51
|
Qi Y, Gong P. Fractional neural sampling as a theory of spatiotemporal probabilistic computations in neural circuits. Nat Commun 2022; 13:4572. [PMID: 35931698 PMCID: PMC9356069 DOI: 10.1038/s41467-022-32279-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
A range of perceptual and cognitive processes have been characterized from the perspective of probabilistic representations and inference. To understand the neural circuit mechanism underlying these probabilistic computations, we develop a theory based on complex spatiotemporal dynamics of neural population activity. We first implement and explore this theory in a biophysically realistic, spiking neural circuit. Population activity patterns emerging from the circuit capture realistic variability or fluctuations of neural dynamics both in time and in space. These activity patterns implement a type of probabilistic computations that we name fractional neural sampling (FNS). We further develop a mathematical model to reveal the algorithmic nature of FNS and its computational advantages for representing multimodal distributions, a major challenge faced by existing theories. We demonstrate that FNS provides a unified account of a diversity of experimental observations of neural spatiotemporal dynamics and perceptual processes such as visual perception inference, and that FNS makes experimentally testable predictions.
Collapse
Affiliation(s)
- Yang Qi
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Pulin Gong
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
52
|
Nandi MK, Sarracino A, Herrmann HJ, de Arcangelis L. Scaling of avalanche shape and activity power spectrum in neuronal networks. Phys Rev E 2022; 106:024304. [PMID: 36109993 DOI: 10.1103/physreve.106.024304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/09/2022] [Indexed: 05/21/2023]
Abstract
Many systems in nature exhibit avalanche dynamics with scale-free features. A general scaling theory has been proposed for critical avalanche profiles in crackling noise, predicting the collapse onto a universal avalanche shape, as well as the scaling behavior of the activity power spectrum as Brown noise. Recently, much attention has been given to the profile of neuronal avalanches, measured in neuronal systems in vitro and in vivo. Although a universal profile was evidenced, confirming the validity of the general scaling theory, the parallel study of the power spectrum scaling under the same conditions was not performed. The puzzling observation is that in the majority of healthy neuronal systems the power spectrum exhibits a behavior close to 1/f, rather than Brown, noise. Here we perform a numerical study of the scaling behavior of the avalanche shape and the power spectrum for a model of integrate and fire neurons with a short-term plasticity parameter able to tune the system to criticality. We confirm that, at criticality, the average avalanche size and the avalanche profile fulfill the general avalanche scaling theory. However, the power spectrum consistently exhibits Brown noise behavior, for both fully excitatory networks and systems with 30% inhibitory networks. Conversely, a behavior closer to 1/f noise is observed in systems slightly off criticality. Results suggest that the power spectrum is a good indicator to determine how close neuronal activity is to criticality.
Collapse
Affiliation(s)
- Manoj Kumar Nandi
- Department of Engineering, University of Campania "Luigi Vanvitelli", 81031 Aversa, Caserta, Italy
| | - Alessandro Sarracino
- Department of Engineering, University of Campania "Luigi Vanvitelli", 81031 Aversa, Caserta, Italy
| | - Hans J Herrmann
- PMMH, ESPCI, 7 Quai Saint Bernard, Paris 75005, France
- Departamento de Fisica, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil
| | - Lucilla de Arcangelis
- Department of Engineering, University of Campania "Luigi Vanvitelli", 81031 Aversa, Caserta, Italy
| |
Collapse
|
53
|
Tian Y, Sun P. Percolation may explain efficiency, robustness, and economy of the brain. Netw Neurosci 2022; 6:765-790. [PMID: 36605416 PMCID: PMC9810365 DOI: 10.1162/netn_a_00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/11/2022] [Indexed: 01/09/2023] Open
Abstract
The brain consists of billions of neurons connected by ultra-dense synapses, showing remarkable efficiency, robust flexibility, and economy in information processing. It is generally believed that these advantageous properties are rooted in brain connectivity; however, direct evidence remains absent owing to technical limitations or theoretical vacancy. This research explores the origins of these properties in the largest yet brain connectome of the fruit fly. We reveal that functional connectivity formation in the brain can be explained by a percolation process controlled by synaptic excitation-inhibition (E/I) balance. By increasing the E/I balance gradually, we discover the emergence of these properties as byproducts of percolation transition when the E/I balance arrives at 3:7. As the E/I balance keeps increase, an optimal E/I balance 1:1 is unveiled to ensure these three properties simultaneously, consistent with previous in vitro experimental predictions. Once the E/I balance reaches over 3:2, an intrinsic limitation of these properties determined by static (anatomical) brain connectivity can be observed. Our work demonstrates that percolation, a universal characterization of critical phenomena and phase transitions, may serve as a window toward understanding the emergence of various brain properties.
Collapse
Affiliation(s)
- Yang Tian
- Department of Psychology and Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China,Laboratory of Advanced Computing and Storage, Central Research Institute, 2012 Laboratories, Huawei Technologies Co. Ltd., Beijing, China,* Corresponding Author: ;
| | - Pei Sun
- Department of Psychology and Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China,* Corresponding Author: ;
| |
Collapse
|
54
|
Rocha RP, Koçillari L, Suweis S, De Filippo De Grazia M, de Schotten MT, Zorzi M, Corbetta M. Recovery of neural dynamics criticality in personalized whole-brain models of stroke. Nat Commun 2022; 13:3683. [PMID: 35760787 PMCID: PMC9237050 DOI: 10.1038/s41467-022-30892-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/16/2022] [Indexed: 01/13/2023] Open
Abstract
The critical brain hypothesis states that biological neuronal networks, because of their structural and functional architecture, work near phase transitions for optimal response to internal and external inputs. Criticality thus provides optimal function and behavioral capabilities. We test this hypothesis by examining the influence of brain injury (strokes) on the criticality of neural dynamics estimated at the level of single participants using directly measured individual structural connectomes and whole-brain models. Lesions engender a sub-critical state that recovers over time in parallel with behavior. The improvement of criticality is associated with the re-modeling of specific white-matter connections. We show that personalized whole-brain dynamical models poised at criticality track neural dynamics, alteration post-stroke, and behavior at the level of single participants.
Collapse
Affiliation(s)
- Rodrigo P Rocha
- Departamento de Física, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
- Department of Physics, School of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
- Padova Neuroscience Center, Università di Padova, Padova, Italy.
| | - Loren Koçillari
- Padova Neuroscience Center, Università di Padova, Padova, Italy
- Laboratory of Neural Computation, Istituto Italiano di Tecnologia, 38068, Rovereto, Italy
- Dipartimento di Fisica e Astronomia, Università di Padova and INFN, via Marzolo 8, I-35131, Padova, Italy
| | - Samir Suweis
- Padova Neuroscience Center, Università di Padova, Padova, Italy
- Dipartimento di Fisica e Astronomia, Università di Padova and INFN, via Marzolo 8, I-35131, Padova, Italy
| | | | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, BCBlab, Sorbonne Universities, Paris, France
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Marco Zorzi
- IRCCS San Camillo Hospital, Venice, Italy
- Dipartimento di Psicologia Generale, Università di Padova, Padova, Italy
| | - Maurizio Corbetta
- Padova Neuroscience Center, Università di Padova, Padova, Italy
- Dipartimento di Neuroscienze, Università di Padova, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Fondazione Biomedica, Padova, Italy
| |
Collapse
|
55
|
Poel W, Daniels BC, Sosna MMG, Twomey CR, Leblanc SP, Couzin ID, Romanczuk P. Subcritical escape waves in schooling fish. SCIENCE ADVANCES 2022; 8:eabm6385. [PMID: 35731883 PMCID: PMC9217090 DOI: 10.1126/sciadv.abm6385] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Theoretical physics predicts optimal information processing in living systems near transitions (or pseudo-critical points) in their collective dynamics. However, focusing on potential benefits of proximity to a critical point, such as maximal sensitivity to perturbations and fast dissemination of information, commonly disregards possible costs of criticality in the noisy, dynamic environmental contexts of biological systems. Here, we find that startle cascades in fish schools are subcritical (not maximally responsive to environmental cues) and that distance to criticality decreases when perceived risk increases. Considering individuals' costs related to two detection error types, associated to both true and false alarms, we argue that being subcritical, and modulating distance to criticality, can be understood as managing a trade-off between sensitivity and robustness according to the riskiness and noisiness of the environment. Our work emphasizes the need for an individual-based and context-dependent perspective on criticality and collective information processing and motivates future questions about the evolutionary forces that brought about a particular trade-off.
Collapse
Affiliation(s)
- Winnie Poel
- Institute for Theoretical Biology, Department of Biology, Humboldt Universität zu Berlin, D-10099 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, D-10115 Berlin, Germany
| | - Bryan C. Daniels
- School of Complex Adaptive Systems, Arizona State University, Tempe, AZ 85287, USA
| | - Matthew M. G. Sosna
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Colin R. Twomey
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon P. Leblanc
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- Blend Labs, San Francisco, CA 94108, USA
| | - Iain D. Couzin
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, D-78547 Konstanz, Germany
- Department of Biology, University of Konstanz, D-78547 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, D-78547 Konstanz, Germany
| | - Pawel Romanczuk
- Institute for Theoretical Biology, Department of Biology, Humboldt Universität zu Berlin, D-10099 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, D-10115 Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Marchstr. 23, D-10587 Berlin, Germany
| |
Collapse
|
56
|
Mariani B, Nicoletti G, Bisio M, Maschietto M, Vassanelli S, Suweis S. Disentangling the critical signatures of neural activity. Sci Rep 2022; 12:10770. [PMID: 35750684 PMCID: PMC9232560 DOI: 10.1038/s41598-022-13686-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022] Open
Abstract
The critical brain hypothesis has emerged as an attractive framework to understand neuronal activity, but it is still widely debated. In this work, we analyze data from a multi-electrodes array in the rat's cortex and we find that power-law neuronal avalanches satisfying the crackling-noise relation coexist with spatial correlations that display typical features of critical systems. In order to shed a light on the underlying mechanisms at the origin of these signatures of criticality, we introduce a paradigmatic framework with a common stochastic modulation and pairwise linear interactions inferred from our data. We show that in such models power-law avalanches that satisfy the crackling-noise relation emerge as a consequence of the extrinsic modulation, whereas scale-free correlations are solely determined by internal interactions. Moreover, this disentangling is fully captured by the mutual information in the system. Finally, we show that analogous power-law avalanches are found in more realistic models of neural activity as well, suggesting that extrinsic modulation might be a broad mechanism for their generation.
