51
|
Bruss IR, Glotzer SC. Phase separation of self-propelled ballistic particles. Phys Rev E 2018; 97:042609. [PMID: 29758693 DOI: 10.1103/physreve.97.042609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Indexed: 06/08/2023]
Abstract
Self-propelled particles phase-separate into coexisting dense and dilute regions above a critical density. The statistical nature of their stochastic motion lends itself to various theories that predict the onset of phase separation. However, these theories are ill-equipped to describe such behavior when noise becomes negligible. To overcome this limitation, we present a predictive model that relies on two density-dependent timescales: τ_{F}, the mean time particles spend between collisions; and τ_{C}, the mean lifetime of a collision. We show that only when τ_{F}<τ_{C} do collisions last long enough to develop a growing cluster and initiate phase separation. Using both analytical calculations and active particle simulations, we measure these timescales and determine the critical density for phase separation in both two and three dimensions.
Collapse
Affiliation(s)
- Isaac R Bruss
- Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sharon C Glotzer
- Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Materials Science & Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
52
|
Harder J, Cacciuto A. Hierarchical collective motion of a mixture of active dipolar Janus particles and passive charged colloids in two dimensions. Phys Rev E 2018; 97:022603. [PMID: 29548188 DOI: 10.1103/physreve.97.022603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Indexed: 06/08/2023]
Abstract
We use computer simulations to study the behavior of a mixture of large passive charged colloids in a suspension of smaller active dipolar Janus particles. We find that when a single charged colloid is present in solution, it acquires a rotational or translational motion depending on how the active dipoles self-assemble on its surface to form active complexes. The collective behavior of these complexes is quite remarkable, and includes swarming behavior and coherent macroscopic motion. We detail how the variety of different phenomenologies emerging in this system can ultimately be controlled by the strength of the active forces and the relative concentration of the two species.
Collapse
Affiliation(s)
- J Harder
- Chemistry Department, Columbia University, New York, New York 10027, USA
| | - A Cacciuto
- Chemistry Department, Columbia University, New York, New York 10027, USA
| |
Collapse
|
53
|
Domingos JLC, Peeters FM, Ferreira WP. Self-assembly of rigid magnetic rods consisting of single dipolar beads in two dimensions. Phys Rev E 2018; 96:012603. [PMID: 29347093 DOI: 10.1103/physreve.96.012603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Indexed: 11/07/2022]
Abstract
Molecular dynamics simulations are used to investigate the structural properties of a two-dimensional ensemble of magnetic rods, which are modeled as aligned single dipolar beads. The obtained self-assembled configurations can be characterized as (1) clusters, (2) percolated, and (3) ordered structures, and their structural properties are investigated in detail. By increasing the aspect ratio of the magnetic rods, we show that the percolation transition is suppressed due to the reduced mobility of the rods in two dimensions. Such a behavior is opposite to the one observed in three dimensions. A magnetic bulk phase is found with local ferromagnetic order and an unusual nonmonotonic behavior of the nematic order is observed.
Collapse
Affiliation(s)
- Jorge L C Domingos
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, 60455-760 Fortaleza, Ceará, Brazil.,Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | - François M Peeters
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | - W P Ferreira
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, 60455-760 Fortaleza, Ceará, Brazil
| |
Collapse
|
54
|
Ravichandran A, Vliegenthart GA, Saggiorato G, Auth T, Gompper G. Enhanced Dynamics of Confined Cytoskeletal Filaments Driven by Asymmetric Motors. Biophys J 2017; 113:1121-1132. [PMID: 28877494 DOI: 10.1016/j.bpj.2017.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/10/2017] [Accepted: 07/27/2017] [Indexed: 12/27/2022] Open
Abstract
Cytoskeletal filaments and molecular motors facilitate the micron-scale force generation necessary for the distribution of organelles and the restructuring of the cytoskeleton within eukaryotic cells. Although the mesoscopic structure and the dynamics of such filaments have been studied in vitro and in vivo, their connection with filament polarity-dependent motor-mediated force generation is not well understood. Using 2D Brownian dynamics simulations, we study a dense, confined mixture of rigid microtubules (MTs) and active springs that have arms that cross-link neighboring MT pairs and move unidirectionally on the attached MT. We simulate depletion interactions between MTs using an attractive potential. We show that dimeric motors, with a motile arm on only one of the two MTs, produce large polarity-sorted MT clusters, whereas tetrameric motors, with motile arms on both microtubules, produce bundles. Furthermore, dimeric motors induce, on average, higher velocities between antialigned MTs than tetrameric motors. Our results, where MTs move faster near the confining wall, are consistent with experimental observations in Drosophila oocytes where enhanced microtubule activity is found close to the confining plasma membrane.
