51
|
Sundararaman S, Halat DM, Reimer JA, Balsara NP, Prendergast D. Understanding the Impact of Multi-Chain Ion Coordination in Poly(ether-Acetal) Electrolytes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Siddharth Sundararaman
- Joint Center for Energy Storage Research, the Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - David M. Halat
- Joint Center for Energy Storage Research, Department of Chemical and Biomolecular Engineering and College of Chemistry, University of California, Berkeley, California94720, United States
- Joint Center for Energy Storage Research, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Jeffrey A. Reimer
- Joint Center for Energy Storage Research, Department of Chemical and Biomolecular Engineering and College of Chemistry, University of California, Berkeley, California94720, United States
- Joint Center for Energy Storage Research, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Nitash P. Balsara
- Joint Center for Energy Storage Research, Department of Chemical and Biomolecular Engineering and College of Chemistry, University of California, Berkeley, California94720, United States
- Joint Center for Energy Storage Research, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - David Prendergast
- Joint Center for Energy Storage Research, the Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| |
Collapse
|
52
|
Srivastava D, Patra N. Self-Uptake Mechanism of Polymyxin-Based Lipopeptide against Gram-Negative Bacterial Membrane: Role of the First Adsorbed Lipopeptide. J Phys Chem B 2022; 126:8222-8232. [PMID: 36126341 DOI: 10.1021/acs.jpcb.2c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Research in the continuously increasing threat of polymyxin-resistant multidrug-resistant Pseudomonas aeruginosa, which causes severe infection in immunocompromised patients, has resulted in the development of several polymyxin-derived cyclic lipopeptides containing l-α-γ- diamino butyric acid-like FADDI-019 (F19). In this work, F19's insertion into a minimal model of the asymmetric outer membrane of the bacterium, which contained only penta-acylated lipid A (LipA) and lacked keto-d-octulosonic acid and O-antigens, in the top leaflet and phospholipids in the bottom leaflet, was studied. F19 exhibited all of the hallmarks of the self-uptake mechanism into the asymmetric bilayer. While a single monomer of the lipopeptide did not get partitioned into the inside of the bilayer, it competitively displaced Ca2+ from the membrane surface, observed as a decrease in Ca2+ coordination number with phosphate groups (1.89 vs 1.718), resulting in membrane destabilization. This resulted in an increment of the average defect size and the probability of interplay between lipid tails and hydrophobic residues of another F19. When more than one monomer was present in the system, the first monomer remained docked on the surface, while other monomers intercalated into the bilayer interior with their hydrophobic moieties "sleeved" by lipid acyl chains. The free energy barrier for partial insertion of the lipopeptide into a bilayer in the presence of surface-docked second F19 was recorded at ∼1.3 kcal/mol using two-dimensional (2D) well-tempered metadynamics, making it a low barrier process at 300 K. This study is an attempt to demonstrate the self-uptake mechanism of F19 during intercalation process into the bilayer interior, which may help in the design of better alternates for polymyxins to work against polymyxin resistance.
Collapse
Affiliation(s)
- Diship Srivastava
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| | - Niladri Patra
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad 826004, India
| |
Collapse
|
53
|
Gentili D, Ori G. Reversible assembly of nanoparticles: theory, strategies and computational simulations. NANOSCALE 2022; 14:14385-14432. [PMID: 36169572 DOI: 10.1039/d2nr02640f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The significant advances in synthesis and functionalization have enabled the preparation of high-quality nanoparticles that have found a plethora of successful applications. The unique physicochemical properties of nanoparticles can be manipulated through the control of size, shape, composition, and surface chemistry, but their technological application possibilities can be further expanded by exploiting the properties that emerge from their assembly. The ability to control the assembly of nanoparticles not only is required for many real technological applications, but allows the combination of the intrinsic properties of nanoparticles and opens the way to the exploitation of their complex interplay, giving access to collective properties. Significant advances and knowledge gained over the past few decades on nanoparticle assembly have made it possible to implement a growing number of strategies for reversible assembly of nanoparticles. In addition to being of interest for basic studies, such advances further broaden the range of applications and the possibility of developing innovative devices using nanoparticles. This review focuses on the reversible assembly of nanoparticles and includes the theoretical aspects related to the concept of reversibility, an up-to-date assessment of the experimental approaches applied to this field and the advanced computational schemes that offer key insights into the assembly mechanisms. We aim to provide readers with a comprehensive guide to address the challenges in assembling reversible nanoparticles and promote their applications.
Collapse
Affiliation(s)
- Denis Gentili
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Via P. Gobetti 101, 40129 Bologna, Italy.
| | - Guido Ori
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Rue du Loess 23, F-67034 Strasbourg, France.
| |
Collapse
|
54
|
Tkachenko NV, Rublev P, Dub PA. The Source of Proton in the Noyori–Ikariya Catalytic Cycle. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nikolay V. Tkachenko
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah84322, United States
| | - Pavel Rublev
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah84322, United States
| | - Pavel A. Dub
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| |
Collapse
|
55
|
Galimberti DR. Vibrational Circular Dichroism from DFT Molecular Dynamics: The AWV Method. J Chem Theory Comput 2022; 18:6217-6230. [PMID: 36112978 PMCID: PMC9558311 DOI: 10.1021/acs.jctc.2c00736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 11/29/2022]
Abstract
The paper illustrates the Activity Weighted Velocities (AWV) methodology to compute Vibrational Circular Dichroism (VCD) anharmonic spectra from Density Functional Theory (DFT) molecular dynamics. AWV calculates the spectra by the Fourier Transform of the time correlation functions of velocities, weighted by specific observables: the Atomic Polar Tensors (APTs) and the Atomic Axial Tensors (AATs). Indeed, AWV shows to correctly reproduce the experimental spectra for systems in the gas and liquid phases, both in the case of weakly and strongly interacting systems. The comparison with the experimental spectra is striking especially in the fingerprint region, as demonstrated by the three benchmark systems discussed: (1S)-Fenchone in the gas phase, (S)-(-)-Propylene oxide in the liquid phase, and (R)-(-)-2-butanol in the liquid phase. The time evolution of APTs and AATs can be adequately described by a linear combination of the tensors of a small set of appropriate reference structures, strongly reducing the computational cost without compromising accuracy. Additionally, AWV allows the partition of the spectral signal in its molecular components without any expensive postprocessing and any localization of the charge density or the wave function.
Collapse
Affiliation(s)
- Daria Ruth Galimberti
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
56
|
Oh L, Ji Y, Li W, Varki A, Chen X, Wang LP. O-Acetyl Migration within the Sialic Acid Side Chain: A Mechanistic Study Using the Ab Initio Nanoreactor. Biochemistry 2022; 61:2007-2013. [PMID: 36054099 DOI: 10.1021/acs.biochem.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many disease-causing viruses target sialic acids on the surface of host cells. Some viruses bind preferentially to sialic acids with O-acetyl modification at the hydroxyl group of C7, C8, or C9 on the glycerol-like side chain. Studies of proteins binding to sialosides containing O-acetylated sialic acids are crucial in understanding the related diseases but experimentally difficult due to the lability of the ester group. We recently showed that O-acetyl migration among hydroxyl groups of C7, C8, and C9 in sialic acids occurs in all directions in a pH-dependent manner. In the current study, we elucidate a full mechanistic pathway for the migration of O-acetyl among C7, C8, and C9. We used an ab initio nanoreactor to explore potential reaction pathways and density functional theory, pKa calculations, and umbrella sampling to investigate elementary steps of interest. We found that when a base is present, migration is easy in any direction and involves three key steps: deprotonation of the hydroxyl group, cyclization between the two carbons, and the migration of the O-acetyl group. This dynamic equilibrium may play a defensive role against pathogens that evolve to gain entry to the cell by binding selectively to one acetylation state.
