51
|
Figueira R, Holden DW. Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology (Reading) 2012; 158:1147-1161. [DOI: 10.1099/mic.0.058115-0] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Rita Figueira
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - David W. Holden
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| |
Collapse
|
52
|
Abstract
The host restricts dissemination of invasive enteric pathogens, such as non-typhoidal Salmonella serovars, by mounting acute inflammatory responses characterized by the recruitment of neutrophils. However, some enteric pathogens, such as Salmonella enterica serovar Typhi (S. typhi), can bypass these defenses and cause an invasive bloodstream infection known as typhoid fever. Recent studies on virulence mechanisms of S. typhi suggest that tight regulation of virulence gene expression during the transition from the intestinal lumen into the intestinal mucosa enables this pathogen to evade detection by the innate immune system, thereby penetrating defenses that prevent bacterial dissemination. This example illustrates how the outcome of host pathogen interaction at the intestinal mucosal interface can alter the clinical presentation and dictate the disease outcome.
Collapse
Affiliation(s)
- Tamding Wangdi
- Department of Medical Microbiology and Immunology; School of Medicine; University of California at Davis; Davis, CA USA
| | - Sebastian E. Winter
- Department of Medical Microbiology and Immunology; School of Medicine; University of California at Davis; Davis, CA USA
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology; School of Medicine; University of California at Davis; Davis, CA USA
| |
Collapse
|
53
|
Wisner ALS, Potter AA, Köster W. Effect of the Salmonella pathogenicity island 2 type III secretion system on Salmonella survival in activated chicken macrophage-like HD11 cells. PLoS One 2011; 6:e29787. [PMID: 22216355 PMCID: PMC3246499 DOI: 10.1371/journal.pone.0029787] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/05/2011] [Indexed: 11/18/2022] Open
Abstract
In order to better identify the role of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system (T3SS) in chickens, we used the well-known gentamicin protection assay with activated HD11 cells. HD11 cells are a macrophage-like chicken cell line that can be stimulated with phorbol 12-myristate 13-acetate (PMA) to exhibit more macrophage-like morphology and greater production of reactive oxygen species (ROS). Activated HD11 cells were infected with a wild-type Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium) strain, a SPI-2 mutant S. Typhimurium strain, a wild-type Salmonella enterica subspecies enterica serovar Enteritidis (S. Enteritidis) strain, a SPI-2 mutant S. Enteritidis strain, or a non-pathogenic Escherichia coli (E. coli) strain. SPI-2 mutant strains were found to survive as well as their parent strain at all time points post-uptake (PU) by the HD11 cells, up to 24 h PU, while the E. coli strain was no longer recoverable by 3 h PU. We can conclude from these observations that the SPI-2 T3SS of S. Typhimurium and S. Enteritidis is not important for survival of Salmonella in the activated macrophage-like HD11 cell line, and that Salmonella must employ other mechanisms for survival in this environment, as E. coli is effectively eliminated.
Collapse
Affiliation(s)
- Amanda L. S. Wisner
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
- Canadian Center for Vaccinology, Izaak Walton Killam Health Centre, Halifax, Canada
| | - Andrew A. Potter
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | - Wolfgang Köster
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
- * E-mail:
| |
Collapse
|
54
|
Salmonella effector proteins and host-cell responses. Cell Mol Life Sci 2011; 68:3687-97. [PMID: 21984608 DOI: 10.1007/s00018-011-0841-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/07/2011] [Accepted: 09/07/2011] [Indexed: 10/17/2022]
Abstract
Acute gastroenteritis caused by Salmonella enterica serovar typhimurium is a significant public health problem. This pathogen has very sophisticated molecular machinery encoded by the two pathogenicity islands, namely Salmonella Pathogenicity Island 1 and 2 (SPI-1 and SPI-2). Remarkably, both SPI-1 and SPI-2 are very tightly regulated in terms of timing of expression and spatial localization of the encoded effectors during the infection process within the host cell. This regulation is governed at several levels, including transcription and translation, and by post-translational modifications. In the context of a finely tuned regulatory system, we will highlight how these effector proteins co-opt host signaling pathways that control the ability of the organism to infect and survive within the host, as well as elicit host pro-inflammatory responses.
