of P. aeruginosa, confers plasmid stability. Additionally, the PumA toxin increases P. aeruginosa virulence and is neutralized by the PumB antitoxin. In this study, we determined whether virulence conferred by PumA toxin is regulated by QS. The pumA gene was transferred to P. aeruginosa lasI/rhlI, a mutant strain in the LasI and RhlI QS systems, to analyze the effect on virulence of the transformants. pumA transfer did not increase bacterial virulence in lettuce and Caenorhabditis elegans, suggesting that the virulence conferred by PumA requires QS modulation. pumA mRNA levels drastically decreased in the P. aeruginosa lasI/rhlI (pUC_pumA) strain, suggesting positive regulation of pumA gene expression by QS. Supplementation of the growth medium of P. aeruginosa lasI/rhlI (pUC_pumA) with C4-AHL and 3-oxo-C12-AHL autoinducers increased pumA mRNA levels and restored bacterial virulence, suggesting that both autoinducers complemented the mutations and positively regulated the toxic effects of PumA. This strengthened the hypothesis that QS regulates bacterial virulence conferred by the PumA toxin. Thus, this report establishes an important function of QS in the virulence conferred by plasmid-encoded TA systems in bacterial pathogens.
Collapse
Affiliation(s)
- Karen C Hernández-Ramírez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Brenda Valerio-Arellano
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Marco I Valle-Maldonado
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - León F Ruíz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Victor Meza-Carmen
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Martha I Ramírez-Díaz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
83
|
Ouyang J, Feng W, Lai X, Chen Y, Zhang X, Rong L, Sun F, Chen Y. Quercetin inhibits Pseudomonas aeruginosa biofilm formation via the vfr-mediated lasIR system. Microb Pathog 2020; 149:104291. [PMID: 32534180 DOI: 10.1016/j.micpath.2020.104291] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/18/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
Pseudomonas aeruginosa is one of the most common opportunistic pathogens that cause biofilm-associated infections. Biofilm formation is partially regulated by the quorum sensing (QS) system, and quercetin can inhibit QS, biofilm formation and virulence factors. We therefore speculated that quercetin would inhibit the formation of P. aeruginosa biofilm via the QS system. In this study, we successfully constructed lasI, rhlI and lasI/rhlI gene-knockout strains. The knockout of the lasI and lasI/rhlI genes resulted in decreases in adhesion, biofilm formation, swarming motility and the expression of biofilm-associated genes, whereas deletion of the rhlI gene had no obvious influence on these biofilm-related indicators with the exception of the swarming motility. After treatment with quercetin, the lasI- and lasI/rhlI-mutant strains exhibited increased adhesion, biofilm formation, swarming motility and biofilm-associated gene expression compared with the control group. However, quercetin still exerted an inhibitory effect on these physiological factors and the biofilm-associated gene expression in the rhlI-mutant strain. The knockout of QS genes reduced the production of pyocyanin and protease activity, but after the virulence factors of the QS-mutant strains treated with quercetin showed almost no differences compared with those of the control group. In addition, quercetin could significantly inhibit vfr gene expression regardless of the presence of QS genes. The results indicated that quercetin might inhibit the lasIR system through the vfr gene and ultimately the formation of P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Jing Ouyang
- Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Wei Feng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiaodan Lai
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yaling Chen
- Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Xue Zhang
- Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Li Rong
- Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Yaokai Chen
- Chongqing Public Health Medical Center, Chongqing, 400036, China.
| |
Collapse
|
84
|
Sulfonamide-based diffusible signal factor analogs interfere with quorum sensing in Stenotrophomonas maltophilia and Burkholderia cepacia. Future Med Chem 2020; 11:1565-1582. [PMID: 31469336 DOI: 10.4155/fmc-2019-0015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: Stenotrophomonas maltophilia (Sm) and Burkholderia cepacia complex (BCC) are Gram-negative bacterial pathogens, which are typically multidrug resistant and excellent biofilm producers. These phenotypes are controlled by quorum sensing (QS) systems from the diffusible signal factor (DSF) family. We aim to interfere with this QS system as an alternative approach in combatting such difficult-to-treat infections. Materials & methods: A library of sulfonamide-based DSF bioisosteres was synthesized and tested against the major phenotypes regulated by QS. Results & conclusion: Several analogs display significant antibiofilm activity while the majority increase the action of the last-resort antibiotic colistin against Sm and BCC. Most compounds inhibit DSF synthesis in the Sm K279a strain. Our results support the strategy of interfering with QS communications to combat multidrug resistance.
