51
|
Abstract
Genome size in mammals and birds shows remarkably little interspecific variation compared with other taxa. However, genome sequencing has revealed that many mammal and bird lineages have experienced differential rates of transposable element (TE) accumulation, which would be predicted to cause substantial variation in genome size between species. Thus, we hypothesize that there has been covariation between the amount of DNA gained by transposition and lost by deletion during mammal and avian evolution, resulting in genome size equilibrium. To test this model, we develop computational methods to quantify the amount of DNA gained by TE expansion and lost by deletion over the last 100 My in the lineages of 10 species of eutherian mammals and 24 species of birds. The results reveal extensive variation in the amount of DNA gained via lineage-specific transposition, but that DNA loss counteracted this expansion to various extents across lineages. Our analysis of the rate and size spectrum of deletion events implies that DNA removal in both mammals and birds has proceeded mostly through large segmental deletions (>10 kb). These findings support a unified "accordion" model of genome size evolution in eukaryotes whereby DNA loss counteracting TE expansion is a major determinant of genome size. Furthermore, we propose that extensive DNA loss, and not necessarily a dearth of TE activity, has been the primary force maintaining the greater genomic compaction of flying birds and bats relative to their flightless relatives.
Collapse
|
52
|
Bouallègue M, Rouault JD, Hua-Van A, Makni M, Capy P. Molecular Evolution of piggyBac Superfamily: From Selfishness to Domestication. Genome Biol Evol 2017; 9:323-339. [PMID: 28082605 PMCID: PMC5381638 DOI: 10.1093/gbe/evw292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2016] [Indexed: 12/19/2022] Open
Abstract
The piggyBac transposable element was originally isolated from the cabbage looper moth, Trichoplusia ni, in the 1980s. Despite its early discovery and specificity compared to the other Class II elements, the diversity and evolution of this superfamily have been only partially analyzed. Two main types of elements can be distinguished: the piggyBac-like elements (PBLE) with terminal inverted repeats, untranslated region, and an open reading frame encoding a transposase, and the piggyBac-derived sequences (PGBD), containing a sequence derived from a piggyBac transposase, and which correspond to domesticated elements. To define the distribution, their structural diversity and phylogenetic relationships, analyses were conducted using known PBLE and PGBD sequences to scan databases. From this data mining, numerous new sequences were characterized (50 for PBLE and 396 for PGBD). Structural analyses suggest that four groups of PBLE can be defined according to the presence/absence of sub-terminal repeats. The transposase is characterized by highly variable catalytic domain and C-terminal region. There is no relationship between the structural groups and the phylogeny of these PBLE elements. The PGBD are clearly structured into nine main groups. A new group of domesticated elements is suspected in Neopterygii and the remaining eight previously described elements have been investigated in more detail. In all cases, these sequences are no longer transposable elements, the catalytic domain of the ancestral transposase is not always conserved, but they are under strong purifying selection. The phylogeny of both PBLE and PGBD suggests multiple and independent domestication events of PGBD from different PBLE ancestors.
Collapse
Affiliation(s)
- Maryem Bouallègue
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Univ. Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
- Université de Tunis El Manar, Faculté des Sciences de Tunis, UR11ES10 Génomique des Insectes Ravageurs de Cultures, Tunis, Tunisie
| | - Jacques-Deric Rouault
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Univ. Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Aurélie Hua-Van
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Univ. Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Mohamed Makni
- Université de Tunis El Manar, Faculté des Sciences de Tunis, UR11ES10 Génomique des Insectes Ravageurs de Cultures, Tunis, Tunisie
| | - Pierre Capy
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Univ. Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
53
|
Venner S, Miele V, Terzian C, Biémont C, Daubin V, Feschotte C, Pontier D. Ecological networks to unravel the routes to horizontal transposon transfers. PLoS Biol 2017; 15:e2001536. [PMID: 28199335 PMCID: PMC5331948 DOI: 10.1371/journal.pbio.2001536] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transposable elements (TEs) represent the single largest component of numerous eukaryotic genomes, and their activity and dispersal constitute an important force fostering evolutionary innovation. The horizontal transfer of TEs (HTT) between eukaryotic species is a common and widespread phenomenon that has had a profound impact on TE dynamics and, consequently, on the evolutionary trajectory of many species' lineages. However, the mechanisms promoting HTT remain largely unknown. In this article, we argue that network theory combined with functional ecology provides a robust conceptual framework and tools to delineate how complex interactions between diverse organisms may act in synergy to promote HTTs.
Collapse
Affiliation(s)
- Samuel Venner
- Laboratoire de Biométrie et Biologie Evolutive UMR5558-CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
- LabEx ECOFECT (Eco-Evolutionary Dynamics of Infectious Diseases), Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
| | - Vincent Miele
- Laboratoire de Biométrie et Biologie Evolutive UMR5558-CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
| | - Christophe Terzian
- LabEx ECOFECT (Eco-Evolutionary Dynamics of Infectious Diseases), Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
- UMR754 INRA, Université Claude Bernard Lyon 1, Lyon, France
- Ecole Pratique des Hautes Etudes, Paris, France
| | - Christian Biémont
- Laboratoire de Biométrie et Biologie Evolutive UMR5558-CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
| | - Vincent Daubin
- Laboratoire de Biométrie et Biologie Evolutive UMR5558-CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
- LabEx ECOFECT (Eco-Evolutionary Dynamics of Infectious Diseases), Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah, School of Medicine, Salt Lake City, Utah, United States of America
| | - Dominique Pontier
- Laboratoire de Biométrie et Biologie Evolutive UMR5558-CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
- LabEx ECOFECT (Eco-Evolutionary Dynamics of Infectious Diseases), Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
| |
Collapse
|
54
|
Sotero-Caio CG, Platt RN, Suh A, Ray DA. Evolution and Diversity of Transposable Elements in Vertebrate Genomes. Genome Biol Evol 2017; 9:161-177. [PMID: 28158585 PMCID: PMC5381603 DOI: 10.1093/gbe/evw264] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Transposable elements (TEs) are selfish genetic elements that mobilize in genomes via transposition or retrotransposition and often make up large fractions of vertebrate genomes. Here, we review the current understanding of vertebrate TE diversity and evolution in the context of recent advances in genome sequencing and assembly techniques. TEs make up 4-60% of assembled vertebrate genomes, and deeply branching lineages such as ray-finned fishes and amphibians generally exhibit a higher TE diversity than the more recent radiations of birds and mammals. Furthermore, the list of taxa with exceptional TE landscapes is growing. We emphasize that the current bottleneck in genome analyses lies in the proper annotation of TEs and provide examples where superficial analyses led to misleading conclusions about genome evolution. Finally, recent advances in long-read sequencing will soon permit access to TE-rich genomic regions that previously resisted assembly including the gigantic, TE-rich genomes of salamanders and lungfishes.
Collapse
Affiliation(s)
| | - Roy N. Platt
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| | - Alexander Suh
- Department of Evolutionary Biology (EBC), Uppsala University, Uppsala, Sweden
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX
| |
Collapse
|
55
|
Evsikov AV, Marín de Evsikova C. Friend or Foe: Epigenetic Regulation of Retrotransposons in Mammalian Oogenesis and Early Development. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:487-497. [PMID: 28018140 PMCID: PMC5168827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epigenetics is the study of phenotypic variation arising from developmental and environmental factors regulating gene transcription at molecular, cellular, and physiological levels. A naturally occurring biological process driven by epigenetics is the egg-to-embryo developmental transition when two fully differentiated adult cells - egg and sperm - revert to an early stem cell type with totipotency but subsequently differentiates into pluripotent embryonic stem cells that give rise to any cell type. Transposable elements (TEs) are active in mammalian oocytes and early embryos, and this activity, albeit counterintuitive because TEs can lead to genomic instability in somatic cells, correlates to successful development. TEs bridge genetic and epigenetic landscapes because TEs are genetic elements whose silencing and de-repression are regulated by epigenetic mechanisms that are sensitive to environmental factors. Ultimately, transposition events can change size, content, and function of mammalian genomes. Thus, TEs act beyond mutagenic agents reshuffling the genomes, and epigenetic regulation of TEs may act as a proximate mechanism by which evolutionary forces increase a species' hidden reserve of epigenetic and phenotypic variability facilitating the adaptation of genomes to their environment.
Collapse
Affiliation(s)
- Alexei V. Evsikov
- To whom all correspondence should be addressed: Caralina Marín de Evsikova, Alexei V. Evsikov, Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., MDC07, Tampa, FL 33612, CMdE: ; (813) 974 2248; AVE: ; (813) 974 6922, Fax: 813-974-7357
| | - Caralina Marín de Evsikova
- To whom all correspondence should be addressed: Caralina Marín de Evsikova, Alexei V. Evsikov, Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., MDC07, Tampa, FL 33612, CMdE: ; (813) 974 2248; AVE: ; (813) 974 6922, Fax: 813-974-7357
| |
Collapse
|
56
|
Muñoz-Lopez M, Vilar-Astasio R, Tristan-Ramos P, Lopez-Ruiz C, Garcia-Pérez JL. Study of Transposable Elements and Their Genomic Impact. Methods Mol Biol 2016; 1400:1-19. [PMID: 26895043 DOI: 10.1007/978-1-4939-3372-3_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transposable elements (TEs) have been considered traditionally as junk DNA, i.e., DNA sequences that despite representing a high proportion of genomes had no evident cellular functions. However, over the last decades, it has become undeniable that not only TE-derived DNA sequences have (and had) a fundamental role during genome evolution, but also TEs have important implications in the origin and evolution of many genomic disorders. This concise review provides a brief overview of the different types of TEs that can be found in genomes, as well as a list of techniques and methods used to study their impact and mobilization. Some of these techniques will be covered in detail in this Method Book.
