51
|
Zhang X, Xie Y, Zhang F, Sun H, Zhai Y, Zhang S, Yuan H, Zhou L, Gao F, Li H. Complete genome sequence of an alternavirus from the phytopathogenic fungus Fusarium incarnatum. Arch Virol 2019; 164:923-925. [DOI: 10.1007/s00705-018-04128-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/23/2018] [Indexed: 10/27/2022]
|
52
|
Characterization of a novel RNA virus from the phytopathogenic fungus Leptosphaeria biglobosa related to members of the genus Mitovirus. Arch Virol 2019; 164:913-916. [PMID: 30656466 DOI: 10.1007/s00705-018-04143-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
Abstract
Mycovirus infection is a universal phenomenon in the major fungus groups. So far, however, mycoviruses have not been described in the phytopathogenic fungus Leptosphaeria biglobosa, the causal agent of phoma stem canker (blackleg). Here, we report the complete genome sequence of a novel mitovirus, Leptosphaeria biglobosa mitovirus 1 (LbMV1), isolated from the strain H3-38 of L. biglobosa. The LbMV1 genome comprises 2568 nucleotides with a low G+C content of 30%. Using the mitochondrial genetic code, the genome of LbMV1 was found to contain a single large open reading frame that encodes a predicted protein of 756 amino acids. Multiple alignment of the predicted protein sequence showed the highest similarity (51% identity) to the putative RNA-dependent RNA polymerase of Ophiostoma mitovirus 4. In addition, phylogenetic analysis grouped LbMV1 within the genus Mitovirus of the family Narnaviridae. Our results suggest that the double-stranded RNA found in strain H3-38 is the replicating genome of the mitovirus LbMV1, its deletion represents the first evidence of a mycovirus infecting L. biglobosa.
Collapse
|
53
|
Mizutani Y, Abraham A, Uesaka K, Kondo H, Suga H, Suzuki N, Chiba S. Novel Mitoviruses and a Unique Tymo-Like Virus in Hypovirulent and Virulent Strains of the Fusarium Head Blight Fungus, Fusarium boothii. Viruses 2018; 10:v10110584. [PMID: 30373133 PMCID: PMC6266667 DOI: 10.3390/v10110584] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022] Open
Abstract
Hypovirulence of phytopathogenic fungi are often conferred by mycovirus(es) infections and for this reason many mycoviruses have been characterized, contributing to a better understanding of virus diversity. In this study, three strains of Fusarium head blight fungus (Fusarium boothii) were isolated from Ethiopian wheats as dsRNA-carrying strains: hypovirulent Ep-BL13 (>10, 3 and 2.5 kbp dsRNAs), and virulent Ep-BL14 and Ep-N28 (3 kbp dsRNA each) strains. The 3 kbp-dsRNAs shared 98% nucleotide identity and have single ORFs encoding a replicase when applied to mitochondrial codon usage. Phylogenetic analysis revealed these were strains of a new species termed Fusarium boothii mitovirus 1 in the genus Mitovirus. The largest and smallest dsRNAs in Ep-BL13 appeared to possess single ORFs and the smaller was originated from the larger by removal of its most middle part. The large dsRNA encoded a replicase sharing the highest amino acid identity (35%) with that of Botrytis virus F, the sole member of the family Gammaflexiviridae. Given that the phylogenetic placement, large genome size, simple genomic and unusual 3′-terminal RNA structures were far different from members in the order Tymovirales, the virus termed Fusarium boothii large flexivirus 1 may form a novel genus and family under the order.
Collapse
Affiliation(s)
- Yukiyoshi Mizutani
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | - Adane Abraham
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan.
| | - Kazuma Uesaka
- Center for Gene Research, Nagoya University, Nagoya 464-8601, Japan.
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan.
| | - Haruhisa Suga
- Life Science Research Center, Gifu University, Gifu 501-1193, Japan.
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan.
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
- Asian Satellite Campuses Institute, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
54
|
Kyrychenko AN, Tsyganenko KS, Olishevska SV. Hypovirulence of Mycoviruses as a Tool for Biotechnological Control of Phytopathogenic Fungi. CYTOL GENET+ 2018. [DOI: 10.3103/s0095452718050043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
55
|
Hamid MR, Xie J, Wu S, Maria SK, Zheng D, Assane Hamidou A, Wang Q, Cheng J, Fu Y, Jiang D. A Novel Deltaflexivirus that Infects the Plant Fungal Pathogen, Sclerotinia sclerotiorum, Can Be Transmitted Among Host Vegetative Incompatible Strains. Viruses 2018; 10:295. [PMID: 29857477 PMCID: PMC6024712 DOI: 10.3390/v10060295] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 11/17/2022] Open
Abstract
Various mycoviruses have been isolated from Sclerotinia sclerotiorum. Here, we identified a viral RNA sequence contig, representing a novel virus, Sclerotinia sclerotiorum deltaflexivirus 2 (SsDFV2), from an RNA_Seq database. We found that SsDFV2 was harbored in the hypovirulent strain, 228, which grew slowly on potato dextrose agar, produced a few sclerotia, and could not induce typical lesions on detached rapeseed (Brassica napus) leaves. Strain 228 was also infected by Botrytis porri RNA Virus 1 (BpRV1), a virus originally isolated from Botrytis porri. The genome of SsDFV2 comprised 6711 nucleotides, excluding the poly (A) tail, and contained a single large predicted open reading frame encoding a putative viral RNA replicase. Phylogenetic analysis demonstrated that SsDFV2 is closely related to viruses in the family Deltaflexiviridae; however, it also differs significantly from members of this family, suggesting that it may represent a new species. Further we determined that SsDFV2 could be efficiently transmitted to host vegetative incompatible individuals by dual culture. To our best knowledge, this is the first report that a (+) ssRNA mycovirus can overcome the transmission limitations of the vegetative incompatibility system, a phenomenon that may facilitate the potential use of mycoviruses for the control of crop fungal diseases.
Collapse
Affiliation(s)
- Muhammad Rizwan Hamid
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiatao Xie
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Songsong Wu
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shahzeen Kanwal Maria
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dan Zheng
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Abdoulaye Assane Hamidou
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qihua Wang
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiasen Cheng
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yanping Fu
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Daohong Jiang
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
56
|
Nuskern L, Ježić M, Liber Z, Mlinarec J, Ćurković-Perica M. Cryphonectria hypovirus 1-Induced Epigenetic Changes in Infected Phytopathogenic Fungus Cryphonectria parasitica. MICROBIAL ECOLOGY 2018; 75:790-798. [PMID: 28865007 DOI: 10.1007/s00248-017-1064-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
Biotic stress caused by virus infections induces epigenetic changes in infected plants and animals, but this is the first report on methylation pattern changes in a fungus after mycovirus infection. As a model pathosystem for mycovirus-host interactions, we used Cryphonectria hypovirus 1 (CHV1) and its host fungus Cryphonectria parasitica, in which deregulation of methylation cycle enzymes upon virus infection was observed previously. Six CHV1 strains of different subtypes were transferred into three different C. parasitica isolates in order to assess the effect of different CHV1 strains and/or subtypes on global cytosine methylation level in infected fungus, using methylation-sensitive amplification polymorphism (MSAP). Infection with CHV1 affected the methylation pattern of the C. parasitica genome; it increased the number and diversity of methylated, hemi-methylated, and total MSAP markers found in infected fungal isolates compared to virus-free controls. The increase in methylation levels correlated well with the CHV1-induced reduction of fungal growth in vitro, indicating that C. parasitica genome methylation upon CHV1 infection, rather than being the defensive mechanism of the fungus, is more likely to be the virulence determinant of the virus. Furthermore, the severity of CHV1 effect on methylation levels of infected C. parasitica isolates depended mostly on individual CHV1 strains and on the combination of host and virus genomes, rather than on the virus subtype. These novel findings broaden our knowledge about CHV1 strains which could potentially be used in human-aided biocontrol of chestnut blight, a disease caused by C. parasitica in chestnut forest ecosystems and orchards.
Collapse
Affiliation(s)
- Lucija Nuskern
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000, Zagreb, Croatia
| | - Marin Ježić
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000, Zagreb, Croatia
| | - Zlatko Liber
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000, Zagreb, Croatia
| | - Jelena Mlinarec
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000, Zagreb, Croatia
| | - Mirna Ćurković-Perica
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10 000, Zagreb, Croatia.
| |
Collapse
|
57
|
Wang L, He H, Wang S, Chen X, Qiu D, Kondo H, Guo L. Evidence for a novel negative-stranded RNA mycovirus isolated from the plant pathogenic fungus Fusarium graminearum. Virology 2018; 518:232-240. [PMID: 29549785 DOI: 10.1016/j.virol.2018.03.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/26/2018] [Accepted: 03/07/2018] [Indexed: 10/24/2022]
Abstract
Here we describe a novel (-)ssRNA mycovirus, Fusarium graminearum negative-stranded RNA virus 1 (FgNSRV-1), isolated from Fusarium graminearum strain HN1. The genome of FgNSRV-1 is 9072 nucleotides in length, with five discontinuous but linear ORFs (ORF I-V). Phylogenetic analysis based on entire L polymerase sequences indicated that FgNSRV-1 is related to the (-)ssRNA mycovirus Sclerotinia sclerotiorum negative-stranded RNA virus 1 (SsNSRV-1), and other mycoviruses. Our data suggest that FgNSRV-1 can be classified into the family Mymonaviridae, order Mononegavirales. Putative enveloped virion-like structures with filamentous morphology similar to SsNSRV-1 were observed in virion preparation samples. The L proteins of FgNSRV-1, and other fungal mononegaviruses, were found to be related to L protein-like sequences in some fungal genome, supporting the hypothesis that there is coevolution occurring between mycoviruses and fungi. Besides, clearing the virus from the infected host fungus resulted in no discernable phenotypic change.
