51
|
Lozano-Soldevilla D. On the Physiological Modulation and Potential Mechanisms Underlying Parieto-Occipital Alpha Oscillations. Front Comput Neurosci 2018; 12:23. [PMID: 29670518 PMCID: PMC5893851 DOI: 10.3389/fncom.2018.00023] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/20/2018] [Indexed: 12/25/2022] Open
Abstract
The parieto-occipital alpha (8–13 Hz) rhythm is by far the strongest spectral fingerprint in the human brain. Almost 90 years later, its physiological origin is still far from clear. In this Research Topic I review human pharmacological studies using electroencephalography (EEG) and magnetoencephalography (MEG) that investigated the physiological mechanisms behind posterior alpha. Based on results from classical and recent experimental studies, I find a wide spectrum of drugs that modulate parieto-occipital alpha power. Alpha frequency is rarely affected, but this might be due to the range of drug dosages employed. Animal and human pharmacological findings suggest that both GABA enhancers and NMDA blockers systematically decrease posterior alpha power. Surprisingly, most of the theoretical frameworks do not seem to embrace these empirical findings and the debate on the functional role of alpha oscillations has been polarized between the inhibition vs. active poles hypotheses. Here, I speculate that the functional role of alpha might depend on physiological excitation as much as on physiological inhibition. This is supported by animal and human pharmacological work showing that GABAergic, glutamatergic, cholinergic, and serotonergic receptors in the thalamus and the cortex play a key role in the regulation of alpha power and frequency. This myriad of physiological modulations fit with the view that the alpha rhythm is a complex rhythm with multiple sources supported by both thalamo-cortical and cortico-cortical loops. Finally, I briefly discuss how future research combining experimental measurements derived from theoretical predictions based of biophysically realistic computational models will be crucial to the reconciliation of these disparate findings.
Collapse
|
52
|
Tewarie P, Steenwijk MD, Brookes MJ, Uitdehaag BMJ, Geurts JJG, Stam CJ, Schoonheim MM. Explaining the heterogeneity of functional connectivity findings in multiple sclerosis: An empirically informed modeling study. Hum Brain Mapp 2018; 39:2541-2548. [PMID: 29468785 PMCID: PMC5969233 DOI: 10.1002/hbm.24020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
To understand the heterogeneity of functional connectivity results reported in the literature, we analyzed the separate effects of grey and white matter damage on functional connectivity and networks in multiple sclerosis. For this, we employed a biophysical thalamo‐cortical model consisting of interconnected cortical and thalamic neuronal populations, informed and amended by empirical diffusion MRI tractography data, to simulate functional data that mimic neurophysiological signals. Grey matter degeneration was simulated by decreasing within population connections and white matter degeneration by lowering between population connections, based on lesion predilection sites in multiple sclerosis. For all simulations, functional connectivity and functional network organization are quantified by phase synchronization and network integration, respectively. Modeling results showed that both cortical and thalamic grey matter damage induced a global increase in functional connectivity, whereas white matter damage induced an initially increased connectivity followed by a global decrease. Both white and especially grey matter damage, however, induced a decrease in network integration. These empirically informed simulations show that specific topology and timing of structural damage are nontrivial aspects in explaining functional abnormalities in MS. Insufficient attention to these aspects likely explains contradictory findings in multiple sclerosis functional imaging studies so far.
Collapse
Affiliation(s)
- Prejaas Tewarie
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Martijn D Steenwijk
- Department of Neurology, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.,Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Bernard M J Uitdehaag
- Department of Neurology, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VUmc MS Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
53
|
Mukta KN, MacLaurin JN, Robinson PA. Theory of corticothalamic brain activity in a spherical geometry: Spectra, coherence, and correlation. Phys Rev E 2017; 96:052410. [PMID: 29347754 DOI: 10.1103/physreve.96.052410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Indexed: 11/07/2022]
Abstract
Corticothalamic neural field theory is applied to a spherical geometry to better model neural activity in the human brain and is also compared with planar approximations. The frequency power spectrum, correlation, and coherence functions are computed analytically and numerically. The effects of cortical boundary conditions and resulting modal aspects of spherical corticothalamic dynamics are explored, showing that the results of spherical and finite planar geometries converge to those for the infinite planar geometry in the limit of large brain size. Estimates are made of the point at which modal series can be truncated and it is found that for physiologically plausible parameters only the lowest few spatial eigenmodes are needed for an accurate representation of macroscopic brain activity. A difference between the geometries is that there is a low-frequency 1/f spectrum in the infinite planar geometry, whereas in the spherical geometry it is 1/f^{2}. Another difference is that the alpha peak in the spherical geometry is sharper and stronger than in the planar geometry. Cortical modal effects can lead to a double alpha peak structure in the power spectrum, although the main determinant of the alpha peak is corticothalamic feedback. In the spherical geometry, the cross spectrum between two points is found to only depend on their relative distance apart. At small spatial separations the low-frequency cross spectrum is stronger than for an infinite planar geometry and the alpha peak is sharper and stronger due to the partitioning of the energy into discrete modes. In the spherical geometry, the coherence function between points decays monotonically as their separation increases at a fixed frequency, but persists further at resonant frequencies. The correlation between two points is found to be positive, regardless of the time lag and spatial separation, but decays monotonically as the separation increases at fixed time lag. At fixed distance the correlation has peaks at multiples of the period of the dominant frequency of system activity.
Collapse
Affiliation(s)
- K N Mukta
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - J N MacLaurin
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
54
|
Roy N, Sanz-Leon P, Robinson PA. Spectral signatures of activity-dependent neural feedback in the corticothalamic system. Phys Rev E 2017; 96:052310. [PMID: 29347805 DOI: 10.1103/physreve.96.052310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Indexed: 11/07/2022]
Abstract
The modulation of neural quantities by presynaptic and postsynaptic activities via local feedback processes is investigated by incorporating nonlinear phenomena such as relative refractory period, synaptic enhancement, synaptic depression, and habituation. This is done by introducing susceptibilities, which quantify the response in either firing threshold or synaptic strength to unit change in either presynaptic or postsynaptic activity. Effects on the power spectra are then analyzed for a realistic corticothalamic model to determine the spectral signatures of various nonlinear processes and to what extent these are distinct. Depending on the feedback processes, there can be enhancements or reductions in low-frequency and/or alpha power, splitting of the alpha resonance, and/or appearance of new resonances at high frequencies. These features in the power spectra allow processes to be fully distinguished where they are unique, or partly distinguished if they are common to only a subset of feedbacks, and can potentially be used to constrain the types, strengths, and dynamics of feedbacks present.
Collapse
Affiliation(s)
- N Roy
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P Sanz-Leon
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
55
|
Hu B, Guo Y, Zou X, Dong J, Pan L, Yu M, Yang Z, Zhou C, Cheng Z, Tang W, Sun H. Controlling mechanism of absence seizures by deep brain stimulus applied on subthalamic nucleus. Cogn Neurodyn 2017; 12:103-119. [PMID: 29435091 DOI: 10.1007/s11571-017-9457-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 09/14/2017] [Accepted: 10/11/2017] [Indexed: 12/11/2022] Open
Abstract
Based on a classical model of the basal ganglia thalamocortical network, in this paper, we employed a type of the deep brain stimulus voltage on the subthalamic nucleus to study the control mechanism of absence epilepsy seizures. We found that the seizure can be well controlled by turning the period and the duration of current stimulation into suitable ranges. It is the very interesting bidirectional periodic adjustment phenomenon. These parameters are easily regulated in clinical practice, therefore, the results obtained in this paper may further help us to understand the treatment mechanism of the epilepsy seizure.
Collapse
Affiliation(s)
- Bing Hu
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yu Guo
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiaoqiang Zou
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jing Dong
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Long Pan
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Min Yu
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhejia Yang
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chaowei Zhou
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhang Cheng
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Wanyue Tang
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Haochen Sun
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
56
|
Neural basis of individual differences in the response to mental stress: a magnetoencephalography study. Brain Imaging Behav 2017; 10:1160-1171. [PMID: 26586263 DOI: 10.1007/s11682-015-9479-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Stress is a risk factor for the onset of mental disorders. Although stress response varies across individuals, the mechanism of individual differences remains unclear. Here, we investigated the neural basis of individual differences in response to mental stress using magnetoencephalography (MEG). Twenty healthy male volunteers completed the Temperament and Character Inventory (TCI). The experiment included two types of tasks: a non-stress-inducing task and a stress-inducing task. During these tasks, participants passively viewed non-stress-inducing images and stress-inducing images, respectively, and MEG was recorded. Before and after each task, MEG and electrocardiography were recorded and subjective ratings were obtained. We grouped participants according to Novelty seeking (NS) - tendency to be exploratory, and Harm avoidance (HA) - tendency to be cautious. Participants with high NS and low HA (n = 10) assessed by TCI had a different neural response to stress than those with low NS and high HA (n = 10). Event-related desynchronization (ERD) in the beta frequency band was observed only in participants with high NS and low HA in the brain region extending from Brodmann's area 31 (including the posterior cingulate cortex and precuneus) from 200 to 350 ms after the onset of picture presentation in the stress-inducing task. Individual variation in personality traits (NS and HA) was associated with the neural response to mental stress. These findings increase our understanding of the psychological and neural basis of individual differences in the stress response, and will contribute to development of the psychotherapeutic approaches to stress-related disorders.