Collapse
Affiliation(s)
- Lisa Oh
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Yang Ji
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093, United States
| | - Wanqing Li
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Ajit Varki
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093, United States
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
57
|
Understanding the solvation dynamics of metformin in water using theoretical tools. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
58
|
Evidence of significant non-covalent interactions in the solution of Levetiracetam in water and methanol. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
59
|
Dutta S, Chandra A. Free Energy Landscape of the Adenylation Reaction of the Aminoacylation Process at the Active Site of Aspartyl tRNA Synthetase. J Phys Chem B 2022; 126:5821-5831. [PMID: 35895864 DOI: 10.1021/acs.jpcb.2c03843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The process of protein biosynthesis is initiated by the aminoacylation process where a transfer ribonucleic acid (tRNA) is charged by the attachment of its cognate amino acid at the active site of the corresponding aminoacyl tRNA synthetase enzyme. The first step of the aminoacylation process, known as the adenylation reaction, involves activation of the cognate amino acid where it reacts with a molecule of adenosine triphosphate (ATP) at the active site of the enzyme to form the aminoacyl adenylate and inorganic pyrophosphate. In the current work, we have investigated the adenylation reaction between aspartic acid and ATP at the active site of the fully solvated aspartyl tRNA synthetase (AspRS) from Escherichia coli in aqueous medium at room temperature through hybrid quantum mechanical/molecular mechanical (QM/MM) simulations combined with enhanced sampling methods of well-tempered and well-sliced metadynamics. The objective of the present work is to study the associated free energy landscape and reaction barrier and also to explore the effects of active site mutation on the free energy surface of the reaction. The current calculations include finite temperature effects on free energy profiles. In particular, apart from contributions of interaction energies, the current calculations also include contributions of conformational, vibrational, and translational entropy of active site residues, substrates, and also the rest of the solvated protein and surrounding water into the free energy calculations. The present QM/MM metadynamics simulations predict a free energy barrier of 23.35 and 23.5 kcal/mol for two different metadynamics methods used to perform the reaction at the active site of the wild type enzyme. The free energy barrier increases to 30.6 kcal/mol when Arg217, which is an important conserved residue of the wild type enzyme at its active site, is mutated by alanine. These free energy results including the effect of mutation compare reasonably well with those of kinetic experiments that are available in the literature. The current work also provides molecular details of structural changes of the reactants and surroundings as the system dynamically evolves along the reaction pathway from reactant to the product state through QM/MM metadynamics simulations.
Collapse
Affiliation(s)
- Saheb Dutta
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India 208016
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India 208016
| |
Collapse
|
60
|
Liu X, Wang W, Wright S, Doppelbauer M, Meijer G, Truppe S, PEREZ RIOS JESUS. The chemistry of AlF and CaF production in buffer gas sources. J Chem Phys 2022; 157:074305. [DOI: 10.1063/5.0098378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this work, we explore the role of chemical reactions on the properties of buffer gas cooled molecular beams. In particular, we focus on scenarios relevant to the formation of AlF and CaF via chemical reactions between the Ca and Al atoms ablated from a solid target in an atmosphere of a fluorine-containing gas, in this case, SF6 and NF3. Reactions are studied following an ab initio molecular dynamics approach, and the results are rationalized following a tree-shaped reaction model based on Bayesian inference. We find that NF3 reacts more efficiently with hot metal atoms to form monofluoride molecules than SF6. In addition, when using NF3, the reaction products have lower kinetic energy, requiring fewer collisions to thermalize with the cryogenic helium. Furthermore, we find that the reaction probability for AlF formation is much higher than for CaF across a broad range of temperatures.
Collapse
Affiliation(s)
- Xiangyue Liu
- Fritz Haber Institut der Max-Planck-Gesellschaft, Germany
| | - Weiqi Wang
- Fritz Haber Institut der Max-Planck-Gesellschaft, Germany
| | - Sidney Wright
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Germany
| | | | - Gerard Meijer
- Fritz-Haber-Institut, Max-Planck-Gesellschaft, Germany
| | - Stefan Truppe
- Fritz Haber Institut der Max-Planck-Gesellschaft, Germany
| | - JESUS PEREZ RIOS
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Germany
- Stony Brook University Department of Physics and Astronomy
| |
Collapse
|
61
|
Gupta A, Verma S, Javed R, Sudhakar S, Srivastava S, Nair NN. Exploration of high dimensional free energy landscapes by a combination of temperature-accelerated sliced sampling and parallel biasing. J Comput Chem 2022; 43:1186-1200. [PMID: 35510789 DOI: 10.1002/jcc.26882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/27/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022]
Abstract
Temperature-accelerated sliced sampling (TASS) is an enhanced sampling method for achieving accelerated and controlled exploration of high-dimensional free energy landscapes in molecular dynamics simulations. With the aid of umbrella bias potentials, the TASS method realizes a controlled exploration and divide-and-conquer strategy for computing high-dimensional free energy surfaces. In TASS, diffusion of the system in the collective variable (CV) space is enhanced with the help of metadynamics bias and elevated-temperature of the auxiliary degrees of freedom (DOF) that are coupled to the CVs. Usually, a low-dimensional metadynamics bias is applied in TASS. In order to further improve the performance of TASS, we propose here to use a highdimensional metadynamics bias, in the same form as in a parallel bias metadynamics scheme. Here, a modified reweighting scheme, in combination with artificial neural network is used for computing unbiased probability distribution of CVs and projections of high-dimensional free energy surfaces. We first validate the accuracy and efficiency of our method in computing the four-dimensional free energy landscape for alanine tripeptide in vacuo. Subsequently, we employ the approach to calculate the eight-dimensional free energy landscape of alanine pentapeptide in vacuo. Finally, the method is applied to a more realistic problem wherein we compute the broad four-dimensional free energy surface corresponding to the deacylation of a drug molecule which is covalently complexed with a β-lactamase enzyme. We demonstrate that using parallel bias in TASS improves the efficiency of exploration of high-dimensional free energy landscapes.
Collapse
Affiliation(s)
- Abhinav Gupta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Shivani Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Ramsha Javed
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Suraj Sudhakar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Saurabh Srivastava
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India.,Department of Chemistry, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
62
|
Trabelsi S, Tlili M, Abdelmoulahi H, Bouazizi S, Nasr S, González MA, Bellissent-Funel MC, Darpentigny J. Intermolecular interactions in an equimolar methanol-water mixture: Neutron scattering, DFT, NBO, AIM, and MD investigations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
63
|
Kashyap HK. Deciphering Ethanol-Driven Swelling, Rupturing, Aggregation, and Fusion of Lipid Vesicles Using Coarse-Grained Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2445-2459. [PMID: 35167280 DOI: 10.1021/acs.langmuir.1c02763] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Traditionally, liquid ethanol is known to enhance the permeability of lipid membranes and causes vesicle aggregation and fusion. However, how the amphiphilic ethanol molecules perturb the lipid vesicles to facilitate their aggregation or fusion has not been addressed at any level of molecular simulations. Herein, not only have we developed a coarse-grained (CG) model for liquid ethanol, its aqueous mixture, and hydrated lipid membranes for molecular dynamics (MD) simulations, but also utilized it to delineate the aggregation and fusion of lipid vesicles using CG-MD simulations with multimillion particles. We have systematically parametrized the force-field for pure ethanol and its interactions with hydrated POPC and POPE model lipid membranes. In this process, we have successfully reproduced the bulk ethanol structure and concentration-dependent density of aqueous ethanol. To quantify the interaction of ethanol with lipid membranes, we have reproduced the transfer free energy of the ethanol molecule across the hydrated bilayers, and the concentration-dependent distribution of ethanol molecules across the lipid bilayers. After having acceptable force-field parameters for ethanol-membrane interactions, we have checked the effect of ethanol toward the vesicles comprising POPC lipids. We observe a rapid increase in the size of the POPC lipid vesicles with increasing amounts of ethanol up to 30 mol %. We unambiguously observe swelling and decrease in the thickness of the POPC vesicles with increasing amounts of ethanol up to 30 mol %, beyond which the vesicles begin to lose their integrity and rupture at higher mol % of ethanol. The fusion study of two vesicles demonstrates that fused vesicles can be obtained from 20 to 30 mol % of ethanol provided that they are brought closer than a critical distance at a particular mol %. The multivesicle simulations show that along with the increase in the sizes of vesicles the propensity of vesicle aggregation increases as the mol % of ethanol increases.