Collapse
Affiliation(s)
- Luan Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hao He
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuangchao Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoguang Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Okayama 710-0046, Japan.
| | - Lihua Guo
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
58
|
Complete Genome Sequence of a Fusarium graminearum Double-Stranded RNA Virus in a Newly Proposed Family, Alternaviridae. GENOME ANNOUNCEMENTS 2018; 6:6/8/e00064-18. [PMID: 29472334 PMCID: PMC5824011 DOI: 10.1128/genomea.00064-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We describe here a double-stranded RNA mycovirus, termed Fusarium graminearum alternavirus 1 (FgAV1/AH11), from the isolate AH11 of the phytopathogenic fungus F. graminearum. Phylogenetic analysis showed that FgAV1/AH11 belongs to a newly proposed family, Alternaviridae. This is the first report of a mycovirus in the family Alternaviridae that infects F. graminearum.
Collapse
|
59
|
Picarelli MASC, Gobatto D, Patrício F, Rivas EB, Colariccio A. Vírus que infectam fungos fitopatogênicos. ARQUIVOS DO INSTITUTO BIOLÓGICO 2018. [DOI: 10.1590/1808-1657000162016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO: Micovírus são vírus que infectam todos os taxa de fungos. São geralmente crípticos (latentes), mas podem causar pequenas ou imperceptíveis alterações no hospedeiro. Nos fungos fitopatogênicos, os vírus podem interferir com os sintomas e, em alguns casos, reduzir a virulência de seu hospedeiro; por esta razão, são objeto de estudo, por serem um potencial agente de biocontrole e por serem ferramentas importantes para o conhecimento sobre os mecanismos de patogênese de fungos. A presente revisão teve o objetivo de reunir os dados de literatura relacionados aos aspectos gerais da biologia e do comportamento dos micovírus presentes em alguns fungos fitopatogênicos.
Collapse
|
60
|
Mu F, Xie J, Cheng S, You MP, Barbetti MJ, Jia J, Wang Q, Cheng J, Fu Y, Chen T, Jiang D. Virome Characterization of a Collection of S. sclerotiorum from Australia. Front Microbiol 2018; 8:2540. [PMID: 29375495 PMCID: PMC5768646 DOI: 10.3389/fmicb.2017.02540] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/06/2017] [Indexed: 11/13/2022] Open
Abstract
Sclerotinia sclerotiorum is a devastating plant pathogen that attacks numerous economically important broad acre and vegetable crops worldwide. Mycoviruses are widespread viruses that infect fungi, including S. sclerotiorum. As there were no previous reports of the presence of mycoviruses in this pathogen in Australia, studies were undertaken using RNA_Seq analysis to determine the diversity of mycoviruses in 84 Australian S. sclerotiorum isolates collected from various hosts. After RNA sequences were subjected to BLASTp analysis using NCBI database, 285 contigs representing partial or complete genomes of 57 mycoviruses were obtained, and 34 of these (59.6%) were novel viruses. These 57 viruses were grouped into 10 distinct lineages, namely Endornaviridae (four novel mycoviruses), Genomoviridae (isolate of SsHADV-1), Hypoviridae (two novel mycoviruses), Mononegavirales (four novel mycovirusess), Narnaviridae (10 novel mycoviruses), Partitiviridae (two novel mycoviruses), Ourmiavirus (two novel mycovirus), Tombusviridae (two novel mycoviruses), Totiviridae (one novel mycovirus), Tymovirales (five novel mycoviruses), and two non-classified mycoviruses lineages (one Botrytis porri RNA virus 1, one distantly related to Aspergillus fumigatus tetramycovirus-1). Twenty-five mitoviruses were determined and mitoviruses were dominant in the isolates tested. This is not only the first study to show existence of mycoviruses in S. sclerotiorum in Australia, but highlights how they are widespread and that many novel mycoviruses occur there. Further characterization of these mycoviruses is warranted, both in terms of exploring these novel mycoviruses for innovative biocontrol of Sclerotinia diseases and in enhancing our overall knowledge on viral diversity, taxonomy, ecology, and evolution.
Collapse
Affiliation(s)
- Fan Mu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Shufen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Ming Pei You
- Faculty of Science, UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Martin J. Barbetti
- Faculty of Science, UWA School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Jichun Jia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Qianqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Tao Chen
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
61
|
A neo-virus lifestyle exhibited by a (+)ssRNA virus hosted in an unrelated dsRNA virus: Taxonomic and evolutionary considerations. Virus Res 2018; 244:75-83. [DOI: 10.1016/j.virusres.2017.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/04/2017] [Accepted: 11/05/2017] [Indexed: 12/21/2022]
|
62
|
Characterization of a novel single-stranded RNA mycovirus related to invertebrate viruses from the plant pathogen Verticillium dahliae. Arch Virol 2017; 163:771-776. [PMID: 29147792 DOI: 10.1007/s00705-017-3644-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/04/2017] [Indexed: 12/13/2022]
Abstract
Fungal viruses, also known as mycoviruses, are widespread in all major groups of fungi. Mycoviruses from plant pathogens can reduce the virulence of their host fungus and have therefore potential as biological control agents. This has spurred the identification of novel mycoviruses in plant pathogens, research which is greatly contributing to our understanding of these organisms. In this work, we report the characterization of a novel monopartite mycovirus from Verticillium dahliae, the main causal agent of Verticillium wilt. This novel mycovirus, which we termed Verticillium dahliae RNA virus 1 (VdRV1), was identified in three different isolates of V. dahliae collected in olive growing areas of the Guadalquivir valley, southern Spain. We determined that the VdRV1 genome is a positive (+) single-stranded (ss) RNA, 2631 nucleotides in length, containing two open reading frames. VdRV1 showed few similarities with known mycoviruses, only with a group of unassigned (+) ssRNA mycoviruses which are related to plant viruses classified within the family Tombusviridae. However, phylogenetic analysis revealed that VdRV1 and the unassigned (+) ssRNA mycoviruses have a closer relationship with recently reported invertebrate viruses. This result indicates that as more viral sequences become available, the relationships of mycoviruses with viruses from other hosts should be reexamined. Additionally, the work supports the hypothesis of a heterogeneous origin for mycoviruses.
Collapse
|
63
|
Sun X, Zhao Y, Jia J, Xie J, Cheng J, Liu H, Jiang D, Fu Y. Uninterrupted Expression of CmSIT1 in a Sclerotial Parasite Coniothyrium minitans Leads to Reduced Growth and Enhanced Antifungal Ability. Front Microbiol 2017; 8:2208. [PMID: 29176968 PMCID: PMC5686095 DOI: 10.3389/fmicb.2017.02208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/26/2017] [Indexed: 01/02/2023] Open
Abstract
Coniothyrium minitans is an important mycoparasite of Sclerotinia sclerotiorum. In addition, it also produces small amounts of antifungal substances. ZS-1TN1812, an abnormal mutant, was originally screened from a T-DNA insertional library. This mutant showed abnormal growth phenotype and could significantly inhibit the growth of S. sclerotiorum when dual-cultured on a PDA plate. When spraying the filtrate of ZS-1TN1812 on the leaves of rapeseed, S. sclerotiorum infection was significantly inhibited, suggesting that the antifungal substances produced by this mutant were effective on rapeseed leaves. The thermo-tolerant antifungal substances could specifically suppress the growth of S. sclerotiorum, but could not significantly suppress the growth of another fungus, Colletotrichum higginsianum. However, C. higginsianum was more sensitive to proteinous antibiotics than S. sclerotiorum. The T-DNA insertion in ZS-1TN1812 activated the expression of CmSIT1, a gene involved in siderophore-mediated iron transport. It was also determined that mutant ZS-1TN1812 produced hypha with high iron levels. In the wild-type strain ZS-1, CmSIT1 was expressed only when in contact with S. sclerotiorum, and consistent overexpression of CmSIT1 showed similar phenotypes as ZS-1TN1812. Therefore, activated expression of CmSIT1 leads to the enhanced antifungal ability, and CmSIT1 is a potential gene for improving the control ability of C. minitans.
Collapse
Affiliation(s)
- Xiping Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ying Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jichun Jia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
64
|
Phytopathogenic fungus hosts a plant virus: A naturally occurring cross-kingdom viral infection. Proc Natl Acad Sci U S A 2017; 114:12267-12272. [PMID: 29087346 DOI: 10.1073/pnas.1714916114] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transmission of viral infections between plant and fungal hosts has been suspected to occur, based on phylogenetic and other findings, but has not been directly observed in nature. Here, we report the discovery of a natural infection of the phytopathogenic fungus Rhizoctonia solani by a plant virus, cucumber mosaic virus (CMV). The CMV-infected R. solani strain was obtained from a potato plant growing in Inner Mongolia Province of China, and CMV infection was stable when this fungal strain was cultured in the laboratory. CMV was horizontally transmitted through hyphal anastomosis but not vertically through basidiospores. By inoculation via protoplast transfection with virions, a reference isolate of CMV replicated in R. solani and another phytopathogenic fungus, suggesting that some fungi can serve as alternative hosts to CMV. Importantly, in fungal inoculation experiments under laboratory conditions, R. solani could acquire CMV from an infected plant, as well as transmit the virus to an uninfected plant. This study presents evidence of the transfer of a virus between plant and fungus, and it further expands our understanding of plant-fungus interactions and the spread of plant viruses.
