51
|
Villegas P, Gili T, Caldarelli G, Gabrielli A. Evidence of scale-free clusters of vegetation in tropical rainforests. Phys Rev E 2024; 109:L042402. [PMID: 38755841 DOI: 10.1103/physreve.109.l042402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/09/2024] [Indexed: 05/18/2024]
Abstract
Tropical rainforests exhibit a rich repertoire of spatial patterns emerging from the intricate relationship between the microscopic interaction between species. In particular, the distribution of vegetation clusters can shed much light on the underlying process that regulates the ecosystem. Analyzing the distribution of vegetation clusters at different resolution scales, we show the first robust evidence of scale-invariant clusters of vegetation, suggesting the coexistence of multiple intertwined scales in the collective dynamics of tropical rainforests. We use field data and computational simulations to confirm our hypothesis, proposing a predictor that could be particularly interesting to monitor the ecological resilience of the world's "green lungs."
Collapse
Affiliation(s)
- Pablo Villegas
- 'Enrico Fermi' Research Center (CREF), Via Panisperna 89A, 00184 - Rome, Italy
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada E-18071, Spain
| | - Tommaso Gili
- Networks Unit, IMT Scuola Alti Studi Lucca, Piazza San Francesco 15, 55100- Lucca, Italy
| | - Guido Caldarelli
- DMSN, Ca' Foscari University of Venice, Via Torino 155, 30172 - Venice, Italy
- European Centre for Living Technology (ECLT), Dorsoduro 3911, 30123 - Venice, Italy
- Institute for Complex Systems (ISC), CNR, UoS Sapienza, Piazzale Aldo Moro 2, 00185 - Rome, Italy
- London Institute for Mathematical Sciences (LIMS), W1K2XF London, United Kingdom
| | - Andrea Gabrielli
- 'Enrico Fermi' Research Center (CREF), Via Panisperna 89A, 00184 - Rome, Italy
- Institute for Complex Systems (ISC), CNR, UoS Sapienza, Piazzale Aldo Moro 2, 00185 - Rome, Italy
- Dipartimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche, Università degli Studi 'Roma Tre', Via Vito Volterra 62, 00146 - Rome, Italy
| |
Collapse
|
52
|
Zhang Y, Liu M, Hu G, Liu T, Chen X. Eigen microstates in self-organized criticality. Phys Rev E 2024; 109:044130. [PMID: 38755836 DOI: 10.1103/physreve.109.044130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/20/2024] [Indexed: 05/18/2024]
Abstract
We employ the eigen microstates approach to explore the self-organized criticality (SOC) in two celebrated sandpile models, namely the BTW model and the Manna model. In both models, phase transitions from the absorbing state to the critical state can be understood by the emergence of dominant eigen microstates with significantly increased weights. Spatial eigen microstates of avalanches can be uniformly characterized by a linear system size rescaling. The first temporal eigen microstates reveal scaling relations in both models. Furthermore, by finite-size scaling analysis of the first eigen microstates, we numerically estimate critical exponents, i.e., sqrt[σ_{0}w_{1}]/v[over ̃]_{1}∝L^{D} and v[over ̃]_{1}∝L^{D(1-τ_{s})/2}. Our findings could provide profound insights into eigen microstates of the universality and phase transition in nonequilibrium complex systems governed by self-organized criticality.
Collapse
Affiliation(s)
- Yongwen Zhang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Maoxin Liu
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Gaoke Hu
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Teng Liu
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Xiaosong Chen
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
53
|
Sakaguchi H. Noise-induced excitation wave and its size distribution in coupled FitzHugh-Nagumo equations on a square lattice. Phys Rev E 2024; 109:044211. [PMID: 38755797 DOI: 10.1103/physreve.109.044211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 05/18/2024]
Abstract
There are various research topics such as stochastic resonance, coherent resonance, and neuroavalanche in excitable systems under external noises. We perform numerical simulation of coupled noisy FitzHugh-Nagumo equations on the square lattice. Excitation waves are generated most efficiently at an intermediate noise strength. The cluster size distributions obey a power-law-like distribution at a certain parameter range. However, we consider that this is not a self-organized critical phenomenon, partly because the exponent of the power law is not constant. We have studied the propagation of excitation waves in the coupled noisy FitzHugh-Nagumo equations with a one-dimensional pacemaker region and found that there is a phase-transition-like phenomenon from the short-range propagation to the whole-system propagation by changing the noise strength T. The power-law distribution is observed most clearly near the phase transition of the propagation of excitation waves in the coupled noisy FitzHugh-Nagumo equations without the one-dimensional pacemaker.
Collapse
Affiliation(s)
- Hidetsugu Sakaguchi
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
54
|
Cheng S, Morel R, Allys E, Ménard B, Mallat S. Scattering spectra models for physics. PNAS NEXUS 2024; 3:pgae103. [PMID: 38560525 PMCID: PMC10978061 DOI: 10.1093/pnasnexus/pgae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/16/2024] [Indexed: 04/04/2024]
Abstract
Physicists routinely need probabilistic models for a number of tasks such as parameter inference or the generation of new realizations of a field. Establishing such models for highly non-Gaussian fields is a challenge, especially when the number of samples is limited. In this paper, we introduce scattering spectra models for stationary fields and we show that they provide accurate and robust statistical descriptions of a wide range of fields encountered in physics. These models are based on covariances of scattering coefficients, i.e. wavelet decomposition of a field coupled with a pointwise modulus. After introducing useful dimension reductions taking advantage of the regularity of a field under rotation and scaling, we validate these models on various multiscale physical fields and demonstrate that they reproduce standard statistics, including spatial moments up to fourth order. The scattering spectra provide us with a low-dimensional structured representation that captures key properties encountered in a wide range of physical fields. These generic models can be used for data exploration, classification, parameter inference, symmetry detection, and component separation.
Collapse
Affiliation(s)
- Sihao Cheng
- School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA
| | - Rudy Morel
- Departement d'informatique de l'ENS, ENS, CNRS, PSL University, 75014 Paris, France
| | - Erwan Allys
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75014 Paris, France
| | - Brice Ménard
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Stéphane Mallat
- Departement d'informatique de l'ENS, ENS, CNRS, PSL University, 75014 Paris, France
- Collège de France, 75231 Paris, France
- Center for Computational Mathematics, Flatiron Institute, New York, NY 10010, USA
| |
Collapse
|
55
|
Roy A, Sinha S, Gupte N. Robustness of the emergence of synchronized clusters in branching hierarchical systems under parametric noise. CHAOS (WOODBURY, N.Y.) 2024; 34:043132. [PMID: 38598673 DOI: 10.1063/5.0172507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
The dynamical robustness of networks in the presence of noise is of utmost fundamental and applied interest. In this work, we explore the effect of parametric noise on the emergence of synchronized clusters in diffusively coupled Chaté-Manneville maps on a branching hierarchical structure. We consider both quenched and dynamically varying parametric noise. We find that the transition to a synchronized fixed point on the maximal cluster is robust in the presence of both types of noise. We see that the small sub-maximal clusters of the system, which coexist with the maximal cluster, exhibit a power-law cluster size distribution. This power-law scaling of synchronized cluster sizes is robust against noise in a broad range of coupling strengths. However, interestingly, we find a window of coupling strength where the system displays markedly different sensitivities to noise for the maximal cluster and the small clusters, with the scaling exponent for the cluster distribution for small clusters exhibiting clear dependence on noise strength, while the cluster size of the maximal cluster of the system displays no significant change in the presence of noise. Our results have implications for the observability of synchronized cluster distributions in real-world hierarchical networks, such as neural networks, power grids, and communication networks, that necessarily have parametric fluctuations.
Collapse
Affiliation(s)
- Anupama Roy
- Indian Institute of Science Education and Research Mohali, Manauli PO 140306, India
| | - Sudeshna Sinha
- Indian Institute of Science Education and Research Mohali, Manauli PO 140306, India
| | - Neelima Gupte
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
56
|
Milovanov AV, Rasmussen JJ. Turbulence spreading by resonant wave-wave interactions: A fractional kinetics approach. Phys Rev E 2024; 109:045105. [PMID: 38755833 DOI: 10.1103/physreve.109.045105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/06/2024] [Indexed: 05/18/2024]
Abstract
This paper is concerned with the processes of spatial propagation and penetration of turbulence from the regions where it is locally excited into initially laminar regions. The phenomenon has come to be known as "turbulence spreading" and witnessed a renewed attention in the literature recently. Here, we propose a comprehensive theory of turbulence spreading based on fractional kinetics. We argue that the use of fractional-derivative equations permits a general approach focusing on fundamentals of the spreading process regardless of a specific turbulence model and/or specific instability type. The starting point is the Hamiltonian of resonant wave-wave interactions, from which a family of scaling laws for the asymptotic spreading is derived. Both three- and four-wave interactions are considered. The results span from a subdiffusive spreading in the parameter range of weak chaos to avalanche propagation in regimes with population inversion. Attention is paid to how nonergodicity introduces weak mixing, memory and intermittency into spreading dynamics, and how the properties of non-Markovianity and nonlocality emerge from the presence of islands of regular dynamics in phase space. Also we resolve an existing question concerning turbulence spillover into gap regions, where the instability growth is locally suppressed, and show that the spillover occurs through exponential (Anderson-like) localization in case of four-wave interactions and through an algebraic (weak) localization in case of triad interactions. In the latter case an inverse-cubic behavior of the spillover function is found. Wherever relevant, we contrast our findings against the available observational and numerical evidence, and we also commit ourselves to establish connections with the models of turbulence spreading proposed previously.
Collapse
Affiliation(s)
- Alexander V Milovanov
- ENEA National Laboratory, Centro Ricerche Frascati, I-00044 Frascati, Rome, Italy
- Max-Planck-Institut für Physik komplexer Systeme, D-01187 Dresden, Germany
| | - Jens Juul Rasmussen
- Physics Department, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
57
|
Shekh Alshabab S, Markert B, Bamer F. Criticality in the fracture of silica glass: Insights from molecular mechanics. Phys Rev E 2024; 109:034110. [PMID: 38632794 DOI: 10.1103/physreve.109.034110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/02/2024] [Indexed: 04/19/2024]
Abstract
The universality of avalanches characterizing the inelastic response of disordered materials has the potential to bridge the gap from micro to macroscale. In this study, we explore the statistics and the scaling behavior of avalanches occurring during the fracture process in silica glass using molecular mechanics. We introduce a robust method for capturing and quantifying these avalanches, allowing us to perform rigorous statistical analyses, revealing universal power laws associated with critical phenomena. The influence of an initial crack is explored, observing deviations from mean-field predictions while maintaining the property of criticality. However, the avalanche exponents in the unnotched samples are predicted correctly by the mean-field depinning model. Furthermore, we investigate the strain-dependent probability density function, its cutoff function, and the interrelation between the critical exponents. Finally, we unveil distinct scaling behavior for small and large avalanches of the crack growth, shedding light on the underlying fracture mechanisms in silica glass.