Collapse
Affiliation(s)
- Martin Muñoz-Lopez
- Department of Human DNA Variability, Pfizer/University of Granada and Andalusian Regional Government Center for Genomics and Oncology (GENYO), Avda Ilustracion 114, PTS Granada, 18016, Granada, Spain.
| | - Raquel Vilar-Astasio
- Department of Human DNA Variability, Pfizer/University of Granada and Andalusian Regional Government Center for Genomics and Oncology (GENYO), Avda Ilustracion 114, PTS Granada, 18016, Granada, Spain
| | - Pablo Tristan-Ramos
- Department of Human DNA Variability, Pfizer/University of Granada and Andalusian Regional Government Center for Genomics and Oncology (GENYO), Avda Ilustracion 114, PTS Granada, 18016, Granada, Spain
| | - Cesar Lopez-Ruiz
- Department of Human DNA Variability, Pfizer/University of Granada and Andalusian Regional Government Center for Genomics and Oncology (GENYO), Avda Ilustracion 114, PTS Granada, 18016, Granada, Spain
| | - Jose L Garcia-Pérez
- -Genyo (Center for Genomics and Oncological Research), Pfizer/Universidad de Granada/Junta de Andalucia. PTS Granada, Spain-Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh,, Edinburgh, UK
| |
Collapse
|
57
|
Abstract
DNA transposons are defined segments of DNA that are able to move from one genomic location to another. Movement is facilitated by one or more proteins, called the transposase, typically encoded by the mobile element itself. Here, we first provide an overview of the classification of such mobile elements in a variety of organisms. From a mechanistic perspective, we have focused on one particular group of DNA transposons that encode a transposase with a DD(E/D) catalytic domain that is topologically similar to RNase H. For these, a number of three-dimensional structures of transpososomes (transposase-nucleic acid complexes) are available, and we use these to describe the basics of their mechanisms. The DD(E/D) group, in addition to being the largest and most common among all DNA transposases, is the one whose members have been used for a wide variety of genomic applications. Therefore, a second focus of the article is to provide a nonexhaustive overview of transposon applications. Although several non-transposon-based approaches to site-directed genome modifications have emerged in the past decade, transposon-based applications are highly relevant when integration specificity is not sought. In fact, for many applications, the almost-perfect randomness and high frequency of integration make transposon-based approaches indispensable.
Collapse
Affiliation(s)
- Alison B. Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
58
|
Warren IA, Naville M, Chalopin D, Levin P, Berger CS, Galiana D, Volff JN. Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates. Chromosome Res 2016; 23:505-31. [PMID: 26395902 DOI: 10.1007/s10577-015-9493-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since their discovery, a growing body of evidence has emerged demonstrating that transposable elements are important drivers of species diversity. These mobile elements exhibit a great variety in structure, size and mechanisms of transposition, making them important putative actors in organism evolution. The vertebrates represent a highly diverse and successful lineage that has adapted to a wide range of different environments. These animals also possess a rich repertoire of transposable elements, with highly diverse content between lineages and even between species. Here, we review how transposable elements are driving genomic diversity and lineage-specific innovation within vertebrates. We discuss the large differences in TE content between different vertebrate groups and then go on to look at how they affect organisms at a variety of levels: from the structure of chromosomes to their involvement in the regulation of gene expression, as well as in the formation and evolution of non-coding RNAs and protein-coding genes. In the process of doing this, we highlight how transposable elements have been involved in the evolution of some of the key innovations observed within the vertebrate lineage, driving the group's diversity and success.
Collapse
Affiliation(s)
- Ian A Warren
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.,Department of Genetics, University of Georgia, Athens, Georgia, 30602, USA
| | - Perrine Levin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Chloé Suzanne Berger
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Delphine Galiana
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
59
|
Platt RN, Mangum SF, Ray DA. Pinpointing the vesper bat transposon revolution using the Miniopterus natalensis genome. Mob DNA 2016; 7:12. [PMID: 27489570 PMCID: PMC4971623 DOI: 10.1186/s13100-016-0071-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/13/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Around 40 million years ago DNA transposons began accumulating in an ancestor of bats in the family Vespertilionidae. Since that time, Class II transposons have been continuously reinvading and accumulating in vespertilionid genomes at a rate that is unprecedented in mammals. Miniopterus (Miniopteridae), a genus of long-fingered bats that was recently elevated from Vespertilionidae, is the sister taxon to the vespertilionids and is often used as an outgroup when studying transposable elements in vesper bats. Previous wet-lab techniques failed to identify Helitrons, TcMariners, or hAT transposons in Miniopterus. Limitations of those methods and ambiguous results regarding the distribution of piggyBac transposons left some questions as to the distribution of Class II elements in this group. The recent release of the Miniopterus natalensis genome allows for transposable element discovery with a higher degree of precision. RESULTS Here we analyze the transposable element content of M. natalensis to pinpoint with greater accuracy the taxonomic distribution of Class II transposable elements in bats. These efforts demonstrate that, compared to the vespertilionids, Class II TEs are highly mutated and comprise only a small portion of the M. natalensis genome. Despite the limited Class II content, M. natalensis possesses a limited number of lineage-specific, low copy number piggyBacs and shares several TcMariner families with vespertilionid bats. Multiple efforts to identify Helitrons, one of the major TE components of vesper bat genomes, using de novo repeat identification and structural based searches failed. CONCLUSIONS These observations combined with previous results inform our understanding of the events leading to the unique Class II element acquisition that characterizes vespertilionids. While it appears that a small number of TcMariner and piggyBac elements were deposited in the ancestral Miniopterus + vespertilionid genome, these elements are not present in M. natalensis genome at high copy number. Instead, this work indicates that the vesper bats alone experienced the expansion of TEs ranging from Helitrons to piggyBacs to hATs.
Collapse
Affiliation(s)
- Roy N Platt
- Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX 79409-3131 USA
| | - Sarah F Mangum
- Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX 79409-3131 USA
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX 79409-3131 USA
| |
Collapse
|
60
|
Vandewege MW, Platt RN, Ray DA, Hoffmann FG. Transposable Element Targeting by piRNAs in Laurasiatherians with Distinct Transposable Element Histories. Genome Biol Evol 2016; 8:1327-37. [PMID: 27060702 PMCID: PMC4898795 DOI: 10.1093/gbe/evw078] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PIWI proteins and PIWI-interacting RNAs (piRNAs) are part of a cellular pathway that has evolved to protect genomes against the proliferation of transposable elements (TEs). PIWIs and piRNAs assemble into complexes that are involved in epigenetic and post-transcriptional repression of TEs. Most of our understanding of the mechanisms of piRNA-mediated TE silencing comes from fruit fly and mouse models. However, even in these well-studied animals it is unclear how piRNA responses relate to variable TE expression and whether the strength of the piRNA response affects TE content over time. Here, we assessed the evolutionary interactions between TE and piRNAs in a statistical framework using three nonmodel laurasiatherian mammals as a study system: dog, horse, and a vesper bat. These three species diverged ∼80 million years ago and have distinct genomic TE contents. By comparing species with distinct TE landscapes, we aimed to identify clear relationships among TE content, expression, and piRNAs. We found that the TE subfamilies that are the most transcribed appear to elicit the strongest “ping-pong” response. This was most evident among long interspersed elements, but the relationships between expression and ping-pong pilRNA (piRNA-like) expression were more complex among SINEs. SINE transcripts were equally abundant in the dog and horse yet new SINE insertions were relatively rare in the horse genome, where we identified a stronger piRNA response. Our analyses suggest that the piRNA response can have a strong impact on the TE composition of a genome. However, our results also suggest that the presence of a robust piRNA response is apparently not sufficient to stop TE mobilization and accumulation.
Collapse
Affiliation(s)
- Michael W Vandewege
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University
| | - Roy N Platt
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University
| | - David A Ray
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University
| |
Collapse
|
61
|
Hancks DC, Kazazian HH. Roles for retrotransposon insertions in human disease. Mob DNA 2016; 7:9. [PMID: 27158268 PMCID: PMC4859970 DOI: 10.1186/s13100-016-0065-9] [Citation(s) in RCA: 453] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022] Open
Abstract
Over evolutionary time, the dynamic nature of a genome is driven, in part, by the activity of transposable elements (TE) such as retrotransposons. On a shorter time scale it has been established that new TE insertions can result in single-gene disease in an individual. In humans, the non-LTR retrotransposon Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous TE. In addition to mobilizing its own RNA to new genomic locations via a "copy-and-paste" mechanism, LINE-1 is able to retrotranspose other RNAs including Alu, SVA, and occasionally cellular RNAs. To date in humans, 124 LINE-1-mediated insertions which result in genetic diseases have been reported. Disease causing LINE-1 insertions have provided a wealth of insight and the foundation for valuable tools to study these genomic parasites. In this review, we provide an overview of LINE-1 biology followed by highlights from new reports of LINE-1-mediated genetic disease in humans.