Collapse
|
65
|
Characterization of a novel botybirnavirus isolated from a phytopathogenic Alternaria fungus. Arch Virol 2017; 162:3907-3911. [DOI: 10.1007/s00705-017-3543-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/07/2017] [Indexed: 10/18/2022]
|
66
|
Abstract
Viruses with double-stranded RNA genomes form isometric particles or are capsidless. Here we report a double-stranded RNA virus, Colletotrichum camelliae filamentous virus 1 (CcFV-1) isolated from a fungal pathogen, that forms filamentous particles. CcFV-1 has eight genomic double-stranded RNAs, ranging from 990 to 2444 bp, encoding 10 putative open reading frames, of which open reading frame 1 encodes an RNA-dependent RNA polymerase and open reading frame 4 a capsid protein. When inoculated, the naked CcFV-1 double-stranded RNAs are infectious and induce the accumulation of the filamentous particles in vivo. CcFV-1 is phylogenetically related to Aspergillus fumigatus tetramycovirus-1 and Beauveria bassiana polymycovirus-1, but differs in morphology and in the number of genomic components. CcFV-1 might be an intermediate virus related to truly capsidated viruses, or might represent a distinct encapsidating strategy. In terms of genome and particle architecture, our findings are a significant addition to the knowledge of the virosphere diversity. Viruses with double-stranded RNA (dsRNA) genomes form typically isometric particles or are capsid-less. Here, the authors identify a mycovirus with an eight-segmented dsRNA genome that forms exceptionally long filamentous particles and could represent an evolutionary link between ssRNA and dsRNA viruses.
Collapse
|
67
|
Virus-mediated suppression of host non-self recognition facilitates horizontal transmission of heterologous viruses. PLoS Pathog 2017; 13:e1006234. [PMID: 28334041 PMCID: PMC5363999 DOI: 10.1371/journal.ppat.1006234] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/10/2017] [Indexed: 02/06/2023] Open
Abstract
Non-self recognition is a common phenomenon among organisms; it often leads to innate immunity to prevent the invasion of parasites and maintain the genetic polymorphism of organisms. Fungal vegetative incompatibility is a type of non-self recognition which often induces programmed cell death (PCD) and restricts the spread of molecular parasites. It is not clearly known whether virus infection could attenuate non-self recognition among host individuals to facilitate its spread. Here, we report that a hypovirulence-associated mycoreovirus, named Sclerotinia sclerotiorum mycoreovirus 4 (SsMYRV4), could suppress host non-self recognition and facilitate horizontal transmission of heterologous viruses. We found that cell death in intermingled colony regions between SsMYRV4-infected Sclerotinia sclerotiorum strain and other tested vegetatively incompatible strains was markedly reduced and inhibition barrage lines were not clearly observed. Vegetative incompatibility, which involves Heterotrimeric guanine nucleotide-binding proteins (G proteins) signaling pathway, is controlled by specific loci termed het (heterokaryon incompatibility) loci. Reactive oxygen species (ROS) plays a key role in vegetative incompatibility-mediated PCD. The expression of G protein subunit genes, het genes, and ROS-related genes were significantly down-regulated, and cellular production of ROS was suppressed in the presence of SsMYRV4. Furthermore, SsMYRV4-infected strain could easily accept other viruses through hyphal contact and these viruses could be efficiently transmitted from SsMYRV4-infected strain to other vegetatively incompatible individuals. Thus, we concluded that SsMYRV4 is capable of suppressing host non-self recognition and facilitating heterologous viruses transmission among host individuals. These findings may enhance our understanding of virus ecology, and provide a potential strategy to utilize hypovirulence-associated mycoviruses to control fungal diseases.
Collapse
|
68
|
The complete genome sequence of a double-stranded RNA mycovirus from Fusarium graminearum strain HN1. Arch Virol 2017; 162:2119-2124. [DOI: 10.1007/s00705-017-3317-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
|
69
|
Complete Genome Sequence of a Novel Hypovirus from the Phytopathogenic Fungus Fusarium langsethiae. GENOME ANNOUNCEMENTS 2017; 5:5/9/e01722-16. [PMID: 28254984 PMCID: PMC5334591 DOI: 10.1128/genomea.01722-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe a novel positive single-stranded RNA virus, termed Fusarium langsethiae hypovirus 1 (FlHV1), from the isolate AH32 of the phytopathogenic fungus Fusarium langsethiae. The properties of FlHV1 permit assignment to the genus Alphahypovirus in the family Hypoviridae. This is the first report of a mycovirus identified in F. langsethiae.
Collapse
|
70
|
Liu S, Xie J, Cheng J, Li B, Chen T, Fu Y, Li G, Wang M, Jin H, Wan H, Jiang D. Fungal DNA virus infects a mycophagous insect and utilizes it as a transmission vector. Proc Natl Acad Sci U S A 2016; 113:12803-12808. [PMID: 27791095 PMCID: PMC5111676 DOI: 10.1073/pnas.1608013113] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycoviruses are usually transmitted horizontally via hyphal anastomosis and vertically via sexual/asexual spores. Previously, we reported that a gemycircularvirus, Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1), could infect its fungal host extracellularly. Here, we discovered that SsHADV-1 could infect a mycophagous insect, Lycoriella ingenua, and use it as a transmission vector. Virus acquired by larvae feeding on colonies of a virus-infected strain of S. sclerotiorum was replicated and retained in larvae, pupae, adults, and eggs. Virus could be transmitted to insect offspring when larvae were injected with virus particles and allowed to feed on a nonhost fungus. Virus replication in insect cells was further confirmed by inoculating Spodoptera frugiperda cells with virus particles and analyzing with RT-PCR, Northern blot, immunofluorescence, and flow cytometry assays. Larvae could transmit virus once they acquired virus by feeding on virus-infected fungal colony. Offspring larvae hatched from viruliferous eggs were virus carriers and could also successfully transmit virus. Virus transmission between insect and fungus also occurred on rapeseed plants. Virus-infected isolates produced less repellent volatile substances to attract adults of L. ingenua Furthermore, L. ingenua was easily observed on Sclerotinia lesions in rapeseed fields, and viruliferous adults were captured from fields either sprayed with a virus-infected fungal strain or nonsprayed. Our findings may facilitate the exploration of mycoviruses for control of fungal diseases and enhance our understanding of the ecology of SsHADV-1 and other newly emerging SsHADV-1-like viruses, which were recently found to be widespread in various niches including human HIV-infected blood, human and animal feces, insects, plants, and even sewage.
Collapse
Affiliation(s)
- Si Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Bo Li
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Tao Chen
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Manqun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huanan Jin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Hu Wan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China;
- The Provincial Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| |
Collapse
|
71
|
Deep Sequencing Analysis Reveals the Mycoviral Diversity of the Virome of an Avirulent Isolate of Rhizoctonia solani AG-2-2 IV. PLoS One 2016; 11:e0165965. [PMID: 27814394 PMCID: PMC5096721 DOI: 10.1371/journal.pone.0165965] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023] Open
Abstract
Rhizoctonia solani represents an important plant pathogenic Basidiomycota species complex and the host of many different mycoviruses, as indicated by frequent detection of dsRNA elements in natural populations of the fungus. To date, eight different mycoviruses have been characterized in Rhizoctonia and some of them have been reported to modulate its virulence. DsRNA extracts of the avirulent R. solani isolate DC17 (AG2-2-IV) displayed a diverse pattern, indicating multiple infections with mycoviruses. Deep sequencing analysis of the dsRNA extract, converted to cDNA, revealed that this isolate harbors at least 17 different mycovirus species. Based on the alignment of the conserved RNA-dependent RNA-polymerase (RdRp) domain, this viral community included putative members of the families Narnaviridae, Endornaviridae, Partitiviridae and Megabirnaviridae as well as of the order Tymovirales. Furthermore, viruses, which could not be assigned to any existing family or order, but showed similarities to so far unassigned species like Sclerotinia sclerotiorum RNA virus L, Rhizoctonia solani dsRNA virus 1, Aspergillus foetidus slow virus 2 or Rhizoctonia fumigata virus 1, were identified. This is the first report of a fungal isolate infected by 17 different viral species and a valuable study case to explore the diversity of mycoviruses infecting R. solani.
Collapse
|
72
|
Identification of a novel mycovirus isolated from Rhizoctonia solani (AG 2-2 IV) provides further information about genome plasticity within the order Tymovirales. Arch Virol 2016; 162:555-559. [PMID: 27734236 DOI: 10.1007/s00705-016-3085-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/20/2016] [Indexed: 10/20/2022]
Abstract
The complete genome of a novel mycovirus, named Rhizoctonia solani flexivirus 1 (RsFV-1), which infects an avirulent strain of Rhizoctonia solani AG 2-2 IV, was sequenced and analyzed. Its RNA genome consists of 10,621 nucleotides, excluding the poly-A tail, and encodes a single protein of 3477 amino acids. The identification of conserved motifs of methyltransferase, helicase and RNA-dependent RNA polymerase revealed its relatedness to members of the alphavirus-like superfamily of positive-strand RNA viruses. Phylogenetic analysis of these fused domains suggested that this virus should be assigned to the order Tymovirales. The recently described Fusarium graminearum deltaflexivirus 1 was found to be its closest relative. However, the whole genome, as well as the encoded protein of RsFV-1, is larger than that of other known members of the order Tymovirales, and unlike all other viruses belonging to this order, its methyltransferase domain is not located at the N-terminus of the replicase. Although genome diversity, as a result of recombination and gene loss, is a well-documented trait in members of the order Tymovirales, no related virus with a comparable genome alteration has been reported before. For these reasons, RsFV-1 broadens our perception about genome plasticity and diversity within the order Tymovirales.