Collapse
Affiliation(s)
| | - Bernd Markert
- Institute of General Mechanics, RWTH Aachen University, 52062 Aachen, Germany
| | - Franz Bamer
- Institute of General Mechanics, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
58
|
Sun X, Williams J, Sharma S, Kunjir S, Morris D, Zhao S, Ruan CY. Precision-controlled ultrafast electron microscope platforms. A case study: Multiple-order coherent phonon dynamics in 1T-TaSe 2 probed at 50 fs-10 fm scales. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:024305. [PMID: 38566810 PMCID: PMC10987196 DOI: 10.1063/4.0000242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
We report on the first detailed beam tests attesting the fundamental principle behind the development of high-current-efficiency ultrafast electron microscope systems where a radio frequency (RF) cavity is incorporated as a condenser lens in the beam delivery system. To allow for the experiment to be carried out with a sufficient resolution to probe the performance at the emittance floor, a new cascade loop RF controller system is developed to reduce the RF noise floor. Temporal resolution at 50 fs in full-width-at-half-maximum and detection sensitivity better than 1% are demonstrated on exfoliated 1T-TaSe2 system under a moderate repetition rate. To benchmark the performance, multi-terahertz edge-mode coherent phonon excitation is employed as the standard candle. The high temporal resolution and the significant visibility to very low dynamical contrast in diffraction signals via high-precision phase-space manipulation give strong support to the working principle for the new high-brightness femtosecond electron microscope systems.
Collapse
Affiliation(s)
- Xiaoyi Sun
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Joseph Williams
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Sachin Sharma
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Shriraj Kunjir
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA
| | - Dan Morris
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA
| | - Shen Zhao
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA
| | - Chong-Yu Ruan
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
59
|
O'Reilly D, Delis I. Dissecting muscle synergies in the task space. eLife 2024; 12:RP87651. [PMID: 38407224 PMCID: PMC10942626 DOI: 10.7554/elife.87651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
The muscle synergy is a guiding concept in motor control research that relies on the general notion of muscles 'working together' towards task performance. However, although the synergy concept has provided valuable insights into motor coordination, muscle interactions have not been fully characterised with respect to task performance. Here, we address this research gap by proposing a novel perspective to the muscle synergy that assigns specific functional roles to muscle couplings by characterising their task-relevance. Our novel perspective provides nuance to the muscle synergy concept, demonstrating how muscular interactions can 'work together' in different ways: (1) irrespective of the task at hand but also (2) redundantly or (3) complementarily towards common task-goals. To establish this perspective, we leverage information- and network-theory and dimensionality reduction methods to include discrete and continuous task parameters directly during muscle synergy extraction. Specifically, we introduce co-information as a measure of the task-relevance of muscle interactions and use it to categorise such interactions as task-irrelevant (present across tasks), redundant (shared task information), or synergistic (different task information). To demonstrate these types of interactions in real data, we firstly apply the framework in a simple way, revealing its added functional and physiological relevance with respect to current approaches. We then apply the framework to large-scale datasets and extract generalizable and scale-invariant representations consisting of subnetworks of synchronised muscle couplings and distinct temporal patterns. The representations effectively capture the functional interplay between task end-goals and biomechanical affordances and the concurrent processing of functionally similar and complementary task information. The proposed framework unifies the capabilities of current approaches in capturing distinct motor features while providing novel insights and research opportunities through a nuanced perspective to the muscle synergy.
Collapse
Affiliation(s)
- David O'Reilly
- School of Biomedical Sciences, University of LeedsLeedsUnited Kingdom
| | - Ioannis Delis
- School of Biomedical Sciences, University of LeedsLeedsUnited Kingdom
| |
Collapse
|
60
|
Brake N, Duc F, Rokos A, Arseneau F, Shahiri S, Khadra A, Plourde G. A neurophysiological basis for aperiodic EEG and the background spectral trend. Nat Commun 2024; 15:1514. [PMID: 38374047 PMCID: PMC10876973 DOI: 10.1038/s41467-024-45922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
Electroencephalograms (EEGs) display a mixture of rhythmic and broadband fluctuations, the latter manifesting as an apparent 1/f spectral trend. While network oscillations are known to generate rhythmic EEG, the neural basis of broadband EEG remains unexplained. Here, we use biophysical modelling to show that aperiodic neural activity can generate detectable scalp potentials and shape broadband EEG features, but that these aperiodic signals do not significantly perturb brain rhythm quantification. Further model analysis demonstrated that rhythmic EEG signals are profoundly corrupted by shifts in synapse properties. To examine this scenario, we recorded EEGs of human subjects being administered propofol, a general anesthetic and GABA receptor agonist. Drug administration caused broadband EEG changes that quantitatively matched propofol's known effects on GABA receptors. We used our model to correct for these confounding broadband changes, which revealed that delta power, uniquely, increased within seconds of individuals losing consciousness. Altogether, this work details how EEG signals are shaped by neurophysiological factors other than brain rhythms and elucidates how these signals can undermine traditional EEG interpretation.
Collapse
Affiliation(s)
- Niklas Brake
- Quantiative Life Sciences PhD Program, McGill University, Montreal, Canada
- Department of Physiology, McGill University, Montreal, Canada
| | - Flavie Duc
- Department of Anesthesia, McGill University, Montreal, Canada
| | - Alexander Rokos
- Department of Anesthesia, McGill University, Montreal, Canada
| | | | - Shiva Shahiri
- School of Nursing, McGill University, Montreal, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Canada.
| | - Gilles Plourde
- Department of Anesthesia, McGill University, Montreal, Canada.
| |
Collapse
|
61
|
Shang H. Probing long-lived radioactive isotopes on the double-logarithmic Segrè chart. Front Chem 2024; 12:1057928. [PMID: 38410817 PMCID: PMC10894952 DOI: 10.3389/fchem.2024.1057928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/09/2024] [Indexed: 02/28/2024] Open
Abstract
Isotopes have been widely applied in a variety of scientific subjects; many aspects of isotopes, however, remain not well understood. In this study, I investigate the relation between the number of neutrons (N) and the number of protons (Z) in stable isotopes of non-radioactive elements and long-lived isotopes of radioactive elements at the double-linear scale (conventional Segrè chart) and the double-logarithmic scale. Statistical analyses show that N is a power-law function of Z for these isotopes: N = 0.73 × Z 1.16. This power-law relation provides better predictions for the numbers of neutrons in stable isotopes of non-radioactive elements and long-lived isotopes of radioactive elements than the linear relation on the conventional Segrè chart. The power-law pattern reveled here offers empirical guidance for probing long-lived isotopes of unknown radioactive elements.
Collapse
Affiliation(s)
- Haitao Shang
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| |
Collapse
|
62
|
Wang S, Wang Z, Wu T. Self-Organized Evolution of the Internal Transport Barrier in Ion-Temperature-Gradient Driven Gyrokinetic Turbulence. PHYSICAL REVIEW LETTERS 2024; 132:065106. [PMID: 38394567 DOI: 10.1103/physrevlett.132.065106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/22/2023] [Accepted: 01/10/2024] [Indexed: 02/25/2024]
Abstract
Understanding the self-organization of the most promising internal transport barrier in fusion plasmas needs a long-time nonlinear gyrokinetic global simulation. The neighboring equilibrium update method is proposed, which solves the secularity problem in a perturbative simulation and speeds up the numerical computation by more than 10 times. It is found that the internal transport barrier emerges at the magnetic axis due to inward propagated turbulence avalanche, and its outward expansion is the catastrophe of self-organized structure induced by outward propagated avalanche.
Collapse
Affiliation(s)
- Shaojie Wang
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zihao Wang
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei 230026, China
| | - Tiannan Wu
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
63
|
Shmakov S, Littlewood PB. Coalescence of limit cycles in the presence of noise. Phys Rev E 2024; 109:024220. [PMID: 38491679 DOI: 10.1103/physreve.109.024220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/19/2024] [Indexed: 03/18/2024]
Abstract
Complex dynamical systems may exhibit multiple steady states, including time-periodic limit cycles, where the final trajectory depends on initial conditions. With tuning of parameters, limit cycles can proliferate or merge at an exceptional point. Here we ask how dynamics in the vicinity of such a bifurcation are influenced by noise. A pitchfork bifurcation can be used to induce bifurcation behavior. We model a limit cycle with the normal form of the Hopf oscillator, couple it to the pitchfork, and investigate the resulting dynamical system in the presence of noise. We show that the generating functional for the averages of the dynamical variables factorizes between the pitchfork and the oscillator. The statistical properties of the pitchfork in the presence of noise in its various regimes are investigated and a scaling theory is developed for the correlation and response functions, including a possible symmetry-breaking field. The analysis is done by perturbative calculations as well as numerical means. Finally, observables illustrating the coupling of a system with a limit cycle to a pitchfork are discussed and the phase-phase correlations are shown to exhibit nondiffusive behavior with universal scaling.
