51
|
Verma A, Stoppelman JP, McDaniel JG. Tuning Water Networks via Ionic Liquid/Water Mixtures. Int J Mol Sci 2020; 21:E403. [PMID: 31936347 PMCID: PMC7013630 DOI: 10.3390/ijms21020403] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 11/17/2022] Open
Abstract
Water in nanoconfinement is ubiquitous in biological systems and membrane materials, with altered properties that significantly influence the surrounding system. In this work, we show how ionic liquid (IL)/water mixtures can be tuned to create water environments that resemble nanoconfined systems. We utilize molecular dynamics simulations employing ab initio force fields to extensively characterize the water structure within five different IL/water mixtures: [BMIM + ][BF 4 - ], [BMIM + ][PF 6 - ], [BMIM + ][OTf - ], [BMIM + ][NO 3 - ]and [BMIM + ][TFSI - ] ILs at varying water fraction. We characterize water clustering, hydrogen bonding, water orientation, pairwise correlation functions and percolation networks as a function of water content and IL type. The nature of the water nanostructure is significantly tuned by changing the hydrophobicity of the IL and sensitively depends on water content. In hydrophobic ILs such as [BMIM + ][PF 6 - ], significant water clustering leads to dynamic formation of water pockets that can appear similar to those formed within reverse micelles. Furthermore, rotational relaxation times of water molecules in supersaturated hydrophobic IL/water mixtures indicate the close-connection with nanoconfined systems, as they are quantitatively similar to water relaxation in previously characterized lyotropic liquid crystals. We expect that this physical insight will lead to better design principles for incorporation of ILs into membrane materials to tune water nanostructure.
Collapse
Affiliation(s)
| | | | - Jesse G. McDaniel
- Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta 30332-0400, Georgia; (A.V.); (J.P.S.)
| |
Collapse
|
52
|
Sakti AW, Nishimura Y, Nakai H. Recent advances in quantum‐mechanical molecular dynamics simulations of proton transfer mechanism in various water‐based environments. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aditya W. Sakti
- Element Strategy Initiative for Catalysts and Batteries (ESICB) Kyoto University Kyoto Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering (WISE) Waseda University Tokyo Japan
| | - Hiromi Nakai
- Element Strategy Initiative for Catalysts and Batteries (ESICB) Kyoto University Kyoto Japan
- Waseda Research Institute for Science and Engineering (WISE) Waseda University Tokyo Japan
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering Waseda University Tokyo Japan
| |
Collapse
|
53
|
Shahbabaei M, Kim D. Exploring fast water permeation through aquaporin-mimicking membranes. Phys Chem Chem Phys 2020; 22:1333-1348. [DOI: 10.1039/c9cp05496k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Using molecular dynamics simulations, herein, we illustrate that a bending structure shows different behaviors for fast water transport through aquaporin-mimicking membranes in multilayer graphene and tubular structures.
Collapse
Affiliation(s)
- Majid Shahbabaei
- Department of Mechanical Engineering
- Sogang University
- Seoul 121-742
- Republic of Korea
| | - Daejoong Kim
- Department of Mechanical Engineering
- Sogang University
- Seoul 121-742
- Republic of Korea
| |
Collapse
|
54
|
Zhao M, Liu Y, Su B. Anomalous Proton Transport across Silica Nanochannel Membranes Investigated by Ion Conductance Measurements. Anal Chem 2019; 91:13433-13438. [DOI: 10.1021/acs.analchem.9b01914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Meijiao Zhao
- Department of Chemistry, Institute of Analytical Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yanhuan Liu
- Department of Chemistry, Institute of Analytical Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bin Su
- Department of Chemistry, Institute of Analytical Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
55
|
Kumar A, Iyengar SS. Fragment-Based Electronic Structure for Potential Energy Surfaces Using a Superposition of Fragmentation Topologies. J Chem Theory Comput 2019; 15:5769-5786. [DOI: 10.1021/acs.jctc.9b00608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Anup Kumar
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana-47405, United States
| | - Srinivasan S. Iyengar
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana-47405, United States
| |
Collapse
|
56
|
Li S, Schmidt B. Replica exchange MD simulations of two-dimensional water in graphene nanocapillaries: rhombic versus square structures, proton ordering, and phase transitions. Phys Chem Chem Phys 2019; 21:17640-17654. [PMID: 31364628 DOI: 10.1039/c9cp00849g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrogen bond patterns, proton ordering, and phase transitions of monolayer ice in two-dimensional hydrophobic confinement are fundamentally different from those found for bulk ice. To investigate the behavior of quasi-2D ice, we perform molecular dynamics simulations of water confined between fixed graphene plates at a distance of 0.65 nm. While experimental results are still limited and theoretical investigations are often based on a single, often empirically based force field model, this work presents a systematic study modeling the water-graphene interaction by effective Lennard-Jones potentials previously derived from high-level ab initio CCSD(T) calculations of water adsorbed on graphene [Phys. Chem. Chem. Phys., 2013, 15, 4995]. For the water-water interaction different water force fields, i.e. SPCE, TIP3P, TIP4P, TIP4P/ICE, and TIP5P, are used. The water occupancy of the graphene capillary at a pressure of 1000 MPa is determined to be between 13.5 and 13.9 water molecules per square nanometer, depending on the choice of the water force field. Based on these densities, we explore the structure and dynamics of quasi-2D water for temperatures ranging from 200 K to about 600 K for each of the five force fields. To ensure complete sampling of the configurational space and to overcome the barriers separating metastable structures, these simulations are based on the replica exchange molecular dynamics technique. We report different tetragonal hydrogen bond patterns, which are classified as nearly square or as rhombic. While many of these arrangements are essentially flat, in some cases puckered arrangements are found, too. Also the proton ordering of the quasi-2D water structures is considered, allowing us to identify them as ferroelectric, ferrielectric or antiferroelectric. For temperatures between 200 K and 400 K we find several second-order phase transitions from one ice structure to another, changing in many cases both the arrangements of the oxygen atoms and the proton ordering. For temperatures between 400 K and 600 K there are melting-like transitions from a monolayer of ice to a monolayer of liquid water. These first-order phase transitions have a latent heat between 3.4 and 4.0 kJ mol-1. Both the values of the transition temperatures and of the latent heats display considerable model dependence for the five different water models investigated here.
Collapse
Affiliation(s)
- Shujuan Li
- Institute for Mathematics, Freie Universität Berlin, Arnimallee 6, D-14195 Berlin, Germany.