Collapse
|
57
|
Towards building a more complex view of the lateral geniculate nucleus: Recent advances in understanding its role. Prog Neurobiol 2017. [DOI: 10.1016/j.pneurobio.2017.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
58
|
Sanz-Leon P, Robinson PA. Multistability in the corticothalamic system. J Theor Biol 2017; 432:141-156. [PMID: 28830686 DOI: 10.1016/j.jtbi.2017.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/26/2017] [Accepted: 07/15/2017] [Indexed: 12/20/2022]
Abstract
Neural field theory of the corticothalamic system is used to analyze the properties of its steady-state solutions, including their linear stability, in the parameter space of synaptic couplings for physiological parameter ranges representing normal arousal waking states in adult humans. The independent connections of the corticothalamic model define an eight-dimensional parameter space, while specific combinations of these connections parameterize intracortical, corticothalamic, and intrathalamic loops. Multistable regions are systematically identified and the existence of up to five steady-state solutions is confirmed, up to three of which are linearly stable. A key determinant for the existence of five steady states is found to be the number of nonzero connections. This finding had not been previously proposed as the determining factor of high multiplicities of multistability in mesoscopic models of the brain. In the corticothalamic model presented here, multistability occurs when the intrathalamic loop is present (i.e., the reticular nucleus inhibits the relay nuclei), and when the net synaptic effect of the intracortical loop is inhibitory. The signature of these additional waking states is an overall increased level of thalamic activity. It is argued that the additional steady states found may represent hyperarousal states which occur when the corticothalamic projections do not attenuate the activity of the cortex.
Collapse
Affiliation(s)
- Paula Sanz-Leon
- School of Physics, University of Sydney, NSW 2006, Australia; Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia.
| | - P A Robinson
- School of Physics, University of Sydney, NSW 2006, Australia; Center for Integrative Brain Function, University of Sydney, NSW 2006, Australia
| |
Collapse
|
59
|
von Wegner F, Tagliazucchi E, Laufs H. Information-theoretical analysis of resting state EEG microstate sequences - non-Markovianity, non-stationarity and periodicities. Neuroimage 2017; 158:99-111. [PMID: 28673879 DOI: 10.1016/j.neuroimage.2017.06.062] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 01/28/2023] Open
Abstract
We present an information-theoretical analysis of temporal dependencies in EEG microstate sequences during wakeful rest. We interpret microstate sequences as discrete stochastic processes where each state corresponds to a representative scalp potential topography. Testing low-order Markovianity of these discrete sequences directly, we find that none of the recordings fulfils the Markov property of order 0, 1 or 2. Further analyses show that the microstate transition matrix is non-stationary over time in 80% (window size 10 s), 60% (window size 20 s) and 44% (window size 40 s) of the subjects, and that transition matrices are asymmetric in 14/20 (70%) subjects. To assess temporal dependencies globally, the time-lagged mutual information function (autoinformation function) of each sequence is compared to the first-order Markov model defined by the classical transition matrix approach. The autoinformation function for the Markovian case is derived analytically and numerically. For experimental data, we find non-Markovian behaviour in the range of the main EEG frequency bands where distinct periodicities related to the subject's EEG frequency spectrum appear. In particular, the microstate clustering algorithm induces frequency doubling with respect to the EEG power spectral density while the tail of the autoinformation function asymptotically reaches the first-order Markov confidence interval for time lags above 1000 ms. In summary, our results show that resting state microstate sequences are non-Markovian processes which inherit periodicities from the underlying EEG dynamics. Our results interpolate between two diverging models of microstate dynamics, memoryless Markov models on one side, and long-range correlated models on the other: microstate sequences display more complex temporal dependencies than captured by the transition matrix approach in the range of the main EEG frequency bands, but show finite memory content in the long run.
Collapse
Affiliation(s)
- F von Wegner
- Epilepsy Center Rhein-Main, Goethe University Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany; Department of Neurology and Brain Imaging Center, Goethe University Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany.
| | - E Tagliazucchi
- Department of Neurology and Brain Imaging Center, Goethe University Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany; Department of Neurology, Christian-Albrechts University Kiel, Arnold-Heller-Strasse 3, 24105 Kiel, Germany
| | - H Laufs
- Department of Neurology and Brain Imaging Center, Goethe University Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany; Department of Neurology, Christian-Albrechts University Kiel, Arnold-Heller-Strasse 3, 24105 Kiel, Germany
| |
Collapse
|
60
|
Müller EJ, van Albada SJ, Kim JW, Robinson PA. Unified neural field theory of brain dynamics underlying oscillations in Parkinson's disease and generalized epilepsies. J Theor Biol 2017. [PMID: 28633970 DOI: 10.1016/j.jtbi.2017.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanisms underlying pathologically synchronized neural oscillations in Parkinson's disease (PD) and generalized epilepsies are explored in parallel via a physiologically-based neural field model of the corticothalamic-basal ganglia (CTBG) system. The basal ganglia (BG) are approximated as a single effective population and their roles in the modulation of oscillatory dynamics of the corticothalamic (CT) system and vice versa are analyzed. In addition to normal EEG rhythms, enhanced activity around 4 Hz and 20 Hz exists in the model, consistent with the characteristic frequencies observed in PD. These rhythms result from resonances in loops formed between the BG and CT populations, analogous to those that underlie epileptic oscillations in a previous CT model, and which are still present in the combined CTBG system. Dopamine depletion is argued to weaken the dampening of these loop resonances in PD, and network connections then explain the significant coherence observed between BG, thalamic, and cortical population activity around 4-8 Hz and 20 Hz. Parallels between the afferent and efferent connection sites of the thalamic reticular nucleus (TRN) and BG predict low dopamine to correspond to a reduced likelihood of tonic-clonic (grand mal) seizures, which agrees with experimental findings. Furthermore, the model predicts an increased likelihood of absence (petit mal) seizure resulting from pathologically low dopamine levels in accordance with experimental observations. Suppression of absence seizure activity is demonstrated when afferent and efferent BG connections to the CT system are strengthened, which is consistent with other CTBG modeling studies. The BG are demonstrated to have a suppressive effect on activity of the CTBG system near tonic-clonic seizure states, which provides insight into the reported efficacy of current treatments in BG circuits. Sleep states of the TRN are also found to suppress pathological PD activity in accordance with observations. Overall, the findings demonstrate strong parallels between coherent oscillations in generalized epilepsies and PD, and provide insights into possible comorbidities.
Collapse
Affiliation(s)
- E J Müller
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia; Center for Integrative Brain Function, The University of Sydney, NSW 2006, Australia.
| | - S J van Albada
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia; Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Center, Jülich, Germany
| | - J W Kim
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia; Center for Integrative Brain Function, The University of Sydney, NSW 2006, Australia
| | - P A Robinson
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia; Center for Integrative Brain Function, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
61
|
Hashemi M, Hutt A, Hight D, Sleigh J. Anesthetic action on the transmission delay between cortex and thalamus explains the beta-buzz observed under propofol anesthesia. PLoS One 2017; 12:e0179286. [PMID: 28622355 PMCID: PMC5473556 DOI: 10.1371/journal.pone.0179286] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 05/26/2017] [Indexed: 11/18/2022] Open
Abstract
In recent years, more and more surgeries under general anesthesia have been performed with the assistance of electroencephalogram (EEG) monitors. An increase in anesthetic concentration leads to characteristic changes in the power spectra of the EEG. Although tracking the anesthetic-induced changes in EEG rhythms can be employed to estimate the depth of anesthesia, their precise underlying mechanisms are still unknown. A prominent feature in the EEG of some patients is the emergence of a strong power peak in the β-frequency band, which moves to the α-frequency band while increasing the anesthetic concentration. This feature is called the beta-buzz. In the present study, we use a thalamo-cortical neural population feedback model to reproduce observed characteristic features in frontal EEG power obtained experimentally during propofol general anesthesia, such as this beta-buzz. First, we find that the spectral power peak in the α- and δ-frequency ranges depend on the decay rate constant of excitatory and inhibitory synapses, but the anesthetic action on synapses does not explain the beta-buzz. Moreover, considering the action of propofol on the transmission delay between cortex and thalamus, the model reveals that the beta-buzz may result from a prolongation of the transmission delay by increasing propofol concentration. A corresponding relationship between transmission delay and anesthetic blood concentration is derived. Finally, an analytical stability study demonstrates that increasing propofol concentration moves the systems resting state towards its stability threshold.
Collapse
Affiliation(s)
- Meysam Hashemi
- INRIA Grand Est - Nancy, Team NEUROSYS, Villers-lès-Nancy, France
- CNRS, Loria, UMR nō 7503, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Loria, UMR nō 7503, Vandoeuvre-lès-Nancy, France
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Axel Hutt
- German Meteorology Service, Offenbach am Main, Germany
- Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom
| | | | | |
Collapse
|
62
|
Wang Z, Wang Q. Eliminating Absence Seizures through the Deep Brain Stimulation to Thalamus Reticular Nucleus. Front Comput Neurosci 2017; 11:22. [PMID: 28469569 PMCID: PMC5395627 DOI: 10.3389/fncom.2017.00022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 03/27/2017] [Indexed: 01/19/2023] Open
Abstract
Deep brain stimulation (DBS) can play a crucial role in the modulation of absence seizures, yet relevant biophysical mechanisms are not completely established. In this paper, on the basis of a biophysical mean-field model, we investigate a typical absence epilepsy activity by introducing slow kinetics of GABAB receptors on thalamus reticular nucleus (TRN). We find that the region of spike and slow-wave discharges (SWDs) can be reduced greatly when we add the DBS to TRN. Furthermore, we systematically explore how the corresponding stimulation parameters including frequency, amplitude and positive input duration suppress the SWDs under certain conditions. It is shown that the SWDs can be controlled as key stimulation parameters are suitably chosen. The results in this paper can be helpful for researchers to understand the thalamus stimulation in treating epilepsy patients, and provide theoretical basis for future experimental and clinical studies.