Collapse
|
73
|
Chen X, He H, Yang X, Zeng H, Qiu D, Guo L. The complete genome sequence of a novel Fusarium graminearum RNA virus in a new proposed family within the order Tymovirales. Arch Virol 2016; 161:2899-903. [PMID: 27376377 DOI: 10.1007/s00705-016-2961-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/29/2016] [Indexed: 11/30/2022]
Abstract
The complete nucleotide sequence of Fusarium graminearum deltaflexivirus 1 (FgDFV1), a novel positive single-stranded (+ss) RNA mycovirus, was sequenced and analyzed. The complete genome of FgDFV1/BJ59 was shown to be 8246 nucleotides (nt) long excluding the poly(A) tail. FgDFV1/BJ59 was predicted to contain a large open reading frame (ORF 1) and four smaller ORFs (2-5). ORF1 encodes a putative replication-associated polyprotein (RP) of 2042 amino acids (aa) and contains three conserved domains, viral RNA methyltransferase (Mtr), viral RNA helicase (Hel) and RNA-dependent RNA polymerase (RdRp). ORFs 2-5 encode four putative small hypothetical proteins (12-18 kDa) with unknown biological functions. Phylogenetic analysis based on RP sequences indicated that FgDFV1 is phylogenetically related to soybean leaf-associated mycoflexivirus 1 (SlaMyfV1) and Sclerotinia sclerotiorum deltaflexivirus 1 (SsDFV1), which form a well-supported and independent group belonging to a newly proposed family Deltaflexiviridae within the order Tymovirales. However, FgDFV1 is markedly different from SsDFV1 and SlaMyfV1 in genome organization and nucleotide sequence. FgDFV1 may represent an additional species in the new genus Deltaflexivirus or possibly a new genus in the proposed family Deltaflexiviridae.
Collapse
Affiliation(s)
- Xiaoguang Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hao He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiufen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongmei Zeng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lihua Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
74
|
Yang X, Cui H, Cheng J, Xie J, Jiang D, Hsiang T, Fu Y. A HOPS protein, CmVps39, is required for vacuolar morphology, autophagy, growth, conidiogenesis and mycoparasitic functions of Coniothyrium minitans. Environ Microbiol 2016; 18:3785-3797. [PMID: 27105005 DOI: 10.1111/1462-2920.13334] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coniothyrium minitans is an important sclerotial and hyphal parasite of the plant pathogen Sclerotinia sclerotiorum. Previously, a conidiation-deficient mutant, ZS-1N22225, was screened from a T-DNA insertional library of C. minitans. CmVps39, a homologue of Vam6p/Vps39p that plays a critical role in vacuolar morphogenesis in yeast, was disrupted by a T-DNA insertion in this mutant. CmVps39 is composed of 1071 amino acids with an amino-terminal citron homology domain and a central clathrin homology domain, as observed for other Vam6p/Vps39p family proteins. Abnormal fragmented vacuoles were observed in ΔCmVps39 under light microscopy and transmission electron microscopy, and ΔCmVps39 showed impairment in autophagy. ΔCmVps39 also exhibited significantly reduced hyphal development, poor conidiation and decreased sclerotial mycoparasitism. In addition, deletion of CmVps39 affected osmotic adaptation, pH homeostasis and cell wall integrity. Taken together, our results suggest that CmVps39 has an essential function in vacuolar morphology, autophagy, fungal development and mycoparasitism in C. minitans.
Collapse
Affiliation(s)
- Xiaoxiang Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Hui Cui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Jiasen Cheng
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Jiatao Xie
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.,The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Tom Hsiang
- Department of Environmental Biology, University of Guelph, Guelph, ON, Canada
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| |
Collapse
|
75
|
Two Novel Relative Double-Stranded RNA Mycoviruses Infecting Fusarium poae Strain SX63. Int J Mol Sci 2016; 17:ijms17050641. [PMID: 27144564 PMCID: PMC4881467 DOI: 10.3390/ijms17050641] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/14/2016] [Accepted: 04/19/2016] [Indexed: 12/16/2022] Open
Abstract
Two novel double-stranded RNA (dsRNA) mycoviruses, termed Fusarium poae dsRNA virus 2 (FpV2) and Fusarium poae dsRNA virus 3 (FpV3), were isolated from the plant pathogenic fungus, Fusarium poae strain SX63, and molecularly characterized. FpV2 and FpV3, with respective genome sequences of 9518 and 9419 base pairs (bps), are both predicted to contain two discontinuous open reading frames (ORFs), ORF1 and ORF2. A hypothetical polypeptide (P1) and a RNA-dependent RNA polymerase (RdRp) are encoded by ORF1 and ORF2, respectively. Phytoreo_S7 domain (pfam07236) homologs were detected downstream of the RdRp domain (RdRp_4; pfam02123) of the ORF2-coded proteins of both FpV2 and FpV3. The same shifty heptamers (GGAAAAC) were both found immediately before the stop codon UAG of ORF1 in FpV2 and FpV3, which could mediate programmed –1 ribosomal frameshifting (–1 PRF). Phylogenetic analysis based on RdRp sequences clearly place FpV2 and FpV3 in a taxonomically unassigned dsRNA mycovirus group. Together, with a comparison of genome organization, a new taxonomic family termed Fusagraviridae is proposed to be created to include FpV2- and FpV3-related dsRNA mycoviruses, within which FpV2 and FpV3 would represent two distinct virus species.
Collapse
|
76
|
Nox Complex signal and MAPK cascade pathway are cross-linked and essential for pathogenicity and conidiation of mycoparasite Coniothyrium minitans. Sci Rep 2016; 6:24325. [PMID: 27066837 PMCID: PMC4828707 DOI: 10.1038/srep24325] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/24/2016] [Indexed: 11/09/2022] Open
Abstract
The NADPH oxidase complex of a sclerotial mycoparasite Coniothyrium minitans, an important biocontrol agent against crop diseases caused by Sclerotinia sclerotiorum, was identified and its functions involved in conidiation and mycoparasitism were studied. Gene knock-out and complementary experiments indicated that CmNox1, but not CmNox2, is necessary for conidiation and parasitism, and its expression could be significantly induced by its host fungus. CmNox1 is regulated by CmRac1-CmNoxR and interacts with CmSlt2, a homolog of Saccharomyces cerevisiae Slt2 encoding cell wall integrity-related MAP kinase. In ΔCmNox1, CmSlt2-GFP fusion protein lost the ability to localize to the cell nucleus accurately. The defect of conidiation in ΔCmRac1 could be partially restored by over-expressing CmSlt2, indicating that CmSlt2 was a downstream regulatory factor of CmNox1 and was involved in conidiation and parasitism. The expressions of mycoparasitism-related genes CmPks1, Cmg1 and CH1 were suppressed in the knock-out mutants of the genes in CmNox1-CmSlt2 signal pathway when cultivated either on PDA. Therefore, our study infers that CmRac1-CmNoxR regulates CmNox1-CmSlt2 pathway in regulating conidiation and pathogenicity of C. minitans.
Collapse
|
77
|
Lyu X, Shen C, Fu Y, Xie J, Jiang D, Li G, Cheng J. A Small Secreted Virulence-Related Protein Is Essential for the Necrotrophic Interactions of Sclerotinia sclerotiorum with Its Host Plants. PLoS Pathog 2016; 12:e1005435. [PMID: 26828434 PMCID: PMC4735494 DOI: 10.1371/journal.ppat.1005435] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/11/2016] [Indexed: 12/28/2022] Open
Abstract
Small, secreted proteins have been found to play crucial roles in interactions between biotrophic/hemi-biotrophic pathogens and plants. However, little is known about the roles of these proteins produced by broad host-range necrotrophic phytopathogens during infection. Here, we report that a cysteine-rich, small protein SsSSVP1 in the necrotrophic phytopathogen Sclerotinia sclerotiorum was experimentally confirmed to be a secreted protein, and the secretion of SsSSVP1 from hyphae was followed by internalization and cell-to-cell movement independent of a pathogen in host cells. SsSSVP1∆SP could induce significant plant cell death and targeted silencing of SsSSVP1 resulted in a significant reduction in virulence. Through yeast two-hybrid (Y2H), coimmunoprecipitation (co-IP) and bimolecular fluorescence complementation (BiFC) assays, we demonstrated that SsSSVP1∆SP interacted with QCR8, a subunit of the cytochrome b-c1 complex of mitochondrial respiratory chain in plants. Double site-directed mutagenesis of two cysteine residues (C38 and C44) in SsSSVP1∆SP had significant effects on its homo-dimer formation, SsSSVP1∆SP-QCR8 interaction and plant cell death induction, indicating that partial cysteine residues surely play crucial roles in maintaining the structure and function of SsSSVP1. Co-localization and BiFC assays showed that SsSSVP1∆SP might hijack QCR8 to cytoplasm before QCR8 targeting into mitochondria, thereby disturbing its subcellular localization in plant cells. Furthermore, virus induced gene silencing (VIGS) of QCR8 in tobacco caused plant abnormal development and cell death, indicating the cell death induced by SsSSVP1∆SP might be caused by the SsSSVP1∆SP-QCR8 interaction, which had disturbed the QCR8 subcellular localization and hence disabled its biological functions. These results suggest that SsSSVP1 is a potential effector which may manipulate plant energy metabolism to facilitate the infection of S. sclerotiorum. Our findings indicate novel roles of small secreted proteins in the interactions between host-non-specific necrotrophic fungi and plants, and highlight the significance to illuminate the pathogenic mechanisms of this type of interaction.