Collapse
Affiliation(s)
- Sergei Shmakov
- James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Peter B Littlewood
- James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA and School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9AJ, United Kingdom
| |
Collapse
|
64
|
Czoch A, Kaposzta Z, Mukli P, Stylianou O, Eke A, Racz FS. Resting-state fractal brain connectivity is associated with impaired cognitive performance in healthy aging. GeroScience 2024; 46:473-489. [PMID: 37458934 PMCID: PMC10828136 DOI: 10.1007/s11357-023-00836-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/20/2023] [Indexed: 01/31/2024] Open
Abstract
Aging affects cognitive functions even in the absence of ongoing pathologies. The neurophysiological basis of age-related cognitive decline (CD), however, is not completely understood. Alterations in both functional brain connectivity and in the fractal scaling of neuronal dynamics have been linked to aging and cognitive performance. Recently, fractal connectivity (FrC) has been proposed - combining the two concepts - for capturing long-term interactions among brain regions. FrC was shown to be influenced by increased mental workload; however, no prior studies investigated how resting-state FrC relates to cognitive performance and plausible CD in healthy aging. We recruited 19 healthy elderly (HE) and 24 young control (YC) participants, who underwent resting-state electroencephalography (EEG) measurements and comprehensive cognitive evaluation using 7 tests of the Cambridge Neurophysiological Test Automated Battery. FrC networks were reconstructed from EEG data using the recently introduced multiple-resampling cross-spectral analysis (MRCSA). Elderly individuals could be characterized with increased response latency and reduced performance in 4-4 tasks, respectively, with both reaction time and accuracy being affected in two tasks. Auto- and cross-spectral exponents - characterizing regional fractal dynamics and FrC, respectively, - were found reduced in HE when compared to YC over most of the cortex. Additionally, fractal scaling of frontoparietal connections expressed an inverse relationship with task performance in visual memory and sustained attention domains in elderly, but not in young individuals. Our results confirm that the fractal nature of brain connectivity - as captured by MRCSA - is affected in healthy aging. Furthermore, FrC appears as a sensitive neurophysiological marker of age-related CD.
Collapse
Affiliation(s)
- Akos Czoch
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Zalan Kaposzta
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Peter Mukli
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Orestis Stylianou
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Berlin Institute of Health at Charité, University Hospital Berlin, Berlin, Germany
- Department of Neurology With Experimental Neurology, Charité-University Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
| | - Andras Eke
- Department of Physiology, Semmelweis University, Budapest, Hungary
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Frigyes Samuel Racz
- Department of Physiology, Semmelweis University, Budapest, Hungary.
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
- Mulva Clinic for the Neurosciences, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
65
|
Bialek W, Shaevitz JW. Long Timescales, Individual Differences, and Scale Invariance in Animal Behavior. PHYSICAL REVIEW LETTERS 2024; 132:048401. [PMID: 38335334 DOI: 10.1103/physrevlett.132.048401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024]
Abstract
The explosion of data on animal behavior in more natural contexts highlights the fact that these behaviors exhibit correlations across many timescales. However, there are major challenges in analyzing these data: records of behavior in single animals have fewer independent samples than one might expect. In pooling data from multiple animals, individual differences can mimic long-ranged temporal correlations; conversely, long-ranged correlations can lead to an overestimate of individual differences. We suggest an analysis scheme that addresses these problems directly, apply this approach to data on the spontaneous behavior of walking flies, and find evidence for scale-invariant correlations over nearly three decades in time, from seconds to one hour. Three different measures of correlation are consistent with a single underlying scaling field of dimension Δ=0.180±0.005.
Collapse
Affiliation(s)
- William Bialek
- Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
- Center for Studies in Physics and Biology, Rockefeller University, New York, New York 10065, USA
| | - Joshua W Shaevitz
- Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
66
|
Corsi MC, Sorrentino P, Schwartz D, George N, Gollo LL, Chevallier S, Hugueville L, Kahn AE, Dupont S, Bassett DS, Jirsa V, De Vico Fallani F. Measuring neuronal avalanches to inform brain-computer interfaces. iScience 2024; 27:108734. [PMID: 38226174 PMCID: PMC10788504 DOI: 10.1016/j.isci.2023.108734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/18/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
Large-scale interactions among multiple brain regions manifest as bursts of activations called neuronal avalanches, which reconfigure according to the task at hand and, hence, might constitute natural candidates to design brain-computer interfaces (BCIs). To test this hypothesis, we used source-reconstructed magneto/electroencephalography during resting state and a motor imagery task performed within a BCI protocol. To track the probability that an avalanche would spread across any two regions, we built an avalanche transition matrix (ATM) and demonstrated that the edges whose transition probabilities significantly differed between conditions hinged selectively on premotor regions in all subjects. Furthermore, we showed that the topology of the ATMs allows task-decoding above the current gold standard. Hence, our results suggest that neuronal avalanches might capture interpretable differences between tasks that can be used to inform brain-computer interfaces.
Collapse
Affiliation(s)
- Marie-Constance Corsi
- Sorbonne Université, Institut du cerveau - Paris Brain Institute - ICM, CNRS, Inserm, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
- Inria, Aramis Team, Paris, France
| | - Pierpaolo Sorrentino
- Institut de Neuroscience des Systèmes, Aix-Marseille University, Inserm, Marseille, France
| | - Denis Schwartz
- Institut du Cerveau - Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, CENIR, Centre MEG-EEG, Paris, France
| | - Nathalie George
- Sorbonne Université, Institut du cerveau - Paris Brain Institute - ICM, CNRS, Inserm, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
- Institut du Cerveau - Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, CENIR, Centre MEG-EEG, Paris, France
| | - Leonardo L. Gollo
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Victoria 3168, Australia
| | | | - Laurent Hugueville
- Institut de Neuroscience des Systèmes, Aix-Marseille University, Inserm, Marseille, France
| | - Ari E. Kahn
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Sophie Dupont
- Sorbonne Université, Institut du cerveau - Paris Brain Institute - ICM, CNRS, Inserm, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | | | - Viktor Jirsa
- Institut de Neuroscience des Systèmes, Aix-Marseille University, Inserm, Marseille, France
| | - Fabrizio De Vico Fallani
- Sorbonne Université, Institut du cerveau - Paris Brain Institute - ICM, CNRS, Inserm, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
- Inria, Aramis Team, Paris, France
| |
Collapse
|
67
|
Stadnitski T. Tenets and Methods of Fractal Analysis (1/f Noise). ADVANCES IN NEUROBIOLOGY 2024; 36:57-77. [PMID: 38468027 DOI: 10.1007/978-3-031-47606-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
This chapter deals with the methodical challenges confronting researchers of the fractal phenomenon known as pink or 1/f noise. This chapter introduces concepts and statistical techniques for identifying fractal patterns in empirical time series. It defines some basic statistical terms, describes two essential characteristics of pink noise (self-similarity and long memory), and outlines four parameters representing the theoretical properties of fractal processes: the Hurst coefficient (H), the scaling exponent (α), the power exponent (β), and the fractional differencing parameter (d) of the ARFIMA (autoregressive fractionally integrated moving average) method. Then, it compares and evaluates different approaches to estimating fractal parameters from observed data and outlines the advantages, disadvantages, and constraints of some popular estimators. The final section of this chapter answers the questions: Which strategy is appropriate for the identification of fractal noise in empirical settings and how can it be applied to the data?
Collapse
|
68
|
Tsuchiya M, Giuliani A, Brazhnik P. From Cell States to Cell Fates: Control of Cell State Transitions. Methods Mol Biol 2024; 2745:137-162. [PMID: 38060184 DOI: 10.1007/978-1-0716-3577-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
We examine the coordinated behavior of thousands of genes in cell fate transitions through genome expression as an integrated dynamical system using the concepts of self-organized criticality and coherent stochastic behavior. To quantify the effects of the collective behavior of genes, we adopted the flux balance approach and developed it in a new tool termed expression flux analysis (EFA). Here we describe this tool and demonstrate how its application to specific experimental genome-wide expression data provides new insights into the dynamics of the cell-fate transitions. Particularly, we show that in cell fate change, specific stochastic perturbations can spread over the entire system to guide distinct cell fate transitions through switching cyclic flux flow in the genome engine. Utilization of EFA enables us to elucidate a unified genomic mechanism for when and how cell-fate change occurs through critical transitions.
Collapse
Affiliation(s)
- Masa Tsuchiya
- SEIKO Life Science Laboratory, SEIKO Research Institute for Education, Osaka, Japan
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanitá, Rome, Italy
| | - Paul Brazhnik
- Academy of Integrated Science, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
69
|
Duma GM, Pellegrino G, Rabuffo G, Danieli A, Antoniazzi L, Vitale V, Scotto Opipari R, Bonanni P, Sorrentino P. Altered spread of waves of activities at large scale is influenced by cortical thickness organization in temporal lobe epilepsy: a magnetic resonance imaging-high-density electroencephalography study. Brain Commun 2023; 6:fcad348. [PMID: 38162897 PMCID: PMC10754317 DOI: 10.1093/braincomms/fcad348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/11/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
Temporal lobe epilepsy is a brain network disorder characterized by alterations at both the structural and the functional levels. It remains unclear how structure and function are related and whether this has any clinical relevance. In the present work, we adopted a novel methodological approach investigating how network structural features influence the large-scale dynamics. The functional network was defined by the spatio-temporal spreading of aperiodic bursts of activations (neuronal avalanches), as observed utilizing high-density electroencephalography in patients with temporal lobe epilepsy. The structural network was modelled as the region-based thickness covariance. Loosely speaking, we quantified the similarity of the cortical thickness of any two brain regions, both across groups and at the individual level, the latter utilizing a novel approach to define the subject-wise structural covariance network. In order to compare the structural and functional networks (at the nodal level), we studied the correlation between the probability that a wave of activity would propagate from a source to a target region and the similarity of the source region thickness as compared with other target brain regions. Building on the recent evidence that large-waves of activities pathologically spread through the epileptogenic network in temporal lobe epilepsy, also during resting state, we hypothesize that the structural cortical organization might influence such altered spatio-temporal dynamics. We observed a stable cluster of structure-function correlation in the bilateral limbic areas across subjects, highlighting group-specific features for left, right and bilateral temporal epilepsy. The involvement of contralateral areas was observed in unilateral temporal lobe epilepsy. We showed that in temporal lobe epilepsy, alterations of structural and functional networks pair in the regions where seizures propagate and are linked to disease severity. In this study, we leveraged on a well-defined model of neurological disease and pushed forward personalization approaches potentially useful in clinical practice. Finally, the methods developed here could be exploited to investigate the relationship between structure-function networks at subject level in other neurological conditions.