Collapse
Affiliation(s)
- Zhihui Wang
- Department of Dynamics and Control, Beihang UniversityBeijing, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang UniversityBeijing, China
| |
Collapse
|
63
|
Neural field model of seizure-like activity in isolated cortex. J Comput Neurosci 2017; 42:307-321. [DOI: 10.1007/s10827-017-0642-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
|
64
|
Yang DP, Robinson PA. Critical dynamics of Hopf bifurcations in the corticothalamic system: Transitions from normal arousal states to epileptic seizures. Phys Rev E 2017; 95:042410. [PMID: 28505725 DOI: 10.1103/physreve.95.042410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Indexed: 06/07/2023]
Abstract
A physiologically based corticothalamic model of large-scale brain activity is used to analyze critical dynamics of transitions from normal arousal states to epileptic seizures, which correspond to Hopf bifurcations. This relates an abstract normal form quantitatively to underlying physiology that includes neural dynamics, axonal propagation, and time delays. Thus, a bridge is constructed that enables normal forms to be used to interpret quantitative data. The normal form of the Hopf bifurcations with delays is derived using Hale's theory, the center manifold theorem, and normal form analysis, and it is found to be explicitly expressed in terms of transfer functions and the sensitivity matrix of a reduced open-loop system. It can be applied to understand the effect of each physiological parameter on the critical dynamics and determine whether the Hopf bifurcation is supercritical or subcritical in instabilities that lead to absence and tonic-clonic seizures. Furthermore, the effects of thalamic and cortical nonlinearities on the bifurcation type are investigated, with implications for the roles of underlying physiology. The theoretical predictions about the bifurcation type and the onset dynamics are confirmed by numerical simulations and provide physiologically based criteria for determining bifurcation types from first principles. The results are consistent with experimental data from previous studies, imply that new regimes of seizure transitions may exist in clinical settings, and provide a simplified basis for control-systems interventions. Using the normal form, and the full equations from which it is derived, more complex dynamics, such as quasiperiodic cycles and saddle cycles, are discovered near the critical points of the subcritical Hopf bifurcations.
Collapse
Affiliation(s)
- Dong-Ping Yang
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
65
|
Clinical Applications of Stochastic Dynamic Models of the Brain, Part I: A Primer. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017. [PMID: 29528293 DOI: 10.1016/j.bpsc.2017.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biological phenomena arise through interactions between an organism's intrinsic dynamics and stochastic forces-random fluctuations due to external inputs, thermal energy, or other exogenous influences. Dynamic processes in the brain derive from neurophysiology and anatomical connectivity; stochastic effects arise through sensory fluctuations, brainstem discharges, and random microscopic states such as thermal noise. The dynamic evolution of systems composed of both dynamic and random effects can be studied with stochastic dynamic models (SDMs). This article, Part I of a two-part series, offers a primer of SDMs and their application to large-scale neural systems in health and disease. The companion article, Part II, reviews the application of SDMs to brain disorders. SDMs generate a distribution of dynamic states, which (we argue) represent ideal candidates for modeling how the brain represents states of the world. When augmented with variational methods for model inversion, SDMs represent a powerful means of inferring neuronal dynamics from functional neuroimaging data in health and disease. Together with deeper theoretical considerations, this work suggests that SDMs will play a unique and influential role in computational psychiatry, unifying empirical observations with models of perception and behavior.
Collapse
|
66
|
Umehara H, Okada M, Teramae JN, Naruse Y. Macroscopic neural mass model constructed from a current-based network model of spiking neurons. BIOLOGICAL CYBERNETICS 2017; 111:91-103. [PMID: 28168402 DOI: 10.1007/s00422-017-0710-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
Neural mass models (NMMs) are efficient frameworks for describing macroscopic cortical dynamics including electroencephalogram and magnetoencephalogram signals. Originally, these models were formulated on an empirical basis of synaptic dynamics with relatively long time constants. By clarifying the relations between NMMs and the dynamics of microscopic structures such as neurons and synapses, we can better understand cortical and neural mechanisms from a multi-scale perspective. In a previous study, the NMMs were analytically derived by averaging the equations of synaptic dynamics over the neurons in the population and further averaging the equations of the membrane-potential dynamics. However, the averaging of synaptic current assumes that the neuron membrane potentials are nearly time invariant and that they remain at sub-threshold levels to retain the conductance-based model. This approximation limits the NMM to the non-firing state. In the present study, we newly propose a derivation of a NMM by alternatively approximating the synaptic current which is assumed to be independent of the membrane potential, thus adopting a current-based model. Our proposed model releases the constraint of the nearly constant membrane potential. We confirm that the obtained model is reducible to the previous model in the non-firing situation and that it reproduces the temporal mean values and relative power spectrum densities of the average membrane potentials for the spiking neurons. It is further ensured that the existing NMM properly models the averaged dynamics over individual neurons even if they are spiking in the populations.
Collapse
Affiliation(s)
- Hiroaki Umehara
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University, 588-2 Iwaoka, Nishi-ku, Kobe, Hyogo, 651-2492, Japan.
| | - Masato Okada
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University, 588-2 Iwaoka, Nishi-ku, Kobe, Hyogo, 651-2492, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Jun-Nosuke Teramae
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasushi Naruse
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University, 588-2 Iwaoka, Nishi-ku, Kobe, Hyogo, 651-2492, Japan
| |
Collapse
|
67
|
Gollo LL, Roberts JA, Cocchi L. Mapping how local perturbations influence systems-level brain dynamics. Neuroimage 2017; 160:97-112. [PMID: 28126550 DOI: 10.1016/j.neuroimage.2017.01.057] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/12/2016] [Accepted: 01/23/2017] [Indexed: 11/15/2022] Open
Abstract
The human brain exhibits a distinct spatiotemporal organization that supports brain function and can be manipulated via local brain stimulation. Such perturbations to local cortical dynamics are globally integrated by distinct neural systems. However, it remains unclear how local changes in neural activity affect large-scale system dynamics. Here, we briefly review empirical and computational studies addressing how localized perturbations affect brain activity. We then systematically analyze a model of large-scale brain dynamics, assessing how localized changes in brain activity at the different sites affect whole-brain dynamics. We find that local stimulation induces changes in brain activity that can be summarized by relatively smooth tuning curves, which relate a region's effectiveness as a stimulation site to its position within the cortical hierarchy. Our results also support the notion that brain hubs, operating in a slower regime, are more resilient to focal perturbations and critically contribute to maintain stability in global brain dynamics. In contrast, perturbations of peripheral regions, characterized by faster activity, have greater impact on functional connectivity. As a parallel with this region-level result, we also find that peripheral systems such as the visual and sensorimotor networks were more affected by local perturbations than high-level systems such as the cingulo-opercular network. Our findings highlight the importance of a periphery-to-core hierarchy to determine the effect of local stimulation on the brain network. This study also provides novel resources to orient empirical work aiming at manipulating functional connectivity using non-invasive brain stimulation.
Collapse
Affiliation(s)
| | - James A Roberts
- QIMR Berghofer Medical Research Institute, Brisbane, Australia; Centre of Excellence for Integrative Brain Function, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Luca Cocchi
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| |
Collapse
|
68
|
Forgacs PB, Frey HP, Velazquez A, Thompson S, Brodie D, Moitra V, Rabani L, Park S, Agarwal S, Falo MC, Schiff ND, Claassen J. Dynamic regimes of neocortical activity linked to corticothalamic integrity correlate with outcomes in acute anoxic brain injury after cardiac arrest. Ann Clin Transl Neurol 2017; 4:119-129. [PMID: 28168211 PMCID: PMC5288467 DOI: 10.1002/acn3.385] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/22/2016] [Accepted: 12/02/2016] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Recognition of potential for neurological recovery in patients who remain comatose after cardiac arrest is challenging and strains clinical decision making. Here, we utilize an approach that is based on physiological principles underlying recovery of consciousness and show correlation with clinical recovery after acute anoxic brain injury. METHODS A cohort study of 54 patients admitted to an Intensive Care Unit after cardiac arrest who underwent standardized bedside behavioral testing (Coma Recovery Scale - Revised [CRS-R]) during EEG monitoring. Blinded to all clinical variables, artifact-free EEG segments were selected around maximally aroused states and analyzed using a multi-taper method to assess frequency spectral content. EEG spectral features were assessed based on pre-defined categories that are linked to anterior forebrain corticothalamic integrity. Clinical outcomes were determined at the time of hospital discharge, using Cerebral Performance Categories (CPC). RESULTS Ten patients with ongoing seizures, myogenic artifacts or technical limitations obscuring recognition of underlying cortical dynamic activity were excluded from primary analysis. Of the 44 remaining patients with distinct EEG spectral features, 39 (88%) fit into our predefined categories. In these patients, spectral features corresponding to higher levels of anterior forebrain corticothalamic integrity correlated with higher levels of consciousness and favorable clinical outcome at the time of hospital discharge (P = 0.014). INTERPRETATION Predicted transitions of neocortical dynamics that indicate functional integrity of anterior forebrain corticothalamic circuitry correlate with clinical outcomes in postcardiac-arrest patients. Our results support a new biologically driven approach toward better understanding of neurological recovery after cardiac arrest.