Collapse
Affiliation(s)
| | - Giorgio Nicoletti
- Department of Physics and Astronomy "G. Galilei", INFN, University of Padova, Padua, Italy
| | - Marta Bisio
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Marta Maschietto
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Stefano Vassanelli
- Padova Neuroscience Center, University of Padova, Padua, Italy.
- Department of Biomedical Sciences, University of Padova, Padua, Italy.
| | - Samir Suweis
- Department of Physics and Astronomy "G. Galilei", INFN, University of Padova, Padua, Italy.
- Padova Neuroscience Center, University of Padova, Padua, Italy.
| |
Collapse
|
57
|
Yu C. Toward a Unified Analysis of the Brain Criticality Hypothesis: Reviewing Several Available Tools. Front Neural Circuits 2022; 16:911245. [PMID: 35669452 PMCID: PMC9164306 DOI: 10.3389/fncir.2022.911245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The study of the brain criticality hypothesis has been going on for about 20 years, various models and methods have been developed for probing this field, together with large amounts of controversial experimental findings. However, no standardized protocol of analysis has been established so far. Therefore, hoping to make some contributions to standardization of such analysis, we review several available tools used for estimating the criticality of the brain in this paper.
Collapse
|
58
|
Wang L, Fan H, Xiao J, Lan Y, Wang X. Criticality in reservoir computer of coupled phase oscillators. Phys Rev E 2022; 105:L052201. [PMID: 35706173 DOI: 10.1103/physreve.105.l052201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Accumulating evidence shows that the cerebral cortex is operating near a critical state featured by power-law size distribution of neural avalanche activities, yet evidence of this critical state in artificial neural networks mimicking the cerebral cortex is still lacking. Here we design an artificial neural network of coupled phase oscillators and, by the technique of reservoir computing in machine learning, train it for predicting chaos. It is found that when the machine is properly trained, oscillators in the reservoir are synchronized into clusters whose sizes follow a power-law distribution. This feature, however, is absent when the machine is poorly trained. Additionally, it is found that despite the synchronization degree of the original network, once properly trained, the reservoir network is always developed to the same critical state, exemplifying the "attractor" nature of this state in machine learning. The generality of the results is verified in different reservoir models and by different target systems, and it is found that the scaling exponent of the distribution is independent of the reservoir details and the bifurcation parameters of the target system, but is modified when the dynamics of the target system is changed to a different type. The findings shed light on the nature of machine learning, and are helpful to the design of high-performance machines in physical systems.
Collapse
Affiliation(s)
- Liang Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Huawei Fan
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Jinghua Xiao
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Yueheng Lan
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Xingang Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
59
|
Mikaberidze G, D'Souza RM. Sandpile cascades on oscillator networks: The BTW model meets Kuramoto. CHAOS (WOODBURY, N.Y.) 2022; 32:053121. [PMID: 35649989 DOI: 10.1063/5.0095094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Cascading failures abound in complex systems and the Bak-Tang-Weisenfeld (BTW) sandpile model provides a theoretical underpinning for their analysis. Yet, it does not account for the possibility of nodes having oscillatory dynamics, such as in power grids and brain networks. Here, we consider a network of Kuramoto oscillators upon which the BTW model is unfolding, enabling us to study how the feedback between the oscillatory and cascading dynamics can lead to new emergent behaviors. We assume that the more out-of-sync a node is with its neighbors, the more vulnerable it is and lower its load-carrying capacity accordingly. Also, when a node topples and sheds load, its oscillatory phase is reset at random. This leads to novel cyclic behavior at an emergent, long timescale. The system spends the bulk of its time in a synchronized state where load builds up with minimal cascades. Yet, eventually, the system reaches a tipping point where a large cascade triggers a "cascade of larger cascades," which can be classified as a dragon king event. The system then undergoes a short transient back to the synchronous, buildup phase. The coupling between capacity and synchronization gives rise to endogenous cascade seeds in addition to the standard exogenous ones, and we show their respective roles. We establish the phenomena from numerical studies and develop the accompanying mean-field theory to locate the tipping point, calculate the load in the system, determine the frequency of the long-time oscillations, and find the distribution of cascade sizes during the buildup phase.
Collapse
Affiliation(s)
- Guram Mikaberidze
- Department of Mathematics, University of California, Davis, Davis, California 95616, USA
| | - Raissa M D'Souza
- Department of Computer Science and Department of Mechanical and Aerospace Engineering, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
60
|
Tiberi L, Stapmanns J, Kühn T, Luu T, Dahmen D, Helias M. Gell-Mann-Low Criticality in Neural Networks. PHYSICAL REVIEW LETTERS 2022; 128:168301. [PMID: 35522522 DOI: 10.1103/physrevlett.128.168301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/09/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Criticality is deeply related to optimal computational capacity. The lack of a renormalized theory of critical brain dynamics, however, so far limits insights into this form of biological information processing to mean-field results. These methods neglect a key feature of critical systems: the interaction between degrees of freedom across all length scales, required for complex nonlinear computation. We present a renormalized theory of a prototypical neural field theory, the stochastic Wilson-Cowan equation. We compute the flow of couplings, which parametrize interactions on increasing length scales. Despite similarities with the Kardar-Parisi-Zhang model, the theory is of a Gell-Mann-Low type, the archetypal form of a renormalizable quantum field theory. Here, nonlinear couplings vanish, flowing towards the Gaussian fixed point, but logarithmically slowly, thus remaining effective on most scales. We show this critical structure of interactions to implement a desirable trade-off between linearity, optimal for information storage, and nonlinearity, required for computation.
Collapse
Affiliation(s)
- Lorenzo Tiberi
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, 52425 Jülich, Germany
- Institute for Theoretical Solid State Physics, RWTH Aachen University, 52074 Aachen, Germany
- Center for Advanced Simulation and Analytics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jonas Stapmanns
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, 52425 Jülich, Germany
- Institute for Theoretical Solid State Physics, RWTH Aachen University, 52074 Aachen, Germany
| | - Tobias Kühn
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Thomas Luu
- Center for Advanced Simulation and Analytics, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Kernphysik (IKP-3), Institute for Advanced Simulation (IAS-4) and Jülich Center for Hadron Physics, Jülich Research Centre, 52425 Jülich, Germany
| | - David Dahmen
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, 52425 Jülich, Germany
| | - Moritz Helias
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, 52425 Jülich, Germany
- Institute for Theoretical Solid State Physics, RWTH Aachen University, 52074 Aachen, Germany
- Center for Advanced Simulation and Analytics, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
61
|
Torres JJ, Marro J. Physics Clues on the Mind Substrate and Attributes. Front Comput Neurosci 2022; 16:836532. [PMID: 35465268 PMCID: PMC9026167 DOI: 10.3389/fncom.2022.836532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
The last decade has witnessed a remarkable progress in our understanding of the brain. This has mainly been based on the scrutiny and modeling of the transmission of activity among neurons across lively synapses. A main conclusion, thus far, is that essential features of the mind rely on collective phenomena that emerge from a willful interaction of many neurons that, mediating other cells, form a complex network whose details keep constantly adapting to their activity and surroundings. In parallel, theoretical and computational studies developed to understand many natural and artificial complex systems, which have truthfully explained their amazing emergent features and precise the role of the interaction dynamics and other conditions behind the different collective phenomena they happen to display. Focusing on promising ideas that arise when comparing these neurobiology and physics studies, the present perspective article shortly reviews such fascinating scenarios looking for clues about how high-level cognitive processes such as consciousness, intelligence, and identity can emerge. We, thus, show that basic concepts of physics, such as dynamical phases and non-equilibrium phase transitions, become quite relevant to the brain activity while determined by factors at the subcellular, cellular, and network levels. We also show how these transitions depend on details of the processing mechanism of stimuli in a noisy background and, most important, that one may detect them in familiar electroencephalogram (EEG) recordings. Thus, we associate the existence of such phases, which reveal a brain operating at (non-equilibrium) criticality, with the emergence of most interesting phenomena during memory tasks.
Collapse
|
62
|
Khoshkhou M, Montakhab A. Optimal reinforcement learning near the edge of a synchronization transition. Phys Rev E 2022; 105:044312. [PMID: 35590577 DOI: 10.1103/physreve.105.044312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
Recent experimental and theoretical studies have indicated that the putative criticality of cortical dynamics may correspond to a synchronization phase transition. The critical dynamics near such a critical point needs further investigation specifically when compared to the critical behavior near the standard absorbing state phase transition. Since the phenomena of learning and self-organized criticality (SOC) at the edge of synchronization transition can emerge jointly in spiking neural networks due to the presence of spike-timing dependent plasticity (STDP), it is tempting to ask the following: what is the relationship between synchronization and learning in neural networks? Further, does learning benefit from SOC at the edge of synchronization transition? In this paper, we intend to address these important issues. Accordingly, we construct a biologically inspired model of a cognitive system which learns to perform stimulus-response tasks. We train this system using a reinforcement learning rule implemented through dopamine-modulated STDP. We find that the system exhibits a continuous transition from synchronous to asynchronous neural oscillations upon increasing the average axonal time delay. We characterize the learning performance of the system and observe that it is optimized near the synchronization transition. We also study neuronal avalanches in the system and provide evidence that optimized learning is achieved in a slightly supercritical state.
Collapse
Affiliation(s)
- Mahsa Khoshkhou
- Department of Physics, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran
| | - Afshin Montakhab
- Department of Physics, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran
| |
Collapse
|
63
|
Xu L, Feng J, Yu L. Avalanche criticality in individuals, fluid intelligence, and working memory. Hum Brain Mapp 2022; 43:2534-2553. [PMID: 35146831 PMCID: PMC9057106 DOI: 10.1002/hbm.25802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
The critical brain hypothesis suggests that efficient neural computation can be achieved through critical brain dynamics. However, the relationship between human cognitive performance and scale‐free brain dynamics remains unclear. In this study, we investigated the whole‐brain avalanche activity and its individual variability in the human resting‐state functional magnetic resonance imaging (fMRI) data. We showed that though the group‐level analysis was inaccurate because of individual variability, the subject wise scale‐free avalanche activity was significantly associated with maximal synchronization entropy of their brain activity. Meanwhile, the complexity of functional connectivity, as well as structure–function coupling, is maximized in subjects with maximal synchronization entropy. We also observed order–disorder phase transitions in resting‐state brain dynamics and found that there were longer times spent in the subcritical regime. These results imply that large‐scale brain dynamics favor the slightly subcritical regime of phase transition. Finally, we showed evidence that the neural dynamics of human participants with higher fluid intelligence and working memory scores are closer to criticality. We identified brain regions whose critical dynamics showed significant positive correlations with fluid intelligence performance and found that these regions were located in the prefrontal cortex and inferior parietal cortex, which were believed to be important nodes of brain networks underlying human intelligence. Our results reveal the possible role that avalanche criticality plays in cognitive performance and provide a simple method to identify the critical point and map cortical states on a spectrum of neural dynamics, ranging from subcriticality to supercriticality.
