51
|
Robertson B, Huang MJ, Chen JX, Kapral R. Synthetic Nanomotors: Working Together through Chemistry. Acc Chem Res 2018; 51:2355-2364. [PMID: 30207448 DOI: 10.1021/acs.accounts.8b00239] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Active matter, some of whose constituent elements are active agents that can move autonomously, behaves very differently from matter without such agents. The active agents can self-assemble into structures with a variety of forms and dynamical properties. Swarming, where groups of living agents move cooperatively, is commonly observed in the biological realm, but it is also seen in the physical realm in systems containing small synthetic motors. The existence of diverse forms of self-assembled structures has stimulated the search for new applications that involve active matter. We consider active systems where the agents are synthetic chemically powered motors with various shapes and sizes that operate by phoretic mechanisms, especially self-diffusiophoresis. These motors are able to move autonomously in solution by consuming fuel from their environment. Chemical reactions take place on catalytic portions of the motor surface and give rise to concentration gradients that lead to directed motion. They can operate in this way only if the chemical composition of the system is maintained in a nonequilibrium state since no net fluxes are possible in a system at equilibrium. In contrast to many other active systems, chemistry plays an essential part in determining the properties of the collective dynamics and self-assembly of these chemically powered motor systems. The inhomogeneous concentration fields that result from asymmetric motor reactions are felt by other motors in the system and strongly influence how they move. This chemical coupling effect often dominates other interactions due to fluid flow fields and direct interactions among motors and determines the form that the collective dynamics takes. Since we consider small motors with micrometer and nanometer sizes, thermal fluctuations are strong and cannot be neglected. The media in which the motors operate may not be simple and may contain crowding agents or molecular filaments that influence how the motors assemble and move. The collective motion is also influenced by the chemical gradients that arise from reactions in the surrounding medium. By adopting a microscopic perspective, where the motors, fluid environment, and crowding elements are treated at the coarse-grained molecular level, all of the many-body interactions that give rise to the collective behavior naturally emerge from the molecular dynamics. Through simulations and theory, this Account describes how active matter made from chemically powered nanomotors moving in simple and more complicated media can form different dynamical structures that are strongly influenced by interactions arising from cooperative chemical reactions on the motor surfaces.
Collapse
Affiliation(s)
- Bryan Robertson
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mu-Jie Huang
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jiang-Xing Chen
- Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
52
|
Domínguez A, Popescu MN. Phase coexistence in a monolayer of active particles induced by Marangoni flows. SOFT MATTER 2018; 14:8017-8029. [PMID: 30246847 DOI: 10.1039/c8sm00688a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Thermally or chemically active colloids generate thermodynamic gradients in the solution in which they are immersed and thereby induce hydrodynamic flows that affect their dynamical evolution. Here we study a mean-field model for the many-body dynamics of a monolayer of spherically symmetric active particles located at a fluid-fluid interface. Due to the spherical symmetry, the particles do not self-propel. Instead, the dynamics is driven by the long-ranged Marangoni flows, due to the response of the interface to the activity of the particles, which compete with the direct interaction between particles. We demonstrate analytically that, in spite of the intrinsic out-of-equilibrium character of the system, the monolayer evolves to a "pseudoequilibrium" state, in which the Marangoni flows force the coexistence of the thermodynamic phases associated to the direct interaction. In particular, we study the most interesting case of a r-3 soft repulsion that models electrostatic or magnetic interparticle forces. For a sufficiently large average density, two-dimensional phase transitions (freezing from liquid to hexatic, and melting from solid to hexatic) should be observable in a radially stratified, "onion-like" structure within the monolayer. Furthermore, the analysis allows us to conclude that, while the activity may be too weak to allow direct detection of such induced Marangoni flows, it is relevant as a collective effect in the emergence of the experimentally observable spatial structure of phase coexistences noted above. Finally, the relevance of these results for potential experimental realizations is critically discussed.
Collapse
Affiliation(s)
- Alvaro Domínguez
- Física Teórica, Universidad de Sevilla, Apdo. 1065, E-41080 Sevilla, Spain.
| | | |
Collapse
|
53
|
Chen J, Chen Y, Kapral R. Chemically Propelled Motors Navigate Chemical Patterns. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800028. [PMID: 30250781 PMCID: PMC6145410 DOI: 10.1002/advs.201800028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/15/2018] [Indexed: 05/06/2023]
Abstract
Very small synthetic motors that use chemical reactions to drive their motion are being studied widely because of their potential applications, which often involve active transport and dynamics on nanoscales. Like biological molecular machines, they must be able to perform their tasks in complex, highly fluctuating environments that can form chemical patterns with diverse structures. Motors in such systems can actively assemble into dynamic clusters and other unique nonequilibrium states. It is shown how chemical patterns with small characteristic dimensions may be utilized to suppress rotational Brownian motions of motors and guide them to move along prescribed paths, properties that can be exploited in applications. In systems with larger pattern length scales, domains can serve as catch basins for motors through chemotactic effects. The resulting collective motor dynamics in such confining domains can be used to explore new aspects of active particle collective dynamics or promote specific types of active self-assembly. More generally, when chemically self-propelled motors operate in far-from-equilibrium active chemical media the variety of possible phenomena and the scope of their potential applications are substantially increased.
Collapse
Affiliation(s)
- Jiang‐Xing Chen
- Department of PhysicsHangzhou Dianzi UniversityHangzhou310018China
| | - Yu‐Guo Chen
- Department of PhysicsHangzhou Dianzi UniversityHangzhou310018China
| | - Raymond Kapral
- Chemical Physics Theory GroupDepartment of ChemistryUniversity of TorontoTorontoOntarioM5S 3H6Canada
| |
Collapse
|
54
|
Reigh SY, Chuphal P, Thakur S, Kapral R. Diffusiophoretically induced interactions between chemically active and inert particles. SOFT MATTER 2018; 14:6043-6057. [PMID: 29978883 DOI: 10.1039/c8sm01102h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the presence of a chemically active particle, a nearby chemically inert particle can respond to a concentration gradient and move by diffusiophoresis. The nature of the motion is studied for two cases: first, a fixed reactive sphere and a moving inert sphere, and second, freely moving reactive and inert spheres. The continuum reaction-diffusion and Stokes equations are solved analytically for these systems and microscopic simulations of the dynamics are carried out. Although the relative velocities of the spheres are very similar in the two systems, the local and global structures of streamlines and the flow velocity fields are found to be quite different. For freely moving spheres, when the two spheres approach each other the flow generated by the inert sphere through diffusiophoresis drags the reactive sphere towards it. This leads to a self-assembled dimer motor that is able to propel itself in solution. The fluid flow field at the moment of dimer formation changes direction. The ratio of sphere sizes in the dimer influences the characteristics of the flow fields, and this feature suggests that active self-assembly of spherical colloidal particles may be manipulated by sphere-size changes in such reactive systems.