Collapse
Affiliation(s)
- Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Cuicui Shen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jiatao Xie
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| |
Collapse
|
78
|
Lyu X, Shen C, Fu Y, Xie J, Jiang D, Li G, Cheng J. The Microbial Opsin Homolog Sop1 is involved in Sclerotinia sclerotiorum Development and Environmental Stress Response. Front Microbiol 2016; 6:1504. [PMID: 26779159 PMCID: PMC4703900 DOI: 10.3389/fmicb.2015.01504] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/14/2015] [Indexed: 11/29/2022] Open
Abstract
Microbial opsins play a crucial role in responses to various environmental signals. Here, we report that the microbial opsin homolog gene sop1 from the necrotrophic phytopathogenic fungus Sclerotinia sclerotiorum was dramatically up-regulated during infection and sclerotial development compared with the vegetative growth stage. Further, study showed that sop1 was essential for growth, sclerotial development and full virulence of S. sclerotiorum. Sop1-silenced transformants were more sensitive to high salt stress, fungicides and high osmotic stress. However, they were more tolerant to oxidative stress compared with the wild-type strain, suggesting that sop1 is involved in different stress responses and fungicide resistance, which plays a role in the environmental adaptability of S. sclerotiorum. Furthermore, a Delta blast search showed that microbial opsins are absent from the genomes of animals and most higher plants, indicating that sop1 is a potential drug target for disease control of S. sclerotiorum.
Collapse
Affiliation(s)
- Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Cuicui Shen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Jiatao Xie
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
79
|
Li P, Lin Y, Zhang H, Wang S, Qiu D, Guo L. Molecular characterization of a novel mycovirus of the family Tymoviridae isolated from the plant pathogenic fungus Fusarium graminearum. Virology 2015; 489:86-94. [PMID: 26744993 DOI: 10.1016/j.virol.2015.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/05/2015] [Accepted: 12/13/2015] [Indexed: 11/16/2022]
Abstract
We isolated a novel mycovirus, Fusarium graminearum mycotymovirus 1 (FgMTV1/SX64), which is related to members of the family Tymoviridae, from the plant pathogenic fungus F. graminearum strain SX64. The complete 7863 nucleotide sequence of FgMTV1/SX64, excluding the poly (A) tail, was determined. The genome of FgMTV1/SX64 is predicted to contain four open reading frames (ORFs). The largest ORF1 is 6723 nucleotides (nt) in length and encodes a putative polyprotein of 2242 amino acids (aa), which contains four conserved domains, a methyltransferase (Mtr), tymovirus endopeptidase (Pro), viral RNA helicase (Hel), and RNA-dependent RNA polymerase (RdRp), of the replication-associated proteins (RPs) of the positive-strand RNA viruses. ORFs 2-4 putatively encode three putative small hypothetical proteins, but their functions are still unknown. Sequence alignments and phylogenetic analyses based on the putative RP protein and the three conserved domains (Mtr, Hel and RdRp) showed that FgMTV1/SX64 is most closely related to, but distinctly branched from, the viruses from the family Tymoviridae. Although FgMTV1/SX64 infection caused mild or no effect on conidia production, biomass and virulence of its host F. graminearum strain SX64, its infection had significant effects on the growth rate, colony diameter and deoxynivalenol (DON) production. This is the first molecular characterization of a tymo-like mycovirus isolated from a plant pathogenic fungus. It is proposed that the mycovirus FgMTV1/SX64 is a representative member of new proposed lineage Mycotymovirus in the family Tymoviridae.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Yanhong Lin
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Hailong Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Shuangchao Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Lihua Guo
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China.
| |
Collapse
|
80
|
Li K, Zheng D, Cheng J, Chen T, Fu Y, Jiang D, Xie J. Characterization of a novel Sclerotinia sclerotiorum RNA virus as the prototype of a new proposed family within the order Tymovirales. Virus Res 2015; 219:92-99. [PMID: 26603216 DOI: 10.1016/j.virusres.2015.11.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/12/2015] [Accepted: 11/14/2015] [Indexed: 11/18/2022]
Abstract
Recent studies have shown that Sclerotinia sclerotiorum, an important plant pathogen fungus, harbors diverse mycoviruses. A new mycovirus, tentatively named as Sclerotinia sclerotiorum deltaflexivirus 1 (SsDFV1), was isolated from a S. sclerotiorum strain AX19 containing multiple dsRNA elements. The complete genome of SsDFV1 was shown to be 8178 nucleotides long excluding the poly (A) tail. SsDFV1 has a large putative open reading frame (ORF1) and three smaller ORFs (2-4). ORF1 encodes a putative methyltransferase-helicase-RdRp polyprotein of 2075 amino acids. ORFs (2-4) encode three putative small hypothetical proteins (<40kDa) with unknown biological functions. No evidence for a coat protein encoded by SsDFV1 was obtained. Multiple alignment suggested that three conserved domains, RdRp, methyltransferase, and helicase, from SsDFV1 have lower identity (approximately 25%) with all the reported viruses of four approved families, Alphaflexiviridae, Betaflexiviridae, Gammaflexiviridae and Tymoviridae in the order Tymovirales. Moreover, a phylogenetic tree also suggested that the SsDFV1 could not be phylogenetically placed in any of the approved families, and forms a separated cluster distinct from other known viruses. Therefore, these combined results suggest that SsDFV1 could represent a new positive-sense single-stranded RNA virus with some unique molecular features, and we propose to create a tentative family Deltaflexiviridae that accommodates SsDFV1.
Collapse
Affiliation(s)
- Kunfei Li
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Dan Zheng
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Jiasen Cheng
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Tao Chen
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Yanping Fu
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Jiatao Xie
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
81
|
Characterization of a Novel Megabirnavirus from Sclerotinia sclerotiorum Reveals Horizontal Gene Transfer from Single-Stranded RNA Virus to Double-Stranded RNA Virus. J Virol 2015; 89:8567-79. [PMID: 26063429 DOI: 10.1128/jvi.00243-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/01/2015] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED Mycoviruses have been detected in all major groups of filamentous fungi, and their study represents an important branch of virology. Here, we characterized a novel double-stranded RNA (dsRNA) mycovirus, Sclerotinia sclerotiorum megabirnavirus 1 (SsMBV1), in an apparently hypovirulent strain (SX466) of Sclerotinia sclerotiorum. Two similarly sized dsRNA segments (L1- and L2-dsRNA), the genome of SsMBV1, are packaged in rigid spherical particles purified from strain SX466. The full-length cDNA sequence of L1-dsRNA/SsMBV1 comprises two large open reading frames (ORF1 and ORF2), which encode a putative coat protein and an RNA-dependent RNA polymerase (RdRp), respectively. Phylogenetic analysis of the RdRp domain clearly indicates that SsMBV1 is related to Rosellinia necatrix megabirnavirus 1 (RnMBV1). L2-dsRNA/SsMBV1 comprises two nonoverlapping ORFs (ORFA and ORFB) encoding two hypothetical proteins with unknown functions. The 5'-terminal regions of L1- and L2-dsRNA/SsMBV1 share strictly conserved sequences and form stable stem-loop structures. Although L2-dsRNA/SsMBV1 is dispensable for replication, genome packaging, and pathogenicity of SsMBV1, it enhances transcript accumulation of L1-dsRNA/SsMBV1 and stability of virus-like particles (VLPs). Interestingly, a conserved papain-like protease domain similar to a multifunctional protein (p29) of Cryphonectria hypovirus 1 was detected in the ORFA-encoded protein of L2-dsRNA/SsMBV1. Phylogenetic analysis based on the protease domain suggests that horizontal gene transfer may have occurred from a single-stranded RNA (ssRNA) virus (hypovirus) to a dsRNA virus, SsMBV1. Our results reveal that SsMBV1 has a slight impact on the fundamental biological characteristics of its host regardless of the presence or absence of L2-dsRNA/SsMBV1. IMPORTANCE Mycoviruses are widespread in all major fungal groups, and they possess diverse genomes of mostly ssRNA and dsRNA and, recently, circular ssDNA. Here, we have characterized a novel dsRNA virus (Sclerotinia sclerotiorum megabirnavirus 1 [SsMBV1]) that was isolated from an apparently hypovirulent strain, SX466, of Sclerotinia sclerotiorum. Although SsMBV1 is phylogenetically related to RnMBV1, SsMBV1 is markedly distinct from other reported megabirnaviruses with two features of VLPs and conserved domains. Our results convincingly showed that SsMBV1 is viable in the absence of L2-dsRNA/SsMBV1 (a potential large satellite-like RNA or genuine genomic virus component). More interestingly, we detected a conserved papain-like protease domain that commonly exists in ssRNA viruses, including members of the families Potyviridae and Hypoviridae. Phylogenetic analysis based on the protease domain suggests that horizontal gene transfer might have occurred from an ssRNA virus to a dsRNA virus, which may provide new insights into the evolutionary history of dsRNA and ssRNA viruses.