| | | |
Collapse
|
57
|
Pascal TA, Schwartz CP, Lawler KV, Prendergast D. The purported square ice in bilayer graphene is a nanoscale, monolayer object. J Chem Phys 2019; 150:231101. [DOI: 10.1063/1.5109468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tod A. Pascal
- ATLAS Materials Physics Laboratory, Department of NanoEngineering and Chemical Engineering, University of California San Diego, La Jolla, California 92023, USA
| | - Craig P. Schwartz
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Stanford Synchrotron Radiation Laboratory, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Keith V. Lawler
- High Pressure Science and Engineering Center (HiPSEC), University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA
- Department of Chemistry, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA
| | - David Prendergast
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
58
|
Ryzhkin IA, Ryzhkin MI, Kashin AM, Galitskaya EA, Sinitsyn VV. High proton conductivity state of water in nanoporous materials. ACTA ACUST UNITED AC 2019. [DOI: 10.1209/0295-5075/126/36003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
59
|
Ji W, Zhang L. Molecular dynamics simulations of water desalination through polymerized fullerite membrane. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
60
|
Proton leakage across lipid bilayers: Oxygen atoms of phospholipid ester linkers align water molecules into transmembrane water wires. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:439-451. [PMID: 30904457 DOI: 10.1016/j.bbabio.2019.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/20/2019] [Accepted: 03/10/2019] [Indexed: 12/31/2022]
Abstract
Up to half of the cellular energy gets lost owing to membrane proton leakage. The permeability of lipid bilayers to protons is by several orders of magnitude higher than to other cations, which implies efficient proton-specific passages. The nature of these passages remains obscure. By combining experimental measurements of proton flow across phosphatidylcholine vesicles, steered molecular dynamics (MD) simulations of phosphatidylcholine bilayers and kinetic modelling, we have analyzed whether protons could pass between opposite phospholipid molecules when they sporadically converge. The MD simulations showed that each time, when the phosphorus atoms of the two phosphatidylcholine molecules got closer than 1.6 nm, the eight oxygen atoms of their ester linkages could form a transmembrane 'oxygen passage' along which several water molecules aligned into a water wire. Proton permeability along such water wires would be limited by rearrangement of oxygen atoms, which could explain the experimentally shown independence of the proton permeability of pH, H2O/D2O substitution, and membrane dipole potential. We suggest that protons can cross lipid bilayers by moving along short, self-sustaining water wires supported by oxygen atoms of lipid ester linkages.
Collapse
|
61
|
Ma J, Li K, Li Z, Qiu Y, Si W, Ge Y, Sha J, Liu L, Xie X, Yi H, Ni Z, Li D, Chen Y. Drastically Reduced Ion Mobility in a Nanopore Due to Enhanced Pairing and Collisions between Dehydrated Ions. J Am Chem Soc 2019; 141:4264-4272. [PMID: 30773010 DOI: 10.1021/jacs.8b08488] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ion transport through nanopores is a process of fundamental significance in nature and in engineering practice. Over the past decade, it has been found that the ion conductivity in nanopores could be drastically enhanced, and different mechanisms have been proposed to explain this observation. To date, most reported studies have been carried out with relatively dilute electrolytes, while ion transport in nanopores under high electrolyte concentrations (>1 M) has been rarely explored. Through systematic experimental and atomistic simulation studies with NaCl solutions, here we show that at high electrolyte concentrations, ion mobility in small nanopores could be significantly reduced from the corresponding bulk value. Subsequent molecular dynamics studies indicate that in addition to the low mobility of surface-bound ions in the Stern layer, enhanced pairing and collisions between partially dehydrated ions of opposite charges also make important contributions to the reduced ion mobility. Furthermore, we show that the extent of mobility reduction depends on the association constant between cations and anions in different electrolytes with a more drastic reduction for a larger association constant.
Collapse
Affiliation(s)
- Jian Ma
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering , Southeast University , Nanjing 211189 , China
| | - Kun Li
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering , Southeast University , Nanjing 211189 , China
| | - Zhongwu Li
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering , Southeast University , Nanjing 211189 , China
| | - Yinghua Qiu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering , Southeast University , Nanjing 211189 , China
| | - Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering , Southeast University , Nanjing 211189 , China
| | - Yanyan Ge
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering , Southeast University , Nanjing 211189 , China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering , Southeast University , Nanjing 211189 , China
| | - Lei Liu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering , Southeast University , Nanjing 211189 , China
| | - Xiao Xie
- China Education Council Key Laboratory of MEMS , Southeast University , Nanjing 210096 , China
| | - Hong Yi
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering , Southeast University , Nanjing 211189 , China
| | - Zhonghua Ni
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering , Southeast University , Nanjing 211189 , China
| | - Deyu Li
- Department of Mechanical Engineering , Vanderbilt University , Nashville , Tennessee 37235-1592 , United States
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering , Southeast University , Nanjing 211189 , China
| |
Collapse
|
62
|
Gopinadhan K, Hu S, Esfandiar A, Lozada-Hidalgo M, Wang FC, Yang Q, Tyurnina AV, Keerthi A, Radha B, Geim AK. Complete steric exclusion of ions and proton transport through confined monolayer water. Science 2019; 363:145-148. [DOI: 10.1126/science.aau6771] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/23/2018] [Indexed: 12/19/2022]
Abstract
It has long been an aspirational goal to create artificial structures that allow fast permeation of water but reject even the smallest hydrated ions, replicating the feat achieved by nature in protein channels (e.g., aquaporins). Despite recent progress in creating nanoscale pores and capillaries, these structures still remain distinctly larger than protein channels. We report capillaries made by effectively extracting one atomic plane from bulk crystals, which leaves a two-dimensional slit of a few angstroms in height. Water moves through these capillaries with little resistance, whereas no permeation could be detected even for such small ions as Na+and Cl−. Only protons (H+) can diffuse through monolayer water inside the capillaries. These observations improve our understanding of molecular transport at the atomic scale.
Collapse
|
63
|
Rao R, Pint CL, Islam AE, Weatherup RS, Hofmann S, Meshot ER, Wu F, Zhou C, Dee N, Amama PB, Carpena-Nuñez J, Shi W, Plata DL, Penev ES, Yakobson BI, Balbuena PB, Bichara C, Futaba DN, Noda S, Shin H, Kim KS, Simard B, Mirri F, Pasquali M, Fornasiero F, Kauppinen EI, Arnold M, Cola BA, Nikolaev P, Arepalli S, Cheng HM, Zakharov DN, Stach EA, Zhang J, Wei F, Terrones M, Geohegan DB, Maruyama B, Maruyama S, Li Y, Adams WW, Hart AJ. Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS NANO 2018; 12:11756-11784. [PMID: 30516055 DOI: 10.1021/acsnano.8b06511] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Advances in the synthesis and scalable manufacturing of single-walled carbon nanotubes (SWCNTs) remain critical to realizing many important commercial applications. Here we review recent breakthroughs in the synthesis of SWCNTs and highlight key ongoing research areas and challenges. A few key applications that capitalize on the properties of SWCNTs are also reviewed with respect to the recent synthesis breakthroughs and ways in which synthesis science can enable advances in these applications. While the primary focus of this review is on the science framework of SWCNT growth, we draw connections to mechanisms underlying the synthesis of other 1D and 2D materials such as boron nitride nanotubes and graphene.