Collapse
Affiliation(s)
- Shang Yik Reigh
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany.
| | | | | | | |
Collapse
|
55
|
Colberg PH, Kapral R. Many-body dynamics of chemically propelled nanomotors. J Chem Phys 2018; 147:064910. [PMID: 28810764 DOI: 10.1063/1.4997572] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The collective behavior of chemically propelled sphere-dimer motors made from linked catalytic and noncatalytic spheres in a quasi-two-dimensional confined geometry is studied using a coarse-grained microscopic dynamical model. Chemical reactions at the catalytic spheres that convert fuel to product generate forces that couple to solvent degrees of freedom as a consequence of momentum conservation in the microscopic dynamics. The collective behavior of the many-body system is influenced by direct intermolecular interactions among the motors, chemotactic effects due to chemical gradients, hydrodynamic coupling, and thermal noise. Segregation into high and low density phases and globally homogeneous states with strong fluctuations are investigated as functions of the motor characteristics. Factors contributing to this behavior are discussed in the context of active Brownian models.
Collapse
Affiliation(s)
- Peter H Colberg
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
56
|
Zöttl A, Stark H. Simulating squirmers with multiparticle collision dynamics. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:61. [PMID: 29766348 DOI: 10.1140/epje/i2018-11670-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Multiparticle collision dynamics is a modern coarse-grained simulation technique to treat the hydrodynamics of Newtonian fluids by solving the Navier-Stokes equations. Naturally, it also includes thermal noise. Initially it has been applied extensively to spherical colloids or bead-spring polymers immersed in a fluid. Here, we review and discuss the use of multiparticle collision dynamics for studying the motion of spherical model microswimmers called squirmers moving in viscous fluids.
Collapse
Affiliation(s)
- Andreas Zöttl
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, OX1 3NP, Oxford, UK.
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany.
| | - Holger Stark
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany
| |
Collapse
|
57
|
Sayyidmousavi A, Rohlf K. Reactive multi-particle collision dynamics with reactive boundary conditions. Phys Biol 2018; 15:046007. [DOI: 10.1088/1478-3975/aabc35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
58
|
Lisicki M, Reigh SY, Lauga E. Autophoretic motion in three dimensions. SOFT MATTER 2018; 14:3304-3314. [PMID: 29649343 DOI: 10.1039/c8sm00194d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Janus particles with the ability to move phoretically in self-generated chemical concentration gradients are model systems for active matter. Their motion typically consists of straight paths with rotational diffusion being the dominant reorientation mechanism. In this paper, we show theoretically that by a suitable surface coverage of both activity and mobility, translational and rotational motion can be induced arbitrarily in three dimensions. The resulting trajectories are in general helical, and their pitch and radius can be controlled by adjusting the angle between the translational and angular velocity. Building on the classical mathematical framework for axisymmetric self-phoretic motion under fixed-flux chemical boundary conditions, we first show how to calculate the most general three-dimensional motion for an arbitrary surface coverage of a spherical particle. After illustrating our results on surface distributions, we next introduce a simple intuitive patch model to serve as a guide for designing arbitrary phoretic spheres.
Collapse
Affiliation(s)
- Maciej Lisicki
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.
| | | | | |
Collapse
|
59
|
Mojahed A, Rajabi M. Self-motile swimmers: Ultrasound driven spherical model. ULTRASONICS 2018; 86:1-5. [PMID: 29407276 DOI: 10.1016/j.ultras.2018.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/28/2017] [Accepted: 01/14/2018] [Indexed: 06/07/2023]
Abstract
The concept of ultrasound acoustic driven self-motile swimmers which is the source of autonomous propulsion is the acoustic field generated by the swimmer due to the partial oscillation of its surface is investigated. Limiting the subject to a body with simple spherical geometry, it is analytically shown that the generated acoustic radiation force due to induction by asymmetric acoustic field in host medium is non-zero, which propels the device. Assuming low Reynolds number condition, the frequency-dependent swimming velocity is calculated as a function of design parameters and optimum operating condition is obtained. The proposed methodology will open a new path towards the micro- or molecular-sized self propulsive machines or mechanism with great applications in engineering, medicine and biology.
Collapse
Affiliation(s)
- Alireza Mojahed
- Linear and Nonlinear Dynamics and Vibrations, Laboratory, Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2307, USA
| | - Majid Rajabi
- Sustainable Manufacturing Systems Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran.
| |
Collapse
|
60
|
Robertson B, Stark H, Kapral R. Collective orientational dynamics of pinned chemically-propelled nanorotors. CHAOS (WOODBURY, N.Y.) 2018; 28:045109. [PMID: 31906629 DOI: 10.1063/1.5018297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Collections of chemically propelled nanomotors free to move in solution can form dynamic clusters with diverse properties as a result of interactions through hydrodynamic flow and concentration fields, as well as direct intermolecular interactions between motors. Here, we study the collective rotational behavior of pinned sphere-dimer motors where direct motor-motor interactions play no role. Since the centers of mass of the motors are pinned, they cannot execute directed translational motion, but they can pump fluid and rotate; thus, the rotors remain coupled through hydrodynamic and chemical fields. Using a microscopic simulation method that accounts for coupling through both these fields, we show that different rotor configurations with a high degree of correlation exist and their forms depend on the nature of the fluid-rotor interactions. The correlations are greatly reduced or completely destroyed when the chemical interactions are removed, indicating that hydrodynamic coupling, while present, plays a lesser role in determining the collective rotor dynamics. These conclusions are supported by Langevin dynamics simulations that neglect hydrodynamics and include an approximate form of coupling through chemical fields.
Collapse
Affiliation(s)
- Bryan Robertson
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Holger Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
61
|
Malgaretti P, Popescu MN, Dietrich S. Self-diffusiophoresis induced by fluid interfaces. SOFT MATTER 2018; 14:1375-1388. [PMID: 29383367 DOI: 10.1039/c7sm02347b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The influence of a fluid-fluid interface on self-phoresis of chemically active, axially symmetric, spherical colloids is analyzed. Distinct from the studies of self-phoresis for colloids trapped at fluid interfaces or in the vicinity of hard walls, here we focus on the issue of self-phoresis close to a fluid-fluid interface. In order to provide physically intuitive results highlighting the role played by the interface, the analysis is carried out for the case that the symmetry axis of the colloid is normal to the interface; moreover, thermal fluctuations are not taken into account. Similarly to what has been observed near hard walls, we find that such colloids can be set into motion even if their whole surface is homogeneously active. This is due to the anisotropy along the direction normal to the interface owing to the partitioning by diffusion, among the coexisting fluid phases, of the product of the chemical reaction taking place at the colloid surface. Different from results corresponding to hard walls, in the case of a fluid interface the direction of motion, i.e., towards the interface or away from it, can be controlled by tuning the physical properties of one of the two fluid phases. This effect is analyzed qualitatively and quantitatively, both by resorting to a far-field approximation and via an exact, analytical calculation which provides the means for a critical assessment of the approximate analysis.