Collapse
Affiliation(s)
- Longzhou Xu
- School of Physical Science and Technology, Lanzhou University, Lanzhou, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China.,Department of Computer Science, University of Warwick, Coventry, UK.,School of Mathematical Sciences, School of Life Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lianchun Yu
- School of Physical Science and Technology, Lanzhou University, Lanzhou, China.,Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, China.,The School of Nationalities' Educators, Qinghai Normal University, Xining, China
| |
Collapse
|
64
|
Liang J, Zhou C. Criticality enhances the multilevel reliability of stimulus responses in cortical neural networks. PLoS Comput Biol 2022; 18:e1009848. [PMID: 35100254 PMCID: PMC8830719 DOI: 10.1371/journal.pcbi.1009848] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 02/10/2022] [Accepted: 01/18/2022] [Indexed: 11/18/2022] Open
Abstract
Cortical neural networks exhibit high internal variability in spontaneous dynamic activities and they can robustly and reliably respond to external stimuli with multilevel features–from microscopic irregular spiking of neurons to macroscopic oscillatory local field potential. A comprehensive study integrating these multilevel features in spontaneous and stimulus–evoked dynamics with seemingly distinct mechanisms is still lacking. Here, we study the stimulus–response dynamics of biologically plausible excitation–inhibition (E–I) balanced networks. We confirm that networks around critical synchronous transition states can maintain strong internal variability but are sensitive to external stimuli. In this dynamical region, applying a stimulus to the network can reduce the trial-to-trial variability and shift the network oscillatory frequency while preserving the dynamical criticality. These multilevel features widely observed in different experiments cannot simultaneously occur in non-critical dynamical states. Furthermore, the dynamical mechanisms underlying these multilevel features are revealed using a semi-analytical mean-field theory that derives the macroscopic network field equations from the microscopic neuronal networks, enabling the analysis by nonlinear dynamics theory and linear noise approximation. The generic dynamical principle revealed here contributes to a more integrative understanding of neural systems and brain functions and incorporates multimodal and multilevel experimental observations. The E–I balanced neural network in combination with the effective mean-field theory can serve as a mechanistic modeling framework to study the multilevel neural dynamics underlying neural information and cognitive processes. The complexity and variability of brain dynamical activity range from neuronal spiking and neural avalanches to oscillatory local field potentials of local neural circuits in both spontaneous and stimulus-evoked states. Such multilevel variable brain dynamics are functionally and behaviorally relevant and are principal components of the underlying circuit organization. To more comprehensively clarify their neural mechanisms, we use a bottom-up approach to study the stimulus–response dynamics of neural circuits. Our model assumes the following key biologically plausible components: excitation–inhibition (E–I) neuronal interaction and chemical synaptic coupling. We show that the circuits with E–I balance have a special dynamic sub-region, the critical region. Circuits around this region could account for the emergence of multilevel brain response patterns, both ongoing and stimulus-induced, observed in different experiments, including the reduction of trial-to-trial variability, effective modulation of gamma frequency, and preservation of criticality in the presence of a stimulus. We further analyze the corresponding nonlinear dynamical principles using a novel and highly generalizable semi-analytical mean-field theory. Our computational and theoretical studies explain the cross-level brain dynamical organization of spontaneous and evoked states in a more integrative manner.
Collapse
Affiliation(s)
- Junhao Liang
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Centre for Integrative Neuroscience, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department for Sensory and Sensorimotor Systems, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Department of Physics, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
65
|
Kazemi S, Jamali Y. Phase synchronization and measure of criticality in a network of neural mass models. Sci Rep 2022; 12:1319. [PMID: 35079038 PMCID: PMC8789819 DOI: 10.1038/s41598-022-05285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 01/10/2022] [Indexed: 11/15/2022] Open
Abstract
Synchronization has an important role in neural networks dynamics that is mostly accompanied by cognitive activities such as memory, learning, and perception. These activities arise from collective neural behaviors and are not totally understood yet. This paper aims to investigate a cortical model from this perspective. Historically, epilepsy has been regarded as a functional brain disorder associated with excessive synchronization of large neural populations. Epilepsy is believed to arise as a result of complex interactions between neural networks characterized by dynamic synchronization. In this paper, we investigated a network of neural populations in a way the dynamics of each node corresponded to the Jansen-Rit neural mass model. First, we study a one-column Jansen-Rit neural mass model for four different input levels. Then, we considered a Watts-Strogatz network of Jansen-Rit oscillators. We observed an epileptic activity in the weak input level. The network is considered to change various parameters. The detailed results including the mean time series, phase spaces, and power spectrum revealed a wide range of different behaviors such as epilepsy, healthy, and a transition between synchrony and asynchrony states. In some points of coupling coefficients, there is an abrupt change in the order parameters. Since the critical state is a dynamic candidate for healthy brains, we considered some measures of criticality and investigated them at these points. According to our study, some markers of criticality can occur at these points, while others may not. This occurrence is a result of the nature of the specific order parameter selected to observe these markers. In fact, The definition of a proper order parameter is key and must be defined properly. Our view is that the critical points exhibit clear characteristics and invariance of scale, instead of some types of markers. As a result, these phase transition points are not critical as they show no evidence of scaling invariance.
Collapse
Affiliation(s)
- Sheida Kazemi
- Biomathematics Laboratory, Department of Applied Mathematics, School of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yousef Jamali
- Biomathematics Laboratory, Department of Applied Mathematics, School of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
66
|
Lombardi F, Shriki O, Herrmann HJ, de Arcangelis L. Long-range temporal correlations in the broadband resting state activity of the human brain revealed by neuronal avalanches. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.05.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
67
|
Cenk Eser M, Medeiros ES, Riza M, Zakharova A. Edges of inter-layer synchronization in multilayer networks with time-switching links. CHAOS (WOODBURY, N.Y.) 2021; 31:103119. [PMID: 34717318 DOI: 10.1063/5.0065310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
We investigate the transition to synchronization in a two-layer network of oscillators with time-switching inter-layer links. We focus on the role of the number of inter-layer links and the timescale of topological changes. Initially, we observe a smooth transition to complete synchronization for the static inter-layer topology by increasing the number of inter-layer links. Next, for a dynamic topology with the existent inter-layer links randomly changing among identical oscillators in the layers, we observe a significant improvement in the system synchronizability; i.e., the layers synchronize with lower inter-layer connectivity. More interestingly, we find that, for a critical switching time, the transition from the network state of low inter-layer synchronization to high inter-layer synchronization occurs abruptly as the number of inter-layer links increases. We interpret this phenomenon as shrinking and ultimately the disappearance of the basin of attraction of a desynchronized network state.
Collapse
Affiliation(s)
- Muhittin Cenk Eser
- Department of Physics, Eastern Mediterranean University, 99628 Famagusta, North Cyprus, via Mersin 10, Turkey
| | - Everton S Medeiros
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Mustafa Riza
- Department of Physics, Eastern Mediterranean University, 99628 Famagusta, North Cyprus, via Mersin 10, Turkey
| | - Anna Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| |
Collapse
|
68
|
Mosam F, Vidaurre D, De Giuli E. Breakdown of random matrix universality in Markov models. Phys Rev E 2021; 104:024305. [PMID: 34525643 DOI: 10.1103/physreve.104.024305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/26/2021] [Indexed: 11/07/2022]
Abstract
Biological systems need to react to stimuli over a broad spectrum of timescales. If and how this ability can emerge without external fine-tuning is a puzzle. We consider here this problem in discrete Markovian systems, where we can leverage results from random matrix theory. Indeed, generic large transition matrices are governed by universal results, which predict the absence of long timescales unless fine-tuned. We consider an ensemble of transition matrices and motivate a temperature-like variable that controls the dynamic range of matrix elements, which we show plays a crucial role in the applicability of the large matrix limit: as the dynamic range increases, a phase transition occurs whereby the random matrix theory result is avoided, and long relaxation times ensue, in the entire "ordered" phase. We furthermore show that this phase transition is accompanied by a drop in the entropy rate and a peak in complexity, as measured by predictive information [Bialek, Nemenman, and Tishby Neural Comput. 13, 2409 (2001)NEUCEB0899-766710.1162/089976601753195969]. Extending the Markov model to a Hidden Markov model (HMM), we show that observable sequences inherit properties of the hidden sequences, allowing HMMs to be understood in terms of more accessible Markov models. We then apply our findings to fMRI data from 820 human subjects scanned at wakeful rest. We show that the data can be quantitatively understood in terms of the random model, and that brain activity lies close to the phase transition when engaged in unconstrained, task-free cognition-supporting the brain criticality hypothesis in this context.
Collapse
Affiliation(s)
- Faheem Mosam
- Department of Physics, Ryerson University, M5B 2K3, Toronto, Canada
| | - Diego Vidaurre
- Department of Psychiatry, Oxford University, OX3 7JX, United Kingdom.,Center for Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, 8000, Denmark
| | - Eric De Giuli
- Department of Physics, Ryerson University, M5B 2K3, Toronto, Canada
| |
Collapse
|
69
|
Mariani B, Nicoletti G, Bisio M, Maschietto M, Oboe R, Leparulo A, Suweis S, Vassanelli S. Neuronal Avalanches Across the Rat Somatosensory Barrel Cortex and the Effect of Single Whisker Stimulation. Front Syst Neurosci 2021; 15:709677. [PMID: 34526881 PMCID: PMC8435673 DOI: 10.3389/fnsys.2021.709677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Since its first experimental signatures, the so called "critical brain hypothesis" has been extensively studied. Yet, its actual foundations remain elusive. According to a widely accepted teleological reasoning, the brain would be poised to a critical state to optimize the mapping of the noisy and ever changing real-world inputs, thus suggesting that primary sensory cortical areas should be critical. We investigated whether a single barrel column of the somatosensory cortex of the anesthetized rat displays a critical behavior. Neuronal avalanches were recorded across all cortical layers in terms of both multi-unit activities and population local field potentials, and their behavior during spontaneous activity compared to the one evoked by a controlled single whisker deflection. By applying a maximum likelihood statistical method based on timeseries undersampling to fit the avalanches distributions, we show that neuronal avalanches are power law distributed for both multi-unit activities and local field potentials during spontaneous activity, with exponents that are spread along a scaling line. Instead, after the tactile stimulus, activity switches to a transient across-layers synchronization mode that appears to dominate the cortical representation of the single sensory input.