Collapse
|
85
|
Khan F, Pham DTN, Oloketuyi SF, Kim YM. Antibiotics Application Strategies to Control Biofilm Formation in Pathogenic Bacteria. Curr Pharm Biotechnol 2020; 21:270-286. [PMID: 31721708 DOI: 10.2174/1389201020666191112155905] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/09/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The establishment of a biofilm by most pathogenic bacteria has been known as one of the resistance mechanisms against antibiotics. A biofilm is a structural component where the bacterial community adheres to the biotic or abiotic surfaces by the help of Extracellular Polymeric Substances (EPS) produced by bacterial cells. The biofilm matrix possesses the ability to resist several adverse environmental factors, including the effect of antibiotics. Therefore, the resistance of bacterial biofilm-forming cells could be increased up to 1000 times than the planktonic cells, hence requiring a significantly high concentration of antibiotics for treatment. METHODS Up to the present, several methodologies employing antibiotics as an anti-biofilm, antivirulence or quorum quenching agent have been developed for biofilm inhibition and eradication of a pre-formed mature biofilm. RESULTS Among the anti-biofilm strategies being tested, the sub-minimal inhibitory concentration of several antibiotics either alone or in combination has been shown to inhibit biofilm formation and down-regulate the production of virulence factors. The combinatorial strategies include (1) combination of multiple antibiotics, (2) combination of antibiotics with non-antibiotic agents and (3) loading of antibiotics onto a carrier. CONCLUSION The present review paper describes the role of several antibiotics as biofilm inhibitors and also the alternative strategies adopted for applications in eradicating and inhibiting the formation of biofilm by pathogenic bacteria.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.,Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, U.P., India
| | - Dung T N Pham
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Sandra F Oloketuyi
- Laboratory for Environmental and Life Sciences, University of Nova Gorica 5000, Nova Gorica, Slovenia
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.,Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
86
|
Ali SG, Ansari MA, Alzohairy MA, Alomary MN, Jalal M, AlYahya S, Asiri SMM, Khan HM. Effect of Biosynthesized ZnO Nanoparticles on Multi-Drug Resistant Pseudomonas Aeruginosa. Antibiotics (Basel) 2020; 9:antibiotics9050260. [PMID: 32429514 PMCID: PMC7277366 DOI: 10.3390/antibiotics9050260] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/04/2022] Open
Abstract
Synthesis of nanoparticles using the plants has several advantages over other methods due to the environmentally friendly nature of plants. Besides being environmentally friendly, the synthesis of nanoparticles using plants or parts of the plants is also cost effective. The present study focuses on the biosynthesis of zinc oxide nanoparticles (ZnO NPs) using the seed extract of Butea monsoperma and their effect on to the quorum-mediated virulence factors of multidrug-resistant clinical isolates of Pseudomonas aeruginosa at sub minimum inhibitory concentration (MIC). The synthesized ZnO NPs were characterized by different techniques, such as Fourier transform infra-red spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and transmission electron microscopy (TEM). The average size of the nanoparticles was 25 nm as analyzed by TEM. ZnO NPs at sub MIC decreased the production of virulence factors such as pyocyanin, protease and hemolysin for P. aeruginosa (p ≤ 0.05). The interaction of NPs with the P. aeruginosa cells on increasing concentration of NPs at sub MIC levels showed greater accumulation of nanoparticles inside the cells as analyzed by TEM.
Collapse
Affiliation(s)
- Syed Ghazanfar Ali
- Department of Microbiology, Nanotechnology and Antimicrobial Drug Resistance Research Laboratory, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India; (M.J.); (H.M.K.)