Collapse
Affiliation(s)
- P Malgaretti
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany.
| | | | | |
Collapse
|
62
|
Santiago I, Jiang L, Foord J, Turberfield AJ. Self-propulsion of catalytic nanomotors synthesised by seeded growth of asymmetric platinum–gold nanoparticles. Chem Commun (Camb) 2018; 54:1901-1904. [DOI: 10.1039/c7cc09436a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric bimetallic nanomotors are synthesised by seeded growth in solution, providing a convenient and high-throughput alternative to the usual top-down lithographic fabrication of self-propelled catalytic nanoparticles.
Collapse
Affiliation(s)
- Ibon Santiago
- Department of Physics
- University of Oxford
- Clarendon Laboratory
- Oxford OX1 3PU
- UK
| | - Luyun Jiang
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - John Foord
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | | |
Collapse
|
63
|
Gaspard P, Kapral R. Communication: Mechanochemical fluctuation theorem and thermodynamics of self-phoretic motors. J Chem Phys 2017; 147:211101. [DOI: 10.1063/1.5008562] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Pierre Gaspard
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Code Postal 231, Campus Plaine, B-1050 Brussels, Belgium
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
64
|
Whitener KE. Surface fouling as a mechanism for chemotaxis in isotropic catalytic swimmers. Phys Chem Chem Phys 2017; 19:25207-25213. [PMID: 28885631 DOI: 10.1039/c7cp05102f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present microscopic models for surface fouling of an isotropic spherical catalytic microswimmer at and away from equilibrium and show how a foulant gradient can induce chemotactic behavior. Our simulations establish that the presence of foulant manifests itself in two ways: as a braking effect on propulsive particle motion, and as a drift term which probes the foulant concentration gradient. Our results suggest that, while foulant gradients are unlikely to be directly useful for chemotactically directed particles, they nevertheless exert a non-negligible influence on particle motion under a wide range of conditions.
Collapse
Affiliation(s)
- Keith E Whitener
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
65
|
Fu X, Chen B, Tang J, Zewail AH. Photoinduced nanobubble-driven superfast diffusion of nanoparticles imaged by 4D electron microscopy. SCIENCE ADVANCES 2017; 3:e1701160. [PMID: 28875170 PMCID: PMC5573307 DOI: 10.1126/sciadv.1701160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/26/2017] [Indexed: 05/20/2023]
Abstract
Dynamics of active or propulsive Brownian particles in nonequilibrium status have recently attracted great interest in many fields including artificial micro/nanoscopic motors and biological entities. Understanding of their dynamics can provide insight into the statistical properties of physical and biological systems far from equilibrium. We report the translational dynamics of photon-activated gold nanoparticles (NPs) in water imaged by liquid-cell four-dimensional electron microscopy (4D-EM) with high spatiotemporal resolution. Under excitation of femtosecond laser pulses, we observed that those NPs exhibit superfast diffusive translation with a diffusion constant four to five orders of magnitude greater than that in the absence of laser excitation. The measured diffusion constant follows a power-law dependence on the laser fluence and a linear increase with the laser repetition rate, respectively. This superfast diffusion of the NPs is induced by a strong random driving force arising from the photoinduced steam nanobubbles (NBs) near the NP surface. In contrast, the NPs exhibit a superfast ballistic translation at a short time scale down to nanoseconds. Combining with a physical model simulation, this study reveals a photoinduced NB propulsion mechanism for propulsive motion, providing physical insights into better design of light-activated artificial micro/nanomotors. The liquid-cell 4D-EM also provides the potential of studying other numerical dynamical behaviors in their native environments.
Collapse
Affiliation(s)
- Xuewen Fu
- Corresponding author. (X.F.); (J.T.)
| | | | - Jau Tang
- Corresponding author. (X.F.); (J.T.)
| | | |
Collapse
|
66
|
Deprez L, de Buyl P. Passive and active colloidal chemotaxis in a microfluidic channel: mesoscopic and stochastic models. SOFT MATTER 2017; 13:3532-3543. [PMID: 28443845 DOI: 10.1039/c7sm00123a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chemotaxis is the response of a particle to a gradient in the chemical composition of the environment. While it was originally observed for biological organisms, it is of great interest in the context of synthetic active particles such as nanomotors. Experimental demonstration of chemotaxis for chemically-powered colloidal nanomotors was reported in the literature in the context of chemo-attraction in a still fluid or in a microfluidic channel where the gradient is sustained by a specific inlet geometry. In this work, we use mesoscopic particle-based simulations of the colloid and solvent to demonstrate chemotaxis in a microfluidic channel. On the basis of this particle-based model, we evaluate the chemical concentration profiles in the presence of passive or chemically active colloids, compute the chemotactic force acting upon them and propose a stochastic model that rationalises our findings on colloidal chemotaxis. Our model is also able to explain the results of an earlier simulation work that uses a simpler geometry and to extend its interpretation.
Collapse
Affiliation(s)
- Laurens Deprez
- Instituut voor Theoretische Fysica, KU Leuven, 3001 Leuven, Belgium.
| | - Pierre de Buyl
- Instituut voor Theoretische Fysica, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
67
|
Sarkar D, Thakur S. Spontaneous beating and synchronization of extensile active filament. J Chem Phys 2017; 146:154901. [DOI: 10.1063/1.4979946] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Debarati Sarkar
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Snigdha Thakur
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
68
|
Popescu MN, Uspal WE, Dietrich S. Chemically active colloids near osmotic-responsive walls with surface-chemistry gradients. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:134001. [PMID: 28140364 DOI: 10.1088/1361-648x/aa5bf1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chemically active colloids move by creating gradients in the composition of the surrounding solution and by exploiting the differences in their interactions with the various molecular species in solution. If such particles move near boundaries, e.g. the walls of the container confining the suspension, gradients in the composition of the solution are also created along the wall. This give rise to chemi-osmosis (via the interactions of the wall with the molecular species forming the solution), which drives flows coupling back to the colloid and thus influences its motility. Employing an approximate 'point-particle' analysis, we show analytically that-owing to this kind of induced active response (chemi-osmosis) of the wall-such chemically active colloids can align with, and follow, gradients in the surface chemistry of the wall. In this sense, these artificial 'swimmers' exhibit a primitive form of thigmotaxis with the meaning of sensing the proximity of a (not necessarily discontinuous) physical change in the environment. We show that the alignment with the surface-chemistry gradient is generic for chemically active colloids as long as they exhibit motility in an unbounded fluid, i.e. this phenomenon does not depend on the exact details of the propulsion mechanism. The results are discussed in the context of simple models of chemical activity, corresponding to Janus particles with 'source' chemical reactions on one half of the surface and either 'inert' or 'sink' reactions over the other half.