Collapse
Affiliation(s)
- Gian Marco Duma
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Giovanni Pellegrino
- Epilepsy Program, Schulich School of Medicine and Dentistry, Western University, London N6A5C1, Canada
| | - Giovanni Rabuffo
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille 13005, France
| | - Alberto Danieli
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Lisa Antoniazzi
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Valerio Vitale
- Department of Neuroscience, Neuroradiology Unit, San Bortolo Hospital, Vicenza 36100, Italy
| | | | - Paolo Bonanni
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille 13005, France
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
70
|
Zhang L, Chen J, Zhang H, Huang D. The prediction of dynamical quantities in granular avalanches based on graph neural networks. J Chem Phys 2023; 159:214901. [PMID: 38038211 DOI: 10.1063/5.0172022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
The study of granular avalanches in rotating drums is not only essential to understanding various complex behaviors of interest in granular media from a scientific perspective; it also has valuable applications in regard to industrial processes and geological catastrophes. Despite decades of research studies on avalanches, a proper understanding of their dynamic properties still remains a great challenge to scientists due to a lack of state-of-the-art techniques. In this study, we accurately predict the avalanche dynamic features of three-dimensional granular materials in rotating drums, by using graph neural networks on the basis of their initial static microstructures alone. We find that our method is robust to changes in various model parameters, such as the interaction potential, size polydispersity, and noise in particle coordinates. In addition, with the grain-scale velocities obtained either from our network or from numerical simulations, we find an approximately equal and strong correlation between the global velocity and global velocity fluctuation in our 3D granular avalanche systems, which further demonstrates the predictive power of our trained graph neural networks to uncover the fundamental physics of granular avalanches. We expect our method to provide more insight into the avalanche dynamics of granular materials and other amorphous systems in the future.
Collapse
Affiliation(s)
- Ling Zhang
- School of Automation, Central South University, Changsha 410083, China
| | - Jianfeng Chen
- School of Automation, Central South University, Changsha 410083, China
| | - Hang Zhang
- School of Automation, Central South University, Changsha 410083, China
| | - Duan Huang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
71
|
Ouyang G, Wang S, Liu M, Zhang M, Zhou C. Multilevel and multifaceted brain response features in spiking, ERP and ERD: experimental observation and simultaneous generation in a neuronal network model with excitation-inhibition balance. Cogn Neurodyn 2023; 17:1417-1431. [PMID: 37969943 PMCID: PMC10640466 DOI: 10.1007/s11571-022-09889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Brain as a dynamic system responds to stimulations with specific patterns affected by its inherent ongoing dynamics. The patterns are manifested across different levels of organization-from spiking activity of neurons to collective oscillations in local field potential (LFP) and electroencephalogram (EEG). The multilevel and multifaceted response activities show patterns seemingly distinct and non-comparable from each other, but they should be coherently related because they are generated from the same underlying neural dynamic system. A coherent understanding of the interrelationships between different levels/aspects of activity features is important for understanding the complex brain functions. Here, based on analysis of data from human EEG, monkey LFP and neuronal spiking, we demonstrated that the brain response activities from different levels of neural system are highly coherent: the external stimulus simultaneously generated event-related potentials, event-related desynchronization, and variation in neuronal spiking activities that precisely match with each other in the temporal unfolding. Based on a biologically plausible but generic network of conductance-based integrate-and-fire excitatory and inhibitory neurons with dense connections, we showed that the multiple key features can be simultaneously produced at critical dynamical regimes supported by excitation-inhibition (E-I) balance. The elucidation of the inherent coherency of various neural response activities and demonstration of a simple dynamical neural circuit system having the ability to simultaneously produce multiple features suggest the plausibility of understanding high-level brain function and cognition from elementary and generic neuronal dynamics. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09889-w.
Collapse
Affiliation(s)
- Guang Ouyang
- Faculty of Education, The University of Hong Kong, Pok Fu Lam, Hong Kong China
| | - Shengjun Wang
- Department of Physics, Shaanxi Normal University, Xi’an, 710119 China
| | - Mianxin Liu
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong China
| | - Mingsha Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875 China
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong China
| |
Collapse
|
72
|
Ikeda H. Correlated noise and critical dimensions. Phys Rev E 2023; 108:064119. [PMID: 38243493 DOI: 10.1103/physreve.108.064119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/15/2023] [Indexed: 01/21/2024]
Abstract
In equilibrium, the Mermin-Wagner theorem prohibits the continuous symmetry breaking for all dimensions d≤2. In this work, we discuss that this limitation can be circumvented in nonequilibrium systems driven by the spatiotemporally long-range anticorrelated noise. We first compute the lower and upper critical dimensions of the O(n) model driven by the spatiotemporally correlated noise by means of the dimensional analysis. Next we consider the spherical model, which corresponds to the large-n limit of the O(n) model and allows us to compute the critical dimensions and critical exponents, analytically. Both results suggest that the critical dimensions increase when the noise is positively correlated in space and time and decrease when anticorrelated. We also report that the spherical model with the correlated noise shows the hyperuniformity and giant number fluctuation even well above the critical point.
Collapse
Affiliation(s)
- Harukuni Ikeda
- Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
73
|
Alvero-Gonzalez LM, Aurora Perini D, Queralt-Martín M, Perálvarez-Marín A, Viñas C, Alcaraz A. Probing electrophysiological activity of amphiphilic Dynorphin A in planar neutral membranes reveals both ion channel-like activity and neuropeptide translocation. Bioelectrochemistry 2023; 154:108527. [PMID: 37531663 DOI: 10.1016/j.bioelechem.2023.108527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Dynorphin A (DynA) is an endogenous neuropeptide that besides acting as a ligand of the κ-opioid receptor, presents some non-opioid pathophysiological properties associated to its ability to induce cell permeability similarly to cell-penetrating peptides (CPPs). Here, we use electrophysiology experiments to show that amphiphilic DynA generates aqueous pores in neutral membranes similar to those reported previously in charged membranes, but we also find other events thermodynamically incompatible with voltage-driven ion channel activity (i.e. non-zero currents with no applied voltage in symmetric salt conditions, reversal potentials that exceed the theoretical limit for a given salt concentration gradient). By comparison with current traces generated by other amphiphilic molecule known to spontaneously cross membranes, we hypothesize that DynA could directly translocate across neutral bilayers, a feature never observed in charged membranes following the same electrophysiological protocol. Our findings suggest that DynA interaction with the cellular membrane is modulated by the lipid charge distribution, enabling either passive ionic transport via membrane remodeling and pore formation or by peptide direct internalization independent of cellular transduction pathways.
Collapse
Affiliation(s)
- Laidy M Alvero-Gonzalez
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071 Castellón, Spain
| | - D Aurora Perini
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071 Castellón, Spain
| | - María Queralt-Martín
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071 Castellón, Spain
| | - Alex Perálvarez-Marín
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Institute of Neuroscience, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071 Castellón, Spain.
| |
Collapse
|
74
|
Weilnhammer V, Stuke H, Standvoss K, Sterzer P. Sensory processing in humans and mice fluctuates between external and internal modes. PLoS Biol 2023; 21:e3002410. [PMID: 38064502 PMCID: PMC10732408 DOI: 10.1371/journal.pbio.3002410] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/20/2023] [Accepted: 10/30/2023] [Indexed: 12/21/2023] Open
Abstract
Perception is known to cycle through periods of enhanced and reduced sensitivity to external information. Here, we asked whether such slow fluctuations arise as a noise-related epiphenomenon of limited processing capacity or, alternatively, represent a structured mechanism of perceptual inference. Using 2 large-scale datasets, we found that humans and mice alternate between externally and internally oriented modes of sensory analysis. During external mode, perception aligns more closely with the external sensory information, whereas internal mode is characterized by enhanced biases toward perceptual history. Computational modeling indicated that dynamic changes in mode are enabled by 2 interlinked factors: (i) the integration of subsequent inputs over time and (ii) slow antiphase oscillations in the impact of external sensory information versus internal predictions that are provided by perceptual history. We propose that between-mode fluctuations generate unambiguous error signals that enable optimal inference in volatile environments.
Collapse
Affiliation(s)
- Veith Weilnhammer
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin and Max Delbrück Center, Berlin, Germany
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, United States of America
| | - Heiner Stuke
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin and Max Delbrück Center, Berlin, Germany
| | - Kai Standvoss
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Sterzer
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| |
Collapse
|
75
|
Stephenson W, Sudhakar V, McInerney J, Czajkowski M, Rocklin DZ. Rigidity percolation in a random tensegrity via analytic graph theory. Proc Natl Acad Sci U S A 2023; 120:e2302536120. [PMID: 37988473 PMCID: PMC10691348 DOI: 10.1073/pnas.2302536120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/15/2023] [Indexed: 11/23/2023] Open
Abstract
Functional structures from across the engineered and biological world combine rigid elements such as bones and columns with flexible ones such as cables, fibers, and membranes. These structures are known loosely as tensegrities, since these cable-like elements have the highly nonlinear property of supporting only extensile tension. Marginally rigid systems are of particular interest because the number of structural constraints permits both flexible deformation and the support of external loads. We present a model system in which tensegrity elements are added at random to a regular backbone. This system can be solved analytically via a directed graph theory, revealing a mechanical critical point generalizing that of Maxwell. We show that even the addition of a few cable-like elements fundamentally modifies the nature of this transition point, as well as the later transition to a fully rigid structure. Moreover, the tensegrity network displays a collective avalanche behavior, in which the addition of a single cable leads to the elimination of multiple floppy modes, a phenomenon that becomes dominant at the transition point. These phenomena have implications for systems with nonlinear mechanical constraints, from biopolymer networks to soft robots to jammed packings to origami sheets.
Collapse
Affiliation(s)
- William Stephenson
- School of Physics, Georgia Institute of Technology, Atlanta, GA30332
- Department of Physics, University of Michigan, Ann Arbor, MI48109
| | - Vishal Sudhakar
- School of Physics, Georgia Institute of Technology, Atlanta, GA30332
| | - James McInerney
- Department of Physics, University of Michigan, Ann Arbor, MI48109
| | | | - D. Zeb Rocklin
- School of Physics, Georgia Institute of Technology, Atlanta, GA30332
| |
Collapse
|
76
|
Yadav M, Vanshika, Singh C. Anisotropic short-range attractions precisely model branched erythrocyte aggregates. SOFT MATTER 2023; 19:8717-8728. [PMID: 37886799 DOI: 10.1039/d3sm00881a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Homogeneous suspensions of red blood cells (RBCs or erythrocytes) in blood plasma are unstable in the absence of driving forces and form elongated stacks, called rouleaux. These erythrocyte aggregates are often branched porous networks - a feature that existing red blood cell aggregation models and simulations fail to predict exactly. Here we establish that alignment-dependent attractive forces in a system of dimers can precisely generate branched structures similar to RBC aggregates observed under a microscope. Our simulations consistently predict that the growth rate of typical mean rouleau size remains sub-linear - a hallmark from past studies - which we also confirm by deriving a reaction kernel taking into account appropriate collision cross-section, approach velocities, and an area-dependent sticking probability. The system exhibits unique features such as the existence of percolated and/or single giant cluster states, multiple coexisting mass-size scalings, and transition to a branched phase upon fine-tuning of model parameters. Upon decreasing the depletion thickness we find that the percolation threshold increases but the morphology of the structures opens up towards an increased degree of branching. Remarkably the system self-organizes to produce a universal power-law size distribution scaling irrespective of the model parameters.