Collapse
Affiliation(s)
- Rahul Rao
- Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright Patterson Air Force Base , Dayton , Ohio 45433 , United States
- UES Inc. , Dayton , Ohio 45433 , United States
| | - Cary L Pint
- Department of Mechanical Engineering , Vanderbilt University , Nashville , Tennessee 37235 United States
| | - Ahmad E Islam
- Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright Patterson Air Force Base , Dayton , Ohio 45433 , United States
- UES Inc. , Dayton , Ohio 45433 , United States
| | - Robert S Weatherup
- School of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , U.K
- University of Manchester at Harwell, Diamond Light Source, Didcot , Oxfordshire OX11 0DE , U.K
| | - Stephan Hofmann
- Department of Engineering , University of Cambridge , Cambridge CB3 0FA , U.K
| | - Eric R Meshot
- Physical and Life Sciences Directorate , Lawrence Livermore National Laboratory , Livermore , California 94550 United States
| | - Fanqi Wu
- Ming-Hsieh Department of Electrical Engineering , University of Southern California , Los Angeles , California 90089 , United States
| | - Chongwu Zhou
- Ming-Hsieh Department of Electrical Engineering , University of Southern California , Los Angeles , California 90089 , United States
| | - Nicholas Dee
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Placidus B Amama
- Tim Taylor Department of Chemical Engineering , Kansas State University , Manhattan , Kansas 66506 , United States
| | - Jennifer Carpena-Nuñez
- Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright Patterson Air Force Base , Dayton , Ohio 45433 , United States
- UES Inc. , Dayton , Ohio 45433 , United States
| | - Wenbo Shi
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520 , United States
| | - Desiree L Plata
- Department of Civil and Environmental Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Evgeni S Penev
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Perla B Balbuena
- Department of Chemical Engineering, Department of Materials Science and Engineering, Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Christophe Bichara
- Aix-Marseille University and CNRS , CINaM UMR 7325 , 13288 Marseille , France
| | - Don N Futaba
- Nanotube Research Center , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 305-8565 , Japan
| | - Suguru Noda
- Department of Applied Chemistry and Waseda Research Institute for Science and Engineering , Waseda University , 3-4-1 Okubo , Shinjuku-ku, Tokyo 169-8555 , Japan
| | - Homin Shin
- Security and Disruptive Technologies Research Centre, Emerging Technologies Division , National Research Council Canada , Ottawa , Ontario K1A 0R6 , Canada
| | - Keun Su Kim
- Security and Disruptive Technologies Research Centre, Emerging Technologies Division , National Research Council Canada , Ottawa , Ontario K1A 0R6 , Canada
| | - Benoit Simard
- Security and Disruptive Technologies Research Centre, Emerging Technologies Division , National Research Council Canada , Ottawa , Ontario K1A 0R6 , Canada
| | - Francesca Mirri
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Matteo Pasquali
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Francesco Fornasiero
- Physical and Life Sciences Directorate , Lawrence Livermore National Laboratory , Livermore , California 94550 United States
| | - Esko I Kauppinen
- Department of Applied Physics , Aalto University School of Science , P.O. Box 15100 , FI-00076 Espoo , Finland
| | - Michael Arnold
- Department of Materials Science and Engineering University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Baratunde A Cola
- George W. Woodruff School of Mechanical Engineering and School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Pavel Nikolaev
- Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright Patterson Air Force Base , Dayton , Ohio 45433 , United States
- UES Inc. , Dayton , Ohio 45433 , United States
| | - Sivaram Arepalli
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Hui-Ming Cheng
- Tsinghua-Berkeley Shenzhen Institute , Tsinghua University , Shenzhen 518055 , China
- Shenyang National Laboratory for Materials Science , Institute of Metal Research, Chinese Academy of Sciences , Shenyang 110016 , China
| | - Dmitri N Zakharov
- Center for Functional Nanomaterials , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Eric A Stach
- Department of Materials Science and Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Jin Zhang
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Mauricio Terrones
- Department of Physics and Center for Two-Dimensional and Layered Materials , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - David B Geohegan
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Benji Maruyama
- Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright Patterson Air Force Base , Dayton , Ohio 45433 , United States
| | - Shigeo Maruyama
- Department of Mechanical Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Yan Li
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - W Wade Adams
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - A John Hart
- Department of Mechanical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
64
|
Zhang Z, Li X, Yin J, Xu Y, Fei W, Xue M, Wang Q, Zhou J, Guo W. Emerging hydrovoltaic technology. NATURE NANOTECHNOLOGY 2018; 13:1109-1119. [PMID: 30523296 DOI: 10.1038/s41565-018-0228-6] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/01/2018] [Accepted: 07/12/2018] [Indexed: 05/24/2023]
Abstract
Water contains tremendous energy in a variety of forms, but very little of this energy has yet been harnessed. Nanostructured materials can generate electricity on interaction with water, a phenomenon that we term the hydrovoltaic effect, which potentially extends the technical capability of water energy harvesting and enables the creation of self-powered devices. In this Review, starting by describing fundamental properties of water and of water-solid interfaces, we discuss key aspects pertaining to water-carbon interactions and basic mechanisms of harvesting water energy with nanostructured materials. Experimental advances in generating electricity from water flows, waves, natural evaporation and moisture are then reviewed to show the correlations in their basic mechanisms and the potential for their integration towards harvesting energy from the water cycle. We further discuss potential device applications of hydrovoltaic technologies, analyse main challenges in improving the energy conversion efficiency and scaling up the output power, and suggest prospects for developments of the emerging technology.
Collapse
Affiliation(s)
- Zhuhua Zhang
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xuemei Li
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jun Yin
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Ying Xu
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Wenwen Fei
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Minmin Xue
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qin Wang
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jianxin Zhou
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| |
Collapse
|
65
|
Sirkin YAP, Hassanali A, Scherlis DA. One-Dimensional Confinement Inhibits Water Dissociation in Carbon Nanotubes. J Phys Chem Lett 2018; 9:5029-5033. [PMID: 30113846 DOI: 10.1021/acs.jpclett.8b02183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effect of nanoconfinement on the self-dissociation of water constitutes an open problem whose elucidation poses a serious challenge to experiments and simulations alike. In slit pores of width ≈1 nm, recent first-principles calculations have predicted that the dissociation constant of H2O increases by almost 2 orders of magnitude [ Muñoz-Santiburcio and Marx, Phys. Rev. Lett. 2017 , 119 , 056002 ]. In the present study, quantum mechanics-molecular mechanics simulations are employed to compute the dissociation free-energy profile of water in a (6,6) carbon nanotube. According to our results, the equilibrium constant Kw drops by 3 orders of magnitude with respect to the bulk phase value, at variance with the trend predicted for confinement in two dimensions. The higher barrier to dissociation can be ascribed to the undercoordination of the hydroxide and hydronium ions in the nanotube and underscores that chemical reactivity does not exhibit a monotonic behavior with respect to pore size but may vary substantially with the characteristic length scale and dimensionality of the confining media.
Collapse
Affiliation(s)
- Yamila A Perez Sirkin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Ciudad Universitaria , Buenos Aires C1428EHA , Argentina
| | - Ali Hassanali
- Condensed Matter and Statistical Physics , International Centre for Theoretical Physics , I-34151 Trieste , Italy
| | - Damián A Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Ciudad Universitaria , Buenos Aires C1428EHA , Argentina
| |
Collapse
|
66
|
Zhu J, Zhu E, Gao J, Li X, Su J. Structural and dynamic properties of water molecules in a uniformly charged nanopore. J Chem Phys 2018; 149:074703. [DOI: 10.1063/1.5042107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Jianzhuo Zhu
- Key Laboratory for Microstructural Material Physics of Hebei Province, College of Science, Yanshan University, Qinhuangdao 066004, China
| | - Erkuang Zhu
- Key Laboratory for Microstructural Material Physics of Hebei Province, College of Science, Yanshan University, Qinhuangdao 066004, China
| | - Jing Gao
- Key Laboratory for Microstructural Material Physics of Hebei Province, College of Science, Yanshan University, Qinhuangdao 066004, China
| | - Xingyuan Li
- Key Laboratory for Microstructural Material Physics of Hebei Province, College of Science, Yanshan University, Qinhuangdao 066004, China
| | - Jiguo Su
- Key Laboratory for Microstructural Material Physics of Hebei Province, College of Science, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
67
|
Li F, Li Z, Li S, Fang W, Sun C, Men Z. Influence of the hydrogen bond quantum nature in liquid water and heavy water on stimulated Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:462-464. [PMID: 29133131 DOI: 10.1016/j.saa.2017.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Abstract
Stimulated Raman scattering (SRS) of liquid water and heavy water have been investigated using Nd:YAG laser. The SRS spectra of liquid heavy water indicate that ice-VII and ice-VIII structures are formed by shock-induced compression (SIC) in forward and backward directions, respectively. Simultaneously, the SRS spectra reveal of liquid water that only ice-VII structure is formed in the backward direction. The difference in ice structures formed by SIC in liquid water and heavy water could be attributed to the effect of the hydrogen bond quantum nature with H+. SRS spectra of 2M NaOH water solution with ice-VII and ice-VIII structures have been successfully obtained in forward and backward, respectively, as OH- greatly reduce the quantum nature of hydrogen bonds by neutralizing H+ in water. The hydrogen bond quantum nature is important for understanding isotope calibration test structure and isotopic effect.