Collapse
Affiliation(s)
- Benedetta Mariani
- Laboratory of Interdisciplinary Physics, Department of Physics and Astronomy, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Giorgio Nicoletti
- Laboratory of Interdisciplinary Physics, Department of Physics and Astronomy, University of Padova, Padova, Italy
| | - Marta Bisio
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Marta Maschietto
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Roberto Oboe
- Department of Management and Engineering, University of Padova, Padova, Italy
| | | | - Samir Suweis
- Laboratory of Interdisciplinary Physics, Department of Physics and Astronomy, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Stefano Vassanelli
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Biomedical Science, University of Padova, Padova, Italy
| |
Collapse
|
70
|
Bansal K, Garcia JO, Lauharatanahirun N, Muldoon SF, Sajda P, Vettel JM. Scale-specific dynamics of high-amplitude bursts in EEG capture behaviorally meaningful variability. Neuroimage 2021; 241:118425. [PMID: 34303795 DOI: 10.1016/j.neuroimage.2021.118425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022] Open
Abstract
Cascading high-amplitude bursts in neural activity, termed avalanches, are thought to provide insight into the complex spatially distributed interactions in neural systems. In human neuroimaging, for example, avalanches occurring during resting-state show scale-invariant dynamics, supporting the hypothesis that the brain operates near a critical point that enables long range spatial communication. In fact, it has been suggested that such scale-invariant dynamics, characterized by a power-law distribution in these avalanches, are universal in neural systems and emerge through a common mechanism. While the analysis of avalanches and subsequent criticality is increasingly seen as a framework for using complex systems theory to understand brain function, it is unclear how the framework would account for the omnipresent cognitive variability, whether across individuals or tasks. To address this, we analyzed avalanches in the EEG activity of healthy humans during rest as well as two distinct task conditions that varied in cognitive demands and produced behavioral measures unique to each individual. In both rest and task conditions we observed that avalanche dynamics demonstrate scale-invariant characteristics, but differ in their specific features, demonstrating individual variability. Using a new metric we call normalized engagement, which estimates the likelihood for a brain region to produce high-amplitude bursts, we also investigated regional features of avalanche dynamics. Normalized engagement showed not only the expected individual and task dependent variability, but also scale-specificity that correlated with individual behavior. Our results suggest that the study of avalanches in human brain activity provides a tool to assess cognitive variability. Our findings expand our understanding of avalanche features and are supportive of the emerging theoretical idea that the dynamics of an active human brain operate close to a critical-like region and not a singular critical-state.
Collapse
Affiliation(s)
- Kanika Bansal
- Human Research and Engineering Directorate, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Javier O Garcia
- Human Research and Engineering Directorate, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Nina Lauharatanahirun
- Department of Biomedical Engineering and Department of Biobehavioral Health, Pennsylvania State University, State College, PA 16802, USA
| | - Sarah F Muldoon
- Mathematics Department, CDSE Program, and Neuroscience Program, University at Buffalo, SUNY, Buffalo, NY 14260, USA
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Data Science Institute, Columbia University, New York, NY 10027, USA
| | - Jean M Vettel
- Human Research and Engineering Directorate, US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
71
|
Lotfi N, Fontenele AJ, Feliciano T, Aguiar LAA, de Vasconcelos NAP, Soares-Cunha C, Coimbra B, Rodrigues AJ, Sousa N, Copelli M, Carelli PV. Signatures of brain criticality unveiled by maximum entropy analysis across cortical states. Phys Rev E 2021; 102:012408. [PMID: 32795006 DOI: 10.1103/physreve.102.012408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/01/2020] [Indexed: 11/07/2022]
Abstract
It has recently been reported that statistical signatures of brain criticality, obtained from distributions of neuronal avalanches, can depend on the cortical state. We revisit these claims with a completely different and independent approach, employing a maximum entropy model to test whether signatures of criticality appear in urethane-anesthetized rats. To account for the spontaneous variation of cortical states, we parse the time series and perform the maximum entropy analysis as a function of the variability of the population spiking activity. To compare data sets with different numbers of neurons, we define a normalized distance to criticality that takes into account the peak and width of the specific heat curve. We found a universal collapse of the normalized distance to criticality dependence on the cortical state, on an animal by animal basis. This indicates a universal dynamics and a critical point at an intermediate value of spiking variability.
Collapse
Affiliation(s)
- Nastaran Lotfi
- Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Antonio J Fontenele
- Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Thaís Feliciano
- Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Leandro A A Aguiar
- Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Nivaldo A P de Vasconcelos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4806-909, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4806-909, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4806-909, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4806-909, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, 4806-909, Portugal
| | - Mauro Copelli
- Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Pedro V Carelli
- Departamento de Física, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| |
Collapse
|
72
|
Liang J, Wang SJ, Zhou C. Less is more: Wiring-economical modular networks support self-sustained firing-economical neural avalanches for efficient processing. Natl Sci Rev 2021; 9:nwab102. [PMID: 35355506 PMCID: PMC8962757 DOI: 10.1093/nsr/nwab102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 11/12/2022] Open
Abstract
The brain network is notably cost-efficient, while the fundamental physical and dynamic mechanisms underlying its economical optimization in network structure and activity have not been determined. In this study, we investigate the intricate cost-efficient interplay between structure and dynamics in biologically plausible spatial modular neuronal network models. We observe that critical avalanche states from excitation-inhibition balance under modular network topology with less wiring cost can also achieve lower costs in firing but with strongly enhanced response sensitivity to stimuli. We derive mean-field equations that govern the macroscopic network dynamics through a novel approximate theory. The mechanism of low firing cost and stronger response in the form of critical avalanches is explained as a proximity to a Hopf bifurcation of the modules when increasing their connection density. Our work reveals the generic mechanism underlying the cost-efficient modular organization and critical dynamics widely observed in neural systems, providing insights into brain-inspired efficient computational designs.
Collapse
|
73
|
Wang R, Liu M, Cheng X, Wu Y, Hildebrandt A, Zhou C. Segregation, integration, and balance of large-scale resting brain networks configure different cognitive abilities. Proc Natl Acad Sci U S A 2021; 118:e2022288118. [PMID: 34074762 PMCID: PMC8201916 DOI: 10.1073/pnas.2022288118] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Diverse cognitive processes set different demands on locally segregated and globally integrated brain activity. However, it remains an open question how resting brains configure their functional organization to balance the demands on network segregation and integration to best serve cognition. Here we use an eigenmode-based approach to identify hierarchical modules in functional brain networks and quantify the functional balance between network segregation and integration. In a large sample of healthy young adults (n = 991), we combine the whole-brain resting state functional magnetic resonance imaging (fMRI) data with a mean-filed model on the structural network derived from diffusion tensor imaging and demonstrate that resting brain networks are on average close to a balanced state. This state allows for a balanced time dwelling at segregated and integrated configurations and highly flexible switching between them. Furthermore, we employ structural equation modeling to estimate general and domain-specific cognitive phenotypes from nine tasks and demonstrate that network segregation, integration, and their balance in resting brains predict individual differences in diverse cognitive phenotypes. More specifically, stronger integration is associated with better general cognitive ability, stronger segregation fosters crystallized intelligence and processing speed, and an individual's tendency toward balance supports better memory. Our findings provide a comprehensive and deep understanding of the brain's functioning principles in supporting diverse functional demands and cognitive abilities and advance modern network neuroscience theories of human cognition.
Collapse
Affiliation(s)
- Rong Wang
- College of Science, Xi'an University of Science and Technology, Xi'an 710054, China
- Department of Physics, Centre for Nonlinear Studies, Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong
- School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mianxin Liu
- Department of Physics, Centre for Nonlinear Studies, Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| | - Xinhong Cheng
- College of Science, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Ying Wu
- School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China
- National Demonstration Center for Experimental Mechanics Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Andrea Hildebrandt
- Department of Psychology, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany;
- Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies, Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong;
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
74
|
Baravalle R, Montani F. Heterogeneity across neural populations: Its significance for the dynamics and functions of neural circuits. Phys Rev E 2021; 103:042308. [PMID: 34005927 DOI: 10.1103/physreve.103.042308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/18/2021] [Indexed: 11/07/2022]
Abstract
Neural populations show patterns of synchronous activity, as they share common correlated inputs. Neurons in the cortex that are connected by strong synapses cause rapid firing explosions. In addition, areas that are connected by weaker synapses have a slower dynamics and they can contribute to asymmetries in the input distributions. The aim of this work is to develop a neural model to investigate how the heterogeneities in the synaptic input distributions affect different levels of organizational activity in the brain dynamics. We analytically show how small changes in the correlation inputs can cause large changes in the interactions of the outputs that lead to a phase transition, demonstrating that a simple variation in the direction of a biased skewed distribution in the neuronal inputs can generate a transition of states in the firing rate, passing from spontaneous silence ("down state") to an absolute spiking activity ("up state"). We present an exact quantification of the dynamics of the output variables, showing that when considering a biased skewed distribution in the inputs of neuronal population, the critical point is not in an asynchronous or synchronous state but rather at an intermediate value.
Collapse
Affiliation(s)
- Roman Baravalle
- Instituto de Física de La Plata (IFLP), Universidad Nacional de La Plata, CONICET CCT-La Plata (1900) La Plata, Argentina
| | - Fernando Montani
- Instituto de Física de La Plata (IFLP), Universidad Nacional de La Plata, CONICET CCT-La Plata (1900) La Plata, Argentina
| |
Collapse
|
75
|
Gu L, Wu R. Robust cortical criticality and diverse dynamics resulting from functional specification. Phys Rev E 2021; 103:042407. [PMID: 34005915 DOI: 10.1103/physreve.103.042407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/23/2021] [Indexed: 11/07/2022]
Abstract
Despite the recognition of the layered structure and evident criticality in the cortex, how the specification of input, output, and computational layers affects the self-organized criticality has not been much explored. By constructing heterogeneous structures with a well-accepted model of leaky neurons, we find that the specification can lead to robust criticality rather insensitive to the strength of external stimuli. This naturally unifies the adaptation to strong inputs without extra synaptic plasticity mechanisms. Low degree of recurrence constitutes an alternative explanation to subcriticality other than the high-frequency inputs. Unlike fully recurrent networks where external stimuli always render subcriticality, the dynamics of networks with sufficient feedforward connections can be driven to criticality and supercriticality. These findings indicate that functional and structural specification and their interplay with external stimuli are of crucial importance for the network dynamics. The robust criticality puts forward networks of the leaky neurons as promising platforms for realizing artificial neural networks that work in the vicinity of critical points.