Collapse
Affiliation(s)
- Arvind Ravichandran
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Gerrit A Vliegenthart
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Guglielmo Saggiorato
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany; LPTMS, CNRS, University Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Thorsten Auth
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany.
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
55
|
Abaurrea Velasco C, Dehghani Ghahnaviyeh S, Nejat Pishkenari H, Auth T, Gompper G. Complex self-propelled rings: a minimal model for cell motility. SOFT MATTER 2017; 13:5865-5876. [PMID: 28766641 DOI: 10.1039/c7sm00439g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Collective behavior of active matter is observed for self-propelled particles, such as vibrated disks and active Brownian particles, as well as for cytoskeletal filaments in motile cells. Here, a system of quasi two-dimensional penetrable self-propelled rods inside rigid rings is used to construct a complex self-propelled particle. The rods interact sterically with each other and with a stationary or mobile ring via a separation-shifted Lennard-Jones potential. They either have a sliding attachment to the inside of the ring at one of their ends, or can move freely within the ring confinement. We study the inner structure and dynamics of the mobile self-propelled rings. We find that these complex particles cannot only be characterized as active Brownian particles, but can also exhibit cell-like motility: random walks, persistent motion, circling, and run-and-circle motion.
Collapse
Affiliation(s)
- Clara Abaurrea Velasco
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | | | | | |
Collapse
|
56
|
Abstract
Like meridian lines on a globe, two lines on a Gaussian-curved surface cannot be simultaneously straight and parallel everywhere. We find that this inescapable property of Gaussian curvature has important consequences for the clustering and swarming behavior of active matter. Focusing on the case of self-propelled particles confined to the surface of a sphere, we find that for high curvature, particles converge to a common orbit to form symmetry-breaking microswarms. We prove that this microswarm flocking behavior is distinct from other known examples in that it is a result of the curvature, and not incorporated through Vicsek-like alignment rules or collision-induced torques. Additionally, we find that clustering can be either enhanced or hindered as a consequence of both the microswarming behavior and curvature-induced changes to the shape of a cluster's boundary. Furthermore, we demonstrate how surfaces of non-constant curvature lead to behaviors that are not explained by the simple averaging of the total curvature. These observations demonstrate a promising method for engineering the emergent behavior of active matter via the geometry of the environment.
Collapse
Affiliation(s)
- Isaac R Bruss
- Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
57
|
Barberis L, Peruani F. Large-Scale Patterns in a Minimal Cognitive Flocking Model: Incidental Leaders, Nematic Patterns, and Aggregates. PHYSICAL REVIEW LETTERS 2016; 117:248001. [PMID: 28009185 DOI: 10.1103/physrevlett.117.248001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Indexed: 05/27/2023]
Abstract
We study a minimal cognitive flocking model, which assumes that the moving entities navigate using the available instantaneous visual information exclusively. The model consists of active particles, with no memory, that interact by a short-ranged, position-based, attractive force, which acts inside a vision cone (VC), and lack velocity-velocity alignment. We show that this active system can exhibit-due to the VC that breaks Newton's third law-various complex, large-scale, self-organized patterns. Depending on parameter values, we observe the emergence of aggregates or millinglike patterns, the formation of moving-locally polar-files with particles at the front of these structures acting as effective leaders, and the self-organization of particles into macroscopic nematic structures leading to long-ranged nematic order. Combining simulations and nonlinear field equations, we show that position-based active models, as the one analyzed here, represent a new class of active systems fundamentally different from other active systems, including velocity-alignment-based flocking systems. The reported results are of prime importance in the study, interpretation, and modeling of collective motion patterns in living and nonliving active systems.