Collapse
Affiliation(s)
- M N Popescu
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany. IV Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | | | | |
Collapse
|
69
|
Popescu MN, Uspal WE, Tasinkevych M, Dietrich S. Perils of ad hoc approximations for the activity function of chemically powered colloids. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:42. [PMID: 28389824 DOI: 10.1140/epje/i2017-11529-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/13/2017] [Indexed: 06/07/2023]
Abstract
Colloids can achieve motility by promoting at their surfaces chemical reactions in the surrounding solution. A well-studied case is that of self-phoresis, in which motility arises due to the spatial inhomogeneities in the chemical composition of the solution and the distinct interactions of the solvent molecules and of the reaction products with the colloid. For simple models of such chemically active colloids, the steady-state motion in an unbounded solution can be derived analytically in closed form. In contrast, for such chemically active particles moving in the vicinity of walls, the derivation of closed-form and physically intuitive solutions of the equations governing their dynamics turns out to be a severe challenge even for simple models. Therefore, recent studies of these phenomena have employed numerical methods as well as approximate analytical approaches based on multipolar expansions. We discuss and clarify certain conceptual aspects concerning the latter type of approach, which arise due to ad hoc truncations of the underlying so-called activity function, which describes the distribution of chemical reactions across the surface of the particle.
Collapse
Affiliation(s)
- M N Popescu
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569, Stuttgart, Germany.
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569, Stuttgart, Germany.
| | - W E Uspal
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569, Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569, Stuttgart, Germany
| | - M Tasinkevych
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569, Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569, Stuttgart, Germany
| | - S Dietrich
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569, Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569, Stuttgart, Germany
| |
Collapse
|
70
|
Yang M, Liu R, Ye F, Chen K. Mesoscale simulation of phoretically osmotic boundary conditions. SOFT MATTER 2017; 13:647-657. [PMID: 27991635 DOI: 10.1039/c6sm02516a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Boundary walls can drive the tangential flow of fluids by phoretic osmosis when exposed to a gradient field, including chemical, thermal or electric potential gradient. At the microscale, such boundary driving mechanisms become quite pronounced. Here, we propose a mesoscale strategy to simulate the phoretically osmotic boundaries, in which the microscopic fluid-wall interactions are coarse-grained into the bounce-back or specular reflection, and the phoretically osmotic force is generated by selectively reversing the tangential velocity of specific fluid particles near the boundary wall. With this scheme, the phoretically osmotic boundary can be realized with a minimal modification to the widely used mesoscopic no-slip/slip hydrodynamic boundary condition. Its implementation is quite efficient and the resulting phoretically osmotic flow is flexibly tunable. Its validity is verified by performing extensive mesoscale simulations for both the diffusioosmotic and thermoosmotic boundaries. In particular, we use the proposed scheme to investigate fluid transport driven by the phoretic osmosis in microfluidic systems and the effects of the diffusioosmosis on the dynamics of active catalytic colloidal particles. Our work thus offers new possibilities to study the phoretically osmotic effect in active complex fluids and microfluidic systems by simulation, where the gradient fields are ubiquitous.
Collapse
Affiliation(s)
- Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Riu Liu
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
71
|
|
72
|
Qin W, Peng T, Gao Y, Wang F, Hu X, Wang K, Shi J, Li D, Ren J, Fan C. Catalysis-Driven Self-Thermophoresis of Janus Plasmonic Nanomotors. Angew Chem Int Ed Engl 2016; 56:515-518. [DOI: 10.1002/anie.201609121] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/07/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Weiwei Qin
- Division of Physical Biology & Bioimaging Centre; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Tianhuan Peng
- Division of Physical Biology & Bioimaging Centre; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yanjing Gao
- Division of Physical Biology & Bioimaging Centre; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Fei Wang
- Division of Physical Biology & Bioimaging Centre; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Xiaocai Hu
- College of Chemistry and Chemical Engineering; Shanghai Jiaotong University; Shanghai 200240 China
| | - Kun Wang
- Division of Physical Biology & Bioimaging Centre; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| | - Jiye Shi
- Division of Physical Biology & Bioimaging Centre; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| | - Di Li
- Division of Physical Biology & Bioimaging Centre; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| | - Jicun Ren
- College of Chemistry and Chemical Engineering; Shanghai Jiaotong University; Shanghai 200240 China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Centre; Shanghai Institute of Applied Physics; Chinese Academy of Sciences; Shanghai 201800 China
| |
Collapse
|
73
|
Reigh SY, Huang MJ, Schofield J, Kapral R. Microscopic and continuum descriptions of Janus motor fluid flow fields. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:20160140. [PMID: 27698037 PMCID: PMC5052725 DOI: 10.1098/rsta.2016.0140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 05/27/2023]
Abstract
Active media, whose constituents are able to move autonomously, display novel features that differ from those of equilibrium systems. In addition to naturally occurring active systems such as populations of swimming bacteria, active systems of synthetic self-propelled nanomotors have been developed. These synthetic systems are interesting because of their potential applications in a variety of fields. Janus particles, synthetic motors of spherical geometry with one hemisphere that catalyses the conversion of fuel to product and one non-catalytic hemisphere, can propel themselves in solution by self-diffusiophoresis. In this mechanism, the concentration gradient generated by the asymmetric catalytic activity leads to a force on the motor that induces fluid flows in the surrounding medium. These fluid flows are studied in detail through microscopic simulations of Janus motor motion and continuum theory. It is shown that continuum theory is able to capture many, but not all, features of the dynamics of the Janus motor and the velocity fields of the fluid.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.