Collapse
Affiliation(s)
- Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
64
|
Li P, Zeng X, Li Z. Understanding High-Temperature Chemical Reactions on Metal Surfaces: A Case Study on Equilibrium Concentration and Diffusivity of C x H y on a Cu(111) Surface. JACS AU 2022; 2:443-452. [PMID: 35252993 PMCID: PMC8889606 DOI: 10.1021/jacsau.1c00483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 05/24/2023]
Abstract
Chemical reactions on metal surfaces are important in various processes such as heterogeneous catalysis and nanostructure growth. At moderate or lower temperatures, these reactions generally follow the minimum energy path, and temperature effects can be reasonably described by a harmonic oscillator model. At a high temperature approaching the melting point of the substrate, general behaviors of surface reactions remain elusive. In this study, by taking hydrocarbon species adsorbed on Cu(111) as a model system and performing extensive molecular dynamics simulations powered by machine learning potentials, we identify several important high-temperature effects, including local chemical environment, surface atom mobility, and substrate thermal expansion. They affect different aspects of a high-temperature surface reaction in different ways. These results deepen our understanding of high-temperature reactions.
Collapse
Affiliation(s)
- Pai Li
- Hefei National Laboratory
for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiongzhi Zeng
- Hefei National Laboratory
for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhenyu Li
- Hefei National Laboratory
for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
65
|
Priyadarsini A, Mallik BS. Site dependent catalytic water dissociation on an anisotropic buckled black phosphorus surface. Phys Chem Chem Phys 2022; 24:2582-2591. [PMID: 35029266 DOI: 10.1039/d1cp05249g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Black phosphorus (BP) is unique among 2D materials due to its anisotropic puckered structure. It has been used as a multifunctional catalyst for various purposes. In this study, we performed first principles molecular dynamics simulations to understand the water-splitting reaction on a bi-layer BP surface. We focused on the site-specific aqueous reactivity of the buckled surface. A difference in the axis-dependent reactivity is observed owing to edge defects and exposed sites. Thus, we believe that BP edges, which significantly affect the interfacial water or organic solvent molecules, must exhibit very different edge-dependent reactivity. Experiments suggested the increasing catalytic efficiency of undisturbed BP in the order bulk, few-layered BP, and BP quantum dots. We choose three active sites to investigate the mechanistic details of the OER: the zigzag (ZZ), armchair (AC), and bulk sites. This study will provide insight into the enhanced catalytic activity when more edges are exposed as the active surface. We hope to clarify the reactive pathway in an aqueous solution supported by bi-layer BP by exploring the two different mechanisms for forming the OOH* complex. We explore and report two mechanisms: a simple push-pull reaction for oxygen-oxygen bond formation, the nucleophilic attack by formed OH- and an attack by a water molecule. The free energy barriers procured for mechanism 1 taking place at the zigzag, armchair, and bulk sites are 7.59 ± 0.33, 9.04 ± 0.01, and 12.80 ± 0.09 kcal mol-1, respectively. For mechanism 2 the free energy barriers are 7.62 ± 0.11, 9.15 ± 0.16, and 11.63 ± 0.11 kcal mol-1 for the ZZ, AC, and bulk sites. The interlink between both the mechanisms is established concerning the reported free energy barriers for OOH* formation. The ZZ site is found to lower the activation barrier for the rate-determining step, followed by the AC and bulk.
Collapse
Affiliation(s)
- Adyasa Priyadarsini
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502284, Telangana, India.
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502284, Telangana, India.
| |
Collapse
|
66
|
Jiao F, Huang X, Zhang C, Xie W. High-pressure phases of a Mn-N system. Phys Chem Chem Phys 2022; 24:1830-1839. [PMID: 34986210 DOI: 10.1039/d1cp04386b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly compressed extended states of light elemental solids have emerged recently as a novel group of energetic materials. The application of these materials is seriously limited by the energy-safety contradiction, because the material with high energy density is highly metastable and can hardly be recovered under ambient conditions. Recently, it has been found that high-energy density transition metal polynitrides could be synthesized at ∼100 GPa and recovered at ∼20 GPa. Inspired by these findings, we have studied a high-pressure Mn-N system from the aspects of structure, stability, phase transition, energy density and electronic structure theoretically for the first time. The results reveal that MnN4_P1̄ consisting of [N4]∞2- is thermodynamically stable at 36.9-100 GPa, dynamically stable at 0 GPa and has a noticeably high volumetric energy density of 15.71 kJ cm-3. Upon decompression, this structure will transform to MnN4_C2/m with the transition barrier declining sharply at 5-10 GPa due to the switching of transition pathways. Hence, we propose MnN4_P1̄ as a potential energetic material that is synthesizable above 40 GPa and recoverable until 10 GPa.
Collapse
Affiliation(s)
- Fangbao Jiao
- Institute of Chemical Materials, China Academy of Engineering Physics, P. O. Box 919-311, Mianyang, Sichuan, 621999, China.
| | - Xin Huang
- Institute of Chemical Materials, China Academy of Engineering Physics, P. O. Box 919-311, Mianyang, Sichuan, 621999, China. .,School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Chaoyang Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics, P. O. Box 919-311, Mianyang, Sichuan, 621999, China.
| | - Weiyu Xie
- Institute of Chemical Materials, China Academy of Engineering Physics, P. O. Box 919-311, Mianyang, Sichuan, 621999, China.
| |
Collapse
|
67
|
Saiz F, Bernasconi L. Catalytic properties of the ferryl ion in the solid state: a computational review. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00200k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarises the last findings in the emerging field of heterogeneous catalytic oxidation of light alkanes by ferryl species supported on solid-state systems such as the conversion of methane into methanol by FeO-MOF74.
Collapse
Affiliation(s)
- Fernan Saiz
- ALBA Synchrotron, Carrer de la Llum 2-26, Cerdanyola del Valles 08290, Spain
| | - Leonardo Bernasconi
- Center for Research Computing and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
68
|
Hirai H, Jinnouchi R. Discovering surface reaction pathways using accelerated molecular dynamics and network analysis tools. RSC Adv 2022; 12:23274-23283. [PMID: 36090391 PMCID: PMC9382359 DOI: 10.1039/d2ra04343b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
We present an automated method that maps surface reaction pathways with no experimental data and with minimal human interventions. In this method, bias potentials promoting surface reactions are applied to enable statistical samplings of the surface reaction within the timescale of ab initio molecular dynamics (MD) simulations, and elementary reactions are extracted automatically using an extension of the method constructed for gas- or liquid-phase reactions. By converting the extracted elementary reaction data to directed graph data, MD trajectories can be efficiently mapped onto reaction pathways using a network analysis tool. To demonstrate the power of the method, it was applied to the steam reforming of methane on the Rh(111) surface and to propane reforming on the Pt(111) and Pt3Sn(111) surfaces. We discover new energetically favorable pathways for both reactions and reproduce the experimentally-observed materials-dependence of the surface reaction activity and the selectivity for the propane reforming reactions. We present an automated method that maps surface reaction pathways with no experimental data and with minimal human interventions.![]()
Collapse
Affiliation(s)
- Hirotoshi Hirai
- Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Ryosuke Jinnouchi
- Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
69
|
Shobhna, Kumari M, Kashyap HK. Mechanistic Insight on BioIL-Induced Structural Alterations in DMPC Lipid Bilayer. J Phys Chem B 2021; 125:11955-11966. [PMID: 34672578 DOI: 10.1021/acs.jpcb.1c06218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The emerging application risks of traditional ionic liquids (ILs) toward the ecosystem have changed the perception regarding their greenness. This resulted in the exploration of their more biocompatible alternatives known as biocompatible ILs (BioILs). Here, we have investigated the impact of two such biocompatible cholinium amino acid-based ILs on the structural behavior of model homogeneous DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) lipid bilayer using all-atom molecular dynamics simulation technique. Two classic cholinium-amino acid-based ILs, cholinium glycinate ([Ch][Gly]) and cholinium phenylalaninate ([Ch][Phe]), which differ only by the side chain lengths and hydrophobicity of the anions, have been utilized in the present work. Simultaneous analysis of the bilayer structural properties reveals that the existence of [Ch][Gly] BioIL above a particular concentration induces phase transition from fluid phase to gel phase in the DMPC lipid bilayer. Such a freezing of lipid bilayer upon the exposure to concentrated aqueous solution of [Ch][Gly] BioIL indicates the harmfulness of this BioIL toward the cell membranes majorly containing DMPC lipids, as the cell freezing can negatively affect its stability and functionality. Despite having a more hydrophobic amino acid side chain of [Phe]- anion in [Ch][Phe], in the case of bilayer-[Ch][Phe] systems we observe the minimal impact of [Ch][Phe] BioIL on the DMPC bilayer properties up to 10 mol % concentration. In the presence of these BioIL, we observe the thickening of the bilayer and accumulation of the cations and anions of the BioILs at the interface of DMPC lipid heads and tails. The transfer free-energy profile of a [Phe]- anion from aqueous phase to membrane center also indicates the anion partitioning at lipid head-tail interface and its inability to penetrate in the lipid membrane tail region. In contrast, the free-energy profile for a [Gly]- anion offers a very high energy barrier to the insertion of [Gly]- into the membrane interior, leading to accumulation of [Gly]- anions at the lipid head-water region.