Collapse
Affiliation(s)
- Megha Yadav
- Department of Physics, Central University of Punjab, Bathinda 151401, India.
| | - Vanshika
- Department of Physics, Central University of Punjab, Bathinda 151401, India.
| | - Chamkor Singh
- Department of Physics, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
77
|
Liu P, Zheng Y. Heavy-tailed distributions of confirmed COVID-19 cases and deaths in spatiotemporal space. PLoS One 2023; 18:e0294445. [PMID: 37988387 PMCID: PMC10662771 DOI: 10.1371/journal.pone.0294445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023] Open
Abstract
This paper conducts a systematic statistical analysis of the characteristics of the geographical empirical distributions for the numbers of both cumulative and daily confirmed COVID-19 cases and deaths at county, city, and state levels over a time span from January 2020 to June 2022. The mathematical heavy-tailed distributions can be used for fitting the empirical distributions observed in different temporal stages and geographical scales. The estimations of the shape parameter of the tail distributions using the Generalized Pareto Distribution also support the observations of the heavy-tailed distributions. According to the characteristics of the heavy-tailed distributions, the evolution course of the geographical empirical distributions can be divided into three distinct phases, namely the power-law phase, the lognormal phase I, and the lognormal phase II. These three phases could serve as an indicator of the severity degree of the COVID-19 pandemic within an area. The empirical results suggest important intrinsic dynamics of a human infectious virus spread in the human interconnected physical complex network. The findings extend previous empirical studies and could provide more strict constraints for current mathematical and physical modeling studies, such as the SIR model and its variants based on the theory of complex networks.
Collapse
Affiliation(s)
- Peng Liu
- School of Information, Xi’an University of Finance and Economics, Xi’an, Shaanxi, P. R. China
| | - Yanyan Zheng
- School of Management, Xi’an Polytechnic University, Xi’an, Shaanxi, P. R. China
| |
Collapse
|
78
|
Kin F, Itoh K, Bando T, Shinohara K, Oyama N, Terakado A, Yoshida M, Sumida S. Impact of avalanche type of transport on internal transport barrier formation in tokamak plasmas. Sci Rep 2023; 13:19748. [PMID: 37957265 PMCID: PMC10643559 DOI: 10.1038/s41598-023-46978-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023] Open
Abstract
In magnetic fusion plasmas, a transport barrier is essential to improve the plasma confinement. The key physics behind the formation of a transport barrier is the suppression of the micro-scale turbulent transport. On the other hand, long-range transport events, such as avalanches, has been recognized to play significant roles for global profile formations. In this study, we observed the impact of the avalanche-type of transport on the formation of a transport barrier for the first time. The avalanches are found to inhibit the formation of the internal transport barrier (ITB) observed in JT-60U tokamak. We found that (1) ITBs do not form in the presence of avalanches but form under the disappearance of avalanches, (2) the surface integral of avalanche-driven heat fluxe is comparable to the time rate change of stored energy retained at the ITB onset, (3) the mean E × B flow shear is accelerated via the ion temperature gradient that is not sustained under the existence of avalanches, and (4) after the ITB formation, avalanches are damped inside the ITB, while they remain outside the ITB.
Collapse
Affiliation(s)
- F Kin
- National Institutes for Quantum Science and Technology, Naka, 311-0193, Japan.
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan.
| | - K Itoh
- Frontier Research Institute, Chubu University, Kasugai, 487-8501, Japan
- Research Center for Plasma Turbulence, Kyushu University, Kasuga, 816-8580, Japan
| | - T Bando
- Toyohashi University of Technology, Toyohashi, 441-8580, Japan
| | - K Shinohara
- National Institutes for Quantum Science and Technology, Naka, 311-0193, Japan
- The University of Tokyo, Kashiwa, 277-8561, Japan
| | - N Oyama
- National Institutes for Quantum Science and Technology, Naka, 311-0193, Japan
| | - A Terakado
- National Institutes for Quantum Science and Technology, Naka, 311-0193, Japan
| | - M Yoshida
- National Institutes for Quantum Science and Technology, Naka, 311-0193, Japan
| | - S Sumida
- National Institutes for Quantum Science and Technology, Naka, 311-0193, Japan
| |
Collapse
|
79
|
Griffin C, Duller RA, Straub KM. The degradation and detection of environmental signals in sediment transport systems. SCIENCE ADVANCES 2023; 9:eadi8046. [PMID: 37922352 PMCID: PMC10624340 DOI: 10.1126/sciadv.adi8046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2023]
Abstract
Autogenic processes contribute noise to sediment transport systems that can degrade or mask externally derived environmental signals and hinder our ability to reconstruct past environmental signals from landscapes and strata. To explore this further, we measure efflux from a physical rice pile to ascertain the temporal structure of autogenic noise, and how this influences the degradation and detection of environmental signals. Our results reveal a tripartite temporal spectral structure segmented at two key autogenic time scales. The shorter autogenic time scale set limits on environmental signal degradation, while the longer autogenic time scale sets limits on environmental signal detection. This work establishes a framework that can be used to explore how autogenic processes interact with external environmental signals in field-scale systems to influence their detectability. We anticipate that the temporal structure and associated time scales identified will arise from autogenic processes in numerous sediment transport systems.
Collapse
Affiliation(s)
- Chloe Griffin
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L69 3GP, UK
| | - Robert A. Duller
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L69 3GP, UK
| | - Kyle M. Straub
- Department of Earth and Environmental Sciences, Tulane University, 6823 St. Charles Avenue, 202 Blessey Hall, New Orleans, LA 80118-5698, USA
| |
Collapse
|
80
|
Hankey A, Kale A. Integrative biology for integrative medicine: A complete approach. J Ayurveda Integr Med 2023; 14:100831. [PMID: 38000316 PMCID: PMC10709119 DOI: 10.1016/j.jaim.2023.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND India's AYUSH systems of medicine, Ayurveda, Yoga and Naturopathy, Unani, Siddha and Sowa-Rigpa, and Homeopathy, use natural self-healing abilities of body and mind. Their ways to treat non-communicable diseases reduce use of modern drugs with their side-effects. Scientific acceptance requires them to be explained from a modern biological perspective. This paper indicates how to achieve such an integrative approach, using aspects of biology not yet taught in medical schools. METHODS A new, 'Sandwich Model' of biology is introduced that includes holistic epigenetic regulation; also, complexity biology's concept of self-organized criticality; a systems treatment of organism function from Ayurveda; and Ayurveda's six stages of etiology, Shadkriyakala. RESULTS Molecular biology is upgraded by the sandwich model's layer of epigenetics, leading to a new, scientific definition of health as optimized regulation. Fractal Physiology then expands this to explain self-healing, used in all AYUSH systems. Ayurveda contributes in two ways: its systems approach yields a holistic understanding of organism functioning, while Shadkriyakala improves our understanding of pathophysiology. DISCUSSION These additions create an integrative biology; modern biology expands to include AYUSH systems' concepts. It provides a scientific basis for India's plan for integrative medical education, with AYUSH systems treated as equal to modern medicine.
Collapse
Affiliation(s)
| | - Anup Kale
- MIT World Peace University, Pune, India
| |
Collapse
|
81
|
Huang H, Liu T, Yang R. Do Confucian values and working experience matter? The impact of provincial governors' characteristics on the management level of major road accidents in China. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:2169-2185. [PMID: 36868781 DOI: 10.1111/risa.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/18/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Upper echelons theory (UET) proposes that organizational outcomes are directly affected by the experiences, personalities, and values of individuals who occupy critical managerial roles within an organization. Using the lens of UET, this study investigates how governors' characteristics affect the management level of major road accidents (MLMRA). The empirical work is based on fixed effects regression models that are applied to Chinese provincial panel data from 2008 to 2017. This study uncovers that the MLMRA is associated with governors' tenure, central background, and Confucian values. We further document that the effect of Confucianism on the MLMRA is stronger when traffic regulation pressure is high. This study has the potential to advance our understanding of the impact of leaders' characteristics on organizational outcomes in the public sector.
Collapse
Affiliation(s)
- Hong Huang
- School of Business Administration, Anhui University of Finance and Economics, Bengbu, China
| | - Tingting Liu
- School of Management, University of Science and Technology of China, Hefei, China
| | - Ruiju Yang
- School of Accounting, Nanjing Audit University, Nanjing, China
| |
Collapse
|
82
|
Maschke C, O'Byrne J, Colombo MA, Boly M, Gosseries O, Laureys S, Rosanova M, Jerbi K, Blain-Moraes S. Criticality of resting-state EEG predicts perturbational complexity and level of consciousness during anesthesia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564247. [PMID: 37994368 PMCID: PMC10664178 DOI: 10.1101/2023.10.26.564247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Consciousness has been proposed to be supported by electrophysiological patterns poised at criticality, a dynamical regime which exhibits adaptive computational properties, maximally complex patterns and divergent sensitivity to perturbation. Here, we investigated dynamical properties of the resting-state electroencephalogram of healthy subjects undergoing general anesthesia with propofol, xenon or ketamine. We then studied the relation of these dynamic properties with the perturbational complexity index (PCI), which has shown remarkably high sensitivity in detecting consciousness independent of behavior. All participants were unresponsive under anesthesia, while consciousness was retained only during ketamine anesthesia (in the form of vivid dreams)., enabling an experimental dissociation between unresponsiveness and unconsciousness. We estimated (i) avalanche criticality, (ii) chaoticity, and (iii) criticality-related measures, and found that states of unconsciousness were characterized by a distancing from both the edge of activity propagation and the edge of chaos. We were then able to predict individual subjects' PCI (i.e., PCImax) with a mean absolute error below 7%. Our results establish a firm link between the PCI and criticality and provide further evidence for the role of criticality in the emergence of consciousness.