Collapse
Affiliation(s)
- Dustin C. Hancks
- />Eccles Institute of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Haig H. Kazazian
- />McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins School of Medicine, Baltimore, MD USA
| |
Collapse
|
62
|
Abstract
Helitrons, the eukaryotic rolling-circle transposable elements, are widespread but most prevalent among plant and animal genomes. Recent studies have identified three additional coding and structural variants of Helitrons called Helentrons, Proto-Helentron, and Helitron2. Helitrons and Helentrons make up a substantial fraction of many genomes where nonautonomous elements frequently outnumber the putative autonomous partner. This includes the previously ambiguously classified DINE-1-like repeats, which are highly abundant in Drosophila and many other animal genomes. The purpose of this review is to summarize what we have learned about Helitrons in the decade since their discovery. First, we describe the history of autonomous Helitrons, and their variants. Second, we explain the common coding features and difference in structure of canonical Helitrons versus the endonuclease-encoding Helentrons. Third, we review how Helitrons and Helentrons are classified and discuss why the system used for other transposable element families is not applicable. We also touch upon how genome-wide identification of candidate Helitrons is carried out and how to validate candidate Helitrons. We then shift our focus to a model of transposition and the report of an excision event. We discuss the different proposed models for the mechanism of gene capture. Finally, we will talk about where Helitrons are found, including discussions of vertical versus horizontal transfer, the propensity of Helitrons and Helentrons to capture and shuffle genes and how they impact the genome. We will end the review with a summary of open questions concerning the biology of this intriguing group of transposable elements.
Collapse
|
63
|
Abstract
Transposable elements have had a profound impact on the structure and function of mammalian genomes. The retrotransposon Long INterspersed Element-1 (LINE-1 or L1), by virtue of its replicative mobilization mechanism, comprises ∼17% of the human genome. Although the vast majority of human LINE-1 sequences are inactive molecular fossils, an estimated 80-100 copies per individual retain the ability to mobilize by a process termed retrotransposition. Indeed, LINE-1 is the only active, autonomous retrotransposon in humans and its retrotransposition continues to generate both intra-individual and inter-individual genetic diversity. Here, we briefly review the types of transposable elements that reside in mammalian genomes. We will focus our discussion on LINE-1 retrotransposons and the non-autonomous Short INterspersed Elements (SINEs) that rely on the proteins encoded by LINE-1 for their mobilization. We review cases where LINE-1-mediated retrotransposition events have resulted in genetic disease and discuss how the characterization of these mutagenic insertions led to the identification of retrotransposition-competent LINE-1s in the human and mouse genomes. We then discuss how the integration of molecular genetic, biochemical, and modern genomic technologies have yielded insight into the mechanism of LINE-1 retrotransposition, the impact of LINE-1-mediated retrotransposition events on mammalian genomes, and the host cellular mechanisms that protect the genome from unabated LINE-1-mediated retrotransposition events. Throughout this review, we highlight unanswered questions in LINE-1 biology that provide exciting opportunities for future research. Clearly, much has been learned about LINE-1 and SINE biology since the publication of Mobile DNA II thirteen years ago. Future studies should continue to yield exciting discoveries about how these retrotransposons contribute to genetic diversity in mammalian genomes.
Collapse
|
64
|
Abstract
The piggyBac transposon was originally isolated from the cabbage looper moth, Trichoplusia ni, in the 1980s. Despite its early discovery and dissimilarity to the other DNA transposon families, the piggyBac transposon was not recognized as a member of a large transposon superfamily for a long time. Initially, the piggyBac transposon was thought to be a rare transposon. This view, however, has now been completely revised as a number of fully sequenced genomes have revealed the presence of piggyBac-like repetitive elements. The isolation of active copies of the piggyBac-like elements from several distinct species further supported this revision. This includes the first isolation of an active mammalian DNA transposon identified in the bat genome. To date, the piggyBac transposon has been deeply characterized and it represents a number of unique characteristics. In general, all members of the piggyBac superfamily use TTAA as their integration target sites. In addition, the piggyBac transposon shows precise excision, i.e., restoring the sequence to its preintegration state, and can transpose in a variety of organisms such as yeasts, malaria parasites, insects, mammals, and even in plants. Biochemical analysis of the chemical steps of transposition revealed that piggyBac does not require DNA synthesis during the actual transposition event. The broad host range has attracted researchers from many different fields, and the piggyBac transposon is currently the most widely used transposon system for genetic manipulations.
Collapse
|
65
|
Sovic MG, Carstens BC, Gibbs HL. Genetic diversity in migratory bats: Results from RADseq data for three tree bat species at an Ohio windfarm. PeerJ 2016; 4:e1647. [PMID: 26824001 PMCID: PMC4730867 DOI: 10.7717/peerj.1647] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/11/2016] [Indexed: 01/08/2023] Open
Abstract
Genetic analyses can identify the scale at which wildlife species are impacted by human activities, and provide demographic information useful for management. Here, we use thousands of nuclear DNA genetic loci to assess whether genetic structure occurs within Lasiurus cinereus (Hoary Bat), L. borealis (Red Bat), and Lasionycteris noctivagans (Silver-Haired Bat) bats found at a wind turbine site in Ohio, and to also estimate demographic parameters in each of these three groups. Our specific goals are to: 1) demonstrate the feasibility of isolating RADseq loci from these tree bat species, 2) test for genetic structure within each species, including any structure that may be associated with time (migration period), and 3) use coalescent-based modeling approaches to estimate genetically-effective population sizes and patterns of population size changes over evolutionary timescales. Thousands of loci were successfully genotyped for each species, demonstrating the value of RADseq for generating polymorphic loci for population genetic analyses in these bats. There was no evidence for genetic differentiation between groups of samples collected at different times throughout spring and fall migration, suggesting that individuals from each species found at the wind facility are from single panmictic populations. Estimates of present-day effective population sizes varied across species, but were consistently large, on the order of 105–106. All populations show evidence of expansions that date to the Pleistocene. These results, along with recent work also suggesting limited genetic structure in bats across North America, argue that additional biomarker systems such as stable-isotopes or trace elements should be investigated as alternative and/or complementary approaches to genetics for sourcing individuals collected at single wind farm sites.
Collapse
Affiliation(s)
- Michael G Sovic
- Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, United States; Ohio Biodiversity Conservation Partnership, Ohio State University, Columbus, Ohio, United States
| | - Bryan C Carstens
- Evolution, Ecology, and Organismal Biology, The Ohio State University , Columbus, OH , United States
| | - H Lisle Gibbs
- Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, United States; Ohio Biodiversity Conservation Partnership, Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
66
|
Hoffmann FG, McGuire LP, Counterman BA, Ray DA. Transposable elements and small RNAs: Genomic fuel for species diversity. Mob Genet Elements 2015; 5:63-66. [PMID: 26904375 DOI: 10.1080/2159256x.2015.1066919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 05/20/2015] [Accepted: 06/23/2015] [Indexed: 12/15/2022] Open
Abstract
While transposable elements (TE) have long been suspected of involvement in species diversification, identifying specific roles has been difficult. We recently found evidence of TE-derived regulatory RNAs in a species-rich family of bats. The TE-derived small RNAs are temporally associated with the burst of species diversification, suggesting that they may have been involved in the processes that led to the diversification. In this commentary, we expand on the ideas that were briefly touched upon in that manuscript. Specifically, we suggest avenues of research that may help to identify the roles that TEs may play in perturbing regulatory pathways. Such research endeavors may serve to inform evolutionary biologists of the ways that TEs have influenced the genomic and taxonomic diversity around us.
Collapse
Affiliation(s)
- Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology; Mississippi State University; Mississippi State, MS USA; Institute for Genomics, Biocomputing, and Biotechnology; Mississippi State University; Mississippi State, MS USA
| | - Liam P McGuire
- Department of Biological Sciences; Texas Tech University ; Lubbock, TX USA
| | - Brian A Counterman
- Department of Biological Sciences; Mississippi State University ; Mississippi State, MS USA
| | - David A Ray
- Department of Biological Sciences; Texas Tech University ; Lubbock, TX USA
| |
Collapse
|
67
|
Platt RN, Zhang Y, Witherspoon DJ, Xing J, Suh A, Keith MS, Jorde LB, Stevens RD, Ray DA. Targeted Capture of Phylogenetically Informative Ves SINE Insertions in Genus Myotis. Genome Biol Evol 2015; 7:1664-75. [PMID: 26014613 PMCID: PMC4494050 DOI: 10.1093/gbe/evv099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Identification of retrotransposon insertions in nonmodel taxa can be technically challenging and costly. This has inhibited progress in understanding retrotransposon insertion dynamics outside of a few well-studied species. To address this problem, we have extended a retrotransposon-based capture and sequence method (ME-Scan [mobile element scanning]) to identify insertions belonging to the Ves family of short interspersed elements (SINEs) across seven species of the bat genus Myotis. We identified between 120,000 and 143,000 SINE insertions in six taxa lacking a draft genome by comparing to the M. lucifugus reference genome. On average, each Ves insertion was sequenced to 129.6 × coverage. When mapped back to the M. lucifugus reference genome, all insertions were confidently assigned within a 10-bp window. Polymorphic Ves insertions were identified in each taxon based on their mapped locations. Using cross-species comparisons and the identified insertion positions, a presence–absence matrix was created for approximately 796,000 insertions. Dollo parsimony analysis of more than 85,000 phylogenetically informative insertions recovered strongly supported, monophyletic clades that correspond with the biogeography of each taxa. This phylogeny is similar to previously published mitochondrial phylogenies, with the exception of the placement of M. vivesi. These results support the utility of our variation on ME-Scan to identify polymorphic retrotransposon insertions in taxa without a reference genome and for large-scale retrotransposon-based phylogenetics.