Collapse
Affiliation(s)
- Fabing Li
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China
| | - Zhanlong Li
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China
| | - Shuo Li
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China
| | - Wenhui Fang
- School of Science, Changchun University of Science and Technology, Changchun 130012, China
| | - Chenglin Sun
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China
| | - Zhiwei Men
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, College of Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
68
|
Kirch A, de Almeida JM, Miranda CR. Multilevel Molecular Modeling Approach for a Rational Design of Ionic Current Sensors for Nanofluidics. J Chem Theory Comput 2018; 14:3113-3120. [PMID: 29722980 DOI: 10.1021/acs.jctc.8b00073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complexity displayed by nanofluidic-based systems involves electronic and dynamic aspects occurring across different size and time scales. To properly model such kind of system, we introduced a top-down multilevel approach, combining molecular dynamics simulations (MD) with first-principles electronic transport calculations. The potential of this technique was demonstrated by investigating how the water and ionic flow through a (6,6) carbon nanotube (CNT) influences its electronic transport properties. We showed that the confinement on the CNT favors the partially hydrated Na, Cl, and Li ions to exchange charge with the nanotube. This leads to a change in the electronic transmittance, allowing for the distinguishing of cations from anions. Such an ionic trace may handle an indirect measurement of the ionic current that is recorded as a sensing output. With this case study, we are able to show the potential of this top-down multilevel approach, to be applied on the design of novel nanofluidic devices.
Collapse
Affiliation(s)
- Alexsandro Kirch
- Instituto de Física , Universidade de São Paulo , CP 66318, 05315-970 , São Paulo , São Paulo Brazil
| | - James M de Almeida
- Instituto de Física , Universidade de São Paulo , CP 66318, 05315-970 , São Paulo , São Paulo Brazil
| | - Caetano R Miranda
- Instituto de Física , Universidade de São Paulo , CP 66318, 05315-970 , São Paulo , São Paulo Brazil
| |
Collapse
|
69
|
Uematsu Y, Netz RR, Bocquet L, Bonthuis DJ. Crossover of the Power-Law Exponent for Carbon Nanotube Conductivity as a Function of Salinity. J Phys Chem B 2018; 122:2992-2997. [DOI: 10.1021/acs.jpcb.8b01975] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuki Uematsu
- Department of Chemistry, Kyushu University, Fukuoka 819-0395, Japan
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Roland R. Netz
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Lydéric Bocquet
- Laboratoire de Physique Statistique, École Normale Supérieure-PSL Research University, UMR 8550, 24 rue Lhomond, 75005 Paris, France
| | | |
Collapse
|
70
|
Ghane T, Gorriz RF, Wrzalek S, Volkenandt S, Dalatieh F, Reidelbach M, Imhof P. Hydrogen-Bonded Network and Water Dynamics in the D-channel of Cytochrome c Oxidase. J Membr Biol 2018; 251:299-314. [PMID: 29435610 DOI: 10.1007/s00232-018-0019-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/06/2018] [Indexed: 01/09/2023]
Abstract
Proton transfer in cytochrome c oxidase (CcO) from the cellular inside to the binuclear redox centre as well as proton pumping through the membrane takes place through proton entrance via two distinct pathways, the D- and K-channel. Both channels show a dependence of their hydration level on the protonation states of their key residues, K362 for the K-channel, and E286 or D132 for the D-channel. In the oxidative half of CcO's catalytic cycle the D-channel is the proton-conducting path. For this channel, an interplay of protonation state of the D-channel residues with the water and hydrogen-bond dynamics has been observed in molecular dynamics simulations of the CcO protein, embedded in a lipid bi-layer, modelled in different protonation states. Protonation of residue E286 at the end of the D-channel results in a hydrogen-bonded network pointing from E286 to N139, that is against proton transport, and favouring N139 conformations which correspond to a closed asparagine gate (formed by residues N121 and N139). Consequently, the hydration level is lower than with unprotonated E286. In those models, the Asn gate is predominantly open, allowing water molecules to pass and thus increase the hydration level. The hydrogen-bonded network in these states exhibits longer life times of the Asn residues with water than other models and shows the D-channel to be traversable from the entrance, D132, to exit, E286. The D-channel can thus be regarded as auto-regulated with respect to proton transport, allowing proton passage only when required, that is the proton is located at the lower part of the D-channel (D132 to Asn gate) and not at the exit (E286).
Collapse
Affiliation(s)
- Tahereh Ghane
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Rene F Gorriz
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Sandro Wrzalek
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Senta Volkenandt
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Ferand Dalatieh
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.,R Institute GmbH, Dortustraße 48, 14467, Potsdam, Germany
| | - Marco Reidelbach
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Petra Imhof
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| |
Collapse
|
71
|
Li C, Meckler SM, Smith ZP, Bachman JE, Maserati L, Long JR, Helms BA. Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1704953. [PMID: 29315857 DOI: 10.1002/adma.201704953] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/12/2017] [Indexed: 05/25/2023]
Abstract
Many forward-looking clean-energy technologies hinge on the development of scalable and efficient membrane-based separations. Ongoing investment in the basic research of microporous materials is beginning to pay dividends in membrane technology maturation. Specifically, improvements in membrane selectivity, permeability, and durability are being leveraged for more efficient carbon capture, desalination, and energy storage, and the market adoption of membranes in those areas appears to be on the horizon. Herein, an overview of the microporous materials chemistry driving advanced membrane development, the clean-energy separations employing them, and the theoretical underpinnings tying membrane performance to membrane structure across multiple length scales is provided. The interplay of pore architecture and chemistry for a given set of analytes emerges as a critical design consideration dictating mass transport outcomes. Opportunities and outstanding challenges in the field are also discussed, including high-flux 2D molecular-sieving membranes, phase-change adsorbents as performance-enhancing components in composite membranes, and the need for quantitative metrologies for understanding mass transport in heterophasic materials and in micropores with unusual chemical interactions with analytes of interest.