- Correspondence: (S.G.A.); (M.A.A.)
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Correspondence: (S.G.A.); (M.A.A.)
| | - Mohammad A. Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia;
| | - Mohammad N. Alomary
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Mohammad Jalal
- Department of Microbiology, Nanotechnology and Antimicrobial Drug Resistance Research Laboratory, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India; (M.J.); (H.M.K.)
| | - Sami AlYahya
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Sarah Mousa Maadi Asiri
- Department of Biophysics, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Haris M. Khan
- Department of Microbiology, Nanotechnology and Antimicrobial Drug Resistance Research Laboratory, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India; (M.J.); (H.M.K.)
| |
Collapse
|
87
|
James Bound D, Murthy PS, Negi P, Srinivas P. Evaluation of anti-quorum sensing and antimutagenic activity of 2,3-unsaturated and 2,3-dideoxyglucosides of terpene phenols and alcohols. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
88
|
Cui L, Wang X, Huang D, Zhao Y, Feng J, Lu Q, Pu Q, Wang Y, Cheng G, Wu M, Dai M. CRISPR- cas3 of Salmonella Upregulates Bacterial Biofilm Formation and Virulence to Host Cells by Targeting Quorum-Sensing Systems. Pathogens 2020; 9:pathogens9010053. [PMID: 31936769 PMCID: PMC7168661 DOI: 10.3390/pathogens9010053] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
Salmonella is recognized as one of the most common microbial pathogens worldwide. The bacterium contains the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems, providing adaptive immunity against invading foreign nucleic acids. Previous studies suggested that certain bacteria employ the Cas proteins of CRISPR-Cas systems to target their own genes, which also alters the virulence during invasion of mammals. However, whether CRISPR-Cas systems in Salmonella have similar functions during bacterial invasion of host cells remains unknown. Here, we systematically analyzed the genes that are regulated by Cas3 in a type I-E CRISPR-Cas system and the virulence changes due to the deletion of cas3 in Salmonella enterica serovar Enteritidis. Compared to the cas3 gene wild-type (cas3 WT) Salmonella strain, cas3 deletion upregulated the lsrFGBE genes in lsr (luxS regulated) operon related to quorum sensing (QS) and downregulated biofilm-forming-related genes and Salmonella pathogenicity island 1 (SPI-1) genes related to the type three secretion system (T3SS). Consistently, the biofilm formation ability was downregulated in the cas3 deletion mutant (Δcas3). The bacterial invasive and intracellular capacity of Δcas3 to host cells was also reduced, thereby increasing the survival of infected host cells and live chickens. By the transcriptome-wide screen (RNA-Seq), we found that the cas3 gene impacts a series of genes related to QS, the flagellum, and SPI-1-T3SS system, thereby altering the virulence phenotypes. As QS SPI-1-T3SS and CRISPR-Cas systems are widely distributed in the bacteria kingdom, our findings extend our understanding of virulence regulation and pathogenicity in mammalian hosts for Salmonella and potentially other bacteria.
Collapse
Affiliation(s)
- Luqing Cui
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (X.W.); (Y.Z.); (J.F.)
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA;
| | - Xiangru Wang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (X.W.); (Y.Z.); (J.F.)
| | - Deyu Huang
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (D.H.); (Q.L.); (Y.W.); (G.C.)
| | - Yue Zhao
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (X.W.); (Y.Z.); (J.F.)
| | - Jiawei Feng
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (X.W.); (Y.Z.); (J.F.)
| | - Qirong Lu
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (D.H.); (Q.L.); (Y.W.); (G.C.)
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA;
| | - Yulian Wang
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (D.H.); (Q.L.); (Y.W.); (G.C.)
| | - Guyue Cheng
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan 430070, China; (D.H.); (Q.L.); (Y.W.); (G.C.)
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA;
- Correspondence: (M.W.); (M.D.); Tel.: +1-701-777-4875 (M.W.); +86-027-8767-2232 (M.D.); Fax: +1-701-777-2382 (M.W.); +86-027-8767-2232 (M.D.)
| | - Menghong Dai
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (X.W.); (Y.Z.); (J.F.)