Collapse
Affiliation(s)
- Charlotte Maschke
- Montreal General Hospital, McGill University Health Centre, Montreal, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Canada
- Cognitive & Computational Neuroscience Lab, Psychology Department, University of Montreal, Québec, Canada
| | - Jordan O'Byrne
- Cognitive & Computational Neuroscience Lab, Psychology Department, University of Montreal, Québec, Canada
- MILA (Québec Artificial Intelligence Institute), Montréal, Québec, Canada
| | | | - Melanie Boly
- Department of Neurology and Department of Psychiatry, University of Wisconsin, Madison, USA
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du cerveau, CHU of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- CERVO Brain Research Centre, Laval University, Canada
- Consciousness Science Institute, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Karim Jerbi
- Cognitive & Computational Neuroscience Lab, Psychology Department, University of Montreal, Québec, Canada
- MILA (Québec Artificial Intelligence Institute), Montréal, Québec, Canada
- Centre UNIQUE (Union Neurosciences & Intelligence Artificielle), Montréal, Québec, Canada
| | - Stefanie Blain-Moraes
- Montreal General Hospital, McGill University Health Centre, Montreal, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, Canada
| |
Collapse
|
83
|
Yan C, Chen HY, Lai PY, Tong P. Statistical laws of stick-slip friction at mesoscale. Nat Commun 2023; 14:6221. [PMID: 37798284 PMCID: PMC10556047 DOI: 10.1038/s41467-023-41850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
Friction between two rough solid surfaces often involves local stick-slip events occurring at different locations of the contact interface. If the apparent contact area is large, multiple local slips may take place simultaneously and the total frictional force is a sum of the pinning forces imposed by many asperities on the interface. Here, we report a systematic study of stick-slip friction over a mesoscale contact area using a hanging-beam lateral atomic-force-microscope, which is capable of resolving frictional force fluctuations generated by individual slip events and measuring their statistical properties at the single-slip resolution. The measured probability density functions (PDFs) of the slip length δxs, the maximal force Fc needed to trigger the local slips, and the local force gradient [Formula: see text] of the asperity-induced pinning force field provide a comprehensive statistical description of stick-slip friction that is often associated with the avalanche dynamics at a critical state. In particular, the measured PDF of δxs obeys a power law distribution and the power-law exponent is explained by a new theoretical model for the under-damped spring-block motion under a Brownian-correlated pinning force field. This model provides a long-sought physical mechanism for the avalanche dynamics in stick-slip friction at mesoscale.
Collapse
Affiliation(s)
- Caishan Yan
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hsuan-Yi Chen
- Department of Physics and Center for Complex Systems, National Central University, Taoyuan City, 320, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei, 10617, Taiwan
| | - Pik-Yin Lai
- Department of Physics and Center for Complex Systems, National Central University, Taoyuan City, 320, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei, 10617, Taiwan
| | - Penger Tong
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
84
|
Kardan O, Stier AJ, Layden EA, Choe KW, Lyu M, Zhang X, Beilock SL, Rosenberg MD, Berman MG. Improvements in task performance after practice are associated with scale-free dynamics of brain activity. Netw Neurosci 2023; 7:1129-1152. [PMID: 37781143 PMCID: PMC10473260 DOI: 10.1162/netn_a_00319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/11/2023] [Indexed: 10/03/2023] Open
Abstract
Although practicing a task generally benefits later performance on that same task, there are individual differences in practice effects. One avenue to model such differences comes from research showing that brain networks extract functional advantages from operating in the vicinity of criticality, a state in which brain network activity is more scale-free. We hypothesized that higher scale-free signal from fMRI data, measured with the Hurst exponent (H), indicates closer proximity to critical states. We tested whether individuals with higher H during repeated task performance would show greater practice effects. In Study 1, participants performed a dual-n-back task (DNB) twice during MRI (n = 56). In Study 2, we used two runs of n-back task (NBK) data from the Human Connectome Project sample (n = 599). In Study 3, participants performed a word completion task (CAST) across six runs (n = 44). In all three studies, multivariate analysis was used to test whether higher H was related to greater practice-related performance improvement. Supporting our hypothesis, we found patterns of higher H that reliably correlated with greater performance improvement across participants in all three studies. However, the predictive brain regions were distinct, suggesting that the specific spatial H↑ patterns are not task-general.
Collapse
Affiliation(s)
- Omid Kardan
- Department of Psychology, University of Chicago, Chicago, IL, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Andrew J. Stier
- Department of Psychology, University of Chicago, Chicago, IL, USA
| | - Elliot A. Layden
- Department of Psychology, University of Chicago, Chicago, IL, USA
| | - Kyoung Whan Choe
- Department of Psychology, University of Chicago, Chicago, IL, USA
| | - Muxuan Lyu
- Department of Psychology, University of Chicago, Chicago, IL, USA
- Department of Management and Marketing, The Hong Kong Polytechnic University, Hong Kong
| | - Xihan Zhang
- Department of Psychology, University of Chicago, Chicago, IL, USA
| | - Sian L. Beilock
- Department of Psychology, University of Chicago, Chicago, IL, USA
- Barnard College, Columbia University, New York, NY, USA
| | | | - Marc G. Berman
- Department of Psychology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
85
|
Singh A, Chhimpa R, Yadav AC. Fitness fluctuations in the Bak-Sneppen model. Phys Rev E 2023; 108:044109. [PMID: 37978651 DOI: 10.1103/physreve.108.044109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/15/2023] [Indexed: 11/19/2023]
Abstract
We study the one-dimensional Bak-Sneppen model for the evolution of species in an ecosystem. Of particular interest are the temporal fluctuations in fitness variables. We numerically compute the power spectral density and apply the finite-size scaling method to get data collapse. A clear signature of 1/f^{α} noise with α≈1.2 (long-time correlations) emerges for both local and global (or average) fitness noises. The limiting value of the spectral exponent, 0 or 2, corresponds to no interaction or a random neighbor version of the model, respectively. The local power spectra are spatially uncorrelated and also show an additional scaling, ∼1/L, in the frequency regime L^{-λ}≪f≪1/2, where L is the linear extent of the system.
Collapse
Affiliation(s)
- Abha Singh
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Rahul Chhimpa
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Avinash Chand Yadav
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
86
|
West BJ, Grigolini P, Kerick SE, Franaszczuk PJ, Mahmoodi K. Complexity Synchronization of Organ Networks. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1393. [PMID: 37895514 PMCID: PMC10606256 DOI: 10.3390/e25101393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023]
Abstract
The transdisciplinary nature of science as a whole became evident as the necessity for the complex nature of phenomena to explain social and life science, along with the physical sciences, blossomed into complexity theory and most recently into complexitysynchronization. This science motif is based on the scaling arising from the 1/f-variability in complex dynamic networks and the need for a network of networks to exchange information internally during intra-network dynamics and externally during inter-network dynamics. The measure of complexity adopted herein is the multifractal dimension of the crucial event time series generated by an organ network, and the difference in the multifractal dimensions of two organ networks quantifies the relative complexity between interacting complex networks. Information flows from dynamic networks at a higher level of complexity to those at lower levels of complexity, as summarized in the 'complexity matching effect', and the flow is maximally efficient when the complexities are equal. Herein, we use the scaling of empirical datasets from the brain, cardiovascular and respiratory networks to support the hypothesis that complexity synchronization occurs between scaling indices or equivalently with the matching of the time dependencies of the networks' multifractal dimensions.
Collapse
Affiliation(s)
- Bruce J. West
- Department of Research and Innovaton, North Carolina State University, Raleigh, NC 27606, USA
- Center for Nonlinear Science, University of North Texas, Denton, TX 76203, USA
| | - Paolo Grigolini
- Center for Nonlinear Science, University of North Texas, Denton, TX 76203, USA
| | - Scott E. Kerick
- US Combat Capabilities Command, Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Piotr J. Franaszczuk
- US Combat Capabilities Command, Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Korosh Mahmoodi
- US Combat Capabilities Command, Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| |
Collapse
|
87
|
Chemero A. Abduction and Deduction in Dynamical Cognitive Science. Top Cogn Sci 2023. [PMID: 37729610 DOI: 10.1111/tops.12692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
This paper reviews the recent history of a subset of research in dynamical cognitive science, in particular that subset that allies itself with the sciences of complexity and casts cognitive systems as interaction dominant, noncomputational, and nonmodular. I look at this history in the light of C.S. Peirce's understanding of scientific reasoning as progressing from abduction to deduction to induction. In particular, I examine the development of a controversy concerning the use of the interaction dominance of human cognitive systems as an explanation of the ubiquitous 1/f noise, multifractality, and complexity matching in human behavior.
Collapse
Affiliation(s)
- Anthony Chemero
- Departments of Philosophy and Psychology, Institute for Research in Sensing, Strange Tools Research Lab, University of Cincinnati
| |
Collapse
|
88
|
Choudhary A, Radhakrishnan A, Lindner JF, Sinha S, Ditto WL. Neuronal diversity can improve machine learning for physics and beyond. Sci Rep 2023; 13:13962. [PMID: 37634029 PMCID: PMC10460398 DOI: 10.1038/s41598-023-40766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023] Open
Abstract
Diversity conveys advantages in nature, yet homogeneous neurons typically comprise the layers of artificial neural networks. Here we construct neural networks from neurons that learn their own activation functions, quickly diversify, and subsequently outperform their homogeneous counterparts on image classification and nonlinear regression tasks. Sub-networks instantiate the neurons, which meta-learn especially efficient sets of nonlinear responses. Examples include conventional neural networks classifying digits and forecasting a van der Pol oscillator and physics-informed Hamiltonian neural networks learning Hénon-Heiles stellar orbits and the swing of a video recorded pendulum clock. Such learned diversity provides examples of dynamical systems selecting diversity over uniformity and elucidates the role of diversity in natural and artificial systems.
Collapse
Affiliation(s)
- Anshul Choudhary
- Nonlinear Artificial Intelligence Laboratory, Physics Department, North Carolina State University, Raleigh, NC, 27607, USA.
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
| | - Anil Radhakrishnan
- Nonlinear Artificial Intelligence Laboratory, Physics Department, North Carolina State University, Raleigh, NC, 27607, USA
| | - John F Lindner
- Nonlinear Artificial Intelligence Laboratory, Physics Department, North Carolina State University, Raleigh, NC, 27607, USA.
- Physics Department, The College of Wooster, Wooster, OH, 44691, USA.
| | - Sudeshna Sinha
- Indian Institute of Science Education and Research Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli, Punjab, 140 306, India
| | - William L Ditto
- Nonlinear Artificial Intelligence Laboratory, Physics Department, North Carolina State University, Raleigh, NC, 27607, USA.
| |
Collapse
|
89
|
Kramer MA, Chu CJ. The 1/f-like behavior of neural field spectra are a natural consequence of noise driven brain dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532077. [PMID: 37214869 PMCID: PMC10197559 DOI: 10.1101/2023.03.10.532077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Consistent observations across recording modalities, experiments, and neural systems find neural field spectra with 1/f-like scaling, eliciting many alternative theories to explain this universal phenomenon. We show that a general dynamical system with stochastic drive and minimal assumptions generates 1/f-like spectra consistent with the range of values observed in vivo, without requiring a specific biological mechanism or collective critical behavior.