Collapse
Affiliation(s)
- Peter B Forgacs
- Feil Family Brain and Mind Research Institute and Department of Neurology Weill Cornell Medical College New York New York; Center for Clinical and Translational Science The Rockefeller University New York New York
| | - Hans-Peter Frey
- Division of Critical Care Neurology Department of Neurology Columbia University College of Physicians and Surgeons New York New York
| | - Angela Velazquez
- Division of Critical Care Neurology Department of Neurology Columbia University College of Physicians and Surgeons New York New York
| | - Stephanie Thompson
- Division of Critical Care Neurology Department of Neurology Columbia University College of Physicians and Surgeons New York New York
| | - Daniel Brodie
- Division Medical Intensive Care Department of Medicine Columbia University College of Physicians and Surgeons New York New York
| | - Vivek Moitra
- Division Cardiothoracic and Surgical Critical Care Department of Anesthesiology Columbia University College of Physicians and Surgeons New York New York
| | - Leroy Rabani
- Cardiology Division Department of Medicine Columbia University College of Physicians and Surgeons New York New York
| | - Soojin Park
- Division of Critical Care Neurology Department of Neurology Columbia University College of Physicians and Surgeons New York New York
| | - Sachin Agarwal
- Division of Critical Care Neurology Department of Neurology Columbia University College of Physicians and Surgeons New York New York
| | - Maria Cristina Falo
- Division of Critical Care Neurology Department of Neurology Columbia University College of Physicians and Surgeons New York New York
| | - Nicholas D Schiff
- Feil Family Brain and Mind Research Institute and Department of Neurology Weill Cornell Medical College New York New York; Center for Clinical and Translational Science The Rockefeller University New York New York
| | - Jan Claassen
- Division of Critical Care Neurology Department of Neurology Columbia University College of Physicians and Surgeons New York New York
| |
Collapse
|
69
|
Tewarie P, Hillebrand A, van Dijk BW, Stam CJ, O'Neill GC, Van Mieghem P, Meier JM, Woolrich MW, Morris PG, Brookes MJ. Integrating cross-frequency and within band functional networks in resting-state MEG: A multi-layer network approach. Neuroimage 2016; 142:324-336. [PMID: 27498371 DOI: 10.1016/j.neuroimage.2016.07.057] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/17/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022] Open
Abstract
Neuronal oscillations exist across a broad frequency spectrum, and are thought to provide a mechanism of interaction between spatially separated brain regions. Since ongoing mental activity necessitates the simultaneous formation of multiple networks, it seems likely that the brain employs interactions within multiple frequency bands, as well as cross-frequency coupling, to support such networks. Here, we propose a multi-layer network framework that elucidates this pan-spectral picture of network interactions. Our network consists of multiple layers (frequency-band specific networks) that influence each other via inter-layer (cross-frequency) coupling. Applying this model to MEG resting-state data and using envelope correlations as connectivity metric, we demonstrate strong dependency between within layer structure and inter-layer coupling, indicating that networks obtained in different frequency bands do not act as independent entities. More specifically, our results suggest that frequency band specific networks are characterised by a common structure seen across all layers, superimposed by layer specific connectivity, and inter-layer coupling is most strongly associated with this common mode. Finally, using a biophysical model, we demonstrate that there are two regimes of multi-layer network behaviour; one in which different layers are independent and a second in which they operate highly dependent. Results suggest that the healthy human brain operates at the transition point between these regimes, allowing for integration and segregation between layers. Overall, our observations show that a complete picture of global brain network connectivity requires integration of connectivity patterns across the full frequency spectrum.
Collapse
Affiliation(s)
- Prejaas Tewarie
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom.
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology, MEG Center, VU University Medical Centre, Amsterdam, The Netherlands
| | - Bob W van Dijk
- Department of Clinical Neurophysiology, MEG Center, VU University Medical Centre, Amsterdam, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology, MEG Center, VU University Medical Centre, Amsterdam, The Netherlands
| | - George C O'Neill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Piet Van Mieghem
- Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft, The Netherlands
| | - Jil M Meier
- Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft, The Netherlands
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity (OHBA), University of Oxford, Oxford, United Kingdom; Centre for the Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, Oxford, United Kingdom
| | - Peter G Morris
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
70
|
Robinson PA, Zhao X, Aquino KM, Griffiths JD, Sarkar S, Mehta-Pandejee G. Eigenmodes of brain activity: Neural field theory predictions and comparison with experiment. Neuroimage 2016; 142:79-98. [PMID: 27157788 DOI: 10.1016/j.neuroimage.2016.04.050] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 03/13/2016] [Accepted: 04/21/2016] [Indexed: 12/20/2022] Open
Abstract
Neural field theory of the corticothalamic system is applied to predict and analyze the activity eigenmodes of the bihemispheric brain, focusing particularly on their spatial structure. The eigenmodes of a single brain hemisphere are found to be close analogs of spherical harmonics, which are the natural modes of the sphere. Instead of multiple eigenvalues being equal, as in the spherical case, cortical folding splits them to have distinct values. Inclusion of interhemispheric connections between homologous regions via the corpus callosum leads to further splitting that depends on symmetry or antisymmetry of activity between brain hemispheres, and the strength and sign of the interhemispheric connections. Symmetry properties of the lowest observed eigenmodes strongly constrain the interhemispheric connectivity strengths and unihemispheric mode spectra, and it is predicted that most spontaneous brain activity will be symmetric between hemispheres, consistent with observations. Comparison with the eigenmodes of an experimental anatomical connectivity matrix confirms these results, permits the relative strengths of intrahemispheric and interhemispheric connectivities to be approximately inferred from their eigenvalues, and lays the foundation for further experimental tests. The results are consistent with brain activity being in corticothalamic eigenmodes, rather than discrete "networks" and open the way to new approaches to brain analysis.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia.
| | - X Zhao
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| | - K M Aquino
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Sir Peter Mansfield Imaging Center, University of Nottingham, Nottingham NG7 2RD, UK, EU
| | - J D Griffiths
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Rotman Research Institute at Baycrest, 3560 Bathurst St, Toronto, Ontario, M6A 2E1, Canada
| | - S Sarkar
- Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Design Lab, School of Architecture, Design, and Planning, University of Sydney, New South Wales 2006, Australia
| | - Grishma Mehta-Pandejee
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
71
|
Stephan KE, Binder EB, Breakspear M, Dayan P, Johnstone EC, Meyer-Lindenberg A, Schnyder U, Wang XJ, Bach DR, Fletcher PC, Flint J, Frank MJ, Heinz A, Huys QJM, Montague PR, Owen MJ, Friston KJ. Charting the landscape of priority problems in psychiatry, part 2: pathogenesis and aetiology. Lancet Psychiatry 2016; 3:84-90. [PMID: 26573969 DOI: 10.1016/s2215-0366(15)00360-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 12/11/2022]
Abstract
This is the second of two companion papers proposing priority problems for research on mental disorders. Whereas the first paper focuses on questions of nosology and diagnosis, this Personal View concerns pathogenesis and aetiology of psychiatric diseases. We hope that this (non-exhaustive and subjective) list of problems, nominated by scientists and clinicians from different fields and institutions, provides guidance and perspectives for choosing future directions in psychiatric science.
Collapse
Affiliation(s)
- Klaas E Stephan
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich, Zurich, Switzerland; ETH Zurich, Zurich, Switzerland; The Wellcome Trust Centre for Neuroimaging, University College London, London, UK; Max Planck Institute for Metabolism Research, Cologne, Germany.
| | - Elisabeth B Binder
- Deptartment of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael Breakspear
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Metro North Mental Health Service, Brisbane, Australia
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Eve C Johnstone
- Department of Psychiatry, University of Edinburgh, Edinburgh, UK
| | | | - Ulrich Schnyder
- Department of Psychiatry and Psychotherapy, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA; Institute of Brain and Cognitive Science, NYU Shanghai, Shanghai, China
| | - Dominik R Bach
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland; The Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - Paul C Fletcher
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Jonathan Flint
- The Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, UK
| | - Michael J Frank
- Brown Institute for Brain Science, Brown University, Providence, RI, USA
| | - Andreas Heinz
- Department of Psychiatry, Humboldt University Berlin, Berlin, Germany
| | - Quentin J M Huys
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland; ETH Zurich, Zurich, Switzerland
| | - P Read Montague
- The Wellcome Trust Centre for Neuroimaging, University College London, London, UK; Computational Psychiatry Unit, Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK; Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Karl J Friston
- The Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| |
Collapse
|
72
|
Klinshov V, Franović I. Mean-field dynamics of a random neural network with noise. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062813. [PMID: 26764750 DOI: 10.1103/physreve.92.062813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 06/05/2023]
Abstract
We consider a network of randomly coupled rate-based neurons influenced by external and internal noise. We derive a second-order stochastic mean-field model for the network dynamics and use it to analyze the stability and bifurcations in the thermodynamic limit, as well as to study the fluctuations due to the finite-size effect. It is demonstrated that the two types of noise have substantially different impact on the network dynamics. While both sources of noise give rise to stochastic fluctuations in the case of the finite-size network, only the external noise affects the stationary activity levels of the network in the thermodynamic limit. We compare the theoretical predictions with the direct simulation results and show that they agree for large enough network sizes and for parameter domains sufficiently away from bifurcations.