- Correspondence: (M.W.); (M.D.); Tel.: +1-701-777-4875 (M.W.); +86-027-8767-2232 (M.D.); Fax: +1-701-777-2382 (M.W.); +86-027-8767-2232 (M.D.)
| |
Collapse
|
89
|
Vijayakumar K, Ramanathan T. Musa acuminata and its bioactive metabolite 5-Hydroxymethylfurfural mitigates quorum sensing (las and rhl) mediated biofilm and virulence production of nosocomial pathogen Pseudomonas aeruginosa in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112242. [PMID: 31533077 DOI: 10.1016/j.jep.2019.112242] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/14/2019] [Accepted: 09/14/2019] [Indexed: 05/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Musa acuminata, a tropical plant belongs to the family Musaceae. The fruit peels of this plant have been well documented for their therapeutic value in Asia and Africa. It has also been previously reported for numerous biological applications such as antimicrobial, antioxidant, itching, psoriasis and anti-diarrheal activities. Moreover, M. acuminata peels have been well known for its anti-healing and antiseptic properties and most commonly used for healing wounds and heat burns in South Asian and African traditional medicines. AIM OF THE STUDY To evaluate the QS-mediated antibiofilm and antivirulence potential of M. acuminata, and its bioactive metabolites 5-Hydroxymethylfurfural (5HMF) against Pseudomonas aeruginosa. MATERIALS AND METHODS The M. acuminata peel methanol extract (MAM) was evaluated for its antibiofilm potential against P. aeruginosa with increasing concentration. Besides, biofilm related phenomenon's such as total biofilm proteins, microcolony formation exopolysaccharides (EPS) and cell surface hydrophobicity (CSH) productions were also examined to support the antibiofilm potential of MAM. Further, MAM was evaluated for its antivirulence efficacy against P. aeruginosa by assessing the protease, LasA protease, LasB elastase, pyocyanin, alginate and rhamnolipid productions at 400 μg ml-1 concentration. Transcriptional analysis of QS regulated virulence genes expression level was also done by real-time PCR analysis. Then, the MAM was subjected to column chromatography for further fractions and the bioactive compounds present in MAM were identified by gas chromatograph-mass spectrometry analysis. Further, the major compounds such as 5-hydroxymethylfurfural, vaccenic acid and pentanoic acid identified from active fraction of MAM were evaluated for their antibiofilm and antivirulence potential against P. aeruginosa. RESULTS MAM significantly inhibited the biofilm formation in P. aeruginosa at 400 μg ml-1 concentration which also inhibited the production of biofilm proteins, biofilm adherence, EPS and CSH productions to the level of 79%, 82% and 77% respectively. Further, the antivirulence potential was confirmed through numerous virulence inhibition assays. The MAM at 400 μg ml-1 concentration inhibited the QS-mediated virulence production such as protease, LasA protease, LasB elastase, pyocyanin, alginate and rhamnolipid productions to the level of 77%, 75%, 68%, 80%, 78% and 69% respectively. Moreover, the results of qPCR analysis confirmed the downregulation of QS regulated virulence genes expression upon treatment with MAM. The chromatographic analysis revealed the presence of 5-Hydroxymethylfurfural (5HMF), vaccenic acid and pentanoic acid in MAM and the potential bioactive compounds with antibiofilm and antivirulence was identified as 5-hydroxymethylfurfural, without exerting any growth inhibition in P. aeruginosa. CONCLUSION This study investigated the ideal antibiofilm and antivirulence potential of MAM and its bioactive compound 5HMF, and confirms the ethnopharmacological value of these peels against P. aeruginosa infections.