Collapse
Affiliation(s)
- Roy N Platt
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Department of Biological Sciences, Texas Tech University
| | - Yuhua Zhang
- Bionomics Research & Technology Center, Environmental and Occupational Health Science Institute, Rutgers, The State University of New Jersey
| | | | - Jinchuan Xing
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey
| | - Alexander Suh
- Department of Evolutionary Biology, Uppsala University, Sweden
| | - Megan S Keith
- Department of Biological Sciences, Texas Tech University
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah Health Sciences Center
| | - Richard D Stevens
- Department of Natural Resources Management and the Museum of Texas Tech University
| | - David A Ray
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Department of Biological Sciences, Texas Tech University
| |
Collapse
|
68
|
Ray DA, Pagan HJ, Platt RN, Kroll AR, Schaack S, Stevens RD. Differential SINE evolution in vesper and non-vesper bats. Mob DNA 2015; 6:10. [PMID: 25991928 PMCID: PMC4436864 DOI: 10.1186/s13100-015-0038-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/15/2015] [Indexed: 12/31/2022] Open
Abstract
Background Short interspersed elements (SINEs) have a powerful influence on genome evolution and can be useful markers for phylogenetic inference and population genetic analyses. In this study, we examined survey sequence and whole genome data to determine the evolutionary dynamics of Ves SINEs in the genomes of 11 bats, nine from Vespertilionidae. Results We identified 41 subfamilies of Ves and linked several to specific lineages. We also revealed substantial differences among lineages including the observation that Ves accumulation and Ves subfamily diversity is significantly higher in vesper as opposed to non-vesper bats. This is especially interesting when one considers the increased transposable element diversity of vesper bats in general. Conclusions Our data suggest that survey sequencing and genome mining are valuable tools to investigate SINE evolution among related lineages and can provide substantial information about the ability of SINEs to proliferate in diverse genomes. This method would also be a useful first step in determining which subfamilies would be the best to target when developing SINEs as markers for phylogenetic and population genetic analyses. Electronic supplementary material The online version of this article (doi:10.1186/s13100-015-0038-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409 USA
| | - Heidi Jt Pagan
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL USA
| | - Roy N Platt
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409 USA
| | - Ashley R Kroll
- Department of Biology, Reed College, Portland, OR 97202 USA
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, OR 97202 USA
| | - Richard D Stevens
- Department of Natural Resources Management and the Museum, Texas Tech University, Lubbock, TX 79409 USA
| |
Collapse
|
69
|
Ji Y, Marra NJ, DeWoody JA. Comparative analysis of active retrotransposons in the transcriptomes of three species of heteromyid rodents. Gene 2015; 562:95-106. [DOI: 10.1016/j.gene.2015.02.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 10/24/2022]
|
70
|
Coates BS. Horizontal transfer of a non-autonomous Helitron among insect and viral genomes. BMC Genomics 2015; 16:137. [PMID: 25766741 PMCID: PMC4344730 DOI: 10.1186/s12864-015-1318-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 02/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The movement of mobile elements among species by horizontal transposon transfer (HTT) influences the evolution of genomes through the modification of structure and function. Helitrons are a relatively new lineage of DNA-based (class II) transposable elements (TEs) that propagate by rolling-circle replication, and are capable of acquiring host DNA. The rapid spread of Helitrons among animal lineages by HTT is facilitated by shuttling in viral particles or by unknown mechanisms mediated by close organism associations (e.g. between hosts and parasites). RESULTS A non-autonomous Helitron independently annotated as BmHel-2 from Bombyx mori and the MITE01 element from Ostrinia nubilalis was predicted in the genomes of 24 species in the insect Order Lepidoptera. Integrated Helitrons retained ≥ 65% sequence identity over a 250 bp consensus, and were predicted to retain secondary structures inclusive of a 3'-hairpin and a 5'-subterminal inverted repeat. Highly similar Hel-2 copies were predicted in the genomes of insects and associated viruses, which along with a previous documented case of real-time virus-insect cell line transposition suggests that this Helitron has likely propagated by HTT. CONCLUSIONS These findings provide evidence that insect virus may mediate the HTT of Helitron-like TEs. This movement may facilitate the shuttling of DNA elements among insect genomes. Further sampling is required to determine the putative role of HTT in insect genome evolution.
Collapse
Affiliation(s)
- Brad S Coates
- United States Department of Agriculture, Agricultural Research Service, Corn Insects & Crop Genetics Research Unit, Iowa State University, Ames, IA, 50011, USA. .,Department of Entomology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
71
|
Tang Z, Zhang HH, Huang K, Zhang XG, Han MJ, Zhang Z. Repeated horizontal transfers of four DNA transposons in invertebrates and bats. Mob DNA 2015; 6:3. [PMID: 25606061 PMCID: PMC4298943 DOI: 10.1186/s13100-014-0033-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/30/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Horizontal transfer (HT) of transposable elements (TEs) into a new genome is considered as an important force to drive genome variation and biological innovation. However, most of the HT of DNA transposons previously described occurred between closely related species or insects. RESULTS In this study, we carried out a detailed analysis of four DNA transposons, which were found in the first sequenced twisted-wing parasite, Mengenilla moldrzyki. Through the homology-based strategy, these transposons were also identified in other insects, freshwater planarian, hydrozoans, and bats. The phylogenetic distribution of these transposons was discontinuous, and they showed extremely high sequence identities (>87%) over their entire length in spite of their hosts diverging more than 300 million years ago (Mya). Additionally, phylogenies and comparisons of transposons versus orthologous gene identities demonstrated that these transposons have transferred into their hosts by independent HTs. CONCLUSIONS Here, we provided the first documented example of HT of CACTA transposons, which have been so far extensively studied in plants. Our results demonstrated that bats had continuously acquired new DNA elements via HT. This implies that predation on a large quantity of insects might increase bat exposure to HT. In addition, parasite-host interaction might facilitate exchanging of their genetic materials.
Collapse
Affiliation(s)
- Zhou Tang
- School of Life Sciences, Chongqing University, Chongqing, 400044 China
| | - Hua-Hao Zhang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, 332000 China
| | - Ke Huang
- College of Forestry and Life Science, Chongqing University of Sciences and Arts, Yongchuan, Chongqing, 40216 China
| | - Xiao-Gu Zhang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, 332000 China
| | - Min-Jin Han
- School of Life Sciences, Chongqing University, Chongqing, 400044 China
| | - Ze Zhang
- School of Life Sciences, Chongqing University, Chongqing, 400044 China
| |
Collapse
|
72
|
Modolo L, Picard F, Lerat E. A new genome-wide method to track horizontally transferred sequences: application to Drosophila. Genome Biol Evol 2015; 6:416-32. [PMID: 24497602 PMCID: PMC3942030 DOI: 10.1093/gbe/evu026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Because of methodological breakthroughs and the availability of an increasing amount of whole-genome sequence data, horizontal transfers (HTs) in eukaryotes have received much attention recently. Contrary to similar analyses in prokaryotes, most studies in eukaryotes usually investigate particular sequences corresponding to transposable elements (TEs), neglecting the other components of the genome. We present a new methodological framework for the genome-wide detection of all putative horizontally transferred sequences between two species that requires no prior knowledge of the transferred sequences. This method provides a broader picture of HTs in eukaryotes by fully exploiting complete-genome sequence data. In contrast to previous genome-wide approaches, we used a well-defined statistical framework to control for the number of false positives in the results, and we propose two new validation procedures to control for confounding factors. The first validation procedure relies on a comparative analysis with other species of the phylogeny to validate HTs for the nonrepeated sequences detected, whereas the second one built upon the study of the dynamics of the detected TEs. We applied our method to two closely related Drosophila species, Drosophila melanogaster and D. simulans, in which we discovered 10 new HTs in addition to all the HTs previously detected in different studies, which underscores our method’s high sensitivity and specificity. Our results favor the hypothesis of multiple independent HTs of TEs while unraveling a small portion of the network of HTs in the Drosophila phylogeny.
Collapse
Affiliation(s)
- Laurent Modolo
- Université de Lyon, France, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, VIlleurbanne, France
| | | | | |
Collapse
|
73
|
Belyayev A. Bursts of transposable elements as an evolutionary driving force. J Evol Biol 2014; 27:2573-84. [PMID: 25290698 DOI: 10.1111/jeb.12513] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 12/25/2022]
Abstract
A burst of transposable elements (TEs) is a massive outbreak that may cause radical genomic rebuilding. This phenomenon has been reported in connection with the formation of taxonomic groups and species and has therefore been associated with major evolutionary events in the past. Over the past few years, several research groups have discovered recent stress-induced bursts of different TEs. The events for which bursts of TEs have been recorded include domestication, polyploidy, changes in mating systems, interspecific and intergeneric hybridization and abiotic stress. Cases involving abiotic stress, particularly bursts of TEs in natural populations driven by environmental change, are of special interest because this phenomenon may underlie micro- and macro-evolutionary events and ultimately support the maintenance and generation of biological diversity. This study reviews the known cases of bursts of TEs and their possible consequences, with particular emphasis on the speciation process.