Collapse
Affiliation(s)
- Vladimir Klinshov
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
| | - Igor Franović
- Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| |
Collapse
|
73
|
Abeysuriya RG, Robinson PA. Real-time automated EEG tracking of brain states using neural field theory. J Neurosci Methods 2015; 258:28-45. [PMID: 26523766 DOI: 10.1016/j.jneumeth.2015.09.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/13/2015] [Accepted: 09/16/2015] [Indexed: 12/01/2022]
Abstract
A real-time fitting system is developed and used to fit the predictions of an established physiologically-based neural field model to electroencephalographic spectra, yielding a trajectory in a physiological parameter space that parametrizes intracortical, intrathalamic, and corticothalamic feedbacks as the arousal state evolves continuously over time. This avoids traditional sleep/wake staging (e.g., using Rechtschaffen-Kales stages), which is fundamentally limited because it forces classification of continuous dynamics into a few discrete categories that are neither physiologically informative nor individualized. The classification is also subject to substantial interobserver disagreement because traditional staging relies in part on subjective evaluations. The fitting routine objectively and robustly tracks arousal parameters over the course of a full night of sleep, and runs in real-time on a desktop computer. The system developed here supersedes discrete staging systems by representing arousal states in terms of physiology, and provides an objective measure of arousal state which solves the problem of interobserver disagreement. Discrete stages from traditional schemes can be expressed in terms of model parameters for backward compatibility with prior studies.
Collapse
Affiliation(s)
- R G Abeysuriya
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Neurosleep, 431 Glebe Point Rd, Glebe, New South Wales 2037, Australia; Brain Dynamics Center, Sydney Medical School - Western, University of Sydney, Westmead, New South Wales 2145, Australia.
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Neurosleep, 431 Glebe Point Rd, Glebe, New South Wales 2037, Australia; Brain Dynamics Center, Sydney Medical School - Western, University of Sydney, Westmead, New South Wales 2145, Australia
| |
Collapse
|
74
|
Goldstein MR, Peterson MJ, Sanguinetti JL, Tononi G, Ferrarelli F. Topographic deficits in alpha-range resting EEG activity and steady state visual evoked responses in schizophrenia. Schizophr Res 2015; 168:145-52. [PMID: 26159669 DOI: 10.1016/j.schres.2015.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 01/16/2023]
Abstract
Deficits in both resting alpha-range (8-12Hz) electroencephalogram (EEG) activity and steady state evoked potential (SSVEP) responses have been reported in schizophrenia. However, the topographic specificity of these effects, the relationship between resting EEG and SSVEP, as well as the impact of antipsychotic medication on these effects, have not been clearly delineated. The present study sought to address these questions with 256 channel high-density EEG recordings in a group of 13 schizophrenia patients, 13 healthy controls, and 10 non-schizophrenia patients with psychiatric diagnoses currently taking antipsychotic medication. At rest, the schizophrenia group demonstrated decreased alpha EEG power in frontal and occipital areas relative to healthy controls. With SSVEP stimulation centered in the alpha band (10Hz), but not with stimulation above (15Hz) or below (7Hz) this range, the occipital deficit in alpha power was partially reverted. However, the frontal deficit persisted and contributed to a significantly reduced topographic relationship between occipital and frontal alpha activity for resting EEG and 10Hz SSVEP alpha power in schizophrenia patients. No significant differences were observed between healthy and medicated controls or between medicated controls and schizophrenia. These findings suggest a potential intrinsic deficit in frontal eyes-closed EEG alpha oscillations in schizophrenia, whereby potent visual stimulation centered in that frequency range results in an increase in the occipital alpha power of these patients, which however does not extend to frontal regions. Future research to evaluate the cortical and subcortical mechanisms of these effects is warranted.
Collapse
Affiliation(s)
- Michael R Goldstein
- Department of Psychiatry, University of Wisconsin, Madison, WI, United States; Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Michael J Peterson
- Department of Psychiatry, University of Wisconsin, Madison, WI, United States
| | | | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, WI, United States
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Wisconsin, Madison, WI, United States.
| |
Collapse
|
75
|
Zhao X, Robinson PA. Generalized seizures in a neural field model with bursting dynamics. J Comput Neurosci 2015; 39:197-216. [PMID: 26282528 DOI: 10.1007/s10827-015-0571-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 07/02/2015] [Accepted: 07/26/2015] [Indexed: 11/27/2022]
Abstract
The mechanisms underlying generalized seizures are explored with neural field theory. A corticothalamic neural field model that has accounted for multiple brain activity phenomena and states is used to explore changes leading to pathological seizure states. It is found that absence seizures arise from instabilities in the system and replicate experimental studies in numerous animal models and clinical studies.
Collapse
Affiliation(s)
- X Zhao
- School of Physics, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Center for Integrative Brain Function, University of Sydney, NSW, 2006, Australia.
- Neurosleep, 431 Glebe Point Rd, Glebe, New South Wales, 2037, Australia.
- Cooperative Research Center for Alertness, Safety, and Productivity, University of Sydney, NSW, 2006, Australia.
| | - P A Robinson
- School of Physics, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Center for Integrative Brain Function, University of Sydney, NSW, 2006, Australia
- Neurosleep, 431 Glebe Point Rd, Glebe, New South Wales, 2037, Australia
- Cooperative Research Center for Alertness, Safety, and Productivity, University of Sydney, NSW, 2006, Australia
| |
Collapse
|
76
|
Complexity of cardiac signals for predicting changes in alpha-waves after stress in patients undergoing cardiac catheterization. Sci Rep 2015; 5:13315. [PMID: 26286628 PMCID: PMC4541158 DOI: 10.1038/srep13315] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/21/2015] [Indexed: 12/02/2022] Open
Abstract
The hierarchical interaction between electrical signals of the brain and heart is not fully understood. We hypothesized that the complexity of cardiac electrical activity can be used to predict changes in encephalic electricity after stress. Most methods for analyzing the interaction between the heart rate variability (HRV) and electroencephalography (EEG) require a computation-intensive mathematical model. To overcome these limitations and increase the predictive accuracy of human relaxing states, we developed a method to test our hypothesis. In addition to routine linear analysis, multiscale entropy and detrended fluctuation analysis of the HRV were used to quantify nonstationary and nonlinear dynamic changes in the heart rate time series. Short-time Fourier transform was applied to quantify the power of EEG. The clinical, HRV, and EEG parameters of postcatheterization EEG alpha waves were analyzed using change-score analysis and generalized additive models. In conclusion, the complexity of cardiac electrical signals can be used to predict EEG changes after stress.
Collapse
|
77
|
How the cortico-thalamic feedback affects the EEG power spectrum over frontal and occipital regions during propofol-induced sedation. J Comput Neurosci 2015; 39:155-79. [PMID: 26256583 DOI: 10.1007/s10827-015-0569-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/05/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2022]
Abstract
Increasing concentrations of the anaesthetic agent propofol initially induces sedation before achieving full general anaesthesia. During this state of anaesthesia, the observed specific changes in electroencephalographic (EEG) rhythms comprise increased activity in the δ- (0.5-4 Hz) and α- (8-13 Hz) frequency bands over the frontal region, but increased δ- and decreased α-activity over the occipital region. It is known that the cortex, the thalamus, and the thalamo-cortical feedback loop contribute to some degree to the propofol-induced changes in the EEG power spectrum. However the precise role of each structure to the dynamics of the EEG is unknown. In this paper we apply a thalamo-cortical neuronal population model to reproduce the power spectrum changes in EEG during propofol-induced anaesthesia sedation. The model reproduces the power spectrum features observed experimentally both in frontal and occipital electrodes. Moreover, a detailed analysis of the model indicates the importance of multiple resting states in brain activity. The work suggests that the α-activity originates from the cortico-thalamic relay interaction, whereas the emergence of δ-activity results from the full cortico-reticular-relay-cortical feedback loop with a prominent enforced thalamic reticular-relay interaction. This model suggests an important role for synaptic GABAergic receptors at relay neurons and, more generally, for the thalamus in the generation of both the δ- and the α- EEG patterns that are seen during propofol anaesthesia sedation.
Collapse
|
78
|
Stephan K, Iglesias S, Heinzle J, Diaconescu A. Translational Perspectives for Computational Neuroimaging. Neuron 2015; 87:716-32. [DOI: 10.1016/j.neuron.2015.07.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
79
|
Physiologically based arousal state estimation and dynamics. J Neurosci Methods 2015; 253:55-69. [PMID: 26072247 DOI: 10.1016/j.jneumeth.2015.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/13/2015] [Accepted: 06/03/2015] [Indexed: 11/21/2022]
Abstract
A neural field model of the brain is used to represent brain states using physiologically based parameters rather than arbitrary, discrete sleep stages. Each brain state is represented as a point in a physiologically parametrized space. Over time, changes in brain state cause these points to trace continuous trajectories, unlike the artificial discrete jumps in sleep stage that occur with traditional sleep staging. The discrete Rechtschaffen and Kales sleep stages are associated with regions in the physiological parameter space based on their electroencephalographic features, which enables interpretation of traditional sleep stages in terms of physiological trajectories. Wake states are found to be associated with strong positive corticothalamic feedback compared to sleep. The existence of physiologically valid trajectories between brain states in the model is demonstrated. Actual trajectories for an individual can be determined by fitting the model using EEG alone, and enable analysis of the physiological differences between subjects.
