51
|
Genome-Wide Identification of Gramineae Brassinosteroid-Related Genes and Their Roles in Plant Architecture and Salt Stress Adaptation. Int J Mol Sci 2022; 23:ijms23105551. [PMID: 35628372 PMCID: PMC9146025 DOI: 10.3390/ijms23105551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 12/03/2022] Open
Abstract
Brassinosteroid-related genes are involved in regulating plant growth and stress responses. However, systematic analysis is limited to Gramineae species, and their roles in plant architecture and salt stress remain unclear. In this study, we identified brassinosteroid-related genes in wheat, barley, maize, and sorghum and investigated their evolutionary relationships, conserved domains, transmembrane topologies, promoter sequences, syntenic relationships, and gene/protein structures. Gene and genome duplications led to considerable differences in gene numbers. Specific domains were revealed in several genes (i.e., HvSPY, HvSMOS1, and ZmLIC), indicating diverse functions. Protein-protein interactions suggested their synergistic functions. Their expression profiles were investigated in wheat and maize, which indicated involvement in adaptation to stress and regulation of plant architecture. Several candidate genes for plant architecture (ZmBZR1 and TaGSK1/2/3/4-3D) and salinity resistance (TaMADS22/47/55-4B, TaGRAS19-4B, and TaBRD1-2A.1) were identified. This study is the first to comprehensively investigate brassinosteroid-related plant architecture genes in four Gramineae species and should help elucidate the biological roles of brassinosteroid-related genes in crops.
Collapse
|
52
|
Genetic Mechanisms of Cold Signaling in Wheat (Triticum aestivum L.). Life (Basel) 2022; 12:life12050700. [PMID: 35629367 PMCID: PMC9147279 DOI: 10.3390/life12050700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Cold stress is a major environmental factor affecting the growth, development, and productivity of various crop species. With the current trajectory of global climate change, low temperatures are becoming more frequent and can significantly decrease crop yield. Wheat (Triticum aestivum L.) is the first domesticated crop and is the most popular cereal crop in the world. Because of a lack of systematic research on cold signaling pathways and gene regulatory networks, the underlying molecular mechanisms of cold signal transduction in wheat are poorly understood. This study reviews recent progress in wheat, including the ICE-CBF-COR signaling pathway under cold stress and the effects of cold stress on hormonal pathways, reactive oxygen species (ROS), and epigenetic processes and elements. This review also highlights possible strategies for improving cold tolerance in wheat.
Collapse
|
53
|
Xiong M, Yu J, Wang J, Gao Q, Huang L, Chen C, Zhang C, Fan X, Zhao D, Liu QQ, Li QF. Brassinosteroids regulate rice seed germination through the BZR1-RAmy3D transcriptional module. PLANT PHYSIOLOGY 2022; 189:402-418. [PMID: 35139229 PMCID: PMC9070845 DOI: 10.1093/plphys/kiac043] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/07/2022] [Indexed: 05/03/2023]
Abstract
Seed dormancy and germination, two physiological processes unique to seed-bearing plants, are critical for plant growth and crop production. The phytohormone brassinosteroid (BR) regulates many aspects of plant growth and development, including seed germination. The molecular mechanisms underlying BR control of rice (Oryza sativa) seed germination are mostly unknown. We investigated the molecular regulatory cascade of BR in promoting rice seed germination and post-germination growth. Physiological assays indicated that blocking BR signaling, including introducing defects into the BR-insensitive 1 (BRI1) receptor or overexpressing the glycogen synthase kinase 2 (GSK2) kinase delayed seed germination and suppressed embryo growth. Our results also indicated that brassinazole-resistant 1 (BZR1) is the key downstream transcription factor that mediates BR regulation of seed germination by binding to the alpha-Amylase 3D (RAmy3D) promoter, which affects α-amylase expression and activity and the degradation of starch in the endosperm. The BZR1-RAmy3D module functions independently from the established Gibberellin MYB-alpha-amylase 1A (RAmy1A) module of the gibberellin (GA) pathway. We demonstrate that the BZR1-RAmy3D module also functions in embryo-related tissues. Moreover, RNA-sequencing (RNA-seq) analysis identified more potential BZR1-responsive genes, including those involved in starch and sucrose metabolism. Our study successfully identified the role of the BZR1-RAmy3D transcriptional module in regulating rice seed germination.