Collapse
|
82
|
Liu R, Cheng J, Fu Y, Jiang D, Xie J. Molecular Characterization of a Novel Positive-Sense, Single-Stranded RNA Mycovirus Infecting the Plant Pathogenic Fungus Sclerotinia sclerotiorum. Viruses 2015; 7:2470-2484. [PMID: 26008696 PMCID: PMC4452915 DOI: 10.3390/v7052470] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/10/2015] [Accepted: 05/12/2015] [Indexed: 01/16/2023] Open
Abstract
Recent studies have demonstrated that a diverse array of mycoviruses infect the plant pathogenic fungus Sclerotinia sclerotiorum. Here, we report the molecular characterization of a newly identified mycovirus, Sclerotinia sclerotiorum fusarivirus 1 (SsFV1), which was isolated from a sclerotia-defective strain JMTJ14 of S. sclerotiorum. Excluding a poly (A) tail, the genome of SsFV1 comprises 7754 nucleotides (nts) in length with 83 and 418 nts for 5'- and 3'-untranslated regions, respectively. SsFV1 has four non-overlapping open reading frames (ORFs): ORF1 encodes a 191 kDa polyprotein (1664 amino acid residues in length) containing conserved RNA-dependent RNA polymerase (RdRp) and helicase domains; the other three ORFs encode three putative hypothetical proteins of unknown function. Phylogenetic analysis, based on RdRp and Helicase domains, indicated that SsFV1 is phylogenetically related to Rosellinia necatrix fusarivirus 1 (RnFV1), Fusarium graminearum virus-DK21 (FgV1), and Penicillium roqueforti RNA mycovirus 1 (PrRV1), a cluster of an independent group belonging to a newly proposed family Fusarividae. However, SsFV1 is markedly different from FgV1 and RnFV1 in genome organization and nucleotide sequence. SsFV1 was transmitted successfully to two vegetatively incompatible virus-free strains. SsFV1 is not responsible for the abnormal phenotype of strain JMTJ14.
Collapse
Affiliation(s)
- Rong Liu
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
83
|
Liu L, Wang Q, Cheng J, Fu Y, Jiang D, Xie J. Molecular characterization of a bipartite double-stranded RNA virus and its satellite-like RNA co-infecting the phytopathogenic fungus Sclerotinia sclerotiorum. Front Microbiol 2015; 6:406. [PMID: 25999933 PMCID: PMC4422086 DOI: 10.3389/fmicb.2015.00406] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/19/2015] [Indexed: 11/13/2022] Open
Abstract
A variety of mycoviruses have been found in Sclerotinia sclerotiorum. In this study, we report a novel mycovirus S. sclerotiorum botybirnavirus 1 (SsBRV1) that was originally isolated from the hypovirulent strain SCH941 of S. sclerotiorum. SsBRV1 has rigid spherical virions that are ∼38 nm in diameter, and three double-stranded RNA (dsRNA) segments (dsRNA1, 2, and 3 with lengths of 6.4, 6.0, and 1.7 kbp, respectively) were packaged in the virions. dsRNA1 encodes a cap-pol fusion protein, and dsRNA2 encodes a polyprotein with unknown functions but contributes to the formation of virus particles. The dsRNA3 is dispensable and may be a satellite-like RNA of SsBRV1. Although phylogenetic analysis of the RdRp domain demonstrated that SsBRV1 is related to Botrytis porri RNA virus 1 (BpRV1) and Ustilago maydis dsRNA virus-H1, the structure proteins of SsBRV1 do not have any significant sequence similarities with other known viral proteins with the exception of those of BpRV1. SsBRV1 carrying dsRNA3 seems to have no obvious effects on the colony morphology, but can significantly reduce the growth rate and virulence of S. sclerotiorum. These findings provide new insights into the virus taxonomy, virus evolution and the interactions between SsBRV1 and the fungal hosts.
Collapse
Affiliation(s)
- Lijiang Liu
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Qihua Wang
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
84
|
Marzano SYL, Hobbs HA, Nelson BD, Hartman GL, Eastburn DM, McCoppin NK, Domier LL. Transfection of Sclerotinia sclerotiorum with in vitro transcripts of a naturally occurring interspecific recombinant of Sclerotinia sclerotiorum hypovirus 2 significantly reduces virulence of the fungus. J Virol 2015; 89:5060-71. [PMID: 25694604 PMCID: PMC4403457 DOI: 10.1128/jvi.03199-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/16/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A recombinant strain of Sclerotinia sclerotiorum hypovirus 2 (SsHV2) was identified from a North American Sclerotinia sclerotiorum isolate (328) from lettuce (Lactuca sativa L.) by high-throughput sequencing of total RNA. The 5'- and 3'-terminal regions of the genome were determined by rapid amplification of cDNA ends. The assembled nucleotide sequence was up to 92% identical to two recently reported SsHV2 strains but contained a deletion near its 5' terminus of more than 1.2 kb relative to the other SsHV2 strains and an insertion of 524 nucleotides (nt) that was distantly related to Valsa ceratosperma hypovirus 1. This suggests that the new isolate is a heterologous recombinant of SsHV2 with a yet-uncharacterized hypovirus. We named the new strain Sclerotinia sclerotiorum hypovirus 2 Lactuca (SsHV2L) and deposited the sequence in GenBank with accession number KF898354. Sclerotinia sclerotiorum isolate 328 was coinfected with a strain of Sclerotinia sclerotiorum endornavirus 1 and was debilitated compared to cultures of the same isolate that had been cured of virus infection by cycloheximide treatment and hyphal tipping. To determine whether SsHV2L alone could induce hypovirulence in S. sclerotiorum, a full-length cDNA of the 14,538-nt viral genome was cloned. Transcripts corresponding to the viral RNA were synthesized in vitro and transfected into a virus-free isolate of S. sclerotiorum, DK3. Isolate DK3 transfected with SsHV2L was hypovirulent on soybean and lettuce and exhibited delayed maturation of sclerotia relative to virus-free DK3, completing Koch's postulates for the association of hypovirulence with SsHV2L. IMPORTANCE A cosmopolitan fungus, Sclerotinia sclerotiorum infects more than 400 plant species and causes a plant disease known as white mold that produces significant yield losses in major crops annually. Mycoviruses have been used successfully to reduce losses caused by fungal plant pathogens, but definitive relationships between hypovirus infections and hypovirulence in S. sclerotiorum were lacking. By establishing a cause-and-effect relationship between Sclerotinia sclerotiorum hypovirus Lactuca (SsHV2L) infection and the reduction in host virulence, we showed direct evidence that hypoviruses have the potential to reduce the severity of white mold disease. In addition to intraspecific recombination, this study showed that recent interspecific recombination is an important factor shaping viral genomes. The construction of an infectious clone of SsHV2L allows future exploration of the interactions between SsHV2L and S. sclerotiorum, a widespread fungal pathogen of plants.
Collapse
Affiliation(s)
| | - Houston A Hobbs
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Berlin D Nelson
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, USA
| | - Glen L Hartman
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA United States Department of Agriculture/Agricultural Research Service, Urbana, Illinois, USA
| | - Darin M Eastburn
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Nancy K McCoppin
- United States Department of Agriculture/Agricultural Research Service, Urbana, Illinois, USA
| | - Leslie L Domier
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA United States Department of Agriculture/Agricultural Research Service, Urbana, Illinois, USA
| |
Collapse
|
85
|
Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol Mol Biol Rev 2015; 78:278-303. [PMID: 24847023 DOI: 10.1128/mmbr.00049-13] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus "self" that defines the identity of deep, ancient viral lineages. However, several other widespread viral "hallmark genes" encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host.
Collapse
|
86
|
Li P, Zhang H, Chen X, Qiu D, Guo L. Molecular characterization of a novel hypovirus from the plant pathogenic fungus Fusarium graminearum. Virology 2015; 481:151-60. [PMID: 25781585 DOI: 10.1016/j.virol.2015.02.047] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/12/2015] [Accepted: 02/16/2015] [Indexed: 01/13/2023]
Abstract
A novel mycovirus, termed Fusarium graminearum Hypovirus 2 (FgHV2/JS16), isolated from a plant pathogenic fungus, Fusarium graminearum strain JS16, was molecularly and biologically characterized. The genome of FgHV2/JS16 is 12,800 nucleotides (nts) long, excluding the poly (A) tail. This genome has only one large putative open reading frame, which encodes a polyprotein containing three normal functional domains, papain-like protease, RNA-dependent RNA polymerase, RNA helicase, and a novel domain with homologous bacterial SMC (structural maintenance of chromosomes) chromosome segregation proteins. A defective RNA segment that is 4553-nts long, excluding the poly (A) tail, was also detected in strain JS16. The polyprotein shared significant aa identities with Cryphonectria hypovirus 1 (CHV1) (16.8%) and CHV2 (16.2%). Phylogenetic analyses based on multiple alignments of the polyprotein clearly divided the members of Hypoviridae into two major groups, suggesting that FgHV2/JS16 was a novel hypovirus of a newly proposed genus-Alphahypovirus-composed of the members of Group 1, including CHV1, CHV2, FgHV1 and Sclerotinia sclerotiorum hypovirus 2. FgHV2/JS16 was shown to be associated with hypovirulence phenotypes according to comparisons of the biological properties shared between FgHV2/JS16-infected and FgHV2/JS16-free isogenic strains. Furthermore, we demonstrated that FgHV2/JS16 infection activated the RNA interference pathway in Fusarium graminearum by relative quantitative real time RT-PCR.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Hailong Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Xiaoguang Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Lihua Guo
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China.
| |
Collapse
|
87
|
Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N. 50-plus years of fungal viruses. Virology 2015; 479-480:356-68. [PMID: 25771805 DOI: 10.1016/j.virol.2015.02.034] [Citation(s) in RCA: 510] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 01/31/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
Abstract
Mycoviruses are widespread in all major taxa of fungi. They are transmitted intracellularly during cell division, sporogenesis, and/or cell-to-cell fusion (hyphal anastomosis), and thus their life cycles generally lack an extracellular phase. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups, although recent advances have established expanded experimental host ranges for some mycoviruses. Most known mycoviruses have dsRNA genomes packaged in isometric particles, but an increasing number of positive- or negative-strand ssRNA and ssDNA viruses have been isolated and characterized. Although many mycoviruses do not have marked effects on their hosts, those that reduce the virulence of their phytopathogenic fungal hosts are of considerable interest for development of novel biocontrol strategies. Mycoviruses that infect endophytic fungi and those that encode killer toxins are also of special interest. Structural analyses of mycoviruses have promoted better understanding of virus assembly, function, and evolution.