Collapse
Affiliation(s)
- Lucas Barberis
- Université Côte d'Azur, Laboratoire J.A. Dieudonné, UMR 7351 CNRS, Parc Valrose, F-06108 Nice Cedex 02, France
- IFEG, FaMAF, CONICET, UNC, X5000HUA Córdoba, Argentina
| | - Fernando Peruani
- Université Côte d'Azur, Laboratoire J.A. Dieudonné, UMR 7351 CNRS, Parc Valrose, F-06108 Nice Cedex 02, France
| |
Collapse
|
58
|
Vutukuri HR, Preisler Z, Besseling TH, van Blaaderen A, Dijkstra M, Huck WTS. Dynamic self-organization of side-propelling colloidal rods: experiments and simulations. SOFT MATTER 2016; 12:9657-9665. [PMID: 27869286 DOI: 10.1039/c6sm01760f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In recent years, there is a growing interest in designing artificial analogues of living systems, fueled not only by potential applications as 'smart micro-machines', but also by the demand for simple models that can be used to study the behavior of their more complex natural counterparts. Here, we present a facile, internally driven, experimental system comprised of fluorescently labeled colloidal silica rods of which the self-propulsion is powered by the decomposition of H2O2 catalyzed by a length-wise half Pt coating of the particles in order to study how shape anisotropy and swimming direction affect the collective behavior. We investigated the emerging structures and their time evolution for various particle concentrations in (quasi-)two dimensional systems for three aspect ratios of the rods on a single particle level using a combination of experiments and simulations. We found that the dynamic self-organization relied on a competition between self-propulsion and phoretic attractions induced by phoresis of the rods. We observed that the particle clustering behavior depends on the concentration as well as the aspect ratio of the rods. Our findings provide a more detailed understanding of dynamic self-organization of anisotropic particles and the role the propulsion direction plays in internally driven systems.
Collapse
Affiliation(s)
- Hanumantha Rao Vutukuri
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, The Netherlands.
| | - Zdeněk Preisler
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH, The Netherlands.
| | - Thijs H Besseling
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH, The Netherlands.
| | - Alfons van Blaaderen
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH, The Netherlands.
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CH, The Netherlands.
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
59
|
Großmann R, Peruani F, Bär M. Mesoscale pattern formation of self-propelled rods with velocity reversal. Phys Rev E 2016; 94:050602. [PMID: 27967147 DOI: 10.1103/physreve.94.050602] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Indexed: 11/07/2022]
Abstract
We study self-propelled particles with velocity reversal interacting by uniaxial (nematic) alignment within a coarse-grained hydrodynamic theory. Combining analytical and numerical continuation techniques, we show that the physics of this active system is essentially controlled by the reversal frequency. In particular, we find that elongated, high-density, ordered patterns, called bands, emerge via subcritical bifurcations from spatially homogeneous states. Our analysis reveals further that the interaction of bands is weakly attractive and, consequently, bands fuse upon collision in analogy with nonequilibrium nucleation processes. Moreover, we demonstrate that a renormalized positive line tension can be assigned to stable bands below a critical reversal rate, beyond which they are transversally unstable. In addition, we discuss the kinetic roughening of bands as well as their nonlinear dynamics close to the threshold of transversal instability. Altogether, the reduction of the multiparticle system onto the dynamics of bands provides a unified framework to understand the emergence and stability of nonequilibrium patterns in this self-propelled particle system. In this regard, our results constitute a proof of principle in favor of the hypothesis in microbiology that velocity reversal of gliding rod-shaped bacteria regulates the transitions between various self-organized patterns observed during the bacterial life cycle.