Collapse
|
80
|
Robinson PA, Roy N. Neural field theory of nonlinear wave-wave and wave-neuron processes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062719. [PMID: 26172747 DOI: 10.1103/physreve.91.062719] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Indexed: 06/04/2023]
Abstract
Systematic expansion of neural field theory equations in terms of nonlinear response functions is carried out to enable a wide variety of nonlinear wave-wave and wave-neuron processes to be treated systematically in systems involving multiple neural populations. The results are illustrated by analyzing second-harmonic generation, and they can also be applied to wave-wave coalescence, multiharmonic generation, facilitation, depression, refractoriness, and other nonlinear processes.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia
- Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
- Neurosleep, 431 Glebe Point Road, Glebe, New South Wales 2037, Australia
| | - N Roy
- School of Physics, University of Sydney, New South Wales 2006, Australia
- Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
81
|
Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK. Mathematical framework for large-scale brain network modeling in The Virtual Brain. Neuroimage 2015; 111:385-430. [PMID: 25592995 DOI: 10.1016/j.neuroimage.2015.01.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 12/29/2014] [Accepted: 01/01/2015] [Indexed: 12/19/2022] Open
|
82
|
Negahbani E, Steyn-Ross DA, Steyn-Ross ML, Wilson MT, Sleigh JW. Noise-induced precursors of state transitions in the stochastic Wilson-cowan model. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2015; 5:9. [PMID: 25859420 PMCID: PMC4388113 DOI: 10.1186/s13408-015-0021-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
The Wilson-Cowan neural field equations describe the dynamical behavior of a 1-D continuum of excitatory and inhibitory cortical neural aggregates, using a pair of coupled integro-differential equations. Here we use bifurcation theory and small-noise linear stochastics to study the range of a phase transitions-sudden qualitative changes in the state of a dynamical system emerging from a bifurcation-accessible to the Wilson-Cowan network. Specifically, we examine saddle-node, Hopf, Turing, and Turing-Hopf instabilities. We introduce stochasticity by adding small-amplitude spatio-temporal white noise, and analyze the resulting subthreshold fluctuations using an Ornstein-Uhlenbeck linearization. This analysis predicts divergent changes in correlation and spectral characteristics of neural activity during close approach to bifurcation from below. We validate these theoretical predictions using numerical simulations. The results demonstrate the role of noise in the emergence of critically slowed precursors in both space and time, and suggest that these early-warning signals are a universal feature of a neural system close to bifurcation. In particular, these precursor signals are likely to have neurobiological significance as early warnings of impending state change in the cortex. We support this claim with an analysis of the in vitro local field potentials recorded from slices of mouse-brain tissue. We show that in the period leading up to emergence of spontaneous seizure-like events, the mouse field potentials show a characteristic spectral focusing toward lower frequencies concomitant with a growth in fluctuation variance, consistent with critical slowing near a bifurcation point. This observation of biological criticality has clear implications regarding the feasibility of seizure prediction.
Collapse
Affiliation(s)
- Ehsan Negahbani
- />School of Engineering, The University of Waikato, Hamilton, 3200 New Zealand
| | | | - Moira L. Steyn-Ross
- />School of Engineering, The University of Waikato, Hamilton, 3200 New Zealand
| | - Marcus T. Wilson
- />School of Engineering, The University of Waikato, Hamilton, 3200 New Zealand
| | - Jamie W. Sleigh
- />Waikato Clinical School, University of Auckland, Hamilton, 3204 New Zealand
| |
Collapse
|
83
|
Saggar M, Zanesco AP, King BG, Bridwell DA, MacLean KA, Aichele SR, Jacobs TL, Wallace BA, Saron CD, Miikkulainen R. Mean-field thalamocortical modeling of longitudinal EEG acquired during intensive meditation training. Neuroimage 2015; 114:88-104. [PMID: 25862265 DOI: 10.1016/j.neuroimage.2015.03.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/10/2014] [Accepted: 03/27/2015] [Indexed: 12/18/2022] Open
Abstract
Meditation training has been shown to enhance attention and improve emotion regulation. However, the brain processes associated with such training are poorly understood and a computational modeling framework is lacking. Modeling approaches that can realistically simulate neurophysiological data while conforming to basic anatomical and physiological constraints can provide a unique opportunity to generate concrete and testable hypotheses about the mechanisms supporting complex cognitive tasks such as meditation. Here we applied the mean-field computational modeling approach using the scalp-recorded electroencephalogram (EEG) collected at three assessment points from meditating participants during two separate 3-month-long shamatha meditation retreats. We modeled cortical, corticothalamic, and intrathalamic interactions to generate a simulation of EEG signals recorded across the scalp. We also present two novel extensions to the mean-field approach that allow for: (a) non-parametric analysis of changes in model parameter values across all channels and assessments; and (b) examination of variation in modeled thalamic reticular nucleus (TRN) connectivity over the retreat period. After successfully fitting whole-brain EEG data across three assessment points within each retreat, two model parameters were found to replicably change across both meditation retreats. First, after training, we observed an increased temporal delay between modeled cortical and thalamic cells. This increase provides a putative neural mechanism for a previously observed reduction in individual alpha frequency in these same participants. Second, we found decreased inhibitory connection strength between the TRN and secondary relay nuclei (SRN) of the modeled thalamus after training. This reduction in inhibitory strength was found to be associated with increased dynamical stability of the model. Altogether, this paper presents the first computational approach, taking core aspects of physiology and anatomy into account, to formally model brain processes associated with intensive meditation training. The observed changes in model parameters inform theoretical accounts of attention training through meditation, and may motivate future study on the use of meditation in a variety of clinical populations.
Collapse
Affiliation(s)
- Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Department of Computer Science, University of Texas at Austin, TX, USA.
| | - Anthony P Zanesco
- Department of Psychology, University of California, Davis, CA, USA; Center for Mind and Brain, University of California, Davis, CA, USA
| | - Brandon G King
- Department of Psychology, University of California, Davis, CA, USA; Center for Mind and Brain, University of California, Davis, CA, USA
| | | | - Katherine A MacLean
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen R Aichele
- Department of Psychology, University of California, Davis, CA, USA; Center for Mind and Brain, University of California, Davis, CA, USA
| | - Tonya L Jacobs
- Center for Mind and Brain, University of California, Davis, CA, USA
| | - B Alan Wallace
- Santa Barbara Institute for Consciousness Studies, Santa Barbara, CA, USA
| | - Clifford D Saron
- Center for Mind and Brain, University of California, Davis, CA, USA; The M.I.N.D. Institute, University of California, Davis, Sacramento, CA, USA
| | | |
Collapse
|
84
|
Roberts JA, Boonstra TW, Breakspear M. The heavy tail of the human brain. Curr Opin Neurobiol 2015; 31:164-72. [DOI: 10.1016/j.conb.2014.10.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 11/17/2022]
|
85
|
Zhao X, Kim JW, Robinson PA. Slow-wave oscillations in a corticothalamic model of sleep and wake. J Theor Biol 2015; 370:93-102. [PMID: 25659479 DOI: 10.1016/j.jtbi.2015.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 01/21/2015] [Accepted: 01/24/2015] [Indexed: 11/27/2022]
Abstract
A physiologically-based corticothalamic neural field model is used to study slow wave oscillations including cortical UP and DOWN states in deep sleep by extending it to incorporate bursting dynamics of neurons in the thalamic reticular nucleus. The interplay of local bursting dynamics and network interactions produces the cortical UP and DOWN states of slow wave sleep while preserving previously verified model predictions in the wake state. Results show that EEG spectral features in wake and sleep are reproduced. The bursting is subthreshold but acts to intensify the amplitude of oscillations in slow wave sleep with deep UP/DOWN oscillations on the cortex emerging naturally. Furthermore, there is a continuous cycle between the two regimes, rather than a flip-flop between discrete states.
Collapse
Affiliation(s)
- X Zhao
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia; Center of Research Excellence, Neurosleep, 431 Glebe Point Rd, Glebe, New South Wales 2037, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Cooperative Research Center for Alertness, Safety, and Productivity, University of Sydney, New South Wales 2006, Australia.
| | - J W Kim
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia; Center of Research Excellence, Neurosleep, 431 Glebe Point Rd, Glebe, New South Wales 2037, Australia
| | - P A Robinson
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia; Center of Research Excellence, Neurosleep, 431 Glebe Point Rd, Glebe, New South Wales 2037, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Cooperative Research Center for Alertness, Safety, and Productivity, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
86
|
Role of white-matter pathways in coordinating alpha oscillations in resting visual cortex. Neuroimage 2015; 106:328-39. [DOI: 10.1016/j.neuroimage.2014.10.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/21/2014] [Accepted: 10/26/2014] [Indexed: 11/18/2022] Open
|
87
|
Haab L, Mortezapouraghdam Z, Strauss DJ. Modeling prediction of a generalized habituation deficit in decompensated tinnitus sufferers. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:5691-4. [PMID: 25571287 DOI: 10.1109/embc.2014.6944919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The pathologic auditory sensation in decompensated tinnitus patients is accompanied by the inability to habituate even temporary to this sound. This disability might originate from simultaneous activation of brain areas for the appraisal of the stimulus valence as, e.g., the limbic system. This coactivation of limbic areas is likely to modulate the degree and persistence of selective attention assigned to the tinnitus stream, which in turn could also explain interindividual differences in tinnitus loudness perception. Preliminary studies demonstrate that the amount of allocated attention and the habituation deficit can be mapped to changes in auditory late evoked responses (ALRs). Utilizing a numerical model for the simulation of ALRs we were able to predict a general habituation behavior in two patient groups with different degrees of tinnitus severity. Evaluating the instantaneous phase of simulated and measured ALRs by its von Mises concentration parameter, we verify a habituation deficit relative to the degree of decompensation and thus provide additional support for our neurofunctional model of limbic influences on neural processing of sensory information.