Collapse
Affiliation(s)
- A Belyayev
- Institute of Botany, Czech Academy of Sciences, Pruhonice near Prague, Czech Republic
| |
Collapse
|
74
|
Thomas J, Phillips CD, Baker RJ, Pritham EJ. Rolling-circle transposons catalyze genomic innovation in a mammalian lineage. Genome Biol Evol 2014; 6:2595-610. [PMID: 25223768 PMCID: PMC4224331 DOI: 10.1093/gbe/evu204] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rolling-circle transposons (Helitrons) are a newly discovered group of mobile DNA widespread in plant and invertebrate genomes but limited to the bat family Vespertilionidae among mammals. Little is known about the long-term impact of Helitron activity because the genomes where Helitron activity has been extensively studied are predominated by young families. Here, we report a comprehensive catalog of vetted Helitrons from the 7× Myotis lucifugus genome assembly. To estimate the timing of transposition, we scored presence/absence across related vespertilionid genome sequences with estimated divergence times. This analysis revealed that the Helibat family has been a persistent source of genomic innovation throughout the vespertilionid diversification from approximately 30–36 Ma to as recently as approximately 1.8–6 Ma. This is the first report of persistent Helitron transposition over an extended evolutionary timeframe. These findings illustrate that the pattern of Helitron activity is akin to the vertical persistence of LINE retrotransposons in primates and other mammalian lineages. Like retrotransposition in primates, rolling-circle transposition has generated lineage-specific variation and accounts for approximately 110 Mb, approximately 6% of the genome of M. lucifugus. The Helitrons carry a heterogeneous assortment of host sequence including retroposed messenger RNAs, retrotransposons, DNA transposons, as well as introns, exons and regulatory regions (promoters, 5′-untranslated regions [UTRs], and 3′-UTRs) of which some are evolving in a pattern suggestive of purifying selection. Evidence that Helitrons have contributed putative promoters, exons, splice sites, polyadenylation sites, and microRNA-binding sites to transcripts otherwise conserved across mammals is presented, and the implication of Helitron activity to innovation in these unique mammals is discussed.
Collapse
Affiliation(s)
- Jainy Thomas
- Department of Human Genetics, University of Utah
| | - Caleb D Phillips
- Department of Biological Sciences and Museum, Texas Tech University
| | - Robert J Baker
- Department of Biological Sciences and Museum, Texas Tech University
| | | |
Collapse
|
75
|
First evidence of mariner-like transposons in the genome of the marine microalga Amphora acutiuscula (Bacillariophyta). Protist 2014; 165:730-44. [PMID: 25250954 DOI: 10.1016/j.protis.2014.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/11/2014] [Accepted: 08/18/2014] [Indexed: 12/17/2022]
Abstract
Mariner-like elements (MLEs) are transposable elements able to move in the host genomes by a "cut and paste" mechanism. They have been found in numerous organisms. We succeeded in amplifying complete and truncated MLEs in the marine diatom Amphora acutiuscula. Full-length MLEs of 2,100bp delimited by imperfect Terminal Inverted Repeats revealed an intact Open Reading Frame, suggesting that the MLEs could be active. The DNA binding domain of the corresponding putative transposase could have two Helix-Turn-Helix and a Nuclear Location Site motifs, and its catalytic domain includes a particular triad of aspartic acids DD43D not previously reported. The number of copies was estimated to be 38, including approximately 20 full-length elements. Phylogenetic analysis shows that these peculiar MLEs differ from plant and other stramenopile MLEs and that they could constitute a new sub-family of Tc1-mariner elements.
Collapse
|
76
|
Shubernetskaya OS, Skvortsov DA, Evfratov SA, Rubtsova MP, Belova EV, Strelkova OS, Cherepaninets VD, Zhironkina OA, Olovnikov AM, Zvereva ME, Kireev II, Dontsova OA. High expression levels and nuclear localization of novel Danio rerio ncRNA transcribed from a genomic region containing repetitive elements. Mol Biol 2014. [DOI: 10.1134/s002689331404013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
77
|
Oliver KR, McComb JA, Greene WK. Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol Evol 2014; 5:1886-901. [PMID: 24065734 PMCID: PMC3814199 DOI: 10.1093/gbe/evt141] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) are a dominant feature of most flowering plant genomes. Together with other accepted facilitators of evolution, accumulating data indicate that TEs can explain much about their rapid evolution and diversification. Genome size in angiosperms is highly correlated with TE content and the overwhelming bulk (>80%) of large genomes can be composed of TEs. Among retro-TEs, long terminal repeats (LTRs) are abundant, whereas DNA-TEs, which are often less abundant than retro-TEs, are more active. Much adaptive or evolutionary potential in angiosperms is due to the activity of TEs (active TE-Thrust), resulting in an extraordinary array of genetic changes, including gene modifications, duplications, altered expression patterns, and exaptation to create novel genes, with occasional gene disruption. TEs implicated in the earliest origins of the angiosperms include the exapted Mustang, Sleeper, and Fhy3/Far1 gene families. Passive TE-Thrust can create a high degree of adaptive or evolutionary potential by engendering ectopic recombination events resulting in deletions, duplications, and karyotypic changes. TE activity can also alter epigenetic patterning, including that governing endosperm development, thus promoting reproductive isolation. Continuing evolution of long-lived resprouter angiosperms, together with genetic variation in their multiple meristems, indicates that TEs can facilitate somatic evolution in addition to germ line evolution. Critical to their success, angiosperms have a high frequency of polyploidy and hybridization, with resultant increased TE activity and introgression, and beneficial gene duplication. Together with traditional explanations, the enhanced genomic plasticity facilitated by TE-Thrust, suggests a more complete and satisfactory explanation for Darwin's "abominable mystery": the spectacular success of the angiosperms.
Collapse
Affiliation(s)
- Keith R Oliver
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | | | | |
Collapse
|
78
|
Campos-Sánchez R, Kapusta A, Feschotte C, Chiaromonte F, Makova KD. Genomic landscape of human, bat, and ex vivo DNA transposon integrations. Mol Biol Evol 2014; 31:1816-32. [PMID: 24809961 DOI: 10.1093/molbev/msu138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The integration and fixation preferences of DNA transposons, one of the major classes of eukaryotic transposable elements, have never been evaluated comprehensively on a genome-wide scale. Here, we present a detailed study of the distribution of DNA transposons in the human and bat genomes. We studied three groups of DNA transposons that integrated at different evolutionary times: 1) ancient (>40 My) and currently inactive human elements, 2) younger (<40 My) bat elements, and 3) ex vivo integrations of piggyBat and Sleeping Beauty elements in HeLa cells. Although the distribution of ex vivo elements reflected integration preferences, the distribution of human and (to a lesser extent) bat elements was also affected by selection. We used regression techniques (linear, negative binomial, and logistic regression models with multiple predictors) applied to 20-kb and 1-Mb windows to investigate how the genomic landscape in the vicinity of DNA transposons contributes to their integration and fixation. Our models indicate that genomic landscape explains 16-79% of variability in DNA transposon genome-wide distribution. Importantly, we not only confirmed previously identified predictors (e.g., DNA conformation and recombination hotspots) but also identified several novel predictors (e.g., signatures of double-strand breaks and telomere hexamer). Ex vivo integrations showed a bias toward actively transcribed regions. Older DNA transposons were located in genomic regions scarce in most conserved elements-likely reflecting purifying selection. Our study highlights how DNA transposons are integral to the evolution of bat and human genomes, and has implications for the development of DNA transposon assays for gene therapy and mutagenesis applications.
Collapse
Affiliation(s)
- Rebeca Campos-Sánchez
- Genetics Program, The Huck Institutes of the Life Sciences, Penn State University, University Park, PA
| | - Aurélie Kapusta
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT
| | - Francesca Chiaromonte
- Center for Medical Genomics, The Huck Institutes of the Life Sciences, Penn State University, University Park, PADepartment of Statistics, Penn State University, University Park, PA
| | - Kateryna D Makova
- Center for Medical Genomics, The Huck Institutes of the Life Sciences, Penn State University, University Park, PADepartment of Biology, Penn State University, University Park, PA
| |
Collapse
|
79
|
Large Numbers of Novel miRNAs Originate from DNA Transposons and Are Coincident with a Large Species Radiation in Bats. Mol Biol Evol 2014; 31:1536-45. [DOI: 10.1093/molbev/msu112] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
80
|
Phillips CJ, Phillips CD, Goecks J, Lessa EP, Sotero-Caio CG, Tandler B, Gannon MR, Baker RJ. Dietary and flight energetic adaptations in a salivary gland transcriptome of an insectivorous bat. PLoS One 2014; 9:e83512. [PMID: 24454705 PMCID: PMC3891661 DOI: 10.1371/journal.pone.0083512] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/04/2013] [Indexed: 12/12/2022] Open
Abstract
We hypothesized that evolution of salivary gland secretory proteome has been important in adaptation to insectivory, the most common dietary strategy among Chiroptera. A submandibular salivary gland (SMG) transcriptome was sequenced for the little brown bat, Myotis lucifugus. The likely secretory proteome of 23 genes included seven (RETNLB, PSAP, CLU, APOE, LCN2, C3, CEL) related to M. lucifugus insectivorous diet and metabolism. Six of the secretory proteins probably are endocrine, whereas one (CEL) most likely is exocrine. The encoded proteins are associated with lipid hydrolysis, regulation of lipid metabolism, lipid transport, and insulin resistance. They are capable of processing exogenous lipids for flight metabolism while foraging. Salivary carboxyl ester lipase (CEL) is thought to hydrolyze insect lipophorins, which probably are absorbed across the gastric mucosa during feeding. The other six proteins are predicted either to maintain these lipids at high blood concentrations or to facilitate transport and uptake by flight muscles. Expression of these seven genes and coordinated secretion from a single organ is novel to this insectivorous bat, and apparently has evolved through instances of gene duplication, gene recruitment, and nucleotide selection. Four of the recruited genes are single-copy in the Myotis genome, whereas three have undergone duplication(s) with two of these genes exhibiting evolutionary 'bursts' of duplication resulting in multiple paralogs. Evidence for episodic directional selection was found for six of seven genes, reinforcing the conclusion that the recruited genes have important roles in adaptation to insectivory and the metabolic demands of flight. Intragenic frequencies of mobile- element-like sequences differed from frequencies in the whole M. lucifugus genome. Differences among recruited genes imply separate evolutionary trajectories and that adaptation was not a single, coordinated event.