Collapse
Affiliation(s)
- Robert Großmann
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, D-10587 Berlin, Germany.,Laboratoire J. A. Dieudonné, Université de Nice Sophia Antipolis, UMR 7351 CNRS, Parc Valrose, F-06108 Nice Cedex 02, France
| | - Fernando Peruani
- Laboratoire J. A. Dieudonné, Université de Nice Sophia Antipolis, UMR 7351 CNRS, Parc Valrose, F-06108 Nice Cedex 02, France
| | - Markus Bär
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, D-10587 Berlin, Germany
| |
Collapse
|
60
|
Isele-Holder RE, Jäger J, Saggiorato G, Elgeti J, Gompper G. Dynamics of self-propelled filaments pushing a load. SOFT MATTER 2016; 12:8495-8505. [PMID: 27759125 DOI: 10.1039/c6sm01094f] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Worm-like filaments, which are propelled by a tangential homogeneous force along their contour, are studied as they push loads of different shapes and sizes. The resulting dynamics is investigated using Langevin dynamics simulations. The effects of size and shape of the load, propulsion strength, and thermal noise are systematically explored. The propulsive force and hydrodynamic friction of the load cause a compression in the filament that results in a buckling instability and versatile motion. Distinct regimes of elongated filaments, curved filaments, beating filaments, and filaments with alternating beating and circular motion are identified, and a phase diagram depending on the propulsion strength and the size of the load is constructed. Characteristic features of the different phases, such as beating frequencies and rotational velocities, are demonstrated to have a power-law dependence on the propulsive force.
Collapse
Affiliation(s)
- Rolf E Isele-Holder
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulations, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Julia Jäger
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulations, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany. and Computational Biophysics, University of Edinburgh, UK
| | - Guglielmo Saggiorato
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulations, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Jens Elgeti
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulations, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulations, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| |
Collapse
|
61
|
Ilse SE, Holm C, de Graaf J. Surface roughness stabilizes the clustering of self-propelled triangles. J Chem Phys 2016; 145:134904. [PMID: 27782450 DOI: 10.1063/1.4963804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sven Erik Ilse
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | - Joost de Graaf
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| |
Collapse
|
62
|
Creppy A, Plouraboué F, Praud O, Druart X, Cazin S, Yu H, Degond P. Symmetry-breaking phase transitions in highly concentrated semen. J R Soc Interface 2016; 13:20160575. [PMID: 27733694 PMCID: PMC5095218 DOI: 10.1098/rsif.2016.0575] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/13/2016] [Indexed: 11/12/2022] Open
Abstract
New experimental evidence of self-motion of a confined active suspension is presented. Depositing fresh semen sample in an annular shaped microfluidic chip leads to a spontaneous vortex state of the fluid at sufficiently large sperm concentration. The rotation occurs unpredictably clockwise or counterclockwise and is robust and stable. Furthermore, for highly active and concentrated semen, richer dynamics can occur such as self-sustained or damped rotation oscillations. Experimental results obtained with systematic dilution provide a clear evidence of a phase transition towards collective motion associated with local alignment of spermatozoa akin to the Vicsek model. A macroscopic theory based on previously derived self-organized hydrodynamics models is adapted to this context and provides predictions consistent with the observed stationary motion.