Collapse
Affiliation(s)
- Shobhna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
70
|
Soniya K, Chandra A. Free Energy Landscape and Proton Transfer Pathways of the Transimination Reaction at the Active site of the Serine Hydroxymethyltransferase Enzyme in Aqueous Medium. J Phys Chem B 2021; 125:11848-11856. [PMID: 34696588 DOI: 10.1021/acs.jpcb.1c05864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Serine hydroxymethyltransferase (SHMT) is a ubiquitous enzyme belonging to the fold type I or aspartate aminotransferase (AspAT) family of the pyridoxal 5'-phosphate (PLP)-dependent enzymes. Like other PLP-dependent enzymes, SHMT also undergoes the so-called transimination reaction before exhibiting its enzymatic activity. The transimination process constitutes an important pre-step for all PLP-dependent enzymes, where an internal aldimine of the PLP-enzyme complex gets converted to an external aldimine of the substrate-PLP complex at the active site of the enzyme. In case of the transimination reaction involving SHMT, the PLP molecule bound to the active site lysine residue of SHMT (internal aldimine) gets detached from the enzyme by a serine substrate to produce an external aldimine complex, where the PLP is now bound to the serine substrate. In the current study, the free energy surfaces and reaction pathways of different steps of the transimination reaction at the active site of SHMT are investigated by employing hybrid quantum mechanical/molecular mechanical (QM/MM) simulations combined with metadynamics methods of rare event sampling. It is found that the process of transimination involving serine and PLP at the active site of the SHMT enzyme takes place through different elementary steps such as the formation of the first geminal diamine intermediate (GDI1), transfer of a proton from the substrate serine to the phenolic oxygen of PLP, followed by another proton transfer from PLP to the amine nitrogen of lysine with the formation of the second geminal diamine intermediate (GDI2), and finally, detachment of the active site lysine residue from PLP to produce the external aldimine.
Collapse
Affiliation(s)
- Kumari Soniya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
71
|
Chen M. Collective variable-based enhanced sampling and machine learning. THE EUROPEAN PHYSICAL JOURNAL. B 2021; 94:211. [PMID: 34697536 PMCID: PMC8527828 DOI: 10.1140/epjb/s10051-021-00220-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/03/2021] [Indexed: 05/14/2023]
Abstract
ABSTRACT Collective variable-based enhanced sampling methods have been widely used to study thermodynamic properties of complex systems. Efficiency and accuracy of these enhanced sampling methods are affected by two factors: constructing appropriate collective variables for enhanced sampling and generating accurate free energy surfaces. Recently, many machine learning techniques have been developed to improve the quality of collective variables and the accuracy of free energy surfaces. Although machine learning has achieved great successes in improving enhanced sampling methods, there are still many challenges and open questions. In this perspective, we shall review recent developments on integrating machine learning techniques and collective variable-based enhanced sampling approaches. We also discuss challenges and future research directions including generating kinetic information, exploring high-dimensional free energy surfaces, and efficiently sampling all-atom configurations. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Ming Chen
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
72
|
Sharp CH, Bukowski BC, Li H, Johnson EM, Ilic S, Morris AJ, Gersappe D, Snurr RQ, Morris JR. Nanoconfinement and mass transport in metal-organic frameworks. Chem Soc Rev 2021; 50:11530-11558. [PMID: 34661217 DOI: 10.1039/d1cs00558h] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ubiquity of metal-organic frameworks in recent scientific literature underscores their highly versatile nature. MOFs have been developed for use in a wide array of applications, including: sensors, catalysis, separations, drug delivery, and electrochemical processes. Often overlooked in the discussion of MOF-based materials is the mass transport of guest molecules within the pores and channels. Given the wide distribution of pore sizes, linker functionalization, and crystal sizes, molecular diffusion within MOFs can be highly dependent on the MOF-guest system. In this review, we discuss the major factors that govern the mass transport of molecules through MOFs at both the intracrystalline and intercrystalline scale; provide an overview of the experimental and computational methods used to measure guest diffusivity within MOFs; and highlight the relevance of mass transfer in the applications of MOFs in electrochemical systems, separations, and heterogeneous catalysis.
Collapse
Affiliation(s)
- Conor H Sharp
- National Research Council Associateship Program and Electronic Science and Technology Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Brandon C Bukowski
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Hongyu Li
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Eric M Johnson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Stefan Ilic
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Amanda J Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Dilip Gersappe
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - John R Morris
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
73
|
Jourdain B, Lelièvre T, Zitt PA. Convergence of metadynamics: Discussion of the adiabatic hypothesis. ANN APPL PROBAB 2021. [DOI: 10.1214/20-aap1652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
74
|
Sundararaman S, Halat DM, Choo Y, Snyder RL, Abel BA, Coates GW, Reimer JA, Balsara NP, Prendergast D. Exploring the Ion Solvation Environments in Solid-State Polymer Electrolytes through Free-Energy Sampling. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Siddharth Sundararaman
- Joint Center for Energy Storage Research, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David M. Halat
- Joint Center for Energy Storage Research, Department of Chemical and Biomolecular Engineering and College of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Joint Center for Energy Storage Research, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Youngwoo Choo
- Joint Center for Energy Storage Research, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rachel L. Snyder
- Joint Center for Energy Storage Research, Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Brooks A. Abel
- Joint Center for Energy Storage Research, Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Geoffrey W. Coates
- Joint Center for Energy Storage Research, Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Jeffrey A. Reimer
- Joint Center for Energy Storage Research, Department of Chemical and Biomolecular Engineering and College of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Joint Center for Energy Storage Research, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nitash P. Balsara
- Joint Center for Energy Storage Research, Department of Chemical and Biomolecular Engineering and College of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Joint Center for Energy Storage Research, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David Prendergast
- Joint Center for Energy Storage Research, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
75
|
Payard PA, Rochlitz L, Searles K, Foppa L, Leuthold B, Safonova OV, Comas-Vives A, Copéret C. Dynamics and Site Isolation: Keys to High Propane Dehydrogenation Performance of Silica-Supported PtGa Nanoparticles. JACS AU 2021; 1:1445-1458. [PMID: 34604854 PMCID: PMC8479774 DOI: 10.1021/jacsau.1c00212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Nonoxidative dehydrogenation of light alkanes has seen a renewed interest in recent years. While PtGa systems appear among the most efficient catalyst for this reaction and are now implemented in production plants, the origin of the high catalytic performance in terms of activity, selectivity, and stability in PtGa-based catalysts is largely unknown. Here we use molecular modeling at the DFT level on three different models: (i) periodic surfaces, (ii) clusters using static calculations, and (iii) realistic size silica-supported nanoparticles (1 nm) using molecular dynamics and metadynamics. The combination of the models with experimental data (XAS, TEM) allowed the refinement of the structure of silica-supported PtGa nanoparticles synthesized via surface organometallic chemistry and provided a structure-activity relationship at the molecular level. Using this approach, the key interaction between Pt and Ga was evidenced and analyzed: the presence of Ga increases (i) the interaction between the oxide surface and the nanoparticles, which reduces sintering, (ii) the Pt site isolation, and (iii) the mobility of surface atoms which promotes the high activity, selectivity, and stability of this catalyst. Considering the complete system for modeling that includes the silica support as well as the dynamics of the PtGa nanoparticle is essential to understand the catalytic performances.