Collapse
Affiliation(s)
- Said A Ghabrial
- Plant Pathology Department, University of Kentucky, Lexington, KY, USA.
| | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional Biotecnologıa/CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Daohong Jiang
- State Key Lab of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, PR China
| | - Max L Nibert
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| |
Collapse
|
88
|
Xu Z, Wu S, Liu L, Cheng J, Fu Y, Jiang D, Xie J. A mitovirus related to plant mitochondrial gene confers hypovirulence on the phytopathogenic fungus Sclerotinia sclerotiorum. Virus Res 2014; 197:127-36. [PMID: 25550075 DOI: 10.1016/j.virusres.2014.12.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 11/17/2022]
Abstract
A double-stranded RNA (dsRNA) segment was isolated from a hypovirulent strain, HC025, of Sclerotinia sclerotiorum. The complete nucleotide sequence of the dsRNA was determined to be 2530 bp in length. Using the fungal mitochondrial genetic code, the positive strand of the dsRNA was found to contain a single large open reading frame (ORF) with the characteristic conserved motifs of the RNA-dependent RNA polymerase (RdRp). BLAST analysis revealed that RdRp shares 74% sequence identity with Sclerotinia sclerotiorum mitovirus 1 (SsMV1/KL-1). The positive strand of the dsRNA could be folded into potentially stable stem-loop structures at both the 5' and 3' terminal sequences. Moreover, the 5' and 3' terminal sequences were inverted complementary sequences and formed a panhandle structure. These results reveal that this dsRNA segment represents the replicative form of a mitovirus that is a strain of SsMV1 from the genus Mitovirus in the family Narnaviridae and was tentatively designated as Sclerotinia sclerotiorum mitovirus 1 (SsMV1/HC025). Sequence comparison and phylogenetic analysis suggest that mitovirus RdRp gene was evolutionarily related to plant mitochondrial genome. Our results demonstrate that SsMV1/HC025 infection exerted obvious effects on host biological properties. Hypovirulence feature and SsMV1/HC025 could be co-transmitted from hypovirulent strains to other virulent strains via hyphal contact. Thus, SsMV1/HC025 related to plant mitochondrial gene confers hypovirulence on S. sclerotiorum.
Collapse
Affiliation(s)
- Zhiyong Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Songsong Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Lijiang Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Jiasen Cheng
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Yanping Fu
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Jiatao Xie
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
89
|
Detection and characterization of a novel Gammapartitivirus in the phytopathogenic fungus Colletotrichum acutatum strain HNZJ001. Virus Res 2014; 190:104-9. [DOI: 10.1016/j.virusres.2014.05.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
|
90
|
Molecular characterization of two positive-strand RNA viruses co-infecting a hypovirulent strain of Sclerotinia sclerotiorum. Virology 2014; 464-465:450-459. [DOI: 10.1016/j.virol.2014.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/04/2014] [Accepted: 07/05/2014] [Indexed: 11/24/2022]
|
91
|
Xiao X, Cheng J, Tang J, Fu Y, Jiang D, Baker TS, Ghabrial SA, Xie J. A novel partitivirus that confers hypovirulence on plant pathogenic fungi. J Virol 2014; 88:10120-33. [PMID: 24965462 PMCID: PMC4136314 DOI: 10.1128/jvi.01036-14] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/16/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Members of the family Partitiviridae have bisegmented double-stranded RNA (dsRNA) genomes and are not generally known to cause obvious symptoms in their natural hosts. An unusual partitivirus, Sclerotinia sclerotiorum partitivirus 1 (SsPV1/WF-1), conferred hypovirulence on its natural plant-pathogenic fungal host, Sclerotinia sclerotiorum strain WF-1. Cellular organelles, including mitochondria, were severely damaged. Hypovirulence and associated traits of strain WF-1 and SsPV1/WF-1 were readily cotransmitted horizontally via hyphal contact to different vegetative compatibility groups of S. sclerotiorum and interspecifically to Sclerotinia nivalis and Sclerotinia minor. S. sclerotiorum strain 1980 transfected with purified SsPV1/WF-1 virions also exhibited hypovirulence and associated traits similar to those of strain WF-1. Moreover, introduction of purified SsPV1/WF-1 virions into strain KY-1 of Botrytis cinerea also resulted in reductions in virulence and mycelial growth and, unexpectedly, enhanced conidial production. However, virus infection suppressed hyphal growth of most germinating conidia of B. cinerea and was eventually lethal to infected hyphae, since very few new colonies could develop following germ tube formation. Taken together, our results support the conclusion that SsPV1/WF-1 causes hypovirulence in Sclerotinia spp. and B. cinerea. Cryo-EM (cryo-electron microscopy) reconstruction of the SsPV1 particle shows that it has a distinct structure with similarity to the closely related partitiviruses Fusarium poae virus 1 and Penicillium stoloniferum virus F. These findings provide new insights into partitivirus biological activities and clues about molecular interactions between partitiviruses and their hosts. IMPORTANCE Members of the Partitiviridae are believed to occur commonly in their phytopathogenic fungal and plant hosts. However, most partitiviruses examined so far appear to be associated with latent infections. Here we report a partitivirus, SsPV1/WF-1, that was isolated from a hypovirulent strain of Sclerotinia sclerotiorum and describe its biological and molecular features. We have demonstrated that SsPV1 confers hypovirulence. Furthermore, SsPV1 can infect and cause hypovirulence in Botrytis cinerea. Our study also suggests that SsPV1 has a vigorous ability to proliferate and spread via hyphal contact. SsPV1 can overcome vegetative incompatibility barriers and can be transmitted horizontally among different vegetative compatibility groups of S. sclerotiorum, even interspecifically. Cryo-EM reconstruction of SsPV1 shows that it has a distinct structure with similarity to closely related partitiviruses. Our studies exploit a novel system, SsPV1 and its hosts, which can provide the means to explore the mechanisms by which partitiviruses interact with their hosts.
Collapse
Affiliation(s)
- Xueqiong Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Jiasen Cheng
- Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Jinghua Tang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Yanping Fu
- Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Timothy S Baker
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Said A Ghabrial
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Jiatao Xie
- Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
92
|
Liu L, Xie J, Cheng J, Fu Y, Li G, Yi X, Jiang D. Fungal negative-stranded RNA virus that is related to bornaviruses and nyaviruses. Proc Natl Acad Sci U S A 2014; 111:12205-12210. [PMID: 25092337 PMCID: PMC4143027 DOI: 10.1073/pnas.1401786111] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mycoviruses are widespread in nature and often occur with dsRNA and positive-stranded RNA genomes. Recently, strong evidence from RNA sequencing analysis suggested that negative-stranded (-)ssRNA viruses could infect fungi. Here we describe a (-)ssRNA virus, Sclerotinia sclerotiorum negative-stranded RNA virus 1 (SsNSRV-1), isolated from a hypovirulent strain of Sclerotinia sclerotiorum. The complete genome of SsNSRV-1 is 10,002 nt with six ORFs that are nonoverlapping and linearly arranged. Conserved gene-junction sequences that occur widely in mononegaviruses, (A/U)(U/A/C)UAUU(U/A)AA(U/G)AAAACUUAGG(A/U)(G/U), were identified between these ORFs. The analyses 5' and 3' rapid amplification of cDNA ends showed that all genes can be transcribed independently. ORF V encodes the largest protein that contains a conserved mononegaviral RNA-dependent RNA polymerase (RdRp) domain. Putative enveloped virion-like structures with filamentous morphology similar to members of Filoviridae were observed both in virion preparation samples and in ultrathin hyphal sections. The nucleocapsids are long, flexible, and helical; and are 22 nm in diameter and 200-2,000 nm in length. SDS/PAGE showed that the nucleocapsid possibly contains two nucleoproteins with different molecular masses, ∼43 kDa (p43) and ∼41 kDa (p41), and both are translated from ORF II. Purified SsNSRV-1 virions successfully transfected a virus-free strain of S. sclerotiorum and conferred hypovirulence. Phylogenetic analysis based on RdRp showed that SsNSRV-1 is clustered with viruses of Nyamiviridae and Bornaviridae. Moreover, SsNSRV-1 is widely distributed, as it has been detected in different regions of China. Our findings demonstrate that a (-)ssRNA virus can occur naturally in fungi and enhance our understanding of the ecology and evolution of (-)ssRNA viruses.