Collapse
Affiliation(s)
- Changyi Li
- Department of Chemical and Biomolecular Engineering, The University of California, Berkeley, CA, 94720, USA
| | - Stephen M Meckler
- Department of Chemistry, The University of California, Berkeley, CA, 94720, USA
| | - Zachary P Smith
- Department of Chemical Engineering, The Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jonathan E Bachman
- Department of Chemical and Biomolecular Engineering, The University of California, Berkeley, CA, 94720, USA
| | - Lorenzo Maserati
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Jeffrey R Long
- Department of Chemical and Biomolecular Engineering, The University of California, Berkeley, CA, 94720, USA
- Department of Chemistry, The University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| |
Collapse
|
72
|
Daldrop JO, Saita M, Heyden M, Lorenz-Fonfria VA, Heberle J, Netz RR. Orientation of non-spherical protonated water clusters revealed by infrared absorption dichroism. Nat Commun 2018; 9:311. [PMID: 29358659 PMCID: PMC5778031 DOI: 10.1038/s41467-017-02669-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/15/2017] [Indexed: 11/09/2022] Open
Abstract
Infrared continuum bands that extend over a broad frequency range are a key spectral signature of protonated water clusters. They are observed for many membrane proteins that contain internal water molecules, but their microscopic mechanism has remained unclear. Here we compute infrared spectra for protonated and unprotonated water chains, discs, and droplets from ab initio molecular dynamics simulations. The continuum bands of the protonated clusters exhibit significant anisotropy for chains and discs, with increased absorption along the direction of maximal cluster extension. We show that the continuum band arises from the nuclei motion near the excess charge, with a long-ranged amplification due to the electronic polarizability. Our experimental, polarization-resolved light–dark difference spectrum of the light-driven proton pump bacteriorhodopsin exhibits a pronounced dichroic continuum band. Our results suggest that the protonated water cluster responsible for the continuum band of bacteriorhodopsin is oriented perpendicularly to the membrane normal. Protein-bound water clusters play a key role for proton transport and storage in molecular biology. Here, the authors show by simulations and experiments that the orientation of non-spherical protonated water clusters in bacteriorhodopsin is unveiled by polarization-resolved infrared spectroscopy.
Collapse
Affiliation(s)
- Jan O Daldrop
- Department of Physics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Mattia Saita
- Department of Physics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Matthias Heyden
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim an der Ruhr, Germany
| | | | - Joachim Heberle
- Department of Physics, Freie Universität Berlin, 14195, Berlin, Germany.
| | - Roland R Netz
- Department of Physics, Freie Universität Berlin, 14195, Berlin, Germany.
| |
Collapse
|
73
|
Vögele M, Köfinger J, Hummer G. Molecular dynamics simulations of carbon nanotube porins in lipid bilayers. Faraday Discuss 2018; 209:341-358. [DOI: 10.1039/c8fd00011e] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Carbon nanotube porins embedded in lipid membranes are studied by molecular dynamics simulations.
Collapse
Affiliation(s)
- Martin Vögele
- Department of Theoretical Biophysics
- Max Planck Institute of Biophysics
- 60438 Frankfurt am Main
- Germany
| | - Jürgen Köfinger
- Department of Theoretical Biophysics
- Max Planck Institute of Biophysics
- 60438 Frankfurt am Main
- Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics
- Max Planck Institute of Biophysics
- 60438 Frankfurt am Main
- Germany
- Institute for Biophysics
| |
Collapse
|
74
|
Nishi M, Ohkubo T, Yamasaki M, Takagi H, Kuroda Y. Surplus adsorption of bromide ion into π-conjugated carbon nanospaces assisted by proton coadsorption. J Colloid Interface Sci 2017; 508:415-418. [PMID: 28858650 DOI: 10.1016/j.jcis.2017.08.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 11/26/2022]
Abstract
Nanoporous carbons can preferentially adsorb bromide ions from an aqueous solution of alkali metal bromides, even on π-conjugated surfaces. Our results show a new adsorption mechanism whereby coadsorption of protons enhances the adsorption of the anions onto the carbons.
Collapse
Affiliation(s)
- Masayasu Nishi
- Research Institute of Energy Frontier, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Takahiro Ohkubo
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Masaru Yamasaki
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Hideyuki Takagi
- Research Institute of Energy Frontier, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Yasushige Kuroda
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
75
|
Giri S, Parida R, Jana M, Gutiérrez-Oliva S, Toro-Labbe A. Insights into the Mechanism of Ground and Excited State Double Proton Transfer Reaction in Formic Acid Dimer. J Phys Chem A 2017; 121:9531-9543. [PMID: 29154544 DOI: 10.1021/acs.jpca.7b09819] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism of ground and excited state double proton transfer reaction in formic acid dimer has been analyzed with the help of reaction force and the reaction electronic flux. The separation of reaction electronic flux in terms of electronic activity and reactivity, NBO, and dual descriptor lends additional support for the mechanism. Interestingly we found that the ground state double proton transfer mechanism is concerted synchronic, whereas the excited state double proton transfer is concerted asynchronic in nature.
Collapse
Affiliation(s)
- Santanab Giri
- Department of Chemistry, National Institute of Technology , Rourkela, Orissa 769008, India
| | - Rakesh Parida
- Department of Chemistry, National Institute of Technology , Rourkela, Orissa 769008, India
| | - Madhurima Jana
- Department of Chemistry, National Institute of Technology , Rourkela, Orissa 769008, India
| | - Soledad Gutiérrez-Oliva
- Laboratorio de Química Teórica Computacional (QTC), Facultad de Química, Pontificia Universidad Católica de Chile , Casilla 306, Correo 22, Santiago, Chile
| | - Alejandro Toro-Labbe
- Laboratorio de Química Teórica Computacional (QTC), Facultad de Química, Pontificia Universidad Católica de Chile , Casilla 306, Correo 22, Santiago, Chile
| |
Collapse
|
76
|
Abstract
An important limitation of standard classical molecular dynamics simulations is the inability to make or break chemical bonds. This restricts severely our ability to study processes that involve even the simplest of chemical reactions, the transfer of a proton. Existing approaches for allowing proton transfer in the context of classical mechanics are rather cumbersome and have not achieved widespread use and routine status. Here we reconsider the combination of molecular dynamics with periodic stochastic proton hops. To ensure computational efficiency, we propose a non-Boltzmann acceptance criterion that is heuristically adjusted to maintain the correct or desirable thermodynamic equilibria between different protonation states and proton transfer rates. Parameters are proposed for hydronium, Asp, Glu, and His. The algorithm is implemented in the program CHARMM and tested on proton diffusion in bulk water and carbon nanotubes and on proton conductance in the gramicidin A channel. Using hopping parameters determined from proton diffusion in bulk water, the model reproduces the enhanced proton diffusivity in carbon nanotubes and gives a reasonable estimate of the proton conductance in gramicidin A.
Collapse
Affiliation(s)
- Themis Lazaridis
- Department of Chemistry, City College of New York/CUNY , 160 Convent Avenue, New York, New York 10031, United States.,Graduate Programs in Chemistry, Biochemistry & Physics, Graduate Center, City University of New York , 365 Fifth Ave, New York, New York 10016, United States
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics , Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
77
|
|
78
|
Affiliation(s)
- Jesse G. McDaniel
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Arun Yethiraj
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
79
|
Allahyarov E, Löwen H, Taylor PL. Simulation Study of Ion Diffusion in Charged Nanopores with Anchored Terminal Groups. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.04.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
80
|
Bagusetty A, Choudhury P, Saidi WA, Derksen B, Gatto E, Johnson JK. Facile Anhydrous Proton Transport on Hydroxyl Functionalized Graphane. PHYSICAL REVIEW LETTERS 2017; 118:186101. [PMID: 28524689 DOI: 10.1103/physrevlett.118.186101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 06/07/2023]
Abstract
Graphane functionalized with hydroxyl groups is shown to rapidly conduct protons under anhydrous conditions through a contiguous network of hydrogen bonds. Density functional theory calculations predict remarkably low barriers to diffusion of protons along a 1D chain of surface hydroxyls. Diffusion is controlled by the local rotation of hydroxyl groups, a mechanism that is very different from that found in 1D water wires in confined nanopores or in bulk water. The proton mean square displacement in the 1D chain was observed to follow Fickian diffusion rather than the expected single-file mobility. A charge analysis reveals that the charge on the proton is essentially equally shared by all hydrogens bound to oxygens, effectively delocalizing the proton.