Collapse
Affiliation(s)
- Shang Yik Reigh
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Mu-Jie Huang
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
| | - Jeremy Schofield
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
| |
Collapse
|
74
|
Eisenstecken T, Hu J, Winkler RG. Bacterial swarmer cells in confinement: a mesoscale hydrodynamic simulation study. SOFT MATTER 2016; 12:8316-8326. [PMID: 27714355 DOI: 10.1039/c6sm01532h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A wide spectrum of Peritrichous bacteria undergo considerable physiological changes when they are inoculated onto nutrition-rich surfaces and exhibit a rapid and collective migration denoted as swarming. Thereby, the length of such swarmer cells and their number of flagella increases substantially. In this article, we investigated the properties of individual E. coli-type swarmer cells confined between two parallel walls via mesoscale hydrodynamic simulations, combining molecular dynamics simulations of the swarmer cell with the multiparticle particle collision dynamics approach for the embedding fluid. E. coli-type swarmer cells are three-times longer than their planktonic counter parts, but their flagella density is comparable. By varying the wall separation, we analyze the confinement effect on the flagella arrangement, on the distribution of cells in the gap between the walls, and on the cell dynamics. We find only a weak dependence of confinement on the bundle structure and dynamics. The distribution of cells in the gap changes from a geometry-dominated behavior for very narrow to fluid-dominated behavior for wider gaps, where cells are preferentially located in the gap center for narrower gaps and stay preferentially next to one of the walls for wider gaps. Dynamically, the cells exhibit a wide spectrum of migration behaviors, depending on their flagella bundle arrangement, and ranges from straight swimming to wall rolling.
Collapse
Affiliation(s)
- Thomas Eisenstecken
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | - Jinglei Hu
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany. and Kuang Yaming Honors School, Nanjing University, 210023 Nanjing, China.
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| |
Collapse
|
75
|
Domínguez A, Malgaretti P, Popescu MN, Dietrich S. Collective dynamics of chemically active particles trapped at a fluid interface. SOFT MATTER 2016; 12:8398-8406. [PMID: 27714377 DOI: 10.1039/c6sm01468b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chemically active colloids generate changes in the chemical composition of their surrounding solution and thereby induce flows in the ambient fluid which affect their dynamical evolution. Here we study the many-body dynamics of a monolayer of spherically symmetric active particles trapped at a fluid-fluid interface. To this end we consider a model for the large-scale spatial distribution of particles which incorporates the direct pair interaction (including also the capillary interaction which is caused specifically by the interfacial trapping) as well as the effect of hydrodynamic interactions (including the Marangoni flow induced by the response of the interface to the chemical activity). The values of the relevant physical parameters for typical experimental realizations of such systems are estimated and various scenarios, which are predicted by our approach for the dynamics of the monolayer, are discussed. In particular, we show that the chemically-induced Marangoni flow can prevent the clustering instability driven by the capillary attraction.
Collapse
Affiliation(s)
- Alvaro Domínguez
- Física Teórica, Universidad de Sevilla, Apdo. 1065, 41080 Sevilla, Spain.
| | - P Malgaretti
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - M N Popescu
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - S Dietrich
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| |
Collapse
|
76
|
Shen M, Ye F, Liu R, Chen K, Yang M, Ripoll M. Chemically driven fluid transport in long microchannels. J Chem Phys 2016; 145:124119. [DOI: 10.1063/1.4963721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mingren Shen
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Rui Liu
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Marisol Ripoll
- Theoretical Soft-Matter and Biophysics, Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
77
|
Theers M, Westphal E, Gompper G, Winkler RG. Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit. SOFT MATTER 2016; 12:7372-7385. [PMID: 27529776 DOI: 10.1039/c6sm01424k] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We propose a hydrodynamic model for a spheroidal microswimmer with two tangential surface velocity modes. This model is analytically solvable and reduces to Lighthill's and Blake's spherical squirmer model in the limit of equal major and minor semi-axes. Furthermore, we present an implementation of such a spheroidal squirmer by means of particle-based mesoscale hydrodynamics simulations using the multiparticle collision dynamics approach. We investigate its properties as well as the scattering of two spheroidal squirmers in a slit geometry. Thereby we find a stable fixed point, where two pullers swim cooperatively forming a wedge-like conformation with a small constant angle.
Collapse
Affiliation(s)
- Mario Theers
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | | | | | |
Collapse
|
78
|
Huang MJ, Schofield J, Kapral R. A microscopic model for chemically-powered Janus motors. SOFT MATTER 2016; 12:5581-9. [PMID: 27241052 DOI: 10.1039/c6sm00830e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Very small synthetic motors that make use of chemical reactions to propel themselves in solution hold promise for new applications in the development of new materials, science and medicine. The prospect of such potential applications, along with the fact that systems with many motors or active elements display interesting cooperative phenomena of fundamental interest, has made the study of synthetic motors an active research area. Janus motors, comprising catalytic and noncatalytic hemispheres, figure prominently in experimental and theoretical studies of these systems. While continuum models of Janus motor systems are often used to describe motor dynamics, microscopic models that are able to account for intermolecular interactions, many-body concentration gradients, fluid flows and thermal fluctuations provide a way to explore the dynamical behavior of these complex out-of-equilibrium systems that does not rely on approximations that are often made in continuum theories. The analysis of microscopic models from first principles provides a foundation from which the range of validity and limitations of approximate theories of the dynamics may be assessed. In this paper, a microscopic model for the diffusiophoretic propulsion of Janus motors, where motor interactions with the environment occur only through hard collisions, is constructed, analyzed and compared to theoretical predictions. Microscopic simulations of both single-motor and many-motor systems are carried out to illustrate the results.
Collapse
Affiliation(s)
- Mu-Jie Huang
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
| | | | | |
Collapse
|
79
|
Sarkar D, Thakur S. Coarse-grained simulations of an active filament propelled by a self-generated solute gradient. Phys Rev E 2016; 93:032508. [PMID: 27078406 DOI: 10.1103/physreve.93.032508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 06/05/2023]
Abstract
A self-propelling semiflexible filament exhibits a variety of dynamical states depending on the flexibility and activity of the filament. Here we investigate the dynamics of such an active filament using a bead-spring model with the explicit hydrodynamic interactions. The activity in the filament is incorporated by inserting chemically active dimers at regular intervals along the chain. The chemical reactions at the catalytic bead of the dimer produces a self-generated concentration gradient and gives sufficient fuel to exhibit self-propulsion for the filament. Depending upon the rigidity and the configuration, the polymeric filament exhibits three distinct types of spontaneous motion, namely, rotational, snaking, and translational motion. The self-propulsion velocity of the filament for various rigidity and sizes has been calculated, and the factors affecting the propulsion are identified.