Collapse
|
55
|
Jacobsen A, Hendriksen RS, Aaresturp FM, Ussery DW, Friis C. The Salmonella enterica pan-genome. MICROBIAL ECOLOGY 2011; 62:487-504. [PMID: 21643699 PMCID: PMC3175032 DOI: 10.1007/s00248-011-9880-1] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 05/08/2011] [Indexed: 05/25/2023]
Abstract
Salmonella enterica is divided into four subspecies containing a large number of different serovars, several of which are important zoonotic pathogens and some show a high degree of host specificity or host preference. We compare 45 sequenced S. enterica genomes that are publicly available (22 complete and 23 draft genome sequences). Of these, 35 were found to be of sufficiently good quality to allow a detailed analysis, along with two Escherichia coli strains (K-12 substr. DH10B and the avian pathogenic E. coli (APEC O1) strain). All genomes were subjected to standardized gene finding, and the core and pan-genome of Salmonella were estimated to be around 2,800 and 10,000 gene families, respectively. The constructed pan-genomic dendrograms suggest that gene content is often, but not uniformly correlated to serotype. Any given Salmonella strain has a large stable core, whilst there is an abundance of accessory genes, including the Salmonella pathogenicity islands (SPIs), transposable elements, phages, and plasmid DNA. We visualize conservation in the genomes in relation to chromosomal location and DNA structural features and find that variation in gene content is localized in a selection of variable genomic regions or islands. These include the SPIs but also encompass phage insertion sites and transposable elements. The islands were typically well conserved in several, but not all, isolates--a difference which may have implications in, e.g., host specificity.
Collapse
Affiliation(s)
- Annika Jacobsen
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Building 208, 2800 Kongens Lyngby, Denmark
| | - Rene S. Hendriksen
- WHO Collaborating Centre for Antimicrobial Resistance in Food borne Pathogens, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- European Union Reference Laboratory for Antimicrobial Resistance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Frank M. Aaresturp
- WHO Collaborating Centre for Antimicrobial Resistance in Food borne Pathogens, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- European Union Reference Laboratory for Antimicrobial Resistance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - David W. Ussery
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Building 208, 2800 Kongens Lyngby, Denmark
- Department of Informatics, University of Oslo, PO Box 1080, Blindern, NO-0316 Oslo, Norway
| | - Carsten Friis
- WHO Collaborating Centre for Antimicrobial Resistance in Food borne Pathogens, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- European Union Reference Laboratory for Antimicrobial Resistance, National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
56
|
Increased persistence of Salmonella enterica serovar Typhi in the presence of Acanthamoeba castellanii. Appl Environ Microbiol 2011; 77:7640-6. [PMID: 21926221 DOI: 10.1128/aem.00699-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) is the etiological agent of the systemic disease typhoid fever. Transmission occurs via ingestion of contaminated food or water. S. Typhi is specific to humans, and no animal or environmental reservoirs are known. As the free-living amoeba Acanthamoeba castellanii is an environmental host for many pathogenic bacteria, this study investigates interactions between S. Typhi and A. castellanii by using cocultures. Growth of both organisms was estimated by cell count, viable count, flow cytometry, and fluorescence microscopy. Results indicate that S. Typhi can survive at least 3 weeks when grown with A. castellanii, as opposed to less than 10 days when grown as singly cultured bacteria under the same conditions. Interestingly, growth rates of amoebae after 14 days were similar in cocultures or when amoebae were singly cultured, suggesting that S. Typhi is not cytotoxic to A. castellanii. Bacteria surviving in coculture were not intracellular and did not require a physical contact with amoebae for their survival. These results suggest that S. Typhi may have a selective advantage when it is associated with A. castellanii and that amoebae may contribute to S. Typhi persistence in the environment.
Collapse
|
57
|
Hallstrom K, McCormick BA. Salmonella Interaction with and Passage through the Intestinal Mucosa: Through the Lens of the Organism. Front Microbiol 2011; 2:88. [PMID: 21747800 PMCID: PMC3128981 DOI: 10.3389/fmicb.2011.00088] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/13/2011] [Indexed: 01/13/2023] Open
Abstract
Salmonella enterica serotypes are invasive enteric pathogens spread through fecal contamination of food and water sources, and represent a constant public health threat around the world. The symptoms associated with salmonellosis and typhoid disease are largely due to the host response to invading Salmonella, and to the mechanisms these bacteria employ to survive in the presence of, and invade through the intestinal mucosal epithelia. Surmounting this barrier is required for survival within the host, as well as for further dissemination throughout the body, and subsequent systemic disease. In this review, we highlight some of the major hurdles Salmonella must overcome upon encountering the intestinal mucosal epithelial barrier, and examine how these bacteria surmount and exploit host defense mechanisms.
Collapse
Affiliation(s)
- Kelly Hallstrom
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School Worcester, MA, USA
| | | |
Collapse
|