Collapse
|
88
|
A Multiscale “Working Brain” Model. VALIDATING NEURO-COMPUTATIONAL MODELS OF NEUROLOGICAL AND PSYCHIATRIC DISORDERS 2015. [DOI: 10.1007/978-3-319-20037-8_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
89
|
Thalamic pathways underlying prefrontal cortex–medial temporal lobe oscillatory interactions. Trends Neurosci 2015; 38:3-12. [DOI: 10.1016/j.tins.2014.09.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 12/15/2022]
|
90
|
Hu B, Guo D, Wang Q. Control of absence seizures induced by the pathways connected to SRN in corticothalamic system. Cogn Neurodyn 2014; 9:279-89. [PMID: 25972977 DOI: 10.1007/s11571-014-9321-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/09/2014] [Accepted: 11/16/2014] [Indexed: 10/24/2022] Open
Abstract
The cerebral cortex, thalamus and basal ganglia together form an important network in the brain, which is closely related to several nerve diseases, such as parkinson disease, epilepsy seizure and so on. Absence seizure can be characterized by 2-4 Hz oscillatory activity, and it can be induced by abnormal interactions between the cerebral cortex and thalamus. Many experimental results have also shown that basal ganglia are a key neural structure, which closely links the corticothalamic system in the brain. Presently, we use a corticothalamic-basal ganglia model to study which pathways in corticothalamic system can induce absence seizures and how these oscillatory activities can be controlled by projections from the substantia nigra pars reticulata (SNr) to the thalamic reticular nucleus (TRN) or the specific relay nuclei (SRN) of the thalamus. By tuning the projection strength of the pathway "Excitatory pyramidal cortex-SRN", "SRN-Excitatory pyramidal cortex" and "SRN-TRN" respectively, different firing states including absence seizures can appear. This indicates that absence seizures can be induced by tuning the connection strength of the considered pathway. In addition, typical absence epilepsy seizure state "spike-and-slow wave discharges" can be controlled by adjusting the activation level of the SNr as the pathways SNr-SRN and SNr-TRN open independently or together. Our results emphasize the importance of basal ganglia in controlling absence seizures in the corticothalamic system, and can provide a potential idea for the clinical treatment.
Collapse
Affiliation(s)
- Bing Hu
- Department of Dynamics and Control, Beihang University, Beijing, 100191 China
| | - Daqing Guo
- Key Laboratory for Neuro Information of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, 100191 China
| |
Collapse
|
91
|
Robinson PA. Determination of effective brain connectivity from functional connectivity using propagator-based interferometry and neural field theory with application to the corticothalamic system. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042712. [PMID: 25375528 DOI: 10.1103/physreve.90.042712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Indexed: 06/04/2023]
Abstract
It is shown how to compute both direct and total effective connection matrices (deCMs and teCMs), which embody the strengths of neural connections between regions, from correlation-based functional CMs using propagator-based interferometry, a method that stems from geophysics and acoustics, coupled with the recent identification of deCMs and teCMs with bare and dressed propagators, respectively. The approach incorporates excitatory and inhibitory connections, multiple structures and populations, and measurement effects. The propagator is found for a generalized scalar wave equation derived from neural field theory, and expressed in terms of neural activity correlations and covariances, and wave damping rates. It is then related to correlation matrices that are commonly used to express functional and effective connectivities in the brain. The results are illustrated in analytically tractable test cases.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia; Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia; Brain Dynamics Center, Westmead Millennium Institute, Darcy Rd, Westmead, New South Wales 2145, Australia; Cooperative Research Center for Alertness, Safety, and Productivity, University of Sydney, New South Wales 2006, Australia; and Neurosleep, 431 Glebe Point Rd., Glebe, New South Wales 2037, Australia
| |
Collapse
|
92
|
Henke H, Robinson P, Drysdale P, Loxley P. Spatiotemporally varying visual hallucinations: I. Corticothalamic theory. J Theor Biol 2014; 357:200-9. [DOI: 10.1016/j.jtbi.2014.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
|
93
|
Abstract
The spontaneous activity of the brain shows different features at different scales. On one hand, neuroimaging studies show that long-range correlations are highly structured in spatiotemporal patterns, known as resting-state networks, on the other hand, neurophysiological reports show that short-range correlations between neighboring neurons are low, despite a large amount of shared presynaptic inputs. Different dynamical mechanisms of local decorrelation have been proposed, among which is feedback inhibition. Here, we investigated the effect of locally regulating the feedback inhibition on the global dynamics of a large-scale brain model, in which the long-range connections are given by diffusion imaging data of human subjects. We used simulations and analytical methods to show that locally constraining the feedback inhibition to compensate for the excess of long-range excitatory connectivity, to preserve the asynchronous state, crucially changes the characteristics of the emergent resting and evoked activity. First, it significantly improves the model's prediction of the empirical human functional connectivity. Second, relaxing this constraint leads to an unrealistic network evoked activity, with systematic coactivation of cortical areas which are components of the default-mode network, whereas regulation of feedback inhibition prevents this. Finally, information theoretic analysis shows that regulation of the local feedback inhibition increases both the entropy and the Fisher information of the network evoked responses. Hence, it enhances the information capacity and the discrimination accuracy of the global network. In conclusion, the local excitation-inhibition ratio impacts the structure of the spontaneous activity and the information transmission at the large-scale brain level.
Collapse
|
94
|
Robinson PA, Sarkar S, Pandejee GM, Henderson JA. Determination of effective brain connectivity from functional connectivity with application to resting state connectivities. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:012707. [PMID: 25122335 DOI: 10.1103/physreve.90.012707] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Indexed: 06/03/2023]
Abstract
Neural field theory insights are used to derive effective brain connectivity matrices from the functional connectivity matrix defined by activity covariances. The symmetric case is exactly solved for a resting state system driven by white noise, in which strengths of connections, often termed effective connectivities, are inferred from functional data; these include strengths of connections that are underestimated or not detected by anatomical imaging. Proximity to criticality is calculated and found to be consistent with estimates obtainable from other methods. Links between anatomical, effective, and functional connectivity and resting state activity are quantified, with applicability to other complex networks. Proof-of-principle results are illustrated using published experimental data on anatomical connectivity and resting state functional connectivity. In particular, it is shown that functional connection matrices can be used to uncover the existence and strength of connections that are missed from anatomical connection matrices, including interhemispheric connections that are difficult to track with techniques such as diffusion spectrum imaging.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia Cooperative Research Center for Alertness, Safety, and Productivity, University of Sydney, New South Wales 2006, Australia Neurosleep, 431 Glebe Point Rd, Glebe, New South Wales 2037, Australia Center for Integrative Research and Understanding of Sleep, 431 Glebe Pt Rd, Glebe, New South Wales 2037, Australia and Brain Dynamics Center, Westmead Millennium Institute, Darcy Rd, Westmead, New South Wales 2145, Australia
| | - S Sarkar
- School of Physics, University of Sydney, New South Wales 2006, Australia and Design Lab, Faculty of Architecture, Design, and Planning, University of Sydney, New South Wales 2006, Australia
| | | | - J A Henderson
- School of Physics, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
95
|
Sigala R, Haufe S, Roy D, Dinse HR, Ritter P. The role of alpha-rhythm states in perceptual learning: insights from experiments and computational models. Front Comput Neurosci 2014; 8:36. [PMID: 24772077 PMCID: PMC3983484 DOI: 10.3389/fncom.2014.00036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/11/2014] [Indexed: 12/15/2022] Open
Abstract
During the past two decades growing evidence indicates that brain oscillations in the alpha band (~10 Hz) not only reflect an "idle" state of cortical activity, but also take a more active role in the generation of complex cognitive functions. A recent study shows that more than 60% of the observed inter-subject variability in perceptual learning can be ascribed to ongoing alpha activity. This evidence indicates a significant role of alpha oscillations for perceptual learning and hence motivates to explore the potential underlying mechanisms. Hence, it is the purpose of this review to highlight existent evidence that ascribes intrinsic alpha oscillations a role in shaping our ability to learn. In the review, we disentangle the alpha rhythm into different neural signatures that control information processing within individual functional building blocks of perceptual learning. We further highlight computational studies that shed light on potential mechanisms regarding how alpha oscillations may modulate information transfer and connectivity changes relevant for learning. To enable testing of those model based hypotheses, we emphasize the need for multidisciplinary approaches combining assessment of behavior and multi-scale neuronal activity, active modulation of ongoing brain states and computational modeling to reveal the mathematical principles of the complex neuronal interactions. In particular we highlight the relevance of multi-scale modeling frameworks such as the one currently being developed by "The Virtual Brain" project.