Collapse
Affiliation(s)
- Karuppiah Vijayakumar
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India.
| | - Thirunanasambandham Ramanathan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| |
Collapse
|
90
|
Zur-regulated lipoprotein A contributes to the fitness of Acinetobacter baumannii. J Microbiol 2020; 58:67-77. [DOI: 10.1007/s12275-020-9531-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 01/26/2023]
|
91
|
Gao M, Liu YJ, Liu Z, Li HT, Zhang AN. Dynamic characteristics of AHLs-secreting strain Aeromonas sp. A-L2 and its bioaugmentation during quinoline biodegradation. J Appl Microbiol 2019; 128:1060-1073. [PMID: 31770483 DOI: 10.1111/jam.14530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/31/2019] [Accepted: 11/21/2019] [Indexed: 11/29/2022]
Abstract
AIMS In order to probe a more environmentally friendly method of pollutant treatment based on microbial bioaugmentation and quorum sensing (QS) effects. METHODS AND RESULTS The dynamic characteristics and QS effects of the acylated homoserine lactones (AHLs)-secreting strain Aeromonas sp. A-L2 (A-L2), which was isolated from the activated sludge system, was discussed. According to the liquid chromatography-mass spectrometry results, N-butyryl-homoserine lactone (C4-HSL) and N-hexanoyl-homoserine lactone (C6-HSL) were the major AHLs secreted by strain A-L2, and the swarming of strain Ochrobactrum sp. LC-1 (LC-1) was induced by these compounds. The extracellular polymeric substance secretion of the strain LC-1 was mainly led by C6-HSL, and the biofilm formation ability was mainly influenced by C6-HSL or C4-HSL (60 μg l-1 ). The optimal AHLs secretion conditions of strain A-L2 were also studied. Drawing support from the AHLs-secreting strain A-L2 during quinoline degradation by strain LC-1, the degradation time was greatly shortened. CONCLUSIONS Hence, AHLs-secreting strain A-L2 can be useful as an AHLs continuous supplier during bioaugmentation and pollutant biodegradation. SIGNIFICANCE AND IMPACT OF THE STUDY The bioaugmentation process of strain A-L2 on quinoline biodegradation based on QS effects would lay a certain theoretical and practical significance for large-scale applications.
Collapse
Affiliation(s)
- M Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, PR China
| | - Y J Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, PR China.,Key Lab of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, PR China
| | - Z Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, PR China.,Key Lab of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, PR China
| | - H T Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, PR China
| | - A N Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, PR China.,Key Lab of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, PR China
| |
Collapse
|
92
|
Li G, Wang MY. The role of Vibrio vulnificus virulence factors and regulators in its infection-induced sepsis. Folia Microbiol (Praha) 2019; 65:265-274. [PMID: 31840198 DOI: 10.1007/s12223-019-00763-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
Due to the development of Marine aquaculture, infections caused by Vibrio vulnificus are common all over the world. Symptoms of V. vulnificus infection vary from gastrointestinal illness to septicemia. After infection with V. vulnificus, some patients showed gastrointestinal symptoms, including vomiting, fever, diarrhea, and so on. Others appeared wound infection at the site of contact with bacteria, and even developed sepsis. Once it develops into sepsis, the prognosis of patients is very poor. However, its underlying pathogenic mechanism remains largely undetermined. Growing evidence shows that it can induce primary septicemia mainly via essential virulence factors and regulators. Therefore, it is important to identify the factors that play roles in sepsis. In this review, we systematically expounded the role of V. vulnificus virulence factors and regulators in its infection-induced sepsis in order to provide useful information for the treatment and prevention of V. vulnificus.
Collapse
Affiliation(s)
- Gang Li
- Weihai Clinical Medical School, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China.,Weihai Municipal Hospital, Weihai, 264200, China
| | - Ming-Yi Wang
- Weihai Clinical Medical School, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China. .,Weihai Municipal Hospital, Weihai, 264200, China.