Collapse
Affiliation(s)
- Carleton J. Phillips
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Caleb D. Phillips
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Jeremy Goecks
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Department of Math and Computer Science, Emory University, Atlanta, Georgia, United States of America
| | - Enrique P. Lessa
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Cibele G. Sotero-Caio
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Bernard Tandler
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Michael R. Gannon
- Department of Biology, Pennsylvania State University, Altoona College, Altoona, Pennsylvania, United States of America
| | - Robert J. Baker
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
81
|
Oliveira SG, Cabral-de-Mello DC, Moura RC, Martins C. Chromosomal organization and evolutionary history of Mariner transposable elements in Scarabaeinae coleopterans. Mol Cytogenet 2013; 6:54. [PMID: 24286129 PMCID: PMC3906913 DOI: 10.1186/1755-8166-6-54] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/25/2013] [Indexed: 01/09/2023] Open
Abstract
Background With the aim to increase the knowledge on the evolution of coleopteran genomes, we investigated through cytogenetics and nucleotide sequence analysis Mariner transposons in three Scarabaeinae species (Coprophanaeus cyanescens, C. ensifer and Diabroctis mimas). Results The cytogenetic mapping revealed an accumulation of Mariner transposon in the pericentromeric repetitive regions characterized as rich in heterochromatin and C0t-1 DNA fraction (DNA enriched with high and moderately repeated sequences). Nucleotide sequence analysis of Mariner revealed the presence of two major groups of Mariner copies in the three investigated coleoptera species. Conclusions The Mariner is accumulated in the centromeric area of the coleopteran chromosomes probably as a consequence of the absence of recombination in the heterochromatic regions. Our analysis detected high diversification of Mariner sequences during the evolutionary history of the group. Furthermore, comparisons between the coleopterans sequences with other insects and mammals, suggest that the horizontal transfer (HT) could have acted in the spreading of the Mariner in diverse non-related animal groups.
Collapse
Affiliation(s)
| | | | | | - Cesar Martins
- Morphology Department, Biosciences Institute, UNESP - São Paulo State University, Botucatu, SP 18618-970, Brazil.
| |
Collapse
|
82
|
Pavelitz T, Gray LT, Padilla SL, Bailey AD, Weiner AM. PGBD5: a neural-specific intron-containing piggyBac transposase domesticated over 500 million years ago and conserved from cephalochordates to humans. Mob DNA 2013; 4:23. [PMID: 24180413 PMCID: PMC3902484 DOI: 10.1186/1759-8753-4-23] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/04/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND piggyBac domain (PGBD) transposons are found in organisms ranging from fungi to humans. Three domesticated piggyBac elements have been described. In the ciliates Paramecium tetraurelia and Tetrahymena thermophila, homologs known as piggyMacs excise internal eliminated sequences from germline micronuclear DNA during regeneration of the new somatic macronucleus. In primates, a PGBD3 element inserted into the Cockayne syndrome group B (CSB) gene over 43 Mya serves as an alternative 3' terminal exon, enabling the CSB gene to generate both full length CSB and a conserved CSB-PGBD3 fusion protein that joins an N-terminal CSB domain to the C-terminal transposase domain. RESULTS We describe a fourth domesticated piggyBac element called PGBD5. We show that i) PGBD5 was first domesticated in the common ancestor of the cephalochordate Branchiostoma floridae (aka lancelet or amphioxus) and vertebrates, and is conserved in all vertebrates including lamprey but cannot be found in more basal urochordates, hemichordates, or echinoderms; ii) the lancelet, lamprey, and human PGBD5 genes are syntenic and orthologous; iii) no potentially mobile ancestral PGBD5 elements can be identified in other more deeply rooted organisms; iv) although derived from an IS4-related transposase of the RNase H clan, PGBD5 protein is unlikely to retain enzymatic activity because the catalytic DDD(D) motif is not conserved; v) PGBD5 is preferentially expressed in certain granule cell lineages of the brain and in the central nervous system based on available mouse and human in situ hybridization data, and the tissue-specificity of documented mammalian EST and mRNA clones; vi) the human PGBD5 promoter and gene region is rich in bound regulatory factors including the neuron-restrictive silencer factors NRSF/REST and CoREST, as well as SIN3, KAP1, STAT3, and CTCF; and vii) despite preferential localization within the nucleus, PGBD5 protein is unlikely to bind DNA or chromatin as neither DNase I digestion nor high salt extraction release PGBD5 from fractionated mouse brain nuclei. CONCLUSIONS We speculate that the neural-specific PGBD5 transposase was domesticated >500 My after cephalochordates and vertebrates split from urochordates, and that PGBD5 may have played a role in the evolution of a primitive deuterostome neural network into a centralized nervous system.
Collapse
Affiliation(s)
| | | | | | | | - Alan M Weiner
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195-7350, USA.
| |
Collapse
|
83
|
Lavoie CA, Platt RN, Novick PA, Counterman BA, Ray DA. Transposable element evolution in Heliconius suggests genome diversity within Lepidoptera. Mob DNA 2013; 4:21. [PMID: 24088337 PMCID: PMC4016481 DOI: 10.1186/1759-8753-4-21] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/27/2013] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) have the potential to impact genome structure, function and evolution in profound ways. In order to understand the contribution of transposable elements (TEs) to Heliconius melpomene, we queried the H. melpomene draft sequence to identify repetitive sequences. RESULTS We determined that TEs comprise ~25% of the genome. The predominant class of TEs (~12% of the genome) was the non-long terminal repeat (non-LTR) retrotransposons, including a novel SINE family. However, this was only slightly higher than content derived from DNA transposons, which are diverse, with several families having mobilized in the recent past. Compared to the only other well-studied lepidopteran genome, Bombyx mori, H. melpomene exhibits a higher DNA transposon content and a distinct repertoire of retrotransposons. We also found that H. melpomene exhibits a high rate of TE turnover with few older elements accumulating in the genome. CONCLUSIONS Our analysis represents the first complete, de novo characterization of TE content in a butterfly genome and suggests that, while TEs are able to invade and multiply, TEs have an overall deleterious effect and/or that maintaining a small genome is advantageous. Our results also hint that analysis of additional lepidopteran genomes will reveal substantial TE diversity within the group.
Collapse
Affiliation(s)
- Christine A Lavoie
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State, MS 39762, USA
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi, MS 39762, USA
| | - Roy N Platt
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State, MS 39762, USA
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi, MS 39762, USA
| | - Peter A Novick
- Department of Biological Sciences and Geology, Queensborough Community College, Bayside, New York, NY 11364, USA
| | | | - David A Ray
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State, MS 39762, USA
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi, MS 39762, USA
- Current Address: Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
84
|
Smith JDL, Bickham JW, Gregory TR. Patterns of genome size diversity in bats (order Chiroptera). Genome 2013; 56:457-72. [PMID: 24168629 DOI: 10.1139/gen-2013-0046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite being a group of particular interest in considering relationships between genome size and metabolic parameters, bats have not been well studied from this perspective. This study presents new estimates for 121 "microbat" species from 12 families and complements a previous study on members of the family Pteropodidae ("megabats"). The results confirm that diversity in genome size in bats is very limited even compared with other mammals, varying approximately 2-fold from 1.63 pg in Lophostoma carrikeri to 3.17 pg in Rhinopoma hardwickii and averaging only 2.35 pg ± 0.02 SE (versus 3.5 pg overall for mammals). However, contrary to some other vertebrate groups, and perhaps owing to the narrow range observed, genome size correlations were not apparent with any chromosomal, physiological, flight-related, developmental, or ecological characteristics within the order Chiroptera. Genome size is positively correlated with measures of body size in bats, though the strength of the relationships differs between pteropodids ("megabats") and nonpteropodids ("microbats").
Collapse
Affiliation(s)
- Jillian D L Smith
- a Department of Integrative Biology, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada
| | | | | |
Collapse
|
85
|
Genome-wide characterization of endogenous retroviruses in the bat Myotis lucifugus reveals recent and diverse infections. J Virol 2013; 87:8493-501. [PMID: 23720713 DOI: 10.1128/jvi.00892-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bats are increasingly recognized as reservoir species for a variety of zoonotic viruses that pose severe threats to human health. While many RNA viruses have been identified in bats, little is known about bat retroviruses. Endogenous retroviruses (ERVs) represent genomic fossils of past retroviral infections and, thus, can inform us on the diversity and history of retroviruses that have infected a species lineage. Here, we took advantage of the availability of a high-quality genome assembly for the little brown bat, Myotis lucifugus, to systematically identify and analyze ERVs in this species. We mined an initial set of 362 potentially complete proviruses from the three main classes of ERVs, which were further resolved into 13 major families and 86 subfamilies by phylogenetic analysis. Consensus or representative sequences for each of the 86 subfamilies were then merged to the Repbase collection of known ERV/long terminal repeat (LTR) elements to annotate the retroviral complement of the bat genome. The results show that nearly 5% of the genome assembly is occupied by ERV-derived sequences, a quantity comparable to findings for other eutherian mammals. About one-fourth of these sequences belong to subfamilies newly identified in this study. Using two independent methods, intraelement LTR divergence and analysis of orthologous loci in two other bat species, we found that the vast majority of the potentially complete proviruses identified in M. lucifugus were integrated in the last ~25 million years. All three major ERV classes include recently integrated proviruses, suggesting that a wide diversity of retroviruses is still circulating in Myotis bats.