Collapse
Affiliation(s)
- Rodrigo Sigala
- Department Neurology, Charité—University MedicineBerlin, Germany
- Bernstein Focus State Dependencies of Learning, Bernstein Center for Computational NeuroscienceBerlin, Germany
| | - Sebastian Haufe
- Department Neurology, Charité—University MedicineBerlin, Germany
- Bernstein Focus State Dependencies of Learning, Bernstein Center for Computational NeuroscienceBerlin, Germany
| | - Dipanjan Roy
- Department Neurology, Charité—University MedicineBerlin, Germany
- Bernstein Focus State Dependencies of Learning, Bernstein Center for Computational NeuroscienceBerlin, Germany
| | - Hubert R. Dinse
- Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr-University BochumBochum, Germany
| | - Petra Ritter
- Department Neurology, Charité—University MedicineBerlin, Germany
- Bernstein Focus State Dependencies of Learning, Bernstein Center for Computational NeuroscienceBerlin, Germany
- Minerva Research Group BrainModes, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
- Berlin School of Mind and Brain, Mind and Brain Institute, Humboldt UniversityBerlin, Germany
| |
Collapse
|
96
|
Chen M, Guo D, Wang T, Jing W, Xia Y, Xu P, Luo C, Valdes-Sosa PA, Yao D. Bidirectional control of absence seizures by the basal ganglia: a computational evidence. PLoS Comput Biol 2014; 10:e1003495. [PMID: 24626189 PMCID: PMC3952815 DOI: 10.1371/journal.pcbi.1003495] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/09/2014] [Indexed: 01/03/2023] Open
Abstract
Absence epilepsy is believed to be associated with the abnormal interactions between the cerebral cortex and thalamus. Besides the direct coupling, anatomical evidence indicates that the cerebral cortex and thalamus also communicate indirectly through an important intermediate bridge–basal ganglia. It has been thus postulated that the basal ganglia might play key roles in the modulation of absence seizures, but the relevant biophysical mechanisms are still not completely established. Using a biophysically based model, we demonstrate here that the typical absence seizure activities can be controlled and modulated by the direct GABAergic projections from the substantia nigra pars reticulata (SNr) to either the thalamic reticular nucleus (TRN) or the specific relay nuclei (SRN) of thalamus, through different biophysical mechanisms. Under certain conditions, these two types of seizure control are observed to coexist in the same network. More importantly, due to the competition between the inhibitory SNr-TRN and SNr-SRN pathways, we find that both decreasing and increasing the activation of SNr neurons from the normal level may considerably suppress the generation of spike-and-slow wave discharges in the coexistence region. Overall, these results highlight the bidirectional functional roles of basal ganglia in controlling and modulating absence seizures, and might provide novel insights into the therapeutic treatments of this brain disorder. Epilepsy is a general term for conditions with recurring seizures. Absence seizures are one of several kinds of seizures, which are characterized by typical 2–4 Hz spike-and-slow wave discharges (SWDs). There is accumulating evidence that absence seizures are due to abnormal interactions between cerebral cortex and thalamus, and the basal ganglia may take part in controlling such brain disease via the indirect basal ganglia-thalamic pathway relaying at superior colliculus. Actually, the basal ganglia not only send indirect signals to thalamus, but also communicate with several key nuclei of thalamus through multiple direct GABAergic projections. Nevertheless, whether and how these direct pathways regulate absence seizure activities are still remain unknown. By computational modelling, we predicted that two direct inhibitory basal ganglia-thalamic pathways emitting from the substantia nigra pars reticulata may also participate in the control of absence seizures. Furthermore, we showed that these two types of seizure control can coexist in the same network, and depending on the instant network state, both lowing and increasing the activation of SNr neurons may inhibit the SWDs due to the existence of competition. Our findings emphasize the bidirectional modulation effects of basal ganglia on absence seizures, and might have physiological implications on the treatment of absence epilepsy.
Collapse
Affiliation(s)
- Mingming Chen
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Daqing Guo
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- * E-mail: (DG); (DY)
| | - Tiebin Wang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Wei Jing
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yang Xia
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Peng Xu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Pedro A. Valdes-Sosa
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- Cuban Neuroscience Center, Cubanacan, Playa, Cuba
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- * E-mail: (DG); (DY)
| |
Collapse
|
97
|
Cabral J, Kringelbach ML, Deco G. Exploring the network dynamics underlying brain activity during rest. Prog Neurobiol 2014; 114:102-31. [DOI: 10.1016/j.pneurobio.2013.12.005] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 11/04/2013] [Accepted: 12/17/2013] [Indexed: 11/17/2022]
|
98
|
Abeysuriya RG, Rennie CJ, Robinson PA, Kim JW. Experimental observation of a theoretically predicted nonlinear sleep spindle harmonic in human EEG. Clin Neurophysiol 2014; 125:2016-23. [PMID: 24583091 DOI: 10.1016/j.clinph.2014.01.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To investigate the properties of a sleep spindle harmonic oscillation previously predicted by a theoretical neural field model of the brain. METHODS Spindle oscillations were extracted from EEG data from nine subjects using an automated algorithm. The power and frequency of the spindle oscillation and the harmonic oscillation were compared across subjects. The bicoherence of the EEG was calculated to identify nonlinear coupling. RESULTS All subjects displayed a spindle harmonic at almost exactly twice the frequency of the spindle. The power of the harmonic scaled nonlinearly with that of the spindle peak, consistent with model predictions. Bicoherence was observed at the spindle frequency, confirming the nonlinear origin of the harmonic oscillation. CONCLUSIONS The properties of the sleep spindle harmonic were consistent with the theoretical modeling of the sleep spindle harmonic as a nonlinear phenomenon. SIGNIFICANCE Most models of sleep spindle generation are unable to produce a spindle harmonic oscillation, so the observation and theoretical explanation of the harmonic is a significant step in understanding the mechanisms of sleep spindle generation. Unlike seizures, sleep spindles produce nonlinear effects that can be observed in healthy controls, and unlike the alpha oscillation, there is no linearly generated harmonic that can obscure nonlinear effects. This makes the spindle harmonic a good candidate for future investigation of nonlinearity in the brain.
Collapse
Affiliation(s)
- R G Abeysuriya
- School of Physics, University of Sydney, New South Wales 2006, Australia; Brain Dynamics Center, Sydney Medical School - Western, University of Sydney, Westmead, New South Wales 2145, Australia; Center for Integrated Research and Understanding of Sleep, 431 Glebe Point Rd, Glebe, New South Wales 2037, Australia.
| | - C J Rennie
- School of Physics, University of Sydney, New South Wales 2006, Australia; Brain Dynamics Center, Sydney Medical School - Western, University of Sydney, Westmead, New South Wales 2145, Australia
| | - P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia; Brain Dynamics Center, Sydney Medical School - Western, University of Sydney, Westmead, New South Wales 2145, Australia; Center for Integrated Research and Understanding of Sleep, 431 Glebe Point Rd, Glebe, New South Wales 2037, Australia
| | - J W Kim
- School of Physics, University of Sydney, New South Wales 2006, Australia; Brain Dynamics Center, Sydney Medical School - Western, University of Sydney, Westmead, New South Wales 2145, Australia; Center for Integrated Research and Understanding of Sleep, 431 Glebe Point Rd, Glebe, New South Wales 2037, Australia
| |
Collapse
|
99
|
EEG oscillatory states: universality, uniqueness and specificity across healthy-normal, altered and pathological brain conditions. PLoS One 2014. [PMID: 24505292 DOI: 10.1371/journal.pone.0087507.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
For the first time the dynamic repertoires and oscillatory types of local EEG states in 13 diverse conditions (examined over 9 studies) that covered healthy-normal, altered and pathological brain states were quantified within the same methodological and conceptual framework. EEG oscillatory states were assessed by the probability-classification analysis of short-term EEG spectral patterns. The results demonstrated that brain activity consists of a limited repertoire of local EEG states in any of the examined conditions. The size of the state repertoires was associated with changes in cognition and vigilance or neuropsychopathologic conditions. Additionally universal, optional and unique EEG states across 13 diverse conditions were observed. It was demonstrated also that EEG oscillations which constituted EEG states were characteristic for different groups of conditions in accordance to oscillations' functional significance. The results suggested that (a) there is a limit in the number of local states available to the cortex and many ways in which these local states can rearrange themselves and still produce the same global state and (b) EEG individuality is determined by varying proportions of universal, optional and unique oscillatory states. The results enriched our understanding about dynamic microstructure of EEG-signal.
Collapse
|
100
|
Fingelkurts AA, Fingelkurts AA. EEG oscillatory states: universality, uniqueness and specificity across healthy-normal, altered and pathological brain conditions. PLoS One 2014; 9:e87507. [PMID: 24505292 PMCID: PMC3914824 DOI: 10.1371/journal.pone.0087507] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/27/2013] [Indexed: 12/19/2022] Open
Abstract
For the first time the dynamic repertoires and oscillatory types of local EEG states in 13 diverse conditions (examined over 9 studies) that covered healthy-normal, altered and pathological brain states were quantified within the same methodological and conceptual framework. EEG oscillatory states were assessed by the probability-classification analysis of short-term EEG spectral patterns. The results demonstrated that brain activity consists of a limited repertoire of local EEG states in any of the examined conditions. The size of the state repertoires was associated with changes in cognition and vigilance or neuropsychopathologic conditions. Additionally universal, optional and unique EEG states across 13 diverse conditions were observed. It was demonstrated also that EEG oscillations which constituted EEG states were characteristic for different groups of conditions in accordance to oscillations' functional significance. The results suggested that (a) there is a limit in the number of local states available to the cortex and many ways in which these local states can rearrange themselves and still produce the same global state and (b) EEG individuality is determined by varying proportions of universal, optional and unique oscillatory states. The results enriched our understanding about dynamic microstructure of EEG-signal.
Collapse
|