Collapse
Affiliation(s)
- Lei Gu
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Ruqian Wu
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| |
Collapse
|
76
|
Spitzner FP, Dehning J, Wilting J, Hagemann A, P. Neto J, Zierenberg J, Priesemann V. MR. Estimator, a toolbox to determine intrinsic timescales from subsampled spiking activity. PLoS One 2021; 16:e0249447. [PMID: 33914774 PMCID: PMC8084202 DOI: 10.1371/journal.pone.0249447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/18/2021] [Indexed: 11/23/2022] Open
Abstract
Here we present our Python toolbox "MR. Estimator" to reliably estimate the intrinsic timescale from electrophysiologal recordings of heavily subsampled systems. Originally intended for the analysis of time series from neuronal spiking activity, our toolbox is applicable to a wide range of systems where subsampling-the difficulty to observe the whole system in full detail-limits our capability to record. Applications range from epidemic spreading to any system that can be represented by an autoregressive process. In the context of neuroscience, the intrinsic timescale can be thought of as the duration over which any perturbation reverberates within the network; it has been used as a key observable to investigate a functional hierarchy across the primate cortex and serves as a measure of working memory. It is also a proxy for the distance to criticality and quantifies a system's dynamic working point.
Collapse
Affiliation(s)
- F. P. Spitzner
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - J. Dehning
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - J. Wilting
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - A. Hagemann
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - J. P. Neto
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - J. Zierenberg
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - V. Priesemann
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein-Center for Computational Neuroscience (BCCN) Göttingen, Göttingen, Germany
| |
Collapse
|
77
|
Is There Sufficient Evidence for Criticality in Cortical Systems? eNeuro 2021; 8:ENEURO.0551-20.2021. [PMID: 33811087 PMCID: PMC8059881 DOI: 10.1523/eneuro.0551-20.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022] Open
Abstract
Numerous studies have proposed that specific brain activity statistics provide evidence that the brain operates at a critical point, which could have implications for the brain’s information processing capabilities. A recent paper reported that identical scalings and criticality signatures arise in a variety of different neural systems (neural cultures, cortical slices, anesthetized or awake brains, across both reptiles and mammals). The diversity of these states calls into question the claimed role of criticality in information processing. We analyze the methodology used to assess criticality and replicate this analysis for spike trains of two non-critical systems. These two non-critical systems pass all the tests used to assess criticality in the aforementioned recent paper. This analysis provides a crucial control (which is absent from the original study) and suggests that the methodology used may not be sufficient to establish that a system operates at criticality. Hence whether the brain operates at criticality or not remains an open question and it is of evident interest to develop more robust methods to address these questions.
Collapse
|
78
|
Shiromani PJ, Blanco-Centurion C, Vidal-Ortiz A. Mapping Network Activity in Sleep. Front Neurosci 2021; 15:646468. [PMID: 33828453 PMCID: PMC8019804 DOI: 10.3389/fnins.2021.646468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/04/2021] [Indexed: 11/22/2022] Open
Abstract
It was in the influenza pandemic of 1918 that von Economo identified specific brain regions regulating sleep and wake. Since then researchers have used a variety of tools to determine how the brain shifts between states of consciousness. In every enterprise new tools have validated existing data, corrected errors and made new discoveries to advance science. The brain is a challenge but new tools can disentangle the brain network. We summarize the newest tool, a miniature microscope, that provides unprecedented view of activity of glia and neurons in freely behaving mice. With this tool we have observed that the activity of a majority of GABA and MCH neurons in the lateral hypothalamus is heavily biased toward sleep. We suggest that miniscope data identifies activity at the cellular level in normal versus diseased brains, and also in response to specific hypnotics. Shifts in activity in small networks across the brain will help identify point of criticality that switches the brain from wake to sleep.
Collapse
Affiliation(s)
- Priyattam J Shiromani
- Ralph H. Johnson VA Medical Center, Charleston, SC, United States.,Department of Psychiatry and Biobehavioral Science, Medical University of South Carolina, Charleston, SC, United States
| | - Carlos Blanco-Centurion
- Department of Psychiatry and Biobehavioral Science, Medical University of South Carolina, Charleston, SC, United States
| | | |
Collapse
|
79
|
Notarmuzi D, Castellano C, Flammini A, Mazzilli D, Radicchi F. Percolation theory of self-exciting temporal processes. Phys Rev E 2021; 103:L020302. [PMID: 33736024 DOI: 10.1103/physreve.103.l020302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/05/2021] [Indexed: 11/07/2022]
Abstract
We investigate how the properties of inhomogeneous patterns of activity, appearing in many natural and social phenomena, depend on the temporal resolution used to define individual bursts of activity. To this end, we consider time series of microscopic events produced by a self-exciting Hawkes process, and leverage a percolation framework to study the formation of macroscopic bursts of activity as a function of the resolution parameter. We find that the very same process may result in different distributions of avalanche size and duration, which are understood in terms of the competition between the 1D percolation and the branching process universality class. Pure regimes for the individual classes are observed at specific values of the resolution parameter corresponding to the critical points of the percolation diagram. A regime of crossover characterized by a mixture of the two universal behaviors is observed in a wide region of the diagram. The hybrid scaling appears to be a likely outcome for an analysis of the time series based on a reasonably chosen, but not precisely adjusted, value of the resolution parameter.
Collapse
Affiliation(s)
- Daniele Notarmuzi
- Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana 47408, USA
| | - Claudio Castellano
- Istituto dei Sistemi Complessi (ISC-CNR), Via dei Taurini 19, I-00185 Rome, Italy
| | - Alessandro Flammini
- Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana 47408, USA
| | - Dario Mazzilli
- Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana 47408, USA
| | - Filippo Radicchi
- Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana 47408, USA
| |
Collapse
|
80
|
Boussard A, Fessel A, Oettmeier C, Briard L, Döbereiner HG, Dussutour A. Adaptive behaviour and learning in slime moulds: the role of oscillations. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190757. [PMID: 33487112 PMCID: PMC7935053 DOI: 10.1098/rstb.2019.0757] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2020] [Indexed: 12/11/2022] Open
Abstract
The slime mould Physarum polycephalum, an aneural organism, uses information from previous experiences to adjust its behaviour, but the mechanisms by which this is accomplished remain unknown. This article examines the possible role of oscillations in learning and memory in slime moulds. Slime moulds share surprising similarities with the network of synaptic connections in animal brains. First, their topology derives from a network of interconnected, vein-like tubes in which signalling molecules are transported. Second, network motility, which generates slime mould behaviour, is driven by distinct oscillations that organize into spatio-temporal wave patterns. Likewise, neural activity in the brain is organized in a variety of oscillations characterized by different frequencies. Interestingly, the oscillating networks of slime moulds are not precursors of nervous systems but, rather, an alternative architecture. Here, we argue that comparable information-processing operations can be realized on different architectures sharing similar oscillatory properties. After describing learning abilities and oscillatory activities of P. polycephalum, we explore the relation between network oscillations and learning, and evaluate the organism's global architecture with respect to information-processing potential. We hypothesize that, as in the brain, modulation of spontaneous oscillations may sustain learning in slime mould. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Aurèle Boussard
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | - Adrian Fessel
- Institut für Biophysik, Universität Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Christina Oettmeier
- Institut für Biophysik, Universität Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Léa Briard
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | | | - Audrey Dussutour
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| |
Collapse
|
81
|
Fosque LJ, Williams-García RV, Beggs JM, Ortiz G. Evidence for Quasicritical Brain Dynamics. PHYSICAL REVIEW LETTERS 2021; 126:098101. [PMID: 33750159 DOI: 10.1103/physrevlett.126.098101] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/20/2020] [Accepted: 12/23/2020] [Indexed: 05/24/2023]
Abstract
Much evidence seems to suggest the cortex operates near a critical point, yet a single set of exponents defining its universality class has not been found. In fact, when critical exponents are estimated from data, they widely differ across species, individuals of the same species, and even over time, or depending on stimulus. Interestingly, these exponents still approximately hold to a dynamical scaling relation. Here we show that the theory of quasicriticality, an organizing principle for brain dynamics, can account for this paradoxical situation. As external stimuli drive the cortex, quasicriticality predicts a departure from criticality along a Widom line with exponents that decrease in absolute value, while still holding approximately to a dynamical scaling relation. We use simulations and experimental data to confirm these predictions and describe new ones that could be tested soon.
Collapse
Affiliation(s)
- Leandro J Fosque
- Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
| | - Rashid V Williams-García
- Department of Mathematical Sciences, Indiana University-Purdue University, Indianapolis, Indiana 46202, USA
| | - John M Beggs
- Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
| | - Gerardo Ortiz
- Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
82
|
Gross T. Not One, but Many Critical States: A Dynamical Systems Perspective. Front Neural Circuits 2021; 15:614268. [PMID: 33737868 PMCID: PMC7960911 DOI: 10.3389/fncir.2021.614268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/05/2021] [Indexed: 02/01/2023] Open
Abstract
The past decade has seen growing support for the critical brain hypothesis, i.e., the possibility that the brain could operate at or very near a critical state between two different dynamical regimes. Such critical states are well-studied in different disciplines, therefore there is potential for a continued transfer of knowledge. Here, I revisit foundations of bifurcation theory, the mathematical theory of transitions. While the mathematics is well-known it's transfer to neural dynamics leads to new insights and hypothesis.