| |
Collapse
|
93
|
O’Brien TJ, Welch M. A Continuous-Flow Model for in vitro Cultivation of Mixed Microbial Populations Associated With Cystic Fibrosis Airway Infections. Front Microbiol 2019; 10:2713. [PMID: 31824471 PMCID: PMC6883238 DOI: 10.3389/fmicb.2019.02713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
The airways of people with cystic fibrosis (CF) provide a nutrient-rich environment which favours colonisation by a variety of bacteria and fungi. Although the dominant pathogen associated with CF airway infections is Pseudomonas aeruginosa, it is becoming increasingly clear that inter-species interactions between P. aeruginosa and other colonists in the airways may have a large impact on microbial physiology and virulence. However, there are currently no suitable experimental models that permit long-term co-culture of P. aeruginosa with other CF-associated pathogens. Here, we redress this problem by describing a "3R's-compliant" continuous-flow in vitro culture model which enables long-term co-culture of three representative CF-associated microbes: P. aeruginosa, Staphylococcus aureus and Candida albicans. Although these species rapidly out-compete one another when grown together or in pairs in batch culture, we show that in a continuously-fed setup, they can be maintained in a very stable, steady-state community. We use our system to show that even numerically (0.1%) minor species can have a major impact on intercellular signalling by P. aeruginosa. Importantly, we also show that co-culturing does not appear to influence species mutation rates, further reinforcing the notion that the system favours stability rather than divergence. The model is experimentally tractable and offers an inexpensive yet robust means of investigating inter-species interactions between CF pathogens.
Collapse
Affiliation(s)
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
94
|
Annunziato G. Strategies to Overcome Antimicrobial Resistance (AMR) Making Use of Non-Essential Target Inhibitors: A Review. Int J Mol Sci 2019; 20:E5844. [PMID: 31766441 PMCID: PMC6928725 DOI: 10.3390/ijms20235844] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/23/2022] Open
Abstract
Antibiotics have always been considered as one of the most relevant discoveries of the twentieth century. Unfortunately, the dawn of the antibiotic era has sadly corresponded to the rise of the phenomenon of antimicrobial resistance (AMR), which is a natural process whereby microbes evolve in such a way to withstand the action of drugs. In this context, the identification of new potential antimicrobial targets and/or the identification of new chemical entities as antimicrobial drugs are in great demand. To date, among the many possible approaches used to deal with antibiotic resistance is the use of antibiotic adjuvants that hit bacterial non-essential targets. In this review, the author focuses on the discovery of antibiotic adjuvants and on new tools to study and reduce the prevalence of resistant bacterial infections.
Collapse
Affiliation(s)
- Giannamaria Annunziato
- Probes for Targets Group (P4T group), Department of food and Drug, University of Parma, 43124 Parma, Italy
| |
Collapse
|
95
|
An innovative role for tenoxicam as a quorum sensing inhibitor in Pseudomonas aeruginosa. Arch Microbiol 2019; 202:555-565. [PMID: 31732766 DOI: 10.1007/s00203-019-01771-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
|
96
|
Peptide Mix from Olivancillaria hiatula Interferes with Cell-to-Cell Communication in Pseudomonas aeruginosa. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5313918. [PMID: 31662981 PMCID: PMC6778971 DOI: 10.1155/2019/5313918] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/03/2019] [Indexed: 11/17/2022]
Abstract
Bacteria in biofilms are encased in an extracellular polymeric matrix that limits exposure of microbial cells to lethal doses of antimicrobial agents, leading to resistance. In Pseudomonas aeruginosa, biofilm formation is regulated by cell-to-cell communication, called quorum sensing. Quorum sensing facilitates a variety of bacterial physiological functions such as swarming motility and protease, pyoverdine, and pyocyanin productions. Peptide mix from the marine mollusc, Olivancillaria hiatula, has been studied for its antibiofilm activity against Pseudomonas aeruginosa. Microscopy and microtiter plate-based assays were used to evaluate biofilm inhibitory activities. Effect of the peptide mix on quorum sensing-mediated processes was also evaluated. Peptide mix proved to be a good antibiofilm agent, requiring less than 39 μg/mL to inhibit 50% biofilm formation. Micrographs obtained confirmed biofilm inhibition at 1/2 MIC whereas 2.5 mg/mL was required to degrade preformed biofilm. There was a marked attenuation in quorum sensing-mediated phenotypes as well. At 1/2 MIC of peptide, the expression of pyocyanin, pyoverdine, and protease was inhibited by 60%, 72%, and 54%, respectively. Additionally, swarming motility was repressed by peptide in a dose-dependent manner. These results suggest that the peptide mix from Olivancillaria hiatula probably inhibits biofilm formation by interfering with cell-to-cell communication in Pseudomonas aeruginosa.