Collapse
|
86
|
Abstract
Transposable elements and their fossil sequences occupy about half of the genome in mammals. While most of these selfish mobile elements have been inactivated by truncations and mutations during evolution, some copies remain competent to transpose and/or amplify, posing an ongoing genetic threat. To control such mutagenic sequences, host genomes have developed multiple layers of defence mechanisms, including epigenetic regulation and RNA silencing. Germ cells, in particular, employ the piwi-small RNA pathway, which plays a central and adaptive role in safeguarding the germline genome from retrotransposons. Recent studies have revealed that a class of developmentally regulated genes, which have long been implicated in germ cell specification and differentiation, such as vasa and tudor family genes, play key roles in the piwi pathway to suppress retrotransposons, indicating that the piwi-mediated genome protection is at the core of germline development. Furthermore, while the piwi system primarily operates post-transcriptionally at the RNA level, it also affects the epigenetics of cognate genome loci, offering an intriguing link between small RNAs and transcriptional control in mammals. In this review, we summarize our current understanding of the piwi pathway in mice, which is emerging as a fundamental component of spermatogenesis that ensures male fertility and genome integrity.
Collapse
Affiliation(s)
- Shinichiro Chuma
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | |
Collapse
|
87
|
Abrusán G, Szilágyi A, Zhang Y, Papp B. Turning gold into 'junk': transposable elements utilize central proteins of cellular networks. Nucleic Acids Res 2013; 41:3190-200. [PMID: 23341038 PMCID: PMC3597677 DOI: 10.1093/nar/gkt011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The numerous discovered cases of domesticated transposable element (TE) proteins led to the recognition that TEs are a significant source of evolutionary innovation. However, much less is known about the reverse process, whether and to what degree the evolution of TEs is influenced by the genome of their hosts. We addressed this issue by searching for cases of incorporation of host genes into the sequence of TEs and examined the systems-level properties of these genes using the Saccharomyces cerevisiae and Drosophila melanogaster genomes. We identified 51 cases where the evolutionary scenario was the incorporation of a host gene fragment into a TE consensus sequence, and we show that both the yeast and fly homologues of the incorporated protein sequences have central positions in the cellular networks. An analysis of selective pressure (Ka/Ks ratio) detected significant selection in 37% of the cases. Recent research on retrovirus-host interactions shows that virus proteins preferentially target hubs of the host interaction networks enabling them to take over the host cell using only a few proteins. We propose that TEs face a similar evolutionary pressure to evolve proteins with high interacting capacities and take some of the necessary protein domains directly from their hosts.
Collapse
Affiliation(s)
- György Abrusán
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesváry krt. 62. Szeged H-6701, Hungary.
| | | | | | | |
Collapse
|
88
|
Akagi K, Li J, Symer DE. How do mammalian transposons induce genetic variation? A conceptual framework: the age, structure, allele frequency, and genome context of transposable elements may define their wide-ranging biological impacts. Bioessays 2013; 35:397-407. [PMID: 23319453 DOI: 10.1002/bies.201200133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this essay, we discuss new insights into the wide-ranging impacts of mammalian transposable elements (TE) on gene expression and function. Nearly half of each mammalian genome is comprised of these mobile, repetitive elements. While most TEs are ancient relics, certain classes can move from one chromosomal location to another even now. Indeed, striking recent data show that extensive transposition occurs not only in the germline over evolutionary time, but also in developing somatic tissues and particular human cancers. While occasional germline TE insertions may contribute to genetic variation, many other, similar TEs appear to have little or no impact on neighboring genes. However, the effects of somatic insertions on gene expression and function remain almost completely unknown. We present a conceptual framework to understand how the ages, allele frequencies, molecular structures, and especially the genomic context of mammalian TEs each can influence their various possible functional consequences.
Collapse
Affiliation(s)
- Keiko Akagi
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | | | |
Collapse
|
89
|
Le Rouzic A, Payen T, Hua-Van A. Reconstructing the evolutionary history of transposable elements. Genome Biol Evol 2013; 5:77-86. [PMID: 23275488 PMCID: PMC3595040 DOI: 10.1093/gbe/evs130] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2012] [Indexed: 01/03/2023] Open
Abstract
The impact of transposable elements (TEs) on genome structure, plasticity, and evolution is still not well understood. The recent availability of complete genome sequences makes it possible to get new insights on the evolutionary dynamics of TEs from the phylogenetic analysis of their multiple copies in a wide range of species. However, this source of information is not always fully exploited. Here, we show how the history of transposition activity may be qualitatively and quantitatively reconstructed by considering the distribution of transposition events in the phylogenetic tree, along with the tree topology. Using statistical models developed to infer speciation and extinction rates in species phylogenies, we demonstrate that it is possible to estimate the past transposition rate of a TE family, as well as how this rate varies with time. This methodological framework may not only facilitate the interpretation of genomic data, but also serve as a basis to develop new theoretical and statistical models.
Collapse
Affiliation(s)
- Arnaud Le Rouzic
- Laboratoire Évolution, Génomes, Spéciation, CNRS-LEGS-UPR9034, CNRS-IDEEV-FR3284, Gif sur Yvette, France.
| | | | | |
Collapse
|
90
|
Functional characterization of piggyBat from the bat Myotis lucifugus unveils an active mammalian DNA transposon. Proc Natl Acad Sci U S A 2012; 110:234-9. [PMID: 23248290 DOI: 10.1073/pnas.1217548110] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A revelation of the genomic age has been the contributions of the mobile DNA segments called transposable elements to chromosome structure, function, and evolution in virtually all organisms. Substantial fractions of vertebrate genomes derive from transposable elements, being dominated by retroelements that move via RNA intermediates. Although many of these elements have been inactivated by mutation, several active retroelements remain. Vertebrate genomes also contain substantial quantities and a high diversity of cut-and-paste DNA transposons, but no active representative of this class has been identified in mammals. Here we show that a cut-and-paste element called piggyBat, which has recently invaded the genome of the little brown bat (Myotis lucifugus) and is a member of the piggyBac superfamily, is active in its native form in transposition assays in bat and human cultured cells, as well as in the yeast Saccharomyces cerevisiae. Our study suggests that some DNA transposons are still actively shaping some mammalian genomes and reveals an unprecedented opportunity to study the mechanism, regulation, and genomic impact of cut-and-paste transposition in a natural mammalian host.
Collapse
|
91
|
Ladevèze V, Chaminade N, Lemeunier F, Periquet G, Aulard S. General survey of hAT transposon superfamily with highlight on hobo element in Drosophila. Genetica 2012; 140:375-92. [DOI: 10.1007/s10709-012-9687-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/10/2012] [Indexed: 11/30/2022]
|
92
|
Oliver KR, Greene WK. Transposable elements and viruses as factors in adaptation and evolution: an expansion and strengthening of the TE-Thrust hypothesis. Ecol Evol 2012; 2:2912-33. [PMID: 23170223 PMCID: PMC3501640 DOI: 10.1002/ece3.400] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/11/2012] [Accepted: 09/17/2012] [Indexed: 12/17/2022] Open
Abstract
In addition to the strong divergent evolution and significant and episodic evolutionary transitions and speciation we previously attributed to TE-Thrust, we have expanded the hypothesis to more fully account for the contribution of viruses to TE-Thrust and evolution. The concept of symbiosis and holobiontic genomes is acknowledged, with particular emphasis placed on the creativity potential of the union of retroviral genomes with vertebrate genomes. Further expansions of the TE-Thrust hypothesis are proposed regarding a fuller account of horizontal transfer of TEs, the life cycle of TEs, and also, in the case of a mammalian innovation, the contributions of retroviruses to the functions of the placenta. The possibility of drift by TE families within isolated demes or disjunct populations, is acknowledged, and in addition, we suggest the possibility of horizontal transposon transfer into such subpopulations. “Adaptive potential” and “evolutionary potential” are proposed as the extremes of a continuum of “intra-genomic potential” due to TE-Thrust. Specific data is given, indicating “adaptive potential” being realized with regard to insecticide resistance, and other insect adaptations. In this regard, there is agreement between TE-Thrust and the concept of adaptation by a change in allele frequencies. Evidence on the realization of “evolutionary potential” is also presented, which is compatible with the known differential survivals, and radiations of lineages. Collectively, these data further suggest the possibility, or likelihood, of punctuated episodes of speciation events and evolutionary transitions, coinciding with, and heavily underpinned by, intermittent bursts of TE activity.