Collapse
Affiliation(s)
- Thilo Gross
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky Universität Oldenburg, Oldenburg, Germany
- Helmholtz Center for Marine and Polar Research, Alfred-Wegener-Institute, Bremerhaven, Germany
| |
Collapse
|
83
|
Abstract
Brain dynamics show a rich spatiotemporal behavior whose stability is neither ordered nor chaotic, indicating that neural networks operate at intermediate stability regimes including critical dynamics represented by a negative power-law distribution of avalanche sizes with exponent α=−1.5. However, it is unknown which stability regimen allows global and local information transmission with reduced metabolic costs, which are measured in terms of synaptic potentials and action potentials. In this work, using a hierarchical neuron model with rich-club organization, we measure the average number of action potentials required to activate n different neurons (avalanche size). Besides, we develop a mathematical formula to represent the metabolic synaptic potential cost. We develop simulations variating the synaptic amplitude, synaptic time course (ms), and hub excitatory/inhibitory ratio. We compare different dynamic regimes in terms of avalanche sizes vs. metabolic cost. We also implement the dynamic model in a Drosophila and Erdos–Renyi networks to computer dynamics and metabolic costs. The results show that the synaptic amplitude and time course play a key role in information propagation. They can drive the system from subcritical to supercritical regimes. The later result promotes the coexistence of critical regimes with a wide range of excitation/inhibition hub ratios. Moreover, subcritical or silent regimes minimize metabolic cost for local avalanche sizes, whereas critical and intermediate stability regimes show the best compromise between information propagation and reduced metabolic consumption, also minimizing metabolic cost for a wide range of avalanche sizes.
Collapse
|
84
|
Wang CY, Zhang JQ, Wu ZX, Guan JY. Collective firing patterns of neuronal networks with short-term synaptic plasticity. Phys Rev E 2021; 103:022312. [PMID: 33735974 DOI: 10.1103/physreve.103.022312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/28/2021] [Indexed: 12/31/2022]
Abstract
We investigate the occurrence of synchronous population activities in a neuronal network composed of both excitatory and inhibitory neurons and equipped with short-term synaptic plasticity. The collective firing patterns with different macroscopic properties emerge visually with the change of system parameters, and most long-time collective evolution also shows periodic-like characteristics. We systematically discuss the pattern-formation dynamics on a microscopic level and find a lot of hidden features of the population activities. The bursty phase with power-law distributed avalanches is observed in which the population activity can be either entire or local periodic-like. In the purely spike-to-spike synchronous regime, the periodic-like phase emerges from the synchronous chaos after the backward period-doubling transition. The local periodic-like population activity and the synchronous chaotic activity show substantial trial-to-trial variability, which is unfavorable for neural code, while they are contrary to the stable periodic-like phases. We also show that the inhibitory neurons can promote the generation of cluster firing behavior and strong bursty collective firing activity by depressing the activities of postsynaptic neurons partially or wholly.
Collapse
Affiliation(s)
- Chong-Yang Wang
- Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ji-Qiang Zhang
- Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100191, China
- School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China
| | - Zhi-Xi Wu
- Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jian-Yue Guan
- Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
85
|
Ribeiro TL, Chialvo DR, Plenz D. Scale-Free Dynamics in Animal Groups and Brain Networks. Front Syst Neurosci 2021; 14:591210. [PMID: 33551759 PMCID: PMC7854533 DOI: 10.3389/fnsys.2020.591210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Collective phenomena fascinate by the emergence of order in systems composed of a myriad of small entities. They are ubiquitous in nature and can be found over a vast range of scales in physical and biological systems. Their key feature is the seemingly effortless emergence of adaptive collective behavior that cannot be trivially explained by the properties of the system's individual components. This perspective focuses on recent insights into the similarities of correlations for two apparently disparate phenomena: flocking in animal groups and neuronal ensemble activity in the brain. We first will summarize findings on the spontaneous organization in bird flocks and macro-scale human brain activity utilizing correlation functions and insights from critical dynamics. We then will discuss recent experimental findings that apply these approaches to the collective response of neurons to visual and motor processing, i.e., to local perturbations of neuronal networks at the meso- and microscale. We show how scale-free correlation functions capture the collective organization of neuronal avalanches in evoked neuronal populations in nonhuman primates and between neurons during visual processing in rodents. These experimental findings suggest that the coherent collective neural activity observed at scales much larger than the length of the direct neuronal interactions is demonstrative of a phase transition and we discuss the experimental support for either discontinuous or continuous phase transitions. We conclude that at or near a phase-transition neuronal information can propagate in the brain with similar efficiency as proposed to occur in the collective adaptive response observed in some animal groups.
Collapse
Affiliation(s)
- Tiago L. Ribeiro
- Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Dante R. Chialvo
- Center for Complex Systems and Brain Sciences (CEMSC3), Instituto de Ciencias Físicas, (ICIFI) Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín (UNSAM), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
86
|
Carvalho TTA, Fontenele AJ, Girardi-Schappo M, Feliciano T, Aguiar LAA, Silva TPL, de Vasconcelos NAP, Carelli PV, Copelli M. Subsampled Directed-Percolation Models Explain Scaling Relations Experimentally Observed in the Brain. Front Neural Circuits 2021; 14:576727. [PMID: 33519388 PMCID: PMC7843423 DOI: 10.3389/fncir.2020.576727] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/30/2002] [Indexed: 12/14/2022] Open
Abstract
Recent experimental results on spike avalanches measured in the urethane-anesthetized rat cortex have revealed scaling relations that indicate a phase transition at a specific level of cortical firing rate variability. The scaling relations point to critical exponents whose values differ from those of a branching process, which has been the canonical model employed to understand brain criticality. This suggested that a different model, with a different phase transition, might be required to explain the data. Here we show that this is not necessarily the case. By employing two different models belonging to the same universality class as the branching process (mean-field directed percolation) and treating the simulation data exactly like experimental data, we reproduce most of the experimental results. We find that subsampling the model and adjusting the time bin used to define avalanches (as done with experimental data) are sufficient ingredients to change the apparent exponents of the critical point. Moreover, experimental data is only reproduced within a very narrow range in parameter space around the phase transition.
Collapse
Affiliation(s)
- Tawan T A Carvalho
- Departamento de Física, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Mauricio Girardi-Schappo
- Department of Physics, University of Ottawa, Ottawa, ON, Canada.,Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaís Feliciano
- Departamento de Física, Universidade Federal de Pernambuco, Recife, Brazil
| | - Leandro A A Aguiar
- Departamento de Ciências Fundamentais e Sociais, Universidade Federal da Paraíba, Areia, Brazil
| | - Thais P L Silva
- Departamento de Física, Universidade Federal de Pernambuco, Recife, Brazil
| | - Nivaldo A P de Vasconcelos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics, Braga, Portugal
| | - Pedro V Carelli
- Departamento de Física, Universidade Federal de Pernambuco, Recife, Brazil
| | - Mauro Copelli
- Departamento de Física, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
87
|
Lotfi N, Feliciano T, Aguiar LAA, Silva TPL, Carvalho TTA, Rosso OA, Copelli M, Matias FS, Carelli PV. Statistical complexity is maximized close to criticality in cortical dynamics. Phys Rev E 2021; 103:012415. [PMID: 33601583 DOI: 10.1103/physreve.103.012415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/04/2021] [Indexed: 11/07/2022]
Abstract
Complex systems are typically characterized as an intermediate situation between a complete regular structure and a random system. Brain signals can be studied as a striking example of such systems: cortical states can range from highly synchronous and ordered neuronal activity (with higher spiking variability) to desynchronized and disordered regimes (with lower spiking variability). It has been recently shown, by testing independent signatures of criticality, that a phase transition occurs in a cortical state of intermediate spiking variability. Here we use a symbolic information approach to show that, despite the monotonical increase of the Shannon entropy between ordered and disordered regimes, we can determine an intermediate state of maximum complexity based on the Jensen disequilibrium measure. More specifically, we show that statistical complexity is maximized close to criticality for cortical spiking data of urethane-anesthetized rats, as well as for a network model of excitable elements that presents a critical point of a nonequilibrium phase transition.
Collapse
Affiliation(s)
- Nastaran Lotfi
- Departamento de Física, Universidade Federal de Pernambuco, Recife PE 50670-901, Brazil
| | - Thaís Feliciano
- Departamento de Física, Universidade Federal de Pernambuco, Recife PE 50670-901, Brazil
| | - Leandro A A Aguiar
- Departamento de Ciências Fundamentais e Sociais, Universidade Federal da Paraíba, Areia PB 58397-000, Brazil
| | | | - Tawan T A Carvalho
- Departamento de Física, Universidade Federal de Pernambuco, Recife PE 50670-901, Brazil
| | - Osvaldo A Rosso
- Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil
| | - Mauro Copelli
- Departamento de Física, Universidade Federal de Pernambuco, Recife PE 50670-901, Brazil
| | - Fernanda S Matias
- Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil
| | - Pedro V Carelli
- Departamento de Física, Universidade Federal de Pernambuco, Recife PE 50670-901, Brazil
| |
Collapse
|
88
|
Diffuse neural coupling mediates complex network dynamics through the formation of quasi-critical brain states. Nat Commun 2020; 11:6337. [PMID: 33303766 PMCID: PMC7729877 DOI: 10.1038/s41467-020-19716-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/28/2020] [Indexed: 01/17/2023] Open
Abstract
The biological mechanisms that allow the brain to balance flexibility and integration remain poorly understood. A potential solution may lie in a unique aspect of neurobiology, which is that numerous brain systems contain diffuse synaptic connectivity. Here, we demonstrate that increasing diffuse cortical coupling within a validated biophysical corticothalamic model traverses the system through a quasi-critical regime in which spatial heterogeneities in input noise support transient critical dynamics in distributed subregions. The presence of quasi-critical states coincides with known signatures of complex, adaptive brain network dynamics. Finally, we demonstrate the presence of similar dynamic signatures in empirical whole-brain human neuroimaging data. Together, our results establish that modulating the balance between local and diffuse synaptic coupling in a thalamocortical model subtends the emergence of quasi-critical brain states that act to flexibly transition the brain between unique modes of information processing.
Collapse
|
89
|
Varley TF, Sporns O, Puce A, Beggs J. Differential effects of propofol and ketamine on critical brain dynamics. PLoS Comput Biol 2020; 16:e1008418. [PMID: 33347455 PMCID: PMC7785236 DOI: 10.1371/journal.pcbi.1008418] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 01/05/2021] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
Whether the brain operates at a critical "tipping" point is a long standing scientific question, with evidence from both cellular and systems-scale studies suggesting that the brain does sit in, or near, a critical regime. Neuroimaging studies of humans in altered states of consciousness have prompted the suggestion that maintenance of critical dynamics is necessary for the emergence of consciousness and complex cognition, and that reduced or disorganized consciousness may be associated with deviations from criticality. Unfortunately, many of the cellular-level studies reporting signs of criticality were performed in non-conscious systems (in vitro neuronal cultures) or unconscious animals (e.g. anaesthetized rats). Here we attempted to address this knowledge gap by exploring critical brain dynamics in invasive ECoG recordings from multiple sessions with a single macaque as the animal transitioned from consciousness to unconsciousness under different anaesthetics (ketamine and propofol). We use a previously-validated test of criticality: avalanche dynamics to assess the differences in brain dynamics between normal consciousness and both drug-states. Propofol and ketamine were selected due to their differential effects on consciousness (ketamine, but not propofol, is known to induce an unusual state known as "dissociative anaesthesia"). Our analyses indicate that propofol dramatically restricted the size and duration of avalanches, while ketamine allowed for more awake-like dynamics to persist. In addition, propofol, but not ketamine, triggered a large reduction in the complexity of brain dynamics. All states, however, showed some signs of persistent criticality when testing for exponent relations and universal shape-collapse. Further, maintenance of critical brain dynamics may be important for regulation and control of conscious awareness.