Collapse
Affiliation(s)
- Mark A Kramer
- Department of Mathematics and Statistics, and Center for Systems Neuroscience, Boston University, Boston MA, 02214
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston MA, 02114
| |
Collapse
|
90
|
Meyer CT, Kralj JM. Cell-autonomous diversification in bacteria arises from calcium dynamics self-organizing at a critical point. SCIENCE ADVANCES 2023; 9:eadg3028. [PMID: 37540744 PMCID: PMC10403213 DOI: 10.1126/sciadv.adg3028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/03/2023] [Indexed: 08/06/2023]
Abstract
How dynamic bacterial calcium is regulated, with kinetics faster than typical mechanisms of cellular adaptation, is unknown. We discover bacterial calcium fluctuations are temporal-fractals resulting from a property known as self-organized criticality (SOC). SOC processes are poised at a phase transition separating ordered and chaotic dynamical regimes and are observed in many natural and anthropogenic systems. SOC in bacterial calcium emerges due to calcium channel coupling mediated via membrane voltage. Environmental or genetic perturbations modify calcium dynamics and the critical exponent suggesting a continuum of critical attractors. Moving along this continuum alters the collective information capacity of bacterial populations. We find that the stochastic transition from motile to sessile lifestyle is partially mediated by SOC-governed calcium fluctuations through the regulation of c-di-GMP. In summary, bacteria co-opt the physics of phase transitions to maintain dynamic calcium equilibrium, and this enables cell-autonomous population diversification during surface colonization by leveraging the stochasticity inherent at a boundary between phases.
Collapse
|
91
|
Galinsky VL, Frank LR. Neuronal avalanches: Sandpiles of self-organized criticality or critical dynamics of brain waves? FRONTIERS OF PHYSICS 2023; 18:45301. [PMID: 37008280 PMCID: PMC10062440 DOI: 10.1007/s11467-023-1273-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Analytical expressions for scaling of brain wave spectra derived from the general nonlinear wave Hamiltonian form show excellent agreement with experimental "neuronal avalanche" data. The theory of the weakly evanescent nonlinear brain wave dynamics [Phys. Rev. Research 2, 023061 (2020); J. Cognitive Neurosci. 32, 2178 (2020)] reveals the underlying collective processes hidden behind the phenomenological statistical description of the neuronal avalanches and connects together the whole range of brain activity states, from oscillatory wave-like modes, to neuronal avalanches, to incoherent spiking, showing that the neuronal avalanches are just the manifestation of the different nonlinear side of wave processes abundant in cortical tissue. In a more broad way these results show that a system of wave modes interacting through all possible combinations of the third order nonlinear terms described by a general wave Hamiltonian necessarily produces anharmonic wave modes with temporal and spatial scaling properties that follow scale free power laws. To the best of our knowledge this has never been reported in the physical literature and may be applicable to many physical systems that involve wave processes and not just to neuronal avalanches.
Collapse
Affiliation(s)
- Vitaly L. Galinsky
- Center for Scientific Computation in Imaging, University of California at San Diego, La Jolla, CA 92037-0854, USA
| | - Lawrence R. Frank
- Center for Scientific Computation in Imaging, University of California at San Diego, La Jolla, CA 92037-0854, USA
- Center for Functional MRI, University of California at San Diego, La Jolla, CA 92037-0677, USA
| |
Collapse
|
92
|
Janarek J, Drogosz Z, Grela J, Ochab JK, Oświęcimka P. Investigating structural and functional aspects of the brain's criticality in stroke. Sci Rep 2023; 13:12341. [PMID: 37524891 PMCID: PMC10390586 DOI: 10.1038/s41598-023-39467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
This paper addresses the question of the brain's critical dynamics after an injury such as a stroke. It is hypothesized that the healthy brain operates near a phase transition (critical point), which provides optimal conditions for information transmission and responses to inputs. If structural damage could cause the critical point to disappear and thus make self-organized criticality unachievable, it would offer the theoretical explanation for the post-stroke impairment of brain function. In our contribution, however, we demonstrate using network models of the brain, that the dynamics remain critical even after a stroke. In cases where the average size of the second-largest cluster of active nodes, which is one of the commonly used indicators of criticality, shows an anomalous behavior, it results from the loss of integrity of the network, quantifiable within graph theory, and not from genuine non-critical dynamics. We propose a new simple model of an artificial stroke that explains this anomaly. The proposed interpretation of the results is confirmed by an analysis of real connectomes acquired from post-stroke patients and a control group. The results presented refer to neurobiological data; however, the conclusions reached apply to a broad class of complex systems that admit a critical state.
Collapse
Affiliation(s)
- Jakub Janarek
- Institute of Theoretical Physics, Jagiellonian University, 30-348, Kraków, Poland
| | - Zbigniew Drogosz
- Institute of Theoretical Physics, Jagiellonian University, 30-348, Kraków, Poland
| | - Jacek Grela
- Institute of Theoretical Physics, Jagiellonian University, 30-348, Kraków, Poland
- Mark Kac Center for Complex Systems Research, Jagiellonian University, 30-348, Kraków, Poland
| | - Jeremi K Ochab
- Institute of Theoretical Physics, Jagiellonian University, 30-348, Kraków, Poland.
- Mark Kac Center for Complex Systems Research, Jagiellonian University, 30-348, Kraków, Poland.
| | - Paweł Oświęcimka
- Institute of Theoretical Physics, Jagiellonian University, 30-348, Kraków, Poland
- Mark Kac Center for Complex Systems Research, Jagiellonian University, 30-348, Kraków, Poland
- Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, 31-342, Kraków, Poland
| |
Collapse
|
93
|
Pei L, Northoff G, Ouyang G. Comparative analysis of multifaceted neural effects associated with varying endogenous cognitive load. Commun Biol 2023; 6:795. [PMID: 37524883 PMCID: PMC10390511 DOI: 10.1038/s42003-023-05168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/24/2023] [Indexed: 08/02/2023] Open
Abstract
Contemporary neuroscience has firmly established that mental state variation concurs with changes in neural dynamic activity in a complex way that a one-to-one mapping cannot describe. To explore the scenario of the multifaceted changes in neural dynamics associated with simple mental state variation, we took cognitive load - a common cognitive manipulation in psychology - as a venue to characterize how multiple neural dynamic features are simultaneously altered by the manipulation and how their sensitivity differs. Electroencephalogram was collected from 152 participants performing stimulus-free tasks with different demands. The results show that task demand alters wide-ranging neural dynamic features, including band-specific oscillations across broad frequency bands, scale-free dynamics, and cross-frequency phase-amplitude coupling. The scale-free dynamics outperformed others in indexing cognitive load variation. This study demonstrates a complex relationship between cognitive dynamics and neural dynamics, which points to a necessity to integrate multifaceted neural dynamic features when studying mind-brain relationship in the future.
Collapse
Affiliation(s)
- Leisi Pei
- Faculty of Education, The University of Hong Kong, Hong Kong, China
| | - Georg Northoff
- Institute of Mental Health Research, Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ottawa, Canada
| | - Guang Ouyang
- Faculty of Education, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
94
|
Tsuchiya M, Brazhnik P, Bizzarri M, Giuliani A. Synchronization between Attractors: Genomic Mechanism of Cell-Fate Change. Int J Mol Sci 2023; 24:11603. [PMID: 37511359 PMCID: PMC10380305 DOI: 10.3390/ijms241411603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Herein, we provide a brief overview of complex systems theory approaches to investigate the genomic mechanism of cell-fate changes. Cell trajectories across the epigenetic landscape, whether in development, environmental responses, or disease progression, are controlled by extensively coordinated genome-wide gene expression changes. The elucidation of the mechanisms underlying these coherent expression changes is of fundamental importance in cell biology and for paving the road to new therapeutic approaches. In previous studies, we pointed at dynamic criticality as a plausible characteristic of genome-wide transition dynamics guiding cell fate. Whole-genome expression develops an engine-like organization (genome engine) in order to establish an autonomous dynamical system, capable of both homeostasis and transition behaviors. A critical set of genes behaves as a critical point (CP) that serves as the organizing center of cell-fate change. When the system is pushed away from homeostasis, the state change that occurs at the CP makes local perturbation spread over the genome, demonstrating self-organized critical (SOC) control of genome expression. Oscillating-Mode genes (which normally keep genome expression on pace with microenvironment fluctuations), when in the presence of an effective perturbative stimulus, drive the dynamics of synchronization, and thus guide the cell-fate transition.
Collapse
Affiliation(s)
- Masa Tsuchiya
- SEIKO Life Science Laboratory, SEIKO Research Institute for Education, Osaka 540-6591, Japan
| | - Paul Brazhnik
- Academy of Integrated Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mariano Bizzarri
- Systems Biology Group, Department of Experimental Medicine, University La Sapienza, 00163 Roma, Italy
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanitá, 00161 Rome, Italy
| |
Collapse
|
95
|
Hipólito I, Mago J, Rosas FE, Carhart-Harris R. Pattern breaking: a complex systems approach to psychedelic medicine. Neurosci Conscious 2023; 2023:niad017. [PMID: 37424966 PMCID: PMC10325487 DOI: 10.1093/nc/niad017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/19/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Recent research has demonstrated the potential of psychedelic therapy for mental health care. However, the psychological experience underlying its therapeutic effects remains poorly understood. This paper proposes a framework that suggests psychedelics act as destabilizers, both psychologically and neurophysiologically. Drawing on the 'entropic brain' hypothesis and the 'RElaxed Beliefs Under pSychedelics' model, this paper focuses on the richness of psychological experience. Through a complex systems theory perspective, we suggest that psychedelics destabilize fixed points or attractors, breaking reinforced patterns of thinking and behaving. Our approach explains how psychedelic-induced increases in brain entropy destabilize neurophysiological set points and lead to new conceptualizations of psychedelic psychotherapy. These insights have important implications for risk mitigation and treatment optimization in psychedelic medicine, both during the peak psychedelic experience and during the subacute period of potential recovery.