Collapse
Affiliation(s)
- Lijiang Liu
- State Key Laboratory of Agricultural Microbiology andThe Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jiatao Xie
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jiasen Cheng
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yanping Fu
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology andThe Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xianhong Yi
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology andThe Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
93
|
Characterisation of a novel hypovirus from Sclerotinia sclerotiorum potentially representing a new genus within the Hypoviridae. Virology 2014; 464-465:441-449. [PMID: 25108682 DOI: 10.1016/j.virol.2014.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/04/2014] [Accepted: 07/05/2014] [Indexed: 11/20/2022]
Abstract
A novel mycovirus tentatively assigned the name Sclerotinia sclerotiorum hypovirus 2 (SsHV2/5472) was detected in the phytopathogenic fungus Sclerotinia sclerotiorum. The genome is 14581 nucleotides (nts) long, excluding the poly (A) tail. A papain-like cysteine protease (Pro), an RNA-dependent RNA polymerase (RdRp) and a helicase (Hel) domain were detected in the polyprotein. Phylogenetic analysis based on multiple alignments of the aa sequence of the polyprotein placed it in a distinct clade from Alphahypovirus and Betahypovirus. The distinct aa sequence plus the fact that SsHV2/5472 possesses the longest reported genome for a hypovirus, suggests that SsHV2/5472 may represent a new genus in the family Hypoviridae. Eliminating SsHV2/5472 from S. sclerotiorum significantly increased the virulence of the protoplast virus-free derivative 5472-P5, although SsHV/5472-containing isolates showed significant variation in their virulence. In addition, membrane-bound vesicles (25-50 nm) were observed in ultrathin mycelial sections of SsHV2/5472 containing isolates but not in SsHV2/5472-free isolate.
Collapse
|
94
|
The complete nucleotide sequence of a novel partitivirus isolated from the plant pathogenic fungus Verticillium albo-atrum. Arch Virol 2014; 159:3141-4. [DOI: 10.1007/s00705-014-2156-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
|
95
|
Khalifa ME, Pearson MN. Molecular characterisation of an endornavirus infecting the phytopathogen Sclerotinia sclerotiorum. Virus Res 2014; 189:303-9. [PMID: 24979045 DOI: 10.1016/j.virusres.2014.06.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 11/15/2022]
Abstract
The complete sequence and genome organisation of an endornavirus from the phytopathogenic fungus Sclerotinia sclerotiorum isolate 11691 was described and the name Sclerotinia sclerotiorum endornavirus 1 (SsEV1/11691) proposed. The genome is 10,513 nucleotides (nts) long with a single open reading frame (ORF) that codes for a single polyprotein of 3459 amino acid (aa) residues. The polyprotein contains cysteine-rich region (CRR), viral methyltransferase (MTR), putative DEXDc, viral helicase (Hel), phytoreo_S7 (S7) and RNA-dependent RNA polymerase (RdRp) domains. The polyprotein and the conserved domains are phylogenetically related to endornaviruses. However, the coding strand of SsEV1/11691 does not contain a site-specific nick characteristic of most previously described endornaviruses. The elimination of SsEV1/11691 did not result in any significant changes in the host phenotype and virulence.
Collapse
Affiliation(s)
- Mahmoud E Khalifa
- School of Biological Sciences, The University of Auckland, PO Box 92019, Auckland 1010, New Zealand.
| | - Michael N Pearson
- School of Biological Sciences, The University of Auckland, PO Box 92019, Auckland 1010, New Zealand
| |
Collapse
|
96
|
Xie J, Jiang D. New insights into mycoviruses and exploration for the biological control of crop fungal diseases. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:45-68. [PMID: 25001452 DOI: 10.1146/annurev-phyto-102313-050222] [Citation(s) in RCA: 307] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mycoviruses are viruses that infect fungi. A growing number of novel mycoviruses have expanded our knowledge of virology, particularly in taxonomy, ecology, and evolution. Recent progress in the study of mycoviruses has comprehensively improved our understanding of the properties of mycoviruses and has strengthened our confidence to explore hypovirulence-associated mycoviruses that control crop diseases. In this review, the advantages of using hypovirulence-associated mycoviruses to control crop diseases are discussed, and, as an example, the potential for Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1) to control the stem rot of rapeseed (Brassica napus) is also introduced. Fungal vegetative incompatibility is likely to be the key factor that limits the wide utilization of mycoviruses to control crop diseases; however, there are suggested strategies for resolving this problem.
Collapse
Affiliation(s)
- Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China;
| | | |
Collapse
|
97
|
The HEX1 gene of Fusarium graminearum is required for fungal asexual reproduction and pathogenesis and for efficient viral RNA accumulation of Fusarium graminearum virus 1. J Virol 2013; 87:10356-67. [PMID: 23864619 DOI: 10.1128/jvi.01026-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The accumulation of viral RNA depends on many host cellular factors. The hexagonal peroxisome (Hex1) protein is a fungal protein that is highly expressed when the DK21 strain of Fusarium graminearum virus 1 (FgV1) infects its host, and Hex1 affects the accumulation of FgV1 RNA. The Hex1 protein is the major constituent of the Woronin body (WB), which is a peroxisome-derived electron-dense core organelle that seals the septal pore in response to hyphal wounding. To clarify the role of Hex1 and the WB in the relationship between FgV1 and Fusarium graminearum, we generated targeted gene deletion and overexpression mutants. Although neither HEX1 gene deletion nor overexpression substantially affected vegetative growth, both changes reduced the production of asexual spores and reduced virulence on wheat spikelets in the absence of FgV1 infection. However, the vegetative growth of deletion and overexpression mutants was increased and decreased, respectively, upon FgV1 infection compared to that of an FgV1-infected wild-type isolate. Viral RNA accumulation was significantly decreased in deletion mutants but was significantly increased in overexpression mutants compared to the viral RNA accumulation in the virus-infected wild-type control. Overall, these data indicate that the HEX1 gene plays a direct role in the asexual reproduction and virulence of F. graminearum and facilitates viral RNA accumulation in the FgV1-infected host fungus.
Collapse
|
98
|
Feng Z, Zhu H, Li Z, Shi Y, Zhao L, Liu L, Jiang D. Complete genome sequence of a novel dsRNA mycovirus isolated from the phytopathogenic fungus Verticillium dahliae Kleb. Arch Virol 2013; 158:2621-3. [DOI: 10.1007/s00705-013-1774-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/21/2013] [Indexed: 11/28/2022]
|
99
|
Song D, Cho WK, Park SH, Jo Y, Kim KH. Evolution of and horizontal gene transfer in the Endornavirus genus. PLoS One 2013; 8:e64270. [PMID: 23667703 PMCID: PMC3647011 DOI: 10.1371/journal.pone.0064270] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/10/2013] [Indexed: 12/20/2022] Open
Abstract
The transfer of genetic information between unrelated species is referred to as horizontal gene transfer. Previous studies have demonstrated that both retroviral and non-retroviral sequences have been integrated into eukaryotic genomes. Recently, we identified many non-retroviral sequences in plant genomes. In this study, we investigated the evolutionary origin and gene transfer of domains present in endornaviruses which are double-stranded RNA viruses. Using the available sequences for endornaviruses, we found that Bell pepper endornavirus-like sequences homologous to the glycosyltransferase 28 domain are present in plants, fungi, and bacteria. The phylogenetic analysis revealed the glycosyltransferase 28 domain of Bell pepper endornavirus may have originated from bacteria. In addition, two domains of Oryza sativa endornavirus, a glycosyltransferase sugar-binding domain and a capsular polysaccharide synthesis protein, also exhibited high similarity to those of bacteria. We found evidence that at least four independent horizontal gene transfer events for the glycosyltransferase 28 domain have occurred among plants, fungi, and bacteria. The glycosyltransferase sugar-binding domains of two proteobacteria may have been horizontally transferred to the genome of Thalassiosira pseudonana. Our study is the first to show that three glycome-related viral genes in the genus Endornavirus have been acquired from marine bacteria by horizontal gene transfer.
Collapse
Affiliation(s)
- Dami Song
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Won Kyong Cho
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Ho Park
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yeonhwa Jo
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
100
|
CmPEX6, a gene involved in peroxisome biogenesis, is essential for parasitism and conidiation by the sclerotial parasite Coniothyrium minitans. Appl Environ Microbiol 2013; 79:3658-66. [PMID: 23563946 DOI: 10.1128/aem.00375-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coniothyrium minitans is a sclerotial parasite of the plant-pathogenic fungus Sclerotinia sclerotiorum, and conidial production and parasitism are two important aspects for commercialization of this biological control agent. To understand the mechanism of conidiation and parasitism at the molecular level, we constructed a transfer DNA (tDNA) insertional library with the wild-type strain ZS-1. A conidiation-deficient mutant, ZS-1TN22803, was uncovered through screening of this library. This mutant could produce pycnidia on potato dextrose agar (PDA), but most were immature and did not bear conidia. Moreover, this mutant lost the ability to parasitize or rot the sclerotia of S. sclerotiorum. Analysis of the tDNA flanking sequences revealed that a peroxisome biogenesis factor 6 (PEX6) homolog of Saccharomyces cerevisiae, named CmPEX6, was disrupted by the tDNA insertion in this mutant. Targeted gene replacement and gene complementation tests confirmed that a null mutation of CmPEX6 was responsible for the phenotype of ZS-1TN22803. Further analysis showed that both ZS-1TN22803 and the targeted replacement mutants could not grow on PDA medium containing oleic acid, and they produced much less nitric oxide (NO) and hydrogen peroxide (H2O2) than wild-type strain ZS-1. The conidiation of ZS-1TN22803 was partially restored by adding acetyl-CoA or glyoxylic acid to the growth media. Our results suggest that fatty acid β-oxidation, reactive oxygen and nitrogen species, and possibly other unknown pathways in peroxisomes are involved in conidiation and parasitism by C. minitans.
Collapse
|