Collapse
Affiliation(s)
- Abhishek Bagusetty
- Computational Modeling and Simulation Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Pabitra Choudhury
- Department of Chemical Engineering, New Mexico Tech, Socorro, New Mexico 87801, USA
| | - Wisssam A Saidi
- Department of Mechanical and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Bridget Derksen
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Elizabeth Gatto
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - J Karl Johnson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
81
|
Sheng J, Zhu Q, Zeng X, Yang Z, Zhang X. Promotion of Water Channels for Enhanced Ion Transport in 14 nm Diameter Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11009-11015. [PMID: 28264153 DOI: 10.1021/acsami.7b00174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ion transport plays an important role in solar-to-electricity conversion, drug delivery, and a variety of biological processes. Carbon nanotube (CNT) is a promising material as an ion transporter in the applications of the mimicking of natural ion channels, desalination, and energy harvesting. Here, we demonstrate a unique, enhanced ion transport through a vertically aligned multiwall CNT membrane after the application of an electric potential across CNT membranes. Interestingly, electrowetting arising from the application of an electric potential is critical for the enhancement of overall ion transport rate through CNT membranes. The wettability of a liquid with high surface tension on the interior channel walls of CNTs increases during an electric potential treatment and promotes the formation of water channels in CNTs. The formation of water channels in CNTs induces an increase in overall ion diffusion through CNT membranes. This phenomenon is also related to a decrease in the charge transfer resistance of CNTs (Rct) after an electric potential is applied. Correspondingly, the enhanced ion flow rate gives rise to an enhancement in the capacitive performance of CNT based membranes. Our observations might have profound impact on the development of CNT based energy storage devices as well as artificial ion channels.
Collapse
Affiliation(s)
| | | | | | - Zhaohui Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University , Tianjin 300387, China
| | | |
Collapse
|
82
|
Belyanchikov MA, Zhukova ES, Tretiak S, Zhugayevych A, Dressel M, Uhlig F, Smiatek J, Fyta M, Thomas VG, Gorshunov BP. Vibrational states of nano-confined water molecules in beryl investigated by first-principles calculations and optical experiments. Phys Chem Chem Phys 2017; 19:30740-30748. [DOI: 10.1039/c7cp06472a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Using the DFT approach and optical spectroscopy, we provide a comprehensive analysis of IR excitation of water molecules confined in beryl nanopores.
Collapse
Affiliation(s)
- M. A. Belyanchikov
- Moscow Institute of Physics and Technology
- Dolgoprudny
- Moscow Region
- Russia
- 1. Physikalisches Institut
| | - E. S. Zhukova
- Moscow Institute of Physics and Technology
- Dolgoprudny
- Moscow Region
- Russia
| | - S. Tretiak
- Center for Integrated Nanotechnologies (CINT)
- Los Alamos National Laboratory
- Los Alamos
- USA
- Skolkovo Institute of Science and Technology
| | - A. Zhugayevych
- Skolkovo Institute of Science and Technology
- Moscow 143026
- Russia
| | - M. Dressel
- Moscow Institute of Physics and Technology
- Dolgoprudny
- Moscow Region
- Russia
- 1. Physikalisches Institut
| | - F. Uhlig
- Institute for Computational Physics
- Universität Stuttgart
- Germany
| | - J. Smiatek
- Institute for Computational Physics
- Universität Stuttgart
- Germany
| | - M. Fyta
- Institute for Computational Physics
- Universität Stuttgart
- Germany
| | - V. G. Thomas
- Sobolev Institute of Geology and Mineralogy
- RAS
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| | - B. P. Gorshunov
- Moscow Institute of Physics and Technology
- Dolgoprudny
- Moscow Region
- Russia
- 1. Physikalisches Institut
| |
Collapse
|
83
|
Martí J. Potentials of mean force in acidic proton transfer reactions in constrained geometries. MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2016.1239824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jordi Martí
- Department of Physics, Technical University of Catalonia-Barcelona Tech, Barcelona, Spain
| |
Collapse
|
84
|
Synthesis, lipid membrane incorporation, and ion permeability testing of carbon nanotube porins. Nat Protoc 2016; 11:2029-2047. [DOI: 10.1038/nprot.2016.119] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
85
|
Rossi M, Ceriotti M, Manolopoulos DE. Nuclear Quantum Effects in H(+) and OH(-) Diffusion along Confined Water Wires. J Phys Chem Lett 2016; 7:3001-3007. [PMID: 27440483 DOI: 10.1021/acs.jpclett.6b01093] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The diffusion of protons and hydroxide ions along water wires provides an efficient mechanism for charge transport that is exploited by biological membrane channels and shows promise for technological applications such as fuel cells. However, what is lacking for a better control and design of these systems is a thorough theoretical understanding of the diffusion process at the atomic scale. Here we focus on two aspects of this process that are often disregarded because of their high computational cost: the use of first-principles potential energy surfaces and the treatment of the nuclei as quantum particles. We consider proton and hydroxide ions in finite water wires using density functional theory augmented with an apolar cylindrical confining potential. We employ machine learning techniques to identify the charged species, thus obtaining an agnostic definition that takes explicitly into account the delocalization of the charge in the Grotthus-like mechanism. We include nuclear quantum effects (NQEs) through the thermostated ring polymer molecular dynamics method and model finite system size effects by considering Langevin dynamics on the potential of mean force of the charged species, allowing us to extract the same "universal" diffusion coefficient from simulations with different wire sizes. In the classical case, diffusion coefficients depend significantly on the potential energy surface, in particular on how dispersion forces modulate water-water distances. NQEs, however, make the diffusion less sensitive to the underlying potential and geometry of the wire.
Collapse
Affiliation(s)
- Mariana Rossi
- Physical and Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - David E Manolopoulos
- Physical and Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
86
|
Proton transfer pathways in an aspartate-water cluster sampled by a network of discrete states. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
87
|
Tunuguntla RH, Allen FI, Kim K, Belliveau A, Noy A. Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. NATURE NANOTECHNOLOGY 2016; 11:639-44. [PMID: 27043198 DOI: 10.1038/nnano.2016.43] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/18/2016] [Indexed: 05/06/2023]
Abstract
Proton transport plays an important role in many biological processes due to the ability of protons to rapidly translocate along chains of hydrogen-bonded water molecules. Molecular dynamics simulations have predicted that confinement in hydrophobic nanochannels should enhance the rate of proton transport. Here, we show that 0.8-nm-diameter carbon nanotube porins, which promote the formation of one-dimensional water wires, can support proton transport rates exceeding those of bulk water by an order of magnitude. The transport rates in these narrow nanotube pores also exceed those of biological channels and Nafion. With larger 1.5-nm-diameter nanotube porins, proton transport rates comparable to bulk water are observed. We also show that the proton conductance of these channels can be modulated by the presence of Ca(2+) ions. Our results illustrate the potential of small-diameter carbon nanotube porins as a proton conductor material and suggest that strong spatial confinement is a key factor in enabling efficient proton transport.