Collapse
Affiliation(s)
- Inês Hipólito
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Department of Philosophy, Macquarie University, New South Wales 2109, Australia
| | - Jonas Mago
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, United Kingdom
- Integrative Program in Neuroscience, McGill University, Montreal, Quebec QC H3A, Canada
| | - Fernando E Rosas
- Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, London SW7 2BX, United Kingdom
- Centre for Complexity Science, Imperial College London, London SW7 2BX, United Kingdom
- Data Science Institute, Imperial College London, London SW7 2BX, United Kingdom
- Department of Informatics, University of Sussex, Brighton BN1 9RH, United Kingdom
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford OX3 9BX, United Kingdom
| | - Robin Carhart-Harris
- Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, London SW7 2BX, United Kingdom
- Psychedelics Division, University of California San Francisco, San Francisco, CA 92521, United States
| |
Collapse
|
96
|
Oprisan SA, Clementsmith X, Tompa T, Lavin A. Empirical mode decomposition of local field potential data from optogenetic experiments. Front Comput Neurosci 2023; 17:1223879. [PMID: 37476356 PMCID: PMC10354259 DOI: 10.3389/fncom.2023.1223879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction This study investigated the effects of cocaine administration and parvalbumin-type interneuron stimulation on local field potentials (LFPs) recorded in vivo from the medial prefrontal cortex (mPFC) of six mice using optogenetic tools. Methods The local network was subject to a brief 10 ms laser pulse, and the response was recorded for 2 s over 100 trials for each of the six subjects who showed stable coupling between the mPFC and the optrode. Due to the strong non-stationary and nonlinearity of the LFP, we used the adaptive, data-driven, Empirical Mode Decomposition (EMD) method to decompose the signal into orthogonal Intrinsic Mode Functions (IMFs). Results Through trial and error, we found that seven is the optimum number of orthogonal IMFs that overlaps with known frequency bands of brain activity. We found that the Index of Orthogonality (IO) of IMF amplitudes was close to zero. The Index of Energy Conservation (IEC) for each decomposition was close to unity, as expected for orthogonal decompositions. We found that the power density distribution vs. frequency follows a power law with an average scaling exponent of ~1.4 over the entire range of IMF frequencies 2-2,000 Hz. Discussion The scaling exponent is slightly smaller for cocaine than the control, suggesting that neural activity avalanches under cocaine have longer life spans and sizes.
Collapse
Affiliation(s)
- Sorinel A. Oprisan
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Xandre Clementsmith
- Department of Computer Science, College of Charleston, Charleston, SC, United States
| | - Tamas Tompa
- Faculty of Healthcare, Department of Preventive Medicine, University of Miskolc, Miskolc, Hungary
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Antonieta Lavin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
97
|
Diksha, Kundu S, Chakrabarti BK, Biswas S. Inequality of avalanche sizes in models of fracture. Phys Rev E 2023; 108:014103. [PMID: 37583154 DOI: 10.1103/physreve.108.014103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/13/2023] [Indexed: 08/17/2023]
Abstract
Prediction of an imminent catastrophic event in a driven disordered system is of paramount importance-from the laboratory scale controlled fracture experiment to the largest scale of mechanical failure, i.e., earthquakes. It has long been conjectured that the statistical regularities in the energy emission time series mirror the "health" of such driven systems and hence have the potential for forecasting imminent catastrophe. Among other statistical regularities, a measure of how unequal avalanche sizes are is potentially a crucial indicator of imminent failure. The inequalities of avalanche sizes are quantified using inequality indices traditionally used in socioeconomic systems: the Gini index g, the Hirsch index h, and the Kolkata index k. It is shown analytically (for the mean-field case) and numerically (for the non-mean-field case) with models of quasi-brittle materials that the indices show universal behavior near the breaking points in such models and hence could serve as indicators of imminent breakdown of stressed disordered systems.
Collapse
Affiliation(s)
- Diksha
- Department of Physics, SRM University-AP, Andhra Pradesh 522240, India
| | - Sumanta Kundu
- Department of Physics and Astronomy, University of Padova, Via Marzolo 8, I-35131 Padua, Italy
- INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padua, Italy
| | | | | |
Collapse
|
98
|
Manna SS. Non-Abelian sandpile automata with height restrictions. Phys Rev E 2023; 108:014108. [PMID: 37583174 DOI: 10.1103/physreve.108.014108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/16/2023] [Indexed: 08/17/2023]
Abstract
We have studied the properties of a sandpile automata under the constraint of height restriction of sand columns. In this sandpile, an active site transfers a grain to a neighboring site if and only if the height of the sand column at the destination site is less than a preassigned value n_{c}. This sandpile was studied by Dickman et al. [Phys. Rev. E 66, 016111 (2002)1063-651X10.1103/PhysRevE.66.016111] in a conserved system with a fixed number of sand grains. In contrast, we have studied the avalanche dynamics of the driven sandpile under the open boundary conditions. The deterministic dynamics of the Bak, Tang, and Wiesenfeld (BTW) sandpile under the height restriction is found to be non-Abelian. Using numerical results, we argue that the steady states of the sandpile are exactly the recurrent states of the BTW sandpile, but occur with nonuniform probabilities. A detailed analysis of the cluster size distributions indicates that the associated exponent values are likely to be different from those of the BTW sandpile. The other differences include that the drop number distribution decays as a power law, and the largest avalanche size grows as the fourth power of the system size.
Collapse
Affiliation(s)
- S S Manna
- B-1/16 East Enclave Housing, 02 Biswa Bangla Sarani, New Town, Kolkata 700156, India
| |
Collapse
|
99
|
Jia G, Hubbard CS, Hu Z, Xu J, Dong Q, Niu H, Liu H. Intrinsic brain activity is increasingly complex and develops asymmetrically during childhood and early adolescence. Neuroimage 2023:120225. [PMID: 37336421 DOI: 10.1016/j.neuroimage.2023.120225] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/18/2023] [Accepted: 06/11/2023] [Indexed: 06/21/2023] Open
Abstract
A large body of evidence suggests that brain signal complexity (BSC) may be an important indicator of healthy brain functioning or alternately, a harbinger of disease and dysfunction. However, despite recent progress our current understanding of how BSC emerges and evolves in large-scale networks, and the factors that shape these dynamics, remains limited. Here, we utilized resting-state functional near-infrared spectroscopy (rs-fNIRS) to capture and characterize the nature and time course of BSC dynamics within large-scale functional networks in 107 healthy participants ranging from 6-13 years of age. Age-dependent increases in spontaneous BSC were observed predominantly in higher-order association areas including the default mode (DMN) and attentional (ATN) networks. Our results also revealed asymmetrical developmental patterns in BSC that were specific to the dorsal and ventral ATN networks, with the former showing a left-lateralized and the latter demonstrating a right-lateralized increase in BSC. These age-dependent laterality shifts appeared to be more pronounced in females compared to males. Lastly, using a machine-learning model, we showed that BSC is a reliable predictor of chronological age. Higher-order association networks such as the DMN and dorsal ATN demonstrated the most robust prognostic power for predicting ages of previously unseen individuals. Taken together, our findings offer new insights into the spatiotemporal patterns of BSC dynamics in large-scale intrinsic networks that evolve over the course of childhood and adolescence, suggesting that a network-based measure of BSC represents a promising approach for tracking normative brain development and may potentially aid in the early detection of atypical developmental trajectories.
Collapse
Affiliation(s)
- Gaoding Jia
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Catherine S Hubbard
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Zhenyan Hu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Jingping Xu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Haijing Niu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China.
| | - Hesheng Liu
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
100
|
Ma Z, Chen W, Cao X, Diao S, Liu Z, Ge J, Pan S. Criticality and Neuromorphic Sensing in a Single Memristor. NANO LETTERS 2023. [PMID: 37326403 DOI: 10.1021/acs.nanolett.3c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Resistive random access memory (RRAM) is an important technology for both data storage and neuromorphic computation, where the dynamics of nanoscale conductive filaments lies at the core of the technology. Here, we analyze the current noise of various silicon-based memristors that involves the creation of a percolation path at the intermediate phase of filament growth. Remarkably, we find that these atomic switching events follow scale-free avalanche dynamics with exponents satisfying the criteria for criticality. We further prove that the switching dynamics are universal and show little dependence on device sizes or material features. Utilizing criticality in memristors, we simulate the functionality of hair cells in auditory sensory systems by observing the frequency selectivity of input stimuli with tunable characteristic frequency. We further demonstrate a single-memristor-based sensing primitive for representation of input stimuli that exceeds the theoretical limits dictated by the Nyquist-Shannon theorem.
Collapse
Affiliation(s)
- Zelin Ma
- Research Center for Advanced Information Materials (CAIM), Huangpu Research & Graduate School of Guangzhou University, Guangzhou 510555, China
- Solid State Physics & Material Research Laboratory, School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China
| | - Wanjun Chen
- Research Center for Advanced Information Materials (CAIM), Huangpu Research & Graduate School of Guangzhou University, Guangzhou 510555, China
- Solid State Physics & Material Research Laboratory, School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China
| | - Xucheng Cao
- Research Center for Advanced Information Materials (CAIM), Huangpu Research & Graduate School of Guangzhou University, Guangzhou 510555, China
- Solid State Physics & Material Research Laboratory, School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China
| | - Shanqing Diao
- Research Center for Advanced Information Materials (CAIM), Huangpu Research & Graduate School of Guangzhou University, Guangzhou 510555, China
- Solid State Physics & Material Research Laboratory, School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China
| | - Zhiyu Liu
- Research Center for Advanced Information Materials (CAIM), Huangpu Research & Graduate School of Guangzhou University, Guangzhou 510555, China
- Solid State Physics & Material Research Laboratory, School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China
| | - Jun Ge
- Research Center for Advanced Information Materials (CAIM), Huangpu Research & Graduate School of Guangzhou University, Guangzhou 510555, China
- Solid State Physics & Material Research Laboratory, School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China
- Key Lab of Si-based Information Materials & Devices and Integrated Circuits Design, Department of Education of Guangdong Province, Guangzhou 510006, China
| | - Shusheng Pan
- Research Center for Advanced Information Materials (CAIM), Huangpu Research & Graduate School of Guangzhou University, Guangzhou 510555, China
- Solid State Physics & Material Research Laboratory, School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China
- Key Lab of Si-based Information Materials & Devices and Integrated Circuits Design, Department of Education of Guangdong Province, Guangzhou 510006, China
| |
Collapse
|