Collapse
Affiliation(s)
- Keith R Oliver
- School of Biological Science and Biotechnology, Faculty of Science and Engineering, Murdoch University Perth, W.A., 6150, Australia
| | | |
Collapse
|
93
|
Larsen RJ, Knapp MC, Genoways HH, Khan FAA, Larsen PA, Wilson DE, Baker RJ. Genetic diversity of neotropical Myotis (chiroptera: vespertilionidae) with an emphasis on South American species. PLoS One 2012; 7:e46578. [PMID: 23056352 PMCID: PMC3463536 DOI: 10.1371/journal.pone.0046578] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/31/2012] [Indexed: 11/24/2022] Open
Abstract
Background Cryptic morphological variation in the Chiropteran genus Myotis limits the understanding of species boundaries and species richness within the genus. Several authors have suggested that it is likely there are unrecognized species-level lineages of Myotis in the Neotropics. This study provides an assessment of the diversity in New World Myotis by analyzing cytochrome-b gene variation from an expansive sample ranging throughout North, Central, and South America. We provide baseline genetic data for researchers investigating phylogeographic and phylogenetic patterns of Myotis in these regions, with an emphasis on South America. Methodology and Principal Findings Cytochrome-b sequences were generated and phylogenetically analyzed from 215 specimens, providing DNA sequence data for the most species of New World Myotis to date. Based on genetic data in our sample, and on comparisons with available DNA sequence data from GenBank, we estimate the number of species-level genetic lineages in South America alone to be at least 18, rather than the 15 species currently recognized. Conclusions Our findings provide evidence that the perception of lower species richness in South American Myotis is largely due to a combination of cryptic morphological variation and insufficient sampling coverage in genetic-based systematic studies. A more accurate assessment of the level of diversity and species richness in New World Myotis is not only helpful for delimiting species boundaries, but also for understanding evolutionary processes within this globally distributed bat genus.
Collapse
Affiliation(s)
- Roxanne J Larsen
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA.
| | | | | | | | | | | | | |
Collapse
|
94
|
Platt II RN, Ray DA. A non-LTR retroelement extinction in Spermophilus tridecemlineatus. Gene 2012; 500:47-53. [DOI: 10.1016/j.gene.2012.03.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
|
95
|
Pagán HJT, Macas J, Novák P, McCulloch ES, Stevens RD, Ray DA. Survey sequencing reveals elevated DNA transposon activity, novel elements, and variation in repetitive landscapes among vesper bats. Genome Biol Evol 2012; 4:575-85. [PMID: 22491057 PMCID: PMC3342881 DOI: 10.1093/gbe/evs038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The repetitive landscapes of mammalian genomes typically display high Class I (retrotransposon) transposable element (TE) content, which usually comprises around half of the genome. In contrast, the Class II (DNA transposon) contribution is typically small (<3% in model mammals). Most mammalian genomes exhibit a precipitous decline in Class II activity beginning roughly 40 Ma. The first signs of more recently active mammalian Class II TEs were obtained from the little brown bat, Myotis lucifugus, and are reflected by higher genome content (∼5%). To aid in determining taxonomic limits and potential impacts of this elevated Class II activity, we performed 454 survey sequencing of a second Myotis species as well as four additional taxa within the family Vespertilionidae and an outgroup species from Phyllostomidae. Graph-based clustering methods were used to reconstruct the major repeat families present in each species and novel elements were identified in several taxa. Retrotransposons remained the dominant group with regard to overall genome mass. Elevated Class II TE composition (3–4%) was observed in all five vesper bats, while less than 0.5% of the phyllostomid reads were identified as Class II derived. Differences in satellite DNA and Class I TE content are also described among vespertilionid taxa. These analyses present the first cohesive description of TE evolution across closely related mammalian species, revealing genome-scale differences in TE content within a single family.
Collapse
Affiliation(s)
- Heidi J T Pagán
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS, USA
| | | | | | | | | | | |
Collapse
|
96
|
Smith A, Rutherford K, Benkel B. Characterization of a Tigger1 element from the genome of the American mink (Neovison vison). Gene 2012; 498:164-8. [PMID: 22387302 DOI: 10.1016/j.gene.2012.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/31/2012] [Accepted: 02/07/2012] [Indexed: 11/28/2022]
Abstract
Tigger elements belong to the Tc1/Mariner family of DNA transposons which is remarkably widespread in nature with homologs present in organisms as diverse as fungi, plants and animals. In this report, we present the nucleotide sequence of a defragmented Tigger1 element from the genome of the American mink. The element is 2,274 bp long, carries 13 bp terminal inverted repeats (TIRs) and contains the vestiges of two open reading frames (ORFs), one of which is similar to the centromere associated protein CENP B. In addition, we estimate that the genome of the American mink contains approximately 1000 Tigger1 elements, but find no evidence for the transcription of extant elements in the mink.
Collapse
Affiliation(s)
- Amanda Smith
- Nova Scotia Agricultural College, Department of Plant and Animal Sciences, PO Box 550, Truro, Nova Scotia, Canada B2N 5E3
| | | | | |
Collapse
|
97
|
Janicki M, Rooke R, Yang G. Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes. Chromosome Res 2012; 19:787-808. [PMID: 21850457 DOI: 10.1007/s10577-011-9230-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A major portion of most eukaryotic genomes are transposable elements (TEs). During evolution, TEs have introduced profound changes to genome size, structure, and function. As integral parts of genomes, the dynamic presence of TEs will continue to be a major force in reshaping genomes. Early computational analyses of TEs in genome sequences focused on filtering out "junk" sequences to facilitate gene annotation. When the high abundance and diversity of TEs in eukaryotic genomes were recognized, these early efforts transformed into the systematic genome-wide categorization and classification of TEs. The availability of genomic sequence data reversed the classical genetic approaches to discovering new TE families and superfamilies. Curated TE databases and their accurate annotation of genome sequences in turn facilitated the studies on TEs in a number of frontiers including: (1) TE-mediated changes of genome size and structure, (2) the influence of TEs on genome and gene functions, (3) TE regulation by host, (4) the evolution of TEs and their population dynamics, and (5) genomic scale studies of TE activity. Bioinformatics and genomic approaches have become an integral part of large-scale studies on TEs to extract information with pure in silico analyses or to assist wet lab experimental studies. The current revolution in genome sequencing technology facilitates further progress in the existing frontiers of research and emergence of new initiatives. The rapid generation of large-sequence datasets at record low costs on a routine basis is challenging the computing industry on storage capacity and manipulation speed and the bioinformatics community for improvement in algorithms and their implementations.
Collapse
Affiliation(s)
- Mateusz Janicki
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L1C6, Canada
| | | | | |
Collapse
|
98
|
Bire S, Rouleux-Bonnin F. Transposable elements as tools for reshaping the genome: it is a huge world after all! Methods Mol Biol 2012; 859:1-28. [PMID: 22367863 DOI: 10.1007/978-1-61779-603-6_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transposable elements (TEs) are discrete pieces of DNA that can move from one site to another within genomes and sometime between genomes. They are found in all major branches of life. Because of their wide distribution and considerable diversity, they are a considerable source of genomic variation and as such, they constitute powerful drivers of genome evolution. Moreover, it is becoming clear that the epigenetic regulation of certain genes is derived from defense mechanisms against the activity of ancestral transposable elements. TEs now tend to be viewed as natural molecular tools that can reshape the genome, which challenges the idea that TEs are natural tools used to answer biological questions. In the first part of this chapter, we review the classification and distribution of TEs, and look at how they have contributed to the structural and transcriptional reshaping of genomes. In the second part, we describe methodological innovations that have modified their contribution as molecular tools.
Collapse
Affiliation(s)
- Solenne Bire
- GICC, UMR CNRS 6239, Université François Rabelais, UFR des Sciences et Technques, Tours, France
| | | |
Collapse
|
99
|
Abstract
Transposons are DNA sequences capable of moving in genomes. Early evidence showed their accumulation in many species and suggested their continued activity in at least isolated organisms. In the past decade, with the development of various genomic technologies, it has become abundantly clear that ongoing activity is the rule rather than the exception. Active transposons of various classes are observed throughout plants and animals, including humans. They continue to create new insertions, have an enormous variety of structural and functional impact on genes and genomes, and play important roles in genome evolution. Transposon activities have been identified and measured by employing various strategies. Here, we summarize evidence of current transposon activity in various plant and animal genomes.
Collapse
Affiliation(s)
- Cheng Ran Lisa Huang
- Institute of Genetic Medicine and High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Kathleen H. Burns
- Department of Pathology, Department of Oncology, and High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jef D. Boeke
- Molecular Biology and Genetics, Institute of Genetic Medicine, and High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
100
|
Abstract
Transposable elements (TEs) have a unique ability to mobilize to new genomic locations, and the major advance of second-generation DNA sequencing has provided insights into the dynamic relationship between TEs and their hosts. It now is clear that TEs have adopted diverse strategies - such as specific integration sites or patterns of activity - to thrive in host environments that are replete with mechanisms, such as small RNAs or epigenetic marks, that combat TE amplification. Emerging evidence suggests that TE mobilization might sometimes benefit host genomes by enhancing genetic diversity, although TEs are also implicated in diseases such as cancer. Here, we discuss recent findings about how, where and when TEs insert in diverse organisms.
Collapse
Affiliation(s)
- Henry L. Levin
- Section on Eukaryotic Transposable Elements, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, 20892, USA, Tel. 301-402-4281, Fax. 301-496-4491,
| | - John V. Moran
- Departments of Human Genetics and Internal Medicine, and Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, 48109-6518, USA, Tel. 734-615-4046, Fax. 734-763-3784,
| |
Collapse
|