Collapse
|
97
|
Chakravarty S, Massé E. RNA-Dependent Regulation of Virulence in Pathogenic Bacteria. Front Cell Infect Microbiol 2019; 9:337. [PMID: 31649894 PMCID: PMC6794450 DOI: 10.3389/fcimb.2019.00337] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
Abstract
During infection, bacterial pathogens successfully sense, respond and adapt to a myriad of harsh environments presented by the mammalian host. This exquisite level of adaptation requires a robust modulation of their physiological and metabolic features. Additionally, virulence determinants, which include host invasion, colonization and survival despite the host's immune responses and antimicrobial therapy, must be optimally orchestrated by the pathogen at all times during infection. This can only be achieved by tight coordination of gene expression. A large body of evidence implicate the prolific roles played by bacterial regulatory RNAs in mediating gene expression both at the transcriptional and post-transcriptional levels. This review describes mechanistic and regulatory aspects of bacterial regulatory RNAs and highlights how these molecules increase virulence efficiency in human pathogens. As illustrative examples, Staphylococcus aureus, Listeria monocytogenes, the uropathogenic strain of Escherichia coli, Helicobacter pylori, and Pseudomonas aeruginosa have been selected.
Collapse
Affiliation(s)
- Shubham Chakravarty
- RNA Group, Department of Biochemistry, Faculty of Medicine and Health Sciences, CRCHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Massé
- RNA Group, Department of Biochemistry, Faculty of Medicine and Health Sciences, CRCHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
98
|
Pseudomonas aeruginosa Quorum Sensing Molecule Alters Skeletal Muscle Protein Homeostasis by Perturbing the Antioxidant Defense System. mBio 2019; 10:mBio.02211-19. [PMID: 31575771 PMCID: PMC6775459 DOI: 10.1128/mbio.02211-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle function is compromised in many illnesses, including chronic infections. The Pseudomonas aeruginosa quorum sensing (QS) signal, 2-amino acetophenone (2-AA), is produced during acute and chronic infections and excreted in human tissues, including the lungs of cystic fibrosis patients. We have shown that 2-AA facilitates pathogen persistence, likely via its ability to promote the formation of bacterial persister cells, and that it acts as an interkingdom immunomodulatory signal that epigenetically reprograms innate immune functions. Moreover, 2-AA compromises muscle contractility and impacts the expression of genes involved in reactive oxygen species (ROS) homeostasis in skeletal muscle and in mitochondrial functions. Here, we elucidate the molecular mechanisms of 2-AA's impairment of skeletal muscle function and ROS homeostasis. Murine in vivo and differentiated C2C12 myotube cell studies showed that 2-AA promotes ROS generation in skeletal muscle via the modulation of xanthine oxidase (XO) activity, NAD(P)H oxidase2 (NOX2) protein level, and the activity of antioxidant enzymes. ROS accumulation triggers the activity of AMP-activated protein kinase (AMPK), likely upstream of the observed locations of induction of ubiquitin ligases Muscle RING Finger 1 (MuRF1) and Muscle Atrophy F-box (MAFbx), and induces autophagy-related proteins. The protein-level perturbation in skeletal muscle of silent mating type information regulation 2 homolog 1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1), and uncoupling protein 3 (UCP3) is rescued by the antioxidant N-acetyl-l-cysteine (NAC). Together, these results unveil a novel form of action of a QS bacterial molecule and provide molecular insights into the 2-AA-mediated skeletal muscle dysfunction caused by P. aeruginosa IMPORTANCE Pseudomonas aeruginosa, a bacterium that is resistant to treatment, causes serious acute, persistent, and relapsing infections in humans. There is increasing evidence that bacterial excreted small molecules play a critical role during infection. We have shown that a quorum sensing (QS)-regulated excreted small molecule, 2-AA, which is abundantly produced by P. aeruginosa, promotes persistent infections, dampens host inflammation, and triggers mitochondrial dysfunction in skeletal muscle. QS is a cell-to-cell communication system utilized by bacteria to promote collective behaviors. The significance of our study in identifying a mechanism that leads to skeletal muscle dysfunction, via the action of a QS molecule, is that it may open new avenues in the control of muscle loss as a result of infection and sepsis. Given that QS is a common characteristic of prokaryotes, it is possible that 2-AA-like molecules promoting similar effects may exist in other pathogens.