Collapse
Affiliation(s)
- P.-A. Payard
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - L. Rochlitz
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - K. Searles
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - L. Foppa
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - B. Leuthold
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | | | - A. Comas-Vives
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - C. Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
76
|
Abstract
Given the importance of catalysts in the chemical industry, they have been extensively investigated by experimental and numerical methods. With the development of computational algorithms and computer hardware, large-scale simulations have enabled influential studies with more atomic details reflecting microscopic mechanisms. This review provides a comprehensive summary of recent developments in molecular dynamics, including ab initio molecular dynamics and reaction force-field molecular dynamics. Recent research on both approaches to catalyst calculations is reviewed, including growth, dehydrogenation, hydrogenation, oxidation reactions, bias, and recombination of carbon materials that can guide catalyst calculations. Machine learning has attracted increasing interest in recent years, and its combination with the field of catalysts has inspired promising development approaches. Its applications in machine learning potential, catalyst design, performance prediction, structure optimization, and classification have been summarized in detail. This review hopes to shed light and perspective on ML approaches in catalysts.
Collapse
|
77
|
Galimberti DR, Sauer J. Chemically Accurate Vibrational Free Energies of Adsorption from Density Functional Theory Molecular Dynamics: Alkanes in Zeolites. J Chem Theory Comput 2021; 17:5849-5862. [PMID: 34459582 PMCID: PMC8444336 DOI: 10.1021/acs.jctc.1c00519] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We present a methodology
to compute, at reduced computational cost,
Gibbs free energies, enthalpies, and entropies of adsorption from
molecular dynamics. We calculate vibrational partition functions from
vibrational energies, which we obtain from the vibrational density
of states by projection on the normal modes. The use of a set of well-chosen
reference structures along the trajectories accounts for the anharmonicities
of the modes. For the adsorption of methane, ethane, and propane in
the H-CHA zeolite, we limit our treatment to a set of vibrational
modes localized at the adsorption site (zeolitic OH group) and the
alkane molecule interacting with it. Only two short trajectories (1–20
ps) are required to reach convergence (<1 kJ/mol) for the thermodynamic
functions. The mean absolute deviations from the experimentally measured
values are 2.6, 2.8, and 4.7 kJ/mol for the Gibbs free energy, the
enthalpy, and the entropy term (−TΔS),
respectively. In particular, the entropy terms show a major improvement
compared to the harmonic approximation and almost reach the accuracy
of the previous use of anharmonic frequencies obtained with curvilinear
distortions of individual modes. The thermodynamic functions so obtained
follow the trend of the experimental values for methane, ethane, and
propane, and the Gibbs free energy of adsorption at experimental conditions
is correctly predicted to change from positive for methane (5.9 kJ/mol)
to negative for ethane (−4.8 kJ/mol) and propane (−7.1
kJ/mol).
Collapse
Affiliation(s)
- Daria Ruth Galimberti
- Institut für Chemie, Humboldt-Universität, Unter den Linden 6, 10117 Berlin, Germany.,Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Joachim Sauer
- Institut für Chemie, Humboldt-Universität, Unter den Linden 6, 10117 Berlin, Germany
| |
Collapse
|
78
|
Pal A, Pal S, Verma S, Shiga M, Nair NN. Mean force based temperature accelerated sliced sampling: Efficient reconstruction of high dimensional free energy landscapes. J Comput Chem 2021; 42:1996-2003. [DOI: 10.1002/jcc.26727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/28/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Asit Pal
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur India
| | - Subhendu Pal
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur India
| | - Shivani Verma
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur India
| | - Motoyuki Shiga
- Center for Computational Science and E‐Systems Japan Atomic Energy Agency Chiba Japan
| | - Nisanth N. Nair
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur India
| |
Collapse
|
79
|
Gorantla KR, Mallik BS. Mechanistic Insight into the O 2 Evolution Catalyzed by Copper Complexes with Tetra- and Pentadentate Ligands. J Phys Chem A 2021; 125:6461-6473. [PMID: 34282907 DOI: 10.1021/acs.jpca.1c06008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mononuclear complexes ([(bztpen)Cu] (BF4)2 (bztpen = N-benzyl-N,N',N'-tris (pyridin-2-yl methyl ethylenediamine))) and ([(dbzbpen)Cu(OH2)] (BF4)2 (dbzbpen = N,N'-dibenzyl-N,N'-bis(pyridin-2-ylmethyl) ethylenediamine)) have been reported as water oxidation catalysts in basic medium (pH = 11.5). We explore the O2 evolution process catalyzed by these copper catalysts with various ligands (L) by applying the first-principles molecular dynamics simulations. First, the oxidation of catalysts to the metal-oxo intermediates [LCu(O)]2+ occurs through the proton-coupled electron transfer (PCET) process. These intermediates are involved in the oxygen-oxygen bond formation through the water-nucleophilic addition process. Here, we have considered two types of oxygen-oxygen bond formation. The first one is the transfer of the hydroxide of the water molecule to the Cu═O moiety; the proton transfer to the solvent leads to the formation of the peroxide complex ([LCu(OOH)]+). The other is the formation of the hydrogen peroxide complex ([LCu(HOOH)]2+) by the transfer of proton and hydroxide of the water molecule to the metal-oxo intermediate. The formation of the peroxide complex requires less activation free energy than hydrogen peroxide formation for both catalysts. We found two transition states in the well-tempered metadynamics simulations: one for proton transfer and another for hydroxide transfer. In both cases, the proton transfer requires higher free energy. Following the formation of the oxygen-oxygen bond, we study the release of the dioxygen molecule. The formed peroxide and hydrogen peroxide complexes are converted into the superoxide complex ([LCu(OO)]2+) through the transfer of proton, electron, and PCET processes. The superoxide complex releases an oxygen molecule upon the addition of a water molecule. The free energy of activation for the release of the dioxygen molecule is lesser than that of the oxygen-oxygen bond formation. When we observe the entire water oxidation process, the oxygen-oxygen bond formation is the rate-determining step. We calculated the rates of reaction by using the Eyring equation and found them to be close to the experimental values.
Collapse
Affiliation(s)
- Koteswara Rao Gorantla
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| |
Collapse
|
80
|
Chen H, Fu H, Chipot C, Shao X, Cai W. Overcoming Free-Energy Barriers with a Seamless Combination of a Biasing Force and a Collective Variable-Independent Boost Potential. J Chem Theory Comput 2021; 17:3886-3894. [PMID: 34106706 DOI: 10.1021/acs.jctc.1c00103] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amid collective-variable (CV)-based importance-sampling algorithms, a hybrid of the extended adaptive biasing force and the well-tempered metadynamics algorithms (WTM-eABF) has proven particularly cost-effective for exploring the rugged free-energy landscapes that underlie biological processes. However, as an inherently CV-based algorithm, this hybrid scheme does not explicitly accelerate sampling in the space orthogonal to the chosen CVs, thereby limiting its efficiency and accuracy, most notably in those cases where the slow degrees of freedom of the process at hand are not accounted for in the model transition coordinate. Here, inspired by Gaussian-accelerated molecular dynamics (GaMD), we introduce the same CV-independent harmonic boost potential into WTM-eABF, yielding a hybrid algorithm coined GaWTM-eABF. This algorithm leans on WTM-eABF to explore the transition coordinate with a GaMD-mollified potential and recovers the unbiased free-energy landscape through thermodynamic integration followed by proper reweighting. As illustrated in our numerical tests, GaWTM-eABF effectively overcomes the free-energy barriers in orthogonal space and correctly recovers the unbiased potential of mean force (PMF). Furthermore, applying both GaWTM-eABF and WTM-eABF to two biologically relevant processes, namely, the reversible folding of (i) deca-alanine and (ii) chignolin, our results indicate that GaWTM-eABF reduces the uncertainty in the PMF calculation and converges appreciably faster than WTM-eABF. Obviating the need of multiple-copy strategies, GaWTM-eABF is a robust, computationally efficient algorithm to surmount the free-energy barriers in orthogonal space and maps with utmost fidelity the free-energy landscape along selections of CVs. Moreover, our strategy that combines WTM-eABF with GaMD can be easily extended to other biasing-force algorithms.