Collapse
Affiliation(s)
- Adama Creppy
- Université de Toulouse, INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse), Allés Camille Soula, 31400 Toulouse, France CNRS, IMFT, 31400 Toulouse, France
| | - Franck Plouraboué
- Université de Toulouse, INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse), Allés Camille Soula, 31400 Toulouse, France CNRS, IMFT, 31400 Toulouse, France
| | - Olivier Praud
- Université de Toulouse, INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse), Allés Camille Soula, 31400 Toulouse, France CNRS, IMFT, 31400 Toulouse, France
| | | | - Sébastien Cazin
- Université de Toulouse, INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse), Allés Camille Soula, 31400 Toulouse, France CNRS, IMFT, 31400 Toulouse, France
| | - Hui Yu
- CNRS, Institut de Mathématiques de Toulouse UMR 5219, 31062 Toulouse, France
| | - Pierre Degond
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
63
|
Preisler Z, Dijkstra M. Configurational entropy and effective temperature in systems of active Brownian particles. SOFT MATTER 2016; 12:6043-6048. [PMID: 27328434 DOI: 10.1039/c6sm00889e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We propose a method to determine the effective density of states and configurational entropy in systems of active Brownian particles by measuring the probability distribution function of potential energy at varying temperatures. Assuming that the entropy is a continuous and monotonically increasing function of energy, we provide support that two-dimensional systems of purely repulsive active Brownian spheres can be mapped onto an equilibrium system with a Boltzmann-like distribution and an effective temperature. We find that the effective temperature depends even for a large number of particles on system size, suggesting that active systems are non-extensive. In addition, the effective Helmholtz free energy can be derived from the configurational entropy. We verify our results regarding the configurational entropy by using thermodynamic integration of the effective Helmholtz free energy with respect to temperature.
Collapse
Affiliation(s)
- Zdeněk Preisler
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| |
Collapse
|
64
|
Winkler RG. Dynamics of flexible active Brownian dumbbells in the absence and the presence of shear flow. SOFT MATTER 2016; 12:3737-3749. [PMID: 26980630 DOI: 10.1039/c5sm02965a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The dynamical properties of a flexible dumbbell composed of active Brownian particles are analytically analyzed. The dumbbell is considered as a simplified description of a linear active polymer. The two beads are independently propelled in directions which change in a diffusive manner. The relaxation behavior of the internal degree of freedom is tightly coupled to the dumbbell activity. The latter dominates the dynamics for strong propulsion. As is shown, limitations in bond stretching strongly influence the relaxation behavior. Similarly, under shear flow, activity determines the relaxation and tumbling behavior at strong propulsion. Moreover, shear leads to a preferred alignment and consequently to shear thinning. Thereby, a different power-law dependence on the shear rate compared to passive dumbbells under flow is found.
Collapse
Affiliation(s)
- Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| |
Collapse
|
65
|
Kuan HS, Blackwell R, Hough LE, Glaser MA, Betterton MD. Hysteresis, reentrance, and glassy dynamics in systems of self-propelled rods. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:060501. [PMID: 26764616 PMCID: PMC5064941 DOI: 10.1103/physreve.92.060501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Indexed: 05/25/2023]
Abstract
Nonequilibrium active matter made up of self-driven particles with short-range repulsive interactions is a useful minimal system to study active matter as the system exhibits collective motion and nonequilibrium order-disorder transitions. We studied high-aspect-ratio self-propelled rods over a wide range of packing fractions and driving to determine the nonequilibrium state diagram and dynamic properties. Flocking and nematic-laning states occupy much of the parameter space. In the flocking state, the average internal pressure is high and structural and mechanical relaxation times are long, suggesting that rods in flocks are in a translating glassy state despite overall flock motion. In contrast, the nematic-laning state shows fluidlike behavior. The flocking state occupies regions of the state diagram at both low and high packing fraction separated by nematic-laning at low driving and a history-dependent region at higher driving; the nematic-laning state transitions to the flocking state for both compression and expansion. We propose that the laning-flocking transitions are a type of glass transition that, in contrast to other glass-forming systems, can show fluidization as density increases. The fluid internal dynamics and ballistic transport of the nematic-laning state may promote collective dynamics of rod-shaped micro-organisms.