Collapse
Affiliation(s)
- Debarati Sarkar
- Department of Physics, Indian Institute of Science Education and Research Bhopal, India
| | - Snigdha Thakur
- Department of Physics, Indian Institute of Science Education and Research Bhopal, India
| |
Collapse
|
80
|
Huang MJ, Kapral R. Collective dynamics of diffusiophoretic motors on a filament. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:36. [PMID: 27021653 DOI: 10.1140/epje/i2016-16036-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
A variety of uses has been proposed for synthetic chemically powered nanomotors that exploit their autonomous directed motion. The collective dynamics of these and other active particles display features that differ from their equilibrium analogs. We investigate the collective dynamics of chemically powered diffusiophoretic motors attached to a filament. Rotational Brownian motion is reduced substantially when a motor is attached to a filament and this improves motor performance. When many motors are attached to the filament, structural and dynamical correlations that may extend over long distances arise. While some features of these correlations are due to packing on the filament, there are nonequilibrium effects that are due to the local concentration gradients of reactive species produced by all motors. As the motor density on the filament increases beyond a critical value, the average motor velocity projected along motor internuclear axis switches from forward to backward directions. Knowledge of the collective dynamics of motors on filaments should prove useful when designing ensembles of synthetic motors to perform tasks such as cargo transport involving delivery of material to specific regions in complex media.
Collapse
Affiliation(s)
- Mu-Jie Huang
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, M5S 3H6, Toronto, Ontario, Canada.
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, M5S 3H6, Toronto, Ontario, Canada
| |
Collapse
|
81
|
Domínguez A, Malgaretti P, Popescu MN, Dietrich S. Effective Interaction between Active Colloids and Fluid Interfaces Induced by Marangoni Flows. PHYSICAL REVIEW LETTERS 2016; 116:078301. [PMID: 26943561 DOI: 10.1103/physrevlett.116.078301] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Indexed: 05/10/2023]
Abstract
We show theoretically that near a fluid-fluid interface a single active colloidal particle generating, e.g., chemicals or a temperature gradient experiences an effective force of hydrodynamic origin. This force is due to the fluid flow driven by Marangoni stresses induced by the activity of the particle; it decays very slowly with the distance from the interface, and can be attractive or repulsive depending on how the activity modifies the surface tension. We show that, for typical systems, this interaction can dominate the dynamics of the particle as compared to Brownian motion, dispersion forces, or self-phoretic effects. In the attractive case, the interaction promotes the self-assembly of particles into a crystal-like monolayer at the interface.
Collapse
Affiliation(s)
- Alvaro Domínguez
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, 41080 Sevilla, Spain
| | - P Malgaretti
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - M N Popescu
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - S Dietrich
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| |
Collapse
|
82
|
Yang M, Ripoll M, Chen K. Catalytic microrotor driven by geometrical asymmetry. J Chem Phys 2016; 142:054902. [PMID: 25662663 DOI: 10.1063/1.4906823] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An asymmetric gear with homogeneous surface properties is, here, presented as a prototype to fabricate catalytic microrotors. The driving torque arises from the diffusiophoretic effect induced by the concentration gradients generated by catalytic chemical reactions at the gear surface. This torque produces a spontaneous and unidirectional rotation of the asymmetric gear. By means of mesoscopic simulations, we prove and characterize this scenario. The gear rotational velocity is determined by the gear-solvent interactions, the gear geometry, the solvent viscosity, and the catalytic reaction ratio. Our work presents a simple way to design self-propelled microrotors, alternative to existing catalytic bi-component, or thermophoretic ones.
Collapse
Affiliation(s)
- Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Marisol Ripoll
- Theoretical Soft-Matter and Biophysics, Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
83
|
Chen JX, Chen YG, Ma YQ. Chemotactic dynamics of catalytic dimer nanomotors. SOFT MATTER 2016; 12:1876-1883. [PMID: 26679990 DOI: 10.1039/c5sm02647d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Synthetic chemically powered nanomotors possessing the ability of chemotaxis are desirable for target cargo delivery and self-assembly. The chemotactic properties of a sphere dimer motor, composed of linked catalytic and inactive monomers, are studied in a gradient field of fuel. Particle-based simulation is carried out by means of hybrid molecular dynamics/multiparticle collision dynamics. The detailed tracking and motion analysis describing the running and tumbling of the sphere dimer motor in the process of chemotaxis are investigated. Physical factors affecting chemotactic velocity are discussed, and quantitative relations are presented. The influence of the geometry of sphere dimer motors on the chemotactic dynamics is explored, which is beneficial for the design of motors with high sensitivity for detecting the surrounding environment.
Collapse
Affiliation(s)
- Jiang-Xing Chen
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
| | | | | |
Collapse
|
84
|
|
85
|
Gao T, Fan J, Tao YG. Multi-particle collision dynamics simulation on capturing a target sphere fuelled by chemical reaction. Mol Phys 2016. [DOI: 10.1080/00268976.2015.1100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Tong Gao
- School of Computer Science and Engineering, Jilin Jianzhu (Architecture) University, Changchun, P.R. China
| | - Jia Fan
- Department of Neurology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yu-Guo Tao
- Department of Chemistry, University of Toronto, Canada
| |
Collapse
|
86
|
Robertson B, Kapral R. Nanomotor dynamics in a chemically oscillating medium. J Chem Phys 2016; 142:154902. [PMID: 25903905 DOI: 10.1063/1.4918329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Synthetic nanomotors powered by chemical reactions have potential uses as cargo transport vehicles in both in vivo and in vitro applications. In many situations, motors will have to operate in out-of-equilibrium complex chemically reacting media, which supply fuel to the motors and remove the products they produce. Using molecular simulation and mean-field theory, this paper describes some of the new features that arise when a chemically powered nanomotor, operating through a diffusiophoretic mechanism, moves in an environment that supports an oscillatory chemical reaction network. It is shown how oscillations in the concentrations in chemical species in the environment give rise to oscillatory motor dynamics. More importantly, since the catalytic reactions on the motor that are responsible for its propulsion couple to the bulk phase reaction network, the motor can change its local environment. This process can give rise to distinctive spatiotemporal structures in reaction-diffusion media that occur as a result of active motor motion. Such locally induced nonequilibrium structure will play an important role in applications that involve motor dynamics in complex chemical media.
Collapse
Affiliation(s)
- Bryan Robertson
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
87
|
Affiliation(s)
- Peter H. Colberg
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
88
|
Hu J, Yang M, Gompper G, Winkler RG. Modelling the mechanics and hydrodynamics of swimming E. coli. SOFT MATTER 2015; 11:7867-7876. [PMID: 26256240 DOI: 10.1039/c5sm01678a] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The swimming properties of an E. coli-type model bacterium are investigated by mesoscale hydrodynamic simulations, combining molecular dynamics simulations of the bacterium with the multiparticle particle collision dynamics method for the embedding fluid. The bacterium is composed of a spherocylindrical body with attached helical flagella, built up from discrete particles for an efficient coupling with the fluid. We measure the hydrodynamic friction coefficients of the bacterium and find quantitative agreement with experimental results of swimming E. coli. The flow field of the bacterium shows a force-dipole-like pattern in the swimming plane and two vortices perpendicular to its swimming direction arising from counterrotation of the cell body and the flagella. By comparison with the flow field of a force dipole and rotlet dipole, we extract the force-dipole and rotlet-dipole strengths for the bacterium and find that counterrotation of the cell body and the flagella is essential for describing the near-field hydrodynamics of the bacterium.