Collapse
Affiliation(s)
- Haochuan Chen
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Haohao Fu
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n 7019, Université de Lorraine, BP 70239, 54506 Vandœuvre-lès-Nancy cedex, France.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xueguang Shao
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| |
Collapse
|
81
|
Mechanism of the Conformational Change of the Protein Methyltransferase SMYD3: A Molecular Dynamics Simulation Study. Int J Mol Sci 2021; 22:ijms22137185. [PMID: 34281237 PMCID: PMC8267938 DOI: 10.3390/ijms22137185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
SMYD3 is a SET-domain-containing methyltransferase that catalyzes the transfer of methyl groups onto lysine residues of substrate proteins. Methylation of MAP3K2 by SMYD3 has been implicated in Ras-driven tumorigenesis, which makes SMYD3 a potential target for cancer therapy. Of all SMYD family proteins, SMYD3 adopt a closed conformation in a crystal structure. Several studies have suggested that the conformational changes between the open and closed forms may regulate the catalytic activity of SMYD3. In this work, we carried out extensive molecular dynamics simulations on a series of complexes with a total of 21 μs sampling to investigate the conformational changes of SMYD3 and unveil the molecular mechanisms. Based on the C-terminal domain movements, the simulated models could be depicted in three different conformational states: the closed, intermediate and open states. Only in the case that both the methyl donor binding pocket and the target lysine-binding channel had bound species did the simulations show SMYD3 maintaining its conformation in the closed state, indicative of a synergetic effect of the cofactors and target lysine on regulating the conformational change of SMYD3. In addition, we performed analyses in terms of structure and energy to shed light on how the two regions might regulate the C-terminal domain movement. This mechanistic study provided insights into the relationship between the conformational change and the methyltransferase activity of SMYD3. The more complete understanding of the conformational dynamics developed here together with further work may lay a foundation for the rational drug design of SMYD3 inhibitors.
Collapse
|
82
|
Vieira SAPB, Dos Santos BM, Santos Júnior CD, de Paula VF, Gomes MSR, Ferreira GM, Gonçalves RL, Hirata MH, da Silva RA, Brandeburgo MIH, Mendes MM. Isohemigossypolone: Antiophidic properties of a naphthoquinone isolated from Pachira aquatica Aubl. Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109028. [PMID: 33676005 DOI: 10.1016/j.cbpc.2021.109028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 01/17/2023]
Abstract
We investigated the antiophidic properties of isohemigossypolone (ISO), a naphthoquinone isolated from the outer bark of the Pachira aquatic Aubl. The inhibition of phospholipase A2, coagulant, fibrinogenolytic, hemorrhagic and myotoxic activities induced by Bothrops pauloensis venom (Pb) was investigated. For this, we use samples resulting from the incubation of Pb with ISO in different concentrations (1:1, 1:5 and 1:10 w/w), we also evaluated the condition of treatment using ISO after 15 min of venom inoculation. The activities of phospholipase A2, coagulant, fibrinogenolytic, hemorrhagic and myotoxic induced by the B. pauloensis venom were significantly inhibited when the ISO was pre-incubated with the crude venom. For in vivo neutralization tests, the results were observed even when the ISO was applied after 15 min of inoculation of the venom or metalloprotease (BthMP). Also, to identify the inhibition mechanism, we performed in silico assays, across simulations of molecular coupling and molecular dynamics, it was possible to identify the modes of interaction between ISO and bothropic toxins BmooMPα-I, Jararacussin-I and BNSP-7. The present study shows that naphthoquinone isohemigossypolone isolated from the P. aquatica plant inhibited part of the local and systemic damage caused by venom proteins, demonstrating the pharmacological potential of this compound in neutralizing the harmful effects caused by snakebites.
Collapse
Affiliation(s)
| | - Benedito Matheus Dos Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Célio Dias Santos Júnior
- Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Vanderlúcia Fonseca de Paula
- Laboratory of Natural Products, Department of Sciences and Technology, State University of Bahia Southwest (UESB), Jequié, BA, Brazil
| | - Mario Sergio Rocha Gomes
- Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | | | - Mirian Machado Mendes
- Special Academic Unit of Biosciences, Federal University of Goiás (UFG), Jataí, GO, Brazil.
| |
Collapse
|
83
|
Louisnard F, Geudtner G, Köster AM, Cuny J. Implementation of the parallel-tempering molecular dynamics method in deMon2k and application to the water hexamer. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02765-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
84
|
Priyadarsini A, Mallik BS. Comparative first principles-based molecular dynamics study of catalytic mechanism and reaction energetics of water oxidation reaction on 2D-surface. J Comput Chem 2021; 42:1138-1149. [PMID: 33851446 DOI: 10.1002/jcc.26528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 01/02/2023]
Abstract
The study of the water-splitting process, which can proceed in 2e- as well as 4e- pathway, reveals that the process is entirely an uphill process, and the third step, that is, the oxooxo bond formation is the rate-determining step. The kinetic barrier of the oxygen evolution reaction (OER) on the 2D material catalysts in the presence of explicit solvents is scarcely studied. Here, we investigate the dynamics of the OER on the undoped graphene and the activation energy barrier of each step using first principles molecular dynamics simulations. Here we provide a detailed analysis of the kinetics of all the 4e- transfer steps of OER on the graphene surface. We also compare the accuracy of one of the density functional theory (DFT) functionals and density functional based tight binding (DFTB) method in explaining the OER steps. The comparative study reveals that DFTB can be used for performing metadynamics simulations quipped with much less computational cost than DFT functionals. By both Perdew-Burke-Ernzerhof and DFTB methods, the third step is revealed to be the rate-determining step with an energy barrier of 21.19 ± 0.51 and 20.23 ± 0.20 kcal mol-1 , respectively. DFTB gives an impression of being successful in predicting the energy barriers of OER in 4e- transfer pathway and comparable to the DFT method, and we would like to extend the use of DFTB for further studies with a sizable and complex system.
Collapse
Affiliation(s)
- Adyasa Priyadarsini
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| |
Collapse
|
85
|
Tripathi R, Durán Caballero L, Pérez de Tudela R, Hölzl C, Marx D. Unveiling Zwitterionization of Glycine in the Microhydration Limit. ACS OMEGA 2021; 6:12676-12683. [PMID: 34056419 PMCID: PMC8154221 DOI: 10.1021/acsomega.1c00869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Charge separation under solvation stress conditions is a fundamental process that comes in many forms in doped water clusters. Yet, the mechanism of intramolecular charge separation, where constraints due to the molecular structure might be intricately tied to restricted solvation structures, remains largely unexplored. Microhydrated amino acids are such paradigmatic molecules. Ab initio simulations are carried out at 300 K in the frameworks of metadynamics sampling and thermodynamic integration to map the thermal mechanisms of zwitterionization using Gly(H2O) n with n = 4 and 10. In both cases, a similar water-mediated proton transfer chain mechanism is observed; yet, detailed analyses of thermodynamics and kinetics demonstrate that the charge-separated zwitterion is the preferred species only for n = 10 mainly due to kinetic stabilization. Structural analyses disclose that bifurcated H-bonded water bridges, connecting the cationic and anionic sites in the fluctuating microhydration network at room temperature, are enhanced in the transition-state ensemble exclusively for n = 10 and become overwhelmingly abundant in the stable zwitterion. The findings offer potential insights into charge separation under solvation stress conditions beyond the present example.