Collapse
Affiliation(s)
- Hui-Shun Kuan
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80302, USA
| | - Robert Blackwell
- Department of Physics, University of Colorado at Boulder, Boulder, Colorado 80302, USA
| | - Loren E Hough
- Department of Physics, University of Colorado at Boulder, Boulder, Colorado 80302, USA
| | - Matthew A Glaser
- Department of Physics, University of Colorado at Boulder, Boulder, Colorado 80302, USA
| | - M D Betterton
- Department of Physics, University of Colorado at Boulder, Boulder, Colorado 80302, USA
| |
Collapse
|
66
|
Isele-Holder RE, Elgeti J, Gompper G. Self-propelled worm-like filaments: spontaneous spiral formation, structure, and dynamics. SOFT MATTER 2015; 11:7181-7190. [PMID: 26256415 DOI: 10.1039/c5sm01683e] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Worm-like filaments that are propelled homogeneously along their tangent vector are studied by Brownian dynamics simulations. Systems in two dimensions are investigated, corresponding to filaments adsorbed to interfaces or surfaces. A large parameter space covering weak and strong propulsion, as well as flexible and stiff filaments is explored. For strongly propelled and flexible filaments, the free-swimming filaments spontaneously form stable spirals. The propulsion force has a strong impact on dynamic properties, such as the rotational and translational mean square displacement and the rate of conformational sampling. In particular, when the active self-propulsion dominates thermal diffusion, but is too weak for spiral formation, the rotational diffusion coefficient has an activity-induced contribution given by v(c)/ξ(P), where v(c) is the contour velocity and ξ(P) the persistence length. In contrast, structural properties are hardly affected by the activity of the system, as long as no spirals form. The model mimics common features of biological systems, such as microtubules and actin filaments on motility assays or slender bacteria, and artificially designed microswimmers.
Collapse
Affiliation(s)
- Rolf E Isele-Holder
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | | | | |
Collapse
|
67
|
Weitz S, Deutsch A, Peruani F. Self-propelled rods exhibit a phase-separated state characterized by the presence of active stresses and the ejection of polar clusters. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012322. [PMID: 26274176 DOI: 10.1103/physreve.92.012322] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Indexed: 06/04/2023]
Abstract
We study collections of self-propelled rods (SPR) moving in two dimensions for packing fractions less than or equal to 0.3. We find that in the thermodynamical limit the SPR undergo a phase transition between a disordered gas and a novel phase-separated system state. Interestingly, (global) orientational order patterns-contrary to what has been suggested-vanish in this limit. In the found novel state, the SPR self-organize into a highly dynamical, high-density, compact region-which we call aggregate-which is surrounded by a disordered gas. Active stresses build inside aggregates as a result of the combined effect of local orientational order and active forces. This leads to the most distinctive feature of these aggregates: constant ejection of polar clusters of SPR. This novel phase-separated state represents a novel state of matter characterized by large fluctuations in volume and shape, related to mass ejection, and exhibits positional as well as orientational local order. SPR systems display new physics unseen in other active matter systems.