Collapse
Affiliation(s)
- Jinglei Hu
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | | | | | |
Collapse
|
89
|
Yang M, Liu R, Ripoll M, Chen K. A microscale turbine driven by diffusive mass flux. LAB ON A CHIP 2015; 15:3912-3917. [PMID: 26288078 DOI: 10.1039/c5lc00479a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An external diffusive mass flux is shown to be able to generate a mechanical torque on a microscale object based on anisotropic diffusiophoresis. In light of this finding, we propose a theoretical prototype micro-turbine driven purely by diffusive mass flux, which is in strong contrast to conventional turbines driven by convective mass flows. The rotational velocity of the proposed turbine is determined by the external concentration gradient, the geometry and the diffusiophoretic properties of the turbine. This scenario is validated by performing computer simulations. Our finding thus provides a new type of chemo-mechanical response which could be used to exploit existing chemical energies at small scales.
Collapse
Affiliation(s)
- Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | |
Collapse
|
90
|
Gupta S, Sreeja KK, Thakur S. Autonomous movement of a chemically powered vesicle. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042703. [PMID: 26565268 DOI: 10.1103/physreve.92.042703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 06/05/2023]
Abstract
We investigate the diffusio-phoretic motion of a deformable vesicle. A vesicle is built from the linked catalytic and noncatalytic vertices that consumes fuel in the environment and utilize the resulting self-generated concentration gradient to exhibit propulsive motion. Under nonequilibrium conditions it is found that the self-propulsion velocity of the vesicle depends on its shape, which in turn is controlled by the bending rigidity of the membrane and solvent density around it. The self-propulsion velocity of the vesicle for different shapes has been calculated and the factors which affect the velocity are identified.
Collapse
Affiliation(s)
- Shivam Gupta
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - K K Sreeja
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Snigdha Thakur
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
91
|
Fedosov DA, Sengupta A, Gompper G. Effect of fluid-colloid interactions on the mobility of a thermophoretic microswimmer in non-ideal fluids. SOFT MATTER 2015. [PMID: 26223678 DOI: 10.1039/c5sm01364j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Janus colloids propelled by light, e.g., thermophoretic particles, offer promising prospects as artificial microswimmers. However, their swimming behavior and its dependence on fluid properties and fluid-colloid interactions remain poorly understood. Here, we investigate the behavior of a thermophoretic Janus colloid in its own temperature gradient using numerical simulations. The dissipative particle dynamics method with energy conservation is used to investigate the behavior in non-ideal and ideal-gas like fluids for different fluid-colloid interactions, boundary conditions, and temperature-controlling strategies. The fluid-colloid interactions appear to have a strong effect on the colloid behavior, since they directly affect heat exchange between the colloid surface and the fluid. The simulation results show that a reduction of the heat exchange at the fluid-colloid interface leads to an enhancement of colloid's thermophoretic mobility. The colloid behavior is found to be different in non-ideal and ideal fluids, suggesting that fluid compressibility plays a significant role. The flow field around the colloid surface is found to be dominated by a source-dipole, in agreement with the recent theoretical and simulation predictions. Finally, different temperature-control strategies do not appear to have a strong effect on the colloid's swimming velocity.
Collapse
Affiliation(s)
- Dmitry A Fedosov
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | |
Collapse
|
92
|
Showalter K, Epstein IR. From chemical systems to systems chemistry: Patterns in space and time. CHAOS (WOODBURY, N.Y.) 2015; 25:097613. [PMID: 26428566 DOI: 10.1063/1.4918601] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We present a brief, idiosyncratic overview of the past quarter century of progress in nonlinear chemical dynamics and discuss what we view as the most exciting recent developments and some challenges and likely areas of progress in the next 25 years.
Collapse
Affiliation(s)
- Kenneth Showalter
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045, USA
| | - Irving R Epstein
- Department of Chemistry and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| |
Collapse
|
93
|
Yang M, Theers M, Hu J, Gompper G, Winkler RG, Ripoll M. Effect of angular momentum conservation on hydrodynamic simulations of colloids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:013301. [PMID: 26274301 DOI: 10.1103/physreve.92.013301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 06/04/2023]
Abstract
In contrast to most real fluids, angular momentum is not a locally conserved quantity in some mesoscopic simulation methods. Here we quantify the importance of this conservation in the flow fields associated with different colloidal systems. The flow field is analytically calculated with and without angular momentum conservation for the multiparticle collision dynamics (MPC) method, and simulations are performed to verify the predictions. The flow field generated around a colloidal particle moving under an external force with slip boundary conditions depends on the conservation of angular momentum, and the amplitude of the friction force is substantially affected. Interestingly, no dependence on the angular momentum conservation is found for the flow fields generated around colloids under the influence of phoretic forces. Moreover, circular Couette flow between a no-slip and a slip cylinder is investigated, which allows us to validate one of the two existing expressions for the MPC stress tensor.
Collapse
Affiliation(s)
- Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Theoretical Soft-Matter and Biophysics, Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Mario Theers
- Theoretical Soft-Matter and Biophysics, Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jinglei Hu
- Theoretical Soft-Matter and Biophysics, Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft-Matter and Biophysics, Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany
- Theoretical Soft-Matter and Biophysics, Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft-Matter and Biophysics, Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Marisol Ripoll
- Theoretical Soft-Matter and Biophysics, Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
94
|
Spagnolie SE, Moreno-Flores GR, Bartolo D, Lauga E. Geometric capture and escape of a microswimmer colliding with an obstacle. SOFT MATTER 2015; 11:3396-3411. [PMID: 25800455 DOI: 10.1039/c4sm02785j] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Motivated by recent experiments, we consider the hydrodynamic capture of a microswimmer near a stationary spherical obstacle. Simulations of model equations show that a swimmer approaching a small spherical colloid is simply scattered. In contrast, when the colloid is larger than a critical size it acts as a passive trap: the swimmer is hydrodynamically captured along closed trajectories and endlessly orbits around the colloidal sphere. In order to gain physical insight into this hydrodynamic scattering problem, we address it analytically. We provide expressions for the critical trapping radius, the depth of the "basin of attraction," and the scattering angle, which show excellent agreement with our numerical findings. We also demonstrate and rationalize the strong impact of swimming-flow symmetries on the trapping efficiency. Finally, we give the swimmer an opportunity to escape the colloidal traps by considering the effects of Brownian, or active, diffusion. We show that in some cases the trapping time is governed by an Ornstein-Uhlenbeck process, which results in a trapping time distribution that is well-approximated as inverse-Gaussian. The predictions again compare very favorably with the numerical simulations. We envision applications of the theory to bioremediation, microorganism sorting techniques, and the study of bacterial populations in heterogeneous or porous environments.