Collapse
Affiliation(s)
- Thomas F. Varley
- Psychological & Brain Sciences, Indiana University, Bloomington, Indiana, USA
- School of Informatics, Indiana University, Bloomington, Indiana, USA
| | - Olaf Sporns
- Psychological & Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Aina Puce
- Psychological & Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - John Beggs
- Department of Physics, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
90
|
Liang J, Zhou T, Zhou C. Hopf Bifurcation in Mean Field Explains Critical Avalanches in Excitation-Inhibition Balanced Neuronal Networks: A Mechanism for Multiscale Variability. Front Syst Neurosci 2020; 14:580011. [PMID: 33324179 PMCID: PMC7725680 DOI: 10.3389/fnsys.2020.580011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cortical neural circuits display highly irregular spiking in individual neurons but variably sized collective firing, oscillations and critical avalanches at the population level, all of which have functional importance for information processing. Theoretically, the balance of excitation and inhibition inputs is thought to account for spiking irregularity and critical avalanches may originate from an underlying phase transition. However, the theoretical reconciliation of these multilevel dynamic aspects in neural circuits remains an open question. Herein, we study excitation-inhibition (E-I) balanced neuronal network with biologically realistic synaptic kinetics. It can maintain irregular spiking dynamics with different levels of synchrony and critical avalanches emerge near the synchronous transition point. We propose a novel semi-analytical mean-field theory to derive the field equations governing the network macroscopic dynamics. It reveals that the E-I balanced state of the network manifesting irregular individual spiking is characterized by a macroscopic stable state, which can be either a fixed point or a periodic motion and the transition is predicted by a Hopf bifurcation in the macroscopic field. Furthermore, by analyzing public data, we find the coexistence of irregular spiking and critical avalanches in the spontaneous spiking activities of mouse cortical slice in vitro, indicating the universality of the observed phenomena. Our theory unveils the mechanism that permits complex neural activities in different spatiotemporal scales to coexist and elucidates a possible origin of the criticality of neural systems. It also provides a novel tool for analyzing the macroscopic dynamics of E-I balanced networks and its relationship to the microscopic counterparts, which can be useful for large-scale modeling and computation of cortical dynamics.
Collapse
Affiliation(s)
- Junhao Liang
- Department of Physics, Centre for Nonlinear Studies, Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems, Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Key Laboratory of Computational Mathematics, Guangdong Province, and School of Mathematics, Sun Yat-sen University, Guangzhou, China
| | - Tianshou Zhou
- Key Laboratory of Computational Mathematics, Guangdong Province, and School of Mathematics, Sun Yat-sen University, Guangzhou, China
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies, Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems, Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Department of Physics, Zhejiang University, Hangzhou, China
| |
Collapse
|
91
|
Lee ED, Daniels BC, Myers CR, Krakauer DC, Flack JC. Scaling theory of armed-conflict avalanches. Phys Rev E 2020; 102:042312. [PMID: 33212735 DOI: 10.1103/physreve.102.042312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/01/2020] [Indexed: 11/07/2022]
Abstract
Armed conflict data display features consistent with scaling and universal dynamics in both social and physical properties like fatalities and geographic extent. We propose a randomly branching armed conflict model to relate the multiple properties to one another. The model incorporates a fractal lattice on which conflict spreads, uniform dynamics driving conflict growth, and regional virulence that modulates local conflict intensity. The quantitative constraints on scaling and universal dynamics we use to develop our minimal model serve more generally as a set of constraints for other models for armed conflict dynamics. We show how this approach akin to thermodynamics imparts mechanistic intuition and unifies multiple conflict properties, giving insight into causation, prediction, and intervention timing.
Collapse
Affiliation(s)
- Edward D Lee
- Santa Fe Institute, Santa Fe, New Mexico 87501, USA.,Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - Bryan C Daniels
- ASU-SFI Center for Biosocial Complex Systems, Arizona State University, Tempe, Arizona 85287, USA
| | - Christopher R Myers
- Department of Physics, Cornell University, Ithaca, New York 14853, USA.,Center for Advanced Computing, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
92
|
Ju H, Kim JZ, Beggs JM, Bassett DS. Network structure of cascading neural systems predicts stimulus propagation and recovery. J Neural Eng 2020; 17:056045. [PMID: 33036007 PMCID: PMC11191848 DOI: 10.1088/1741-2552/abbff1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Many neural systems display spontaneous, spatiotemporal patterns of neural activity that are crucial for information processing. While these cascading patterns presumably arise from the underlying network of synaptic connections between neurons, the precise contribution of the network's local and global connectivity to these patterns and information processing remains largely unknown. APPROACH Here, we demonstrate how network structure supports information processing through network dynamics in empirical and simulated spiking neurons using mathematical tools from linear systems theory, network control theory, and information theory. MAIN RESULTS In particular, we show that activity, and the information that it contains, travels through cycles in real and simulated networks. SIGNIFICANCE Broadly, our results demonstrate how cascading neural networks could contribute to cognitive faculties that require lasting activation of neuronal patterns, such as working memory or attention.
Collapse
Affiliation(s)
- Harang Ju
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Jason Z Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - John M Beggs
- Department of Physics, Indiana University, Bloomington, IN 47405, United States of America
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States of America
- Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM 87501, United States of America
| |
Collapse
|
93
|
Safari N, Shahbazi F, Dehghani-Habibabadi M, Esghaei M, Zare M. Spike-phase coupling as an order parameter in a leaky integrate-and-fire model. Phys Rev E 2020; 102:052202. [PMID: 33327067 DOI: 10.1103/physreve.102.052202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 09/22/2020] [Indexed: 06/12/2023]
Abstract
It is known that the leaky integrate-and-fire neural model shows a transition from irregular to synchronous firing by increasing the coupling between the neurons. However, a quantitative characterization of this order-disorder transition, that is, the determination of the order of transition and also the critical exponents in the case of continuous transition, is not entirely known. In this work, we consider a network of N excitatory neurons with local connections, residing on a square lattice with periodic boundary conditions. The cooperation between neurons K plays the role of the control parameter that generates criticality when the critical cooperation strength K_{c} is adopted. We introduce the population-averaged voltage (PAV) as a representative value of the network's cooperative activity. Then, we show that the coupling between the timing of spikes and the phase of temporal fluctuations of PAV defined as m resorts to identify a Kuramoto order parameter. By increasing K, we find a continuous transition from irregular spiking to a phase-locked state at the critical point K_{c}. We deploy the finite-size scaling analysis to calculate the critical exponents of this transition. To explore the formal indicator of criticality, we study the neuronal avalanches profile at this critical point and find a scaling behavior with the exponents in a fair agreement with the experimental values both in vivo and in vitro.
Collapse
Affiliation(s)
- Nahid Safari
- Department of Physics, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | - Farhad Shahbazi
- Department of Physics, Isfahan University of Technology, 84156-83111 Isfahan, Iran
| | | | - Moein Esghaei
- Cognitive Neuroscience Laboratory, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), 19395 Tehran, Iran
- Royan Institute for Stem Cell Biology and Technology, ACECR, 16635, Tehran, Iran
| | - Marzieh Zare
- Département de psychologie, Université de Montréal, H3C 3J7 Montréal, Canada
| |
Collapse
|
94
|
Ma Z, Liu H, Komiyama T, Wessel R. Stability of motor cortex network states during learning-associated neural reorganizations. J Neurophysiol 2020; 124:1327-1342. [PMID: 32937084 DOI: 10.1152/jn.00061.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A substantial reorganization of neural activity and neuron-to-movement relationship in motor cortical circuits accompanies the emergence of reproducible movement patterns during motor learning. Little is known about how this tempest of neural activity restructuring impacts the stability of network states in recurrent cortical circuits. To investigate this issue, we reanalyzed data in which we recorded for 14 days via population calcium imaging the activity of the same neural populations of pyramidal neurons in layer 2/3 and layer 5 of forelimb motor and premotor cortex in mice during the daily learning of a lever-press task. We found that motor cortex network states remained stable with respect to the critical network state during the extensive reorganization of both neural population activity and its relation to lever movement throughout learning. Specifically, layer 2/3 cortical circuits unceasingly displayed robust evidence for operating at the critical network state, a regime that maximizes information capacity and transmission and provides a balance between network robustness and flexibility. In contrast, layer 5 circuits operated away from the critical network state for all 14 days of recording and learning. In conclusion, this result indicates that the wide-ranging malleability of synapses, neurons, and neural connectivity during learning operates within the constraint of a stable and layer-specific network state regarding dynamic criticality, and suggests that different cortical layers operate under distinct constraints because of their specialized goals.NEW & NOTEWORTHY The neural activity reorganizes throughout motor learning, but how this reorganization impacts the stability of network states is unclear. We used two-photon calcium imaging to investigate how the network states in layer 2/3 and layer 5 of forelimb motor and premotor cortex are modulated by motor learning. We show that motor cortex network states are layer-specific and constant regarding criticality during neural activity reorganization, and suggests that layer-specific constraints could be motivated by different functions.
Collapse
Affiliation(s)
- Zhengyu Ma
- Department of Physics, Washington University in St. Louis, Saint Louis, Missouri
| | - Haixin Liu
- Neurobiology Section and Department of Neuroscience, University of California San Diego, La Jolla, California
| | - Takaki Komiyama
- Neurobiology Section and Department of Neuroscience, University of California San Diego, La Jolla, California
| | - Ralf Wessel
- Department of Physics, Washington University in St. Louis, Saint Louis, Missouri
| |
Collapse
|
95
|
Kuśmierz Ł, Ogawa S, Toyoizumi T. Edge of Chaos and Avalanches in Neural Networks with Heavy-Tailed Synaptic Weight Distribution. PHYSICAL REVIEW LETTERS 2020; 125:028101. [PMID: 32701351 DOI: 10.1103/physrevlett.125.028101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/03/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
We propose an analytically tractable neural connectivity model with power-law distributed synaptic strengths. When threshold neurons with biologically plausible number of incoming connections are considered, our model features a continuous transition to chaos and can reproduce biologically relevant low activity levels and scale-free avalanches, i.e., bursts of activity with power-law distributions of sizes and lifetimes. In contrast, the Gaussian counterpart exhibits a discontinuous transition to chaos and thus cannot be poised near the edge of chaos. We validate our predictions in simulations of networks of binary as well as leaky integrate-and-fire neurons. Our results suggest that heavy-tailed synaptic distribution may form a weakly informative sparse-connectivity prior that can be useful in biological and artificial adaptive systems.