Collapse
|
86
|
Hirai H, Jinnouchi R. Discovering chemical reaction pathways using accelerated molecular dynamics simulations and network analysis tools – Application to oxidation induced decomposition of ethylene carbonate. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
87
|
Curcio M, Nicoli F, Paltrinieri E, Fois E, Tabacchi G, Cavallo L, Silvi S, Baroncini M, Credi A. Chemically Induced Mismatch of Rings and Stations in [3]Rotaxanes. J Am Chem Soc 2021; 143:8046-8055. [PMID: 33915051 PMCID: PMC8176457 DOI: 10.1021/jacs.1c02230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
The mechanical interlocking
of molecular components can lead to
the appearance of novel and unconventional properties and processes,
with potential relevance for applications in nanoscience, sensing,
catalysis, and materials science. We describe a [3]rotaxane in which
the number of recognition sites available on the axle component can
be changed by acid–base inputs, encompassing cases in which
this number is larger, equal to, or smaller than the number of interlocked
macrocycles. These species exhibit very different properties and give
rise to a unique network of acid–base reactions that leads
to a fine pKa tuning of chemically equivalent
acidic sites. The rotaxane where only one station is available for
two rings exhibits a rich coconformational dynamics, unveiled by an
integrated experimental and computational approach. In this compound,
the two crown ethers compete for the sole recognition site, but can
also come together to share it, driven by the need to minimize free
energy without evident inter-ring interactions.
Collapse
Affiliation(s)
- Massimiliano Curcio
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna 40136, Italy.,Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy
| | - Federico Nicoli
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna 40136, Italy.,Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy
| | - Erica Paltrinieri
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna 40136, Italy.,Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy
| | - Ettore Fois
- Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Como 22100, Italy
| | - Gloria Tabacchi
- Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, Como 22100, Italy
| | - Luigi Cavallo
- Kaust Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Serena Silvi
- Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy.,Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Bologna 40126, Italy
| | - Massimo Baroncini
- Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy.,Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Bologna 40127, Italy
| | - Alberto Credi
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Bologna 40136, Italy.,Center for Light Activated Nanostructures, Istituto ISOF-CNR, Bologna 40129, Italy
| |
Collapse
|
88
|
Zhang JH, Ricard TC, Haycraft C, Iyengar SS. Weighted-Graph-Theoretic Methods for Many-Body Corrections within ONIOM: Smooth AIMD and the Role of High-Order Many-Body Terms. J Chem Theory Comput 2021; 17:2672-2690. [PMID: 33891416 DOI: 10.1021/acs.jctc.0c01287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We present a weighted-graph-theoretic approach to adaptively compute contributions from many-body approximations for smooth and accurate post-Hartree-Fock (pHF) ab initio molecular dynamics (AIMD) of highly fluxional chemical systems. This approach is ONIOM-like, where the full system is treated at a computationally feasible quality of treatment (density functional theory (DFT) for the size of systems considered in this publication), which is then improved through a perturbative correction that captures local many-body interactions up to a certain order within a higher level of theory (post-Hartree-Fock in this publication) described through graph-theoretic techniques. Due to the fluxional and dynamical nature of the systems studied here, these graphical representations evolve during dynamics. As a result, energetic "hops" appear as the graphical representation deforms with the evolution of the chemical and physical properties of the system. In this paper, we introduce dynamically weighted, linear combinations of graphs, where the transition between graphical representations is smoothly achieved by considering a range of neighboring graphical representations at a given instant during dynamics. We compare these trajectories with those obtained from a set of trajectories where the range of local many-body interactions considered is increased, sometimes to the maximum available limit, which yields conservative trajectories as the order of interactions is increased. The weighted-graph approach presents improved dynamics trajectories while only using lower-order many-body interaction terms. The methods are compared by computing dynamical properties through time-correlation functions and structural distribution functions. In all cases, the weighted-graph approach provides accurate results at a lower cost.
Collapse
Affiliation(s)
- Juncheng Harry Zhang
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Timothy C Ricard
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Cody Haycraft
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Srinivasan S Iyengar
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
89
|
Xie W, Xu J, Ding Y, Hu P. Quantitative Studies of the Key Aspects in Selective Acetylene Hydrogenation on Pd(111) by Microkinetic Modeling with Coverage Effects and Molecular Dynamics. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05345] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Wenbo Xie
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| | - Jiayan Xu
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| | - Yunxuan Ding
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| | - P. Hu
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, U.K
| |
Collapse
|
90
|
Pollet R, Chin W. Reversible Hydration of α-Dicarbonyl Compounds from Ab Initio Metadynamics Simulations: Comparison between Pyruvic and Glyoxylic Acids in Aqueous Solutions. J Phys Chem B 2021; 125:2942-2951. [PMID: 33725456 DOI: 10.1021/acs.jpcb.0c09748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glyoxylic and pyruvic oxoacids are widely available in the atmosphere as gas-phase clusters and particles or in wet aerosols. In aqueous conditions, they undergo interconversion between the unhydrated oxo and gem-diol forms, where two hydroxyl groups replace the carbonyl group. We here examine the hydration equilibrium of glyoxylic and pyruvic acids with first-principles simulations in water at ambient conditions using ab initio metadynamics to reconstruct the corresponding free-energy landscapes. The main results are as follows: (i) our simulations reveal the high conformational diversity of these species in aqueous solutions. (ii) We show that gem-diol is strongly favored in water compared to its oxo counterpart by 29 and 16 kJ/mol for glyoxylic and pyruvic acids, respectively. (iii) From our atomic-scale simulations, we present new insights into the reaction mechanisms with a special focus on hydrogen-bond arrangements and the electronic structure of the transition state.
Collapse
Affiliation(s)
- Rodolphe Pollet
- NIMBE, Université Paris-Saclay, CEA, CNRS, 91191 Gif-sur-Yvette, France
| | - Wutharath Chin
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, 91405 Orsay, France
| |
Collapse
|
91
|
Priyadarsini A, Mallik BS. Effects of Doped N, B, P, and S Atoms on Graphene toward Oxygen Evolution Reactions. ACS OMEGA 2021; 6:5368-5378. [PMID: 33681576 PMCID: PMC7931212 DOI: 10.1021/acsomega.0c05538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Molecular oxygen and hydrogen can be obtained from the water-splitting process through the electrolysis technique. However, harnessing energy is very challenging in this way due to the involvement of the 4e- reaction pathway, which is associated with a substantial amount of reaction barrier. After the report of the first N-doped graphene acting as an oxygen reduction reaction catalyst, the scientific community set out on exploring more reliable doping materials, better material engineering techniques, and developing computational models to explain the interfacial reactions. In this study, we modeled the graphene surface with four different nonmetal doping atoms N, B, P, and S individually by replacing a carbon atom from one of the graphitic positions. We report the mechanism of the complete catalytic cycle for each of the doped surfaces by the doping atom. The energy barriers for individual steps were explored using the biased first-principles molecular dynamics simulations to overcome the high reaction barrier. We explain the active sites and provide a comparison between the activation energy obtained by the application of two computational methods. Observing the rate-determining step, that is, oxo-oxo bond formation, S-doped graphene is the most effective. In contrast, N-doped graphene seems to be the least useful for oxygen evolution catalysis compared to the undoped graphene surface. B-doped graphene and P-doped graphene have an equivalent impact on the catalytic cycle.
Collapse
Affiliation(s)
- Adyasa Priyadarsini
- Department of Chemistry, Indian
Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| | - Bhabani S. Mallik
- Department of Chemistry, Indian
Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| |
Collapse
|
92
|
Galib M, Limmer DT. Reactive uptake of N
2
O
5
by atmospheric aerosol is dominated by interfacial processes. Science 2021; 371:921-925. [DOI: 10.1126/science.abd7716] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/22/2021] [Indexed: 01/29/2023]
Affiliation(s)
- Mirza Galib
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - David T. Limmer
- Department of Chemistry, University of California, Berkeley, CA, USA
- Kavli Energy NanoScience Institute, Berkeley, CA, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
93
|
Ford J, Seritan S, Zhu X, Sakano MN, Islam MM, Strachan A, Martínez TJ. Nitromethane Decomposition via Automated Reaction Discovery and an Ab Initio Corrected Kinetic Model. J Phys Chem A 2021; 125:1447-1460. [PMID: 33569957 DOI: 10.1021/acs.jpca.0c09168] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We explore the systematic construction of kinetic models from in silico reaction data for the decomposition of nitromethane. Our models are constructed in a computationally affordable manner by using reactions discovered through accelerated molecular dynamics simulations using the ReaxFF reactive force field. The reaction paths are then optimized to determine reaction rate parameters. We introduce a reaction barrier correction scheme that combines accurate thermochemical data from density functional theory with ReaxFF minimal energy paths. We validate our models across different thermodynamic regimes, showing predictions of gas phase CO and NO concentrations and high-pressure induction times that are similar to experimental data. The kinetic models are analyzed to find fundamental decomposition reactions in different thermodynamic regimes.