Collapse
Affiliation(s)
- Saverio E Spagnolie
- Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Dr., Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
95
|
Elgeti J, Winkler RG, Gompper G. Physics of microswimmers--single particle motion and collective behavior: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:056601. [PMID: 25919479 DOI: 10.1088/0034-4885/78/5/056601] [Citation(s) in RCA: 698] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occurs at low Reynolds numbers, where fluid friction and viscosity dominates over inertia. Here, evolution achieved propulsion mechanisms, which overcome and even exploit drag. Prominent propulsion mechanisms are rotating helical flagella, exploited by many bacteria, and snake-like or whip-like motion of eukaryotic flagella, utilized by sperm and algae. For artificial microswimmers, alternative concepts to convert chemical energy or heat into directed motion can be employed, which are potentially more efficient. The dynamics of microswimmers comprises many facets, which are all required to achieve locomotion. In this article, we review the physics of locomotion of biological and synthetic microswimmers, and the collective behavior of their assemblies. Starting from individual microswimmers, we describe the various propulsion mechanism of biological and synthetic systems and address the hydrodynamic aspects of swimming. This comprises synchronization and the concerted beating of flagella and cilia. In addition, the swimming behavior next to surfaces is examined. Finally, collective and cooperate phenomena of various types of isotropic and anisotropic swimmers with and without hydrodynamic interactions are discussed.
Collapse
Affiliation(s)
- J Elgeti
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | | | | |
Collapse
|
96
|
Soto R, Golestanian R. Self-assembly of active colloidal molecules with dynamic function. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052304. [PMID: 26066174 DOI: 10.1103/physreve.91.052304] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Indexed: 05/27/2023]
Abstract
Catalytically active colloids maintain nonequilibrium conditions in which they produce and deplete chemicals and hence effectively act as sources and sinks of molecules. While individual colloids that are symmetrically coated do not exhibit any form of dynamical activity, the concentration fields resulting from their chemical activity decay as 1/r and produce gradients that attract or repel other colloids depending on their surface chemistry and ambient variables. This results in a nonequilibrium analog of ionic systems, but with the remarkable novel feature of action-reaction symmetry breaking. We study solutions of such chemically active colloids in dilute conditions when they join up to form molecules via generalized ionic bonds and discuss how we can achieve structures with time-dependent functionality. In particular, we study a molecule that adopts a spontaneous oscillatory pattern of conformations and another that exhibits a run-and-tumble dynamics similar to bacteria. Our study shows that catalytically active colloids could be used for designing self-assembled structures that possess dynamical functionalities that are determined by their prescribed three-dimensional structures, a strategy that follows the design principle of proteins.
Collapse
Affiliation(s)
- Rodrigo Soto
- Departamento de Física, Facultad de Ciencias Físicas y Matemáticas Universidad de Chile, Av. Blanco Encalada 2008, Santiago, Chile
| | - Ramin Golestanian
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom
| |
Collapse
|
97
|
Reigh SY, Kapral R. Catalytic dimer nanomotors: continuum theory and microscopic dynamics. SOFT MATTER 2015; 11:3149-58. [PMID: 25752942 DOI: 10.1039/c4sm02857k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Synthetic chemically-powered motors with various geometries have potentially new applications involving dynamics on very small scales. Self-generated concentration and fluid flow fields, which depend on geometry, play essential roles in motor dynamics. Sphere-dimer motors, comprising linked catalytic and noncatalytic spheres, display more complex versions of such fields, compared to the often-studied spherical Janus motors. By making use of analytical continuum theory and particle-based simulations we determine the concentration fields, and both the complex structure of the near-field and point-force dipole nature of the far-field behavior of the solvent velocity field that are important for studies of collective motor motion. We derive the dependence of motor velocity on geometric factors such as sphere size and dimer bond length and, thus, show how to construct motors with specific characteristics.
Collapse
Affiliation(s)
- Shang Yik Reigh
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
| | | |
Collapse
|
98
|
de Graaf J, Rempfer G, Holm C. Diffusiophoretic Self-Propulsion for Partially Catalytic Spherical Colloids. IEEE Trans Nanobioscience 2015; 14:272-88. [DOI: 10.1109/tnb.2015.2403255] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
99
|
Theers M, Winkler RG. Bulk viscosity of multiparticle collision dynamics fluids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:033309. [PMID: 25871248 DOI: 10.1103/physreve.91.033309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 06/04/2023]
Abstract
We determine the viscosity parameters of the multiparticle collision dynamics (MPC) approach, a particle-based mesoscale hydrodynamic simulation method for fluids. We perform analytical calculations and verify our results by simulations. The stochastic rotation dynamics and the Andersen thermostat variant of MPC are considered, both with and without angular momentum conservation. As an important result, we find a nonzero bulk viscosity for every MPC version. The explicit calculation shows that the bulk viscosity is determined solely by the collisional interactions of MPC.
Collapse
Affiliation(s)
- Mario Theers
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
100
|
Michelin S, Lauga E. Autophoretic locomotion from geometric asymmetry. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:91. [PMID: 25676446 DOI: 10.1140/epje/i2015-15007-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
Among the few methods which have been proposed to create small-scale swimmers, those relying on self-phoretic mechanisms present an interesting design challenge in that chemical gradients are required to generate net propulsion. Building on recent work, we propose that asymmetries in geometry are sufficient to induce chemical gradients and swimming. We illustrate this idea using two different calculations. We first calculate exactly the self-propulsion speed of a system composed of two spheres of unequal sizes but identically chemically homogeneous. We then consider arbitrary, small-amplitude, shape deformations of a chemically homogeneous sphere, and calculate asymptotically the self-propulsion velocity induced by the shape asymmetries. Our results demonstrate how geometric asymmetries can be tuned to induce large locomotion speeds without the need of chemical patterning.
Collapse
Affiliation(s)
- Sébastien Michelin
- LadHyX - Département de Mécanique, Ecole polytechnique - CNRS, 91128, Palaiseau Cedex, France,
| | | |
Collapse
|