Collapse
Affiliation(s)
- Sebastian Weitz
- Zentrum für Informationsdienste und Hochleistungsrechnen, Technische Universität Dresden, Zellescher Weg 12, 01069 Dresden, Germany
- Clermont Université, ENSCCF, Institut Pascal - UMR CNRS 6602, BP 10448, F-63000 Clermont-Ferrand, France
| | - Andreas Deutsch
- Zentrum für Informationsdienste und Hochleistungsrechnen, Technische Universität Dresden, Zellescher Weg 12, 01069 Dresden, Germany
| | - Fernando Peruani
- Université Nice Sophia Antipolis, Laboratoire J.A. Dieudonné, UMR 7351 CNRS, Parc Valrose, F-06108 Nice Cedex 02, France
| |
Collapse
|
68
|
Elgeti J, Winkler RG, Gompper G. Physics of microswimmers--single particle motion and collective behavior: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:056601. [PMID: 25919479 DOI: 10.1088/0034-4885/78/5/056601] [Citation(s) in RCA: 697] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occurs at low Reynolds numbers, where fluid friction and viscosity dominates over inertia. Here, evolution achieved propulsion mechanisms, which overcome and even exploit drag. Prominent propulsion mechanisms are rotating helical flagella, exploited by many bacteria, and snake-like or whip-like motion of eukaryotic flagella, utilized by sperm and algae. For artificial microswimmers, alternative concepts to convert chemical energy or heat into directed motion can be employed, which are potentially more efficient. The dynamics of microswimmers comprises many facets, which are all required to achieve locomotion. In this article, we review the physics of locomotion of biological and synthetic microswimmers, and the collective behavior of their assemblies. Starting from individual microswimmers, we describe the various propulsion mechanism of biological and synthetic systems and address the hydrodynamic aspects of swimming. This comprises synchronization and the concerted beating of flagella and cilia. In addition, the swimming behavior next to surfaces is examined. Finally, collective and cooperate phenomena of various types of isotropic and anisotropic swimmers with and without hydrodynamic interactions are discussed.
Collapse
Affiliation(s)
- J Elgeti
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | | | | |
Collapse
|
69
|
Kaiser A, Sokolov A, Aranson IS, Lowen H. Mechanisms of Carrier Transport Induced by a Microswimmer Bath. IEEE Trans Nanobioscience 2015; 14:260-6. [DOI: 10.1109/tnb.2014.2361652] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
70
|
Fily Y, Henkes S, Marchetti MC. Freezing and phase separation of self-propelled disks. SOFT MATTER 2014; 10:2132-40. [PMID: 24652167 DOI: 10.1039/c3sm52469h] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We study numerically a model of soft polydisperse and non-aligning self-propelled particles interacting through elastic repulsion, which was recently shown to exhibit active phase separation in two dimensions in the absence of any attractive interaction or breaking of the orientational symmetry. We construct a phase diagram in terms of activity and packing fraction and identify three distinct regimes: a homogeneous liquid with anomalous cluster size distribution, a phase-separated state both at high and at low density, and a frozen phase. We provide a physical interpretation of the various regimes and develop scaling arguments for the boundaries separating them.
Collapse
Affiliation(s)
- Yaouen Fily
- Physics Department, Syracuse University, Syracuse, NY 13244, USA
| | | | | |
Collapse
|
71
|
Stenhammar J, Marenduzzo D, Allen RJ, Cates ME. Phase behaviour of active Brownian particles: the role of dimensionality. SOFT MATTER 2014; 10:1489-99. [PMID: 24651885 DOI: 10.1039/c3sm52813h] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recently, there has been much interest in activity-induced phase separations in concentrated suspensions of "active Brownian particles" (ABPs), self-propelled spherical particles whose direction of motion relaxes through thermal rotational diffusion. To date, almost all these studies have been restricted to 2 dimensions. In this work we study activity-induced phase separation in 3D and compare the results with previous and new 2D simulations. To this end, we performed state-of-the-art Brownian dynamics simulations of up to 40 million ABPs - such very large system sizes are unavoidable to evade finite size effects in 3D. Our results confirm the picture established for 2D systems in which an activity-induced phase separation occurs, with strong analogies to equilibrium gas-liquid spinodal decomposition, in spite of the purely non-equilibrium nature of the driving force behind the phase separation. However, we also find important differences between the 2D and 3D cases. Firstly, the shape and position of the phase boundaries is markedly different for the two cases. Secondly, for the 3D coarsening kinetics we find that the domain size grows in time according to the classical diffusive t(1/3) law, in contrast to the nonstandard subdiffusive exponent observed in 2D.
Collapse
Affiliation(s)
- Joakim Stenhammar
- SUPA, School of Physics and Astronomy, University of Edinburgh, JCMB Kings Buildings, Edinburgh EH9 3JZ, UK.
| | | | | | | |
Collapse
|