Collapse
Affiliation(s)
- Łukasz Kuśmierz
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shun Ogawa
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Taro Toyoizumi
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
96
|
Safron A. An Integrated World Modeling Theory (IWMT) of Consciousness: Combining Integrated Information and Global Neuronal Workspace Theories With the Free Energy Principle and Active Inference Framework; Toward Solving the Hard Problem and Characterizing Agentic Causation. Front Artif Intell 2020; 3:30. [PMID: 33733149 PMCID: PMC7861340 DOI: 10.3389/frai.2020.00030] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
The Free Energy Principle and Active Inference Framework (FEP-AI) begins with the understanding that persisting systems must regulate environmental exchanges and prevent entropic accumulation. In FEP-AI, minds and brains are predictive controllers for autonomous systems, where action-driven perception is realized as probabilistic inference. Integrated Information Theory (IIT) begins with considering the preconditions for a system to intrinsically exist, as well as axioms regarding the nature of consciousness. IIT has produced controversy because of its surprising entailments: quasi-panpsychism; subjectivity without referents or dynamics; and the possibility of fully-intelligent-yet-unconscious brain simulations. Here, I describe how these controversies might be resolved by integrating IIT with FEP-AI, where integrated information only entails consciousness for systems with perspectival reference frames capable of generating models with spatial, temporal, and causal coherence for self and world. Without that connection with external reality, systems could have arbitrarily high amounts of integrated information, but nonetheless would not entail subjective experience. I further describe how an integration of these frameworks may contribute to their evolution as unified systems theories and models of emergent causation. Then, inspired by both Global Neuronal Workspace Theory (GNWT) and the Harmonic Brain Modes framework, I describe how streams of consciousness may emerge as an evolving generation of sensorimotor predictions, with the precise composition of experiences depending on the integration abilities of synchronous complexes as self-organizing harmonic modes (SOHMs). These integrating dynamics may be particularly likely to occur via richly connected subnetworks affording body-centric sources of phenomenal binding and executive control. Along these connectivity backbones, SOHMs are proposed to implement turbo coding via loopy message-passing over predictive (autoencoding) networks, thus generating maximum a posteriori estimates as coherent vectors governing neural evolution, with alpha frequencies generating basic awareness, and cross-frequency phase-coupling within theta frequencies for access consciousness and volitional control. These dynamic cores of integrated information also function as global workspaces, centered on posterior cortices, but capable of being entrained with frontal cortices and interoceptive hierarchies, thus affording agentic causation. Integrated World Modeling Theory (IWMT) represents a synthetic approach to understanding minds that reveals compatibility between leading theories of consciousness, thus enabling inferential synergy.
Collapse
Affiliation(s)
- Adam Safron
- Indiana University, Bloomington, IN, United States
| |
Collapse
|
97
|
Freche D, Naim-Feil J, Hess S, Peled A, Grinshpoon A, Moses E, Levit-Binnun N. Phase-Amplitude Markers of Synchrony and Noise: A Resting-State and TMS-EEG Study of Schizophrenia. Cereb Cortex Commun 2020; 1:tgaa013. [PMID: 34296092 PMCID: PMC8152916 DOI: 10.1093/texcom/tgaa013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/30/2020] [Indexed: 01/01/2023] Open
Abstract
The electroencephalogram (EEG) of schizophrenia patients is known to exhibit a reduction of signal-to-noise ratio and of phase locking, as well as a facilitation of excitability, in response to a variety of external stimuli. Here, we demonstrate these effects in transcranial magnetic stimulation (TMS)-evoked potentials and in the resting-state EEG. To ensure veracity, we used 3 weekly sessions and analyzed both resting-state and TMS-EEG data. For the TMS responses, our analysis verifies known results. For the resting state, we introduce the methodology of mean-normalized variation to the EEG analysis (quartile-based coefficient of variation), which allows for a comparison of narrow-band EEG amplitude fluctuations to narrow-band Gaussian noise. This reveals that amplitude fluctuations in the delta, alpha, and beta bands of healthy controls are different from those in schizophrenia patients, on time scales of tens of seconds. We conclude that the EEG-measured cortical activity patterns of schizophrenia patients are more similar to noise, both in alpha- and beta-resting state and in TMS responses. Our results suggest that the ability of neuronal populations to form stable, locally, and temporally correlated activity is reduced in schizophrenia, a conclusion, that is, in accord with previous experiments on TMS-EEG and on resting-state EEG.
Collapse
Affiliation(s)
- Dominik Freche
- Sagol Center of Brain and Mind, Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzliya 4610101, Israel
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jodie Naim-Feil
- Sagol Center of Brain and Mind, Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzliya 4610101, Israel
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton 3800, Australia
| | - Shmuel Hess
- Geha Mental Health Center, Petah Tikvah 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Avraham Peled
- Rappaport Faculty of Medicine, Technion, Haifa 3200003, Israel
- Institute for Psychiatric Studies, Shaar Menashe Mental Health Center, Menashe 38814, Pardes Hanna-Karkur, Israel
| | - Alexander Grinshpoon
- Rappaport Faculty of Medicine, Technion, Haifa 3200003, Israel
- Institute for Psychiatric Studies, Shaar Menashe Mental Health Center, Menashe 38814, Pardes Hanna-Karkur, Israel
| | - Elisha Moses
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nava Levit-Binnun
- Sagol Center of Brain and Mind, Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzliya 4610101, Israel
| |
Collapse
|
98
|
Ipsen JR, Peterson ADH. Consequences of Dale's law on the stability-complexity relationship of random neural networks. Phys Rev E 2020; 101:052412. [PMID: 32575310 DOI: 10.1103/physreve.101.052412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
In the study of randomly connected neural network dynamics there is a phase transition from a simple state with few equilibria to a complex state characterized by the number of equilibria growing exponentially with the neuron population. Such phase transitions are often used to describe pathological brain state transitions observed in neurological diseases such as epilepsy. In this paper we investigate how more realistic heterogeneous network structures affect these phase transitions using techniques from random matrix theory. Specifically, we parametrize the network structure according to Dale's law and use the Kac-Rice formalism to compute the change in the number of equilibria when a phase transition occurs. We also examine the condition where the network is not balanced between excitation and inhibition causing outliers to appear in the eigenspectrum. This enables us to compute the effects of different heterogeneous network connectivities on brain state transitions, which can provide insights into pathological brain dynamics.
Collapse
Affiliation(s)
- J R Ipsen
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematics and Statistics, University of Melbourne, 3010 Parkville, Victoria, Australia
| | - A D H Peterson
- Graeme Clarke Institute, University of Melbourne, 3053 Carlton, Victoria, Australia and Department of Medicine, St. Vincent's Hospital, University of Melbourne, 3065 Fitzroy, Victoria, Australia
| |
Collapse
|
99
|
Walkama DM, Waisbord N, Guasto JS. Disorder Suppresses Chaos in Viscoelastic Flows. PHYSICAL REVIEW LETTERS 2020; 124:164501. [PMID: 32383946 DOI: 10.1103/physrevlett.124.164501] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/24/2019] [Accepted: 03/23/2020] [Indexed: 05/13/2023]
Abstract
Viscoelastic flows through microstructured geometries transition from steady to time dependent and chaotic dynamics under critical flow conditions. However, the implications of geometric disorder for flow stability are unknown. We measure the onset of spatiotemporal velocity fluctuations for a viscoelastic flow through microfluidic pillar arrays, having controlled variations of geometric disorder. Introducing a small perturbation into the pillar array (∼10% of the lattice constant) delays the onset of the instability to higher flow speed, and yet larger disorders (≥25%) suppress the transition to chaos. We show that disorder introduces preferential flow paths that promote shear over extensional deformation and enhance flow stability by locally reducing polymer stretching.
Collapse
Affiliation(s)
- Derek M Walkama
- Department of Mechanical Engineering, Tufts University, 200 College Avenue, Medford, Massachusetts 02155, USA
- Department of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Nicolas Waisbord
- Department of Mechanical Engineering, Tufts University, 200 College Avenue, Medford, Massachusetts 02155, USA
| | - Jeffrey S Guasto
- Department of Mechanical Engineering, Tufts University, 200 College Avenue, Medford, Massachusetts 02155, USA
| |
Collapse
|
100
|
Martinez-Banaclocha M. Astroglial Isopotentiality and Calcium-Associated Biomagnetic Field Effects on Cortical Neuronal Coupling. Cells 2020; 9:cells9020439. [PMID: 32069981 PMCID: PMC7073214 DOI: 10.3390/cells9020439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023] Open
Abstract
Synaptic neurotransmission is necessary but does not sufficiently explain superior cognitive faculties. Growing evidence has shown that neuron-astroglial chemical crosstalk plays a critical role in the processing of information, computation, and memory. In addition to chemical and electrical communication among neurons and between neurons and astrocytes, other nonsynaptic mechanisms called ephaptic interactions can contribute to the neuronal synchronization from different brain regions involved in the processing of information. New research on brain astrocytes has clearly shown that the membrane potential of these cells remains very stable among neighboring and distant astrocytes due to the marked bioelectric coupling between them through gap junctions. This finding raises the possibility that the neocortical astroglial network exerts a guiding template modulating the excitability and synchronization of trillions of neurons by astroglial Ca2+-associated bioelectromagnetic interactions. We propose that bioelectric and biomagnetic fields of the astroglial network equalize extracellular local field potentials (LFPs) and associated local magnetic field potentials (LMFPs) in the cortical layers of the brain areas involved in the processing of information, contributing to the adequate and coherent integration of external and internal signals. This article reviews the current knowledge of ephaptic interactions in the cerebral cortex and proposes that the isopotentiality of cortical astrocytes is a prerequisite for the maintenance of the bioelectromagnetic crosstalk between neurons and astrocytes in the neocortex.
Collapse
|