Collapse
Affiliation(s)
- Jason Ford
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Stefan Seritan
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Xiaolei Zhu
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Michael N Sakano
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Md Mahbub Islam
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Mechanical Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Alejandro Strachan
- School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Todd J Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
94
|
Fu Y, Bernasconi L, Liu P. Ab Initio Molecular Dynamics Simulations of the S N1/S N2 Mechanistic Continuum in Glycosylation Reactions. J Am Chem Soc 2021; 143:1577-1589. [PMID: 33439656 PMCID: PMC8162065 DOI: 10.1021/jacs.0c12096] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report a computational approach to evaluate the reaction mechanisms of glycosylation using ab initio molecular dynamics (AIMD) simulations in explicit solvent. The reaction pathways are simulated via free energy calculations based on metadynamics and trajectory simulations using Born-Oppenheimer molecular dynamics. We applied this approach to investigate the mechanisms of the glycosylation of glucosyl α-trichloroacetimidate with three acceptors (EtOH, i-PrOH, and t-BuOH) in three solvents (ACN, DCM, and MTBE). The reactants and the solvents are treated explicitly using density functional theory. We show that the profile of the free energy surface, the synchronicity of the transition state structure, and the time gap between leaving group dissociation and nucleophile association can be used as three complementary indicators to describe the glycosylation mechanism within the SN1/SN2 continuum for a given reaction. This approach provides a reliable means to rationalize and predict reaction mechanisms and to estimate lifetimes of oxocarbenium intermediates and their dependence on the glycosyl donor, acceptor, and solvent environment.
Collapse
Affiliation(s)
- Yue Fu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Leonardo Bernasconi
- Center for Research Computing, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
95
|
Biedermann M, Diddens D, Heuer A. rs@md: Introducing Reactive Steps at the Molecular Dynamics Simulation Level. J Chem Theory Comput 2021; 17:1074-1085. [DOI: 10.1021/acs.jctc.0c01189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Myra Biedermann
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Diddo Diddens
- Helmholtz-Institute Münster Ionics in Energy Storage (IEK-12), Forschungszentrum Jülich GmbH, Corrensstrasse 46, 48149 Münster, Germany
| | - Andreas Heuer
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
- Helmholtz-Institute Münster Ionics in Energy Storage (IEK-12), Forschungszentrum Jülich GmbH, Corrensstrasse 46, 48149 Münster, Germany
| |
Collapse
|
96
|
Xie W, Hu P. Influence of surface defects on activity and selectivity: a quantitative study of structure sensitivity of Pd catalysts for acetylene hydrogenation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00665g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure sensitivity of Pd catalysed acetylene hydrogenation is quantitatively examined using a coverage-dependent microkinetic model. Pd(211) was found to be more active than Pd(111), but present a poorer selectivity toward ethylene.
Collapse
Affiliation(s)
- Wenbo Xie
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast
- UK
| | - P. Hu
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast
- UK
| |
Collapse
|
97
|
Proton transfer from water to aromatic N-heterocyclic anions from DFT-MD simulations. J Mol Graph Model 2020; 103:107818. [PMID: 33333423 DOI: 10.1016/j.jmgm.2020.107818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 11/20/2022]
Abstract
The phenomenon of proton transfer from water to six N-heterocyclic anions and free energy landscapes of this process are studied using both electronic structure calculations and first principles molecular metadynamics simulations. Our investigation involves microhydrated and aqueous phase interaction of water with six aromatic heterocyclic anions relevant to chemistry and biology: imidazolide, pyrrolide, benzimidazolide, 2-cyanopyrrolide, indolide, and indazolide. The basic structures of all these heterocyclic anions differ by substituted functional groups as well as fused rings. We study the proton transfer reaction and the minimum number of required water molecules for the reaction in hydrated microclusters. We find out that at least four water molecules are necessary for hydrated clusters to facilitate the intracluster proton transfer reaction from water to anions except for pyrrolide, for which this magic number is 3. To obtain the reaction free energy and activation barrier of the proton transfer process in an aqueous solution, the metadynamics method based first principles molecular dynamics simulations were performed. The complete proton transfer was observed in aqueous solutions for all the anions. The water molecule directly involved in proton transfer becomes acidic due to the cooperative effect of neighboring water molecules. From the metadynamics simulation, we obtain the values of activation barrier for the proton transfer processes from neutral water to anions, and the highest activation barrier is obtained for benzimidazolide, whereas the lowest activation barrier is obtained for pyrrolide. The structures and free energy profiles of the process for all the anions are discussed, and a comparative outlook of the study is presented here.
Collapse
|
98
|
Dutta Banik S, Bankura A, Chandra A. A QM/MM simulation study of transamination reaction at the active site of aspartate aminotransferase: Free energy landscape and proton transfer pathways. J Comput Chem 2020; 41:2684-2694. [PMID: 32932551 DOI: 10.1002/jcc.26422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/08/2020] [Accepted: 09/03/2020] [Indexed: 11/10/2022]
Abstract
Transaminase is a key enzyme for amino acid metabolism, which reversibly catalyzes the transamination reaction with the help of PLP (pyridoxal 5' -phosphate) as its cofactor. Here we have investigated the mechanism and free energy landscape of the transamination reaction involving the aspartate transaminase (AspTase) enzyme and aspartate-PLP (Asp-PLP) complex using QM/MM simulation and metadynamics methods. The reaction is found to follow a stepwise mechanism where the active site residue Lys258 acts as a base to shuttle a proton from α-carbon (CA) to imine carbon (C4A) of the PLP-Asp Schiff base. In the first step, the Lys258 abstracts the CA proton of the substrate leading to the formation of a carbanionic intermediate which is followed by the reprotonation of the Asp-PLP Schiff base at C4A atom by Lys258. It is found that the free energy barrier for the proton abstraction by Lys258 and that for the reprotonation are 17.85 and 3.57 kcal/mol, respectively. The carbanionic intermediate is 7.14 kcal/mol higher in energy than the reactant. Hence, the first step acts as the rate limiting step. The present calculations also show that the Lys258 residue undergoes a conformational change after the first step of transamination reaction and becomes proximal to C4A atom of the Asp-PLP Schiff base to favor the second step. The active site residues Tyr70* and Gly38 anchor the Lys258 in proper position and orientation during the first step of the reaction and stabilize the positive charge over Lys258 generated at the intermediate step.
Collapse
Affiliation(s)
- Sindrila Dutta Banik
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Arindam Bankura
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
99
|
Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nat Catal 2020. [DOI: 10.1038/s41929-020-00550-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
100
|
Weiß M, Brehm M. Exploring Free Energy Profiles of Enantioselective Organocatalytic Aldol Reactions under Full Solvent Influence. Molecules 2020; 25:E5861. [PMID: 33322424 PMCID: PMC7764805 DOI: 10.3390/molecules25245861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022] Open
Abstract
We present a computational study on the enantioselectivity of organocatalytic proline-catalyzed aldol reactions between aldehydes in dimethylformamide (DMF). To explore the free energy surface of the reaction, we apply two-dimensional metadynamics on top of ab initio molecular dynamics (AIMD) simulations with explicit solvent description on the DFT level of theory. We avoid unwanted side reactions by utilizing our newly developed hybrid AIMD (HyAIMD) simulation scheme, which adds a simple force field to the AIMD simulation to prevent unwanted bond breaking and formation. Our condensed phase simulation results are able to nicely reproduce the experimental findings, including the main stereoisomer that is formed, and give a correct qualitative prediction of the change in syn:anti product ratio with different substituents. Furthermore, we give a microscopic explanation for the selectivity. We show that both the explicit description of the solvent and the inclusion of entropic effects are vital to a good outcome-metadynamics simulations in vacuum and static nudged elastic band (NEB) calculations yield significantly worse predictions when compared to the experiment. The approach described here can be applied to a plethora of other enantioselective or organocatalytic reactions, enabling us to tune the catalyst or determine the solvent with the highest stereoselectivity.
Collapse
Affiliation(s)
| | - Martin Brehm
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany;
| |
Collapse
|