Collapse
|
99
|
Antioxidant and Quorum Quenching Activity against Pseudomonas aeruginosa SU-18 of some Edible Fruit Juices. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.3.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
100
|
Srinivasarao S, Nandikolla A, Nizalapur S, Yu TT, Pulya S, Ghosh B, Murugesan S, Kumar N, Chandra Sekhar KVG. Design, synthesis and biological evaluation of 1,2,3-triazole based 2-aminobenzimidazoles as novel inhibitors of LasR dependent quorum sensing in Pseudomonas aeruginosa. RSC Adv 2019; 9:29273-29292. [PMID: 35528444 PMCID: PMC9071802 DOI: 10.1039/c9ra05059k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/06/2019] [Indexed: 11/26/2022] Open
Abstract
Bacteria regulate their phenotype, growth and population via a signalling pathway known as quorum sensing. In this process, bacteria produce signalling molecules (autoinducers) to recognize their population density. Inhibiting this quorum sensing signalling pathway is one of the potential methods to treat bacterial infection. 2-Aminobenimdazoles are reported to be the strongest inhibitors of quorum sensing against wild-type P. aeruginosa. 1,2,3-Triazole based acyl homoserine lactones are found to be good inhibitors of the quorum sensing LasR receptor. Hence, in our current study, forty 1,2,3-triazole based 2-aminobenzimdazoles were synthesized and characterized using IR, NMR, MS and elemental analysis. A single crystal was developed for N-(1H-benzo[d]imidazol-2-yl)-2-(4-nonyl-1H-1,2,3-triazol-1-yl)acetamide (6d). All final compounds were screened for in vitro quorum sensing inhibitory activity against Pseudomonas aeruginosa. The quorum sensing inhibitory activity was determined in the LasR expressing P. aeruginosa MH602 reporter strain by measuring green fluorescent protein production. Among the title compounds, N-(1H-benzo[d]imidazol-2-yl)-2-(4-(4-chlorophenyl)-1H-1,2,3-triazol-1-yl)acetamide (6i) exhibited good quorum sensing inhibitory activity of 64.99% at 250 μM. N-(1H-Benzo[d]imidazol-2-yl)-2-(4-(4-nitrophenyl)-1H-1,2,3-triazol-1-yl)acetamide (6p) exhibited the most promising quorum sensing inhibitory activity with 68.23, 67.10 and 63.67% inhibition at 250, 125 and 62.5 μM, respectively. N-(1H-Benzo[d]imidazol-2-yl)-2-(4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-yl)acetamide (6o) and N-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)-2-(4-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-yl)acetamide (7l) also exhibited 64.25% and 65.80% quorum sensing inhibition at 250 μM. Compound 6p, the most active quorum sensing inhibitor, also displayed low cytotoxicity at the tested concentrations (25, 50 and 100 μM) against normal human embryonic kidney cell lines. Finally, a docking study using Schrodinger Glide elucidated the possible putative binding mode of the significantly active compound 6p at the active site of the target LasR receptor (PDB ID: 2UV0).
Collapse
Affiliation(s)
- Singireddi Srinivasarao
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Hyderabad - 500078 Telangana India +91 40 66303527
| | - Adinarayana Nandikolla
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Hyderabad - 500078 Telangana India +91 40 66303527
| | | | - Tsz Tin Yu
- School of Chemistry, UNSW Sydney NSW 2052 Australia
| | - Sravani Pulya
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Hyderabad-500078 Telangana India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Hyderabad-500078 Telangana India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani 333031 India
| | - Naresh Kumar
- School of Chemistry, UNSW Sydney NSW 2052 Australia
| | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal Hyderabad - 500078 Telangana India +91 40 66303527
| |
Collapse
|