Collapse
Affiliation(s)
- Ramya H Tunuguntla
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
| | - Frances I Allen
- Department of Materials Science and Engineering, University of California, 210 Hearst Avenue, Berkeley, California 94720, USA
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Kyunghoon Kim
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
| | - Allison Belliveau
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
| | - Aleksandr Noy
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
- School of Natural Sciences, University of California Merced, 5200 N. Lake Road, Merced, California 94343, USA
| |
Collapse
|
88
|
Bellissent-Funel MC, Hassanali A, Havenith M, Henchman R, Pohl P, Sterpone F, van der Spoel D, Xu Y, Garcia AE. Water Determines the Structure and Dynamics of Proteins. Chem Rev 2016; 116:7673-97. [PMID: 27186992 DOI: 10.1021/acs.chemrev.5b00664] [Citation(s) in RCA: 593] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water is an essential participant in the stability, structure, dynamics, and function of proteins and other biomolecules. Thermodynamically, changes in the aqueous environment affect the stability of biomolecules. Structurally, water participates chemically in the catalytic function of proteins and nucleic acids and physically in the collapse of the protein chain during folding through hydrophobic collapse and mediates binding through the hydrogen bond in complex formation. Water is a partner that slaves the dynamics of proteins, and water interaction with proteins affect their dynamics. Here we provide a review of the experimental and computational advances over the past decade in understanding the role of water in the dynamics, structure, and function of proteins. We focus on the combination of X-ray and neutron crystallography, NMR, terahertz spectroscopy, mass spectroscopy, thermodynamics, and computer simulations to reveal how water assist proteins in their function. The recent advances in computer simulations and the enhanced sensitivity of experimental tools promise major advances in the understanding of protein dynamics, and water surely will be a protagonist.
Collapse
Affiliation(s)
| | - Ali Hassanali
- International Center for Theoretical Physics, Condensed Matter and Statistical Physics 34151 Trieste, Italy
| | - Martina Havenith
- Ruhr-Universität Bochum , Faculty of Chemistry and Biochemistry Universitätsstraße 150 Building NC 7/72, D-44780 Bochum, Germany
| | - Richard Henchman
- Manchester Institute of Biotechnology The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Pohl
- Johannes Kepler University , Gruberstrasse, 40 4020 Linz, Austria
| | - Fabio Sterpone
- Institut de Biologie Physico-Chimique Laboratoire de Biochimie Théorique 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - David van der Spoel
- Department of Cell and Molecular Biology, Computational and Systems Biology, Uppsala University , 751 24 Uppsala, Sweden
| | - Yao Xu
- Ruhr-Universität Bochum , Faculty of Chemistry and Biochemistry Universitätsstraße 150 Building NC 7/72, D-44780 Bochum, Germany
| | - Angel E Garcia
- Center for Non Linear Studies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| |
Collapse
|
89
|
Licsandru E, Kocsis I, Shen YX, Murail S, Legrand YM, van der Lee A, Tsai D, Baaden M, Kumar M, Barboiu M. Salt-Excluding Artificial Water Channels Exhibiting Enhanced Dipolar Water and Proton Translocation. J Am Chem Soc 2016; 138:5403-9. [DOI: 10.1021/jacs.6b01811] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Erol Licsandru
- Adaptive
Supramolecular Nanosystems Group, Institut Europeen des Membranes, ENSCM-UMII-UMR CNRS 5635, Place Eugene Bataillon CC047, Montpellier, F-34095, France
| | - Istvan Kocsis
- Adaptive
Supramolecular Nanosystems Group, Institut Europeen des Membranes, ENSCM-UMII-UMR CNRS 5635, Place Eugene Bataillon CC047, Montpellier, F-34095, France
| | - Yue-xiao Shen
- Department
of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Samuel Murail
- Laboratoire de Biochimie
Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, F-75005 Paris, France
| | - Yves-Marie Legrand
- Adaptive
Supramolecular Nanosystems Group, Institut Europeen des Membranes, ENSCM-UMII-UMR CNRS 5635, Place Eugene Bataillon CC047, Montpellier, F-34095, France
| | - Arie van der Lee
- Adaptive
Supramolecular Nanosystems Group, Institut Europeen des Membranes, ENSCM-UMII-UMR CNRS 5635, Place Eugene Bataillon CC047, Montpellier, F-34095, France
| | - Daniel Tsai
- Department
of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Marc Baaden
- Laboratoire de Biochimie
Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, F-75005 Paris, France
| | - Manish Kumar
- Department
of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mihail Barboiu
- Adaptive
Supramolecular Nanosystems Group, Institut Europeen des Membranes, ENSCM-UMII-UMR CNRS 5635, Place Eugene Bataillon CC047, Montpellier, F-34095, France
| |
Collapse
|
90
|
Abstract
The quantum electrodynamics theory of water put forward by Del Giudice and colleagues provides a useful foundation for a new science of water for life. The interaction of light with liquid water generates quantum coherent domains in which the water molecules oscillate between the ground state and an excited state close to the ionizing potential of water. This produces a plasma of almost free electrons favoring redox reactions, the basis of energy metabolism in living organisms. Coherent domains stabilized by surfaces, such as membranes and macromolecules, provide the excited interfacial water that enables photosynthesis to take place, on which most of life on Earth depends. Excited water is the source of superconducting protons for rapid intercommunication within the body. Coherent domains can also trap electromagnetic frequencies from the environment to orchestrate and activate specific biochemical reactions through resonance, a mechanism for the most precise regulation of gene function.
Collapse
Affiliation(s)
- Mae-Wan Ho
- Institute of Science in Society , London , UK
| |
Collapse
|
91
|
Wei X, Zhang G, Shen Y, Zhong Y, Liu R, Yang N, Al-mkhaizim FY, Kline MA, He L, Li M, Lu ZL, Shao Z, Gong B. Persistent Organic Nanopores Amenable to Structural and Functional Tuning. J Am Chem Soc 2016; 138:2749-54. [DOI: 10.1021/jacs.5b12698] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoxi Wei
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
- Department
of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Guoqing Zhang
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Shen
- Bio-ID
Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yulong Zhong
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Rui Liu
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
- Department
of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Na Yang
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fayez Y. Al-mkhaizim
- Department
of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Mark A. Kline
- Department
of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Lan He
- National Institute for Food and Drug Control, Beijing 100050, China
| | - Minfeng Li
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhong-Lin Lu
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhifeng Shao
- Bio-ID
Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bing Gong
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
- Department
of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
92
|
Yu F, Stoot AC, Bøggild P, Camilli L. Failure of multi-layer graphene coatings in acidic media. RSC Adv 2016. [DOI: 10.1039/c6ra01556e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new failure mechanism for high-quality multilayer graphene coatings in acidic media is described.
Collapse
Affiliation(s)
- F. Yu
- Technical University of Denmark
- Department of Micro- and Nanotechnology
- Kgs. Lyngby
- Denmark
| | - A. C. Stoot
- Technical University of Denmark
- Department of Micro- and Nanotechnology
- Kgs. Lyngby
- Denmark
| | - P. Bøggild
- Technical University of Denmark
- Department of Micro- and Nanotechnology
- Kgs. Lyngby
- Denmark
| | - L. Camilli
- Technical University of Denmark
- Department of Micro- and Nanotechnology
- Kgs. Lyngby
- Denmark
| |
Collapse
|
93
|
Barboiu M. Artificial water channels – incipient innovative developments. Chem Commun (Camb) 2016; 52:5657-65. [DOI: 10.1039/c6cc01724j] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This Feature Article discusses the incipient developments of the first artificial water channels, including only systems that integrate synthetic elements in their water selective translocation unit.
Collapse
Affiliation(s)
- Mihail Barboiu
- Institut Européen des Membranes
- Adaptive Supramolecular Nanosystems Group
- Place Eugène Bataillon
- CC 047
- F-34095 Montpellier
| |
Collapse
|
94
|
Allahyarov E, Taylor PL, Löwen H. Enhanced ionic diffusion in ionomer-filled nanopores. J Chem Phys 2015; 143:243126. [DOI: 10.1063/1.4935114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Elshad Allahyarov
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, 40225 Düsseldorf, Germany
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, USA
- Theoretical Department, Joint Institute for High Temperatures, Russian Academy of Sciences (IVTAN), 13/19 Izhorskaya Street, Moscow 125412, Russia
- International Research Centre, Baku State University, Baku, Azerbaijan
| | - Philip L. Taylor
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7079, USA
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
95
|
Sahu P, Ali SM. The entropic forces and dynamic integrity of single file water in hydrophobic nanotube confinements. J Chem Phys 2015; 143:184503. [DOI: 10.1063/1.4935373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
96
|
Guo S, Meshot ER, Kuykendall T, Cabrini S, Fornasiero F. Nanofluidic Transport through Isolated Carbon Nanotube Channels: Advances, Controversies, and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:5726-5737. [PMID: 26037895 DOI: 10.1002/adma.201500372] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/22/2015] [Indexed: 06/04/2023]
Abstract
Owing to their simple chemistry and structure, controllable geometry, and a plethora of unusual yet exciting transport properties, carbon nanotubes (CNTs) have emerged as exceptional channels for fundamental nanofluidic studies, as well as building blocks for future fluidic devices that can outperform current technology in many applications. Leveraging the unique fluidic properties of CNTs in advanced systems requires a full understanding of their physical origin. Recent advancements in nanofabrication technology enable nanofluidic devices to be built with a single, nanometer-wide CNT as a fluidic pathway. These novel platforms with isolated CNT nanochannels offer distinct advantages for establishing quantitative structure-transport correlations in comparison with membranes containing many CNT pores. In addition, they are promising components for single-molecule sensors as well as for building nanotube-based circuits wherein fluidics and electronics can be coupled. With such advanced device architecture, molecular and ionic transport can be manipulated with vastly enhanced control for applications in sensing, separation, detection, and therapeutic delivery. Recent achievements in fabricating isolated-CNT nanofluidic platforms are highlighted, along with the most-significant findings each platform enables for water, ion, and molecular transport. The implications of these findings and remaining open questions on the exceptional fluidic properties of CNTs are also discussed.
Collapse
Affiliation(s)
- Shirui Guo
- 7000 East Ave. Lawrence Livermore National Laboratory, Livermore, CA, 94550
| | - Eric R Meshot
- 7000 East Ave. Lawrence Livermore National Laboratory, Livermore, CA, 94550
| | - Tevye Kuykendall
- 67 Cyclotron Rd, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720
| | - Stefano Cabrini
- 67 Cyclotron Rd, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720
| | | |
Collapse
|
97
|
Khademi M, Kalia RK, Sahimi M. Dynamics of supercooled water in nanotubes: cage correlation function and diffusion coefficient. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:030301. [PMID: 26465407 DOI: 10.1103/physreve.92.030301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Indexed: 06/05/2023]
Abstract
Dynamics of low-temperature water in nanostructured materials is important to a variety of phenomena, ranging from transport in cement and asphaltene, to conformational dynamics of proteins in "crowded" cellular environments, survival of microorganisms at very low temperatures, and diffusion in nanogeoscience. Using silicon-carbide nanotubes as a prototype of nanostructured materials, extensive molecular dynamics simulations were carried out to study the cage correlation function C(t) and self-diffusivity D of supercooled water in the nanotubes. C(t), which measures changes in the atomic surroundings inside the nanotube, follows the Kohlrausch-Williams-Watts law, C(t)∼exp[-(t/τ)^{β}], where τ is a relaxation time and β is a topological exponent. For the temperature range 220K<T≤273 K, we find β≃0.438, in excellent agreement with and confirming the prediction by Phillips [Rep. Prog. Phys. 59, 1133 (1996)]RPPHAG0034-488510.1088/0034-4885/59/9/003, β=3/7. The self-diffusivity manifests a transition around 230 K, very close to 228 K, the temperature at which a fragile-to-strong dynamic crossover is supposed to happen. Thus the results indicate that water does not freeze in the nanotube over the studied temperature range, and that the Stokes-Einstein relation breaks down.
Collapse
Affiliation(s)
- Mahdi Khademi
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA
| | - Rajiv K Kalia
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA
| | - Muhammad Sahimi
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA
| |
Collapse
|
98
|
Xu L, Ren H, Liang S, Sun J, Liu Y, Gan L. Release of the Water Molecule Encapsulated Inside an Open-Cage Fullerene through Hydrogen Bonding Mediated by Hydrogen Fluoride. Chemistry 2015; 21:13539-43. [DOI: 10.1002/chem.201502306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/12/2015] [Indexed: 11/06/2022]
|
99
|
Peng Y, Swanson JMJ, Kang SG, Zhou R, Voth GA. Hydrated Excess Protons Can Create Their Own Water Wires. J Phys Chem B 2015; 119:9212-8. [PMID: 25369445 PMCID: PMC4515783 DOI: 10.1021/jp5095118] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/01/2014] [Indexed: 11/30/2022]
Abstract
Grotthuss shuttling of an excess proton charge defect through hydrogen bonded water networks has long been the focus of theoretical and experimental studies. In this work we show that there is a related process in which water molecules move ("shuttle") through a hydrated excess proton charge defect in order to wet the path ahead for subsequent proton charge migration. This process is illustrated through reactive molecular dynamics simulations of proton transport through a hydrophobic nanotube, which penetrates through a hydrophobic region. Surprisingly, before the proton enters the nanotube, it starts "shooting" water molecules into the otherwise dry space via Grotthuss shuttling, effectively creating its own water wire where none existed before. As the proton enters the nanotube (by 2-3 Å), it completes the solvation process, transitioning the nanotube to the fully wet state. By contrast, other monatomic cations (e.g., K(+)) have just the opposite effect, by blocking the wetting process and making the nanotube even drier. As the dry nanotube gradually becomes wet when the proton charge defect enters it, the free energy barrier of proton permeation through the tube via Grotthuss shuttling drops significantly. This finding suggests that an important wetting mechanism may influence proton translocation in biological systems, i.e., one in which protons "create" their own water structures (water "wires") in hydrophobic spaces (e.g., protein pores) before migrating through them. An existing water wire, e.g., one seen in an X-ray crystal structure or MD simulations without an explicit excess proton, is therefore not a requirement for protons to transport through hydrophobic spaces.
Collapse
Affiliation(s)
- Yuxing Peng
- †Department of Chemistry, James Franck Institute, Computation Institute, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Jessica M J Swanson
- †Department of Chemistry, James Franck Institute, Computation Institute, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Seung-gu Kang
- ‡Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Ruhong Zhou
- ‡Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Gregory A Voth
- †Department of Chemistry, James Franck Institute, Computation Institute, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
100
|
Abstract
The main properties of the voltage-gated proton channel (HV1) are described in this review, along with what is known about how the channel protein structure accomplishes its functions. Just as protons are unique among ions, proton channels are unique among ion channels. Their four transmembrane helices sense voltage and the pH gradient and conduct protons exclusively. Selectivity is achieved by the unique ability of H3O(+) to protonate an Asp-Arg salt bridge. Pathognomonic sensitivity of gating to the pH gradient ensures HV1 channel opening only when acid extrusion will result, which is crucial to most of its biological functions. An exception occurs in dinoflagellates in which influx of H(+) through HV1 triggers the bioluminescent flash. Pharmacological interventions that promise to ameliorate cancer, asthma, brain damage in ischemic stroke, Alzheimer's disease, autoimmune diseases, and numerous other conditions await future progress.
Collapse
Affiliation(s)
- Thomas E. DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison, Chicago IL, 60612 USA
| |
Collapse
|