Collapse
Affiliation(s)
| | | | | | - Qiang Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Sate Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Lichun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Sate Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Chen Chen
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Sate Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xiaolei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Sate Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Dongsheng Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Sate Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | | | | |
Collapse
|
54
|
Song Y, Niu R, Yu H, Guo J, Du C, Zhang Z, Wei Y, Li J, Zhang S. OsSLA1 functions in leaf angle regulation by enhancing the interaction between OsBRI1 and OsBAK1 in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1111-1127. [PMID: 35275421 DOI: 10.1111/tpj.15727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Leaf angle is an important trait in plants. Here, we demonstrate that the leucine-rich repeat receptor-like kinase OsSLA1 plays an important role in leaf angle regulation in rice (Oryza sativa). OsSLA1 mutant plants exhibited a small leaf angle phenotype due to changes of adaxial cells in the lamina joint. GUS staining revealed that OsSLA1 was highly expressed in adaxial cells of the lamina joint. The OsSLA1 mutant plants were insensitive to exogenous epibrassinolide (eBL) and showed upregulated expression of DWARF and CPD, but downregulated expression of BU1, BUL1, and ILI1, indicating that brassinosteroid (BR) signal transduction was blocked. Fluorescence microscopy showed that OsSLA1 was localized to the plasma membrane and nearby periplasmic vesicles. Further study showed that OsSLA1 interacts with OsBRI1 and OsBAK1 via its intracellular domain and promotes the interaction between OsBRI1 and OsBAK1. In addition, phosphorylation experiments revealed that OsSLA1 does not possess kinase activity, but that it can be phosphorylated by OsBRI1 in vitro. Knockout of OsSLA1 in the context of d61 caused exacerbation of the mutant phenotype. These results demonstrate that OsSLA1 regulates leaf angle formation via positive regulation of BR signaling by enhancing the interaction of OsBRI1 with OsBAK1.
Collapse
Affiliation(s)
- Yajing Song
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Ruofan Niu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Hongli Yu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Jing Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Chunhui Du
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Zilun Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Ying Wei
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Jiaxue Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Suqiao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| |
Collapse
|
55
|
Sheng M, Ma X, Wang J, Xue T, Li Z, Cao Y, Yu X, Zhang X, Wang Y, Xu W, Su Z. KNOX II transcription factor HOS59 functions in regulating rice grain size. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:863-880. [PMID: 35167131 DOI: 10.1111/tpj.15709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/30/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Plant Knotted1-like homeobox (KNOX) genes encode homeodomain-containing transcription factors. In rice (Oryza sativa L.), little is known about the downstream target genes of KNOX Class II subfamily proteins. Here we generated chromatin immunoprecipitation (ChIP)-sequencing datasets for HOS59, a member of the rice KNOX Class II subfamily, and characterized the genome-wide binding sites of HOS59. We conducted trait ontology (TO) analysis of 9705 identified downstream target genes, and found that multiple TO terms are related to plant structure morphology and stress traits. ChIP-quantitative PCR (qPCR) was conducted to validate some key target genes. Meanwhile, our IP-MS datasets showed that HOS59 was closely associated with BELL family proteins, some grain size regulators (OsSPL13, OsSPL16, OsSPL18, SLG, etc.), and some epigenetic modification factors such as OsAGO4α and OsAGO4β, proteins involved in small interfering RNA-mediated gene silencing. Furthermore, we employed CRISPR/Cas9 editing and transgenic approaches to generate hos59 mutants and overexpression lines, respectively. Compared with wild-type plants, the hos59 mutants have longer grains and increased glume cell length, a loose plant architecture, and drooping leaves, while the overexpression lines showed smaller grain size, erect leaves, and lower plant height. The qRT-PCR results showed that mutation of the HOS59 gene led to upregulation of some grain size-related genes such as OsSPL13, OsSPL18, and PGL2. In summary, our results indicate that HOS59 may be a repressor of the downstream target genes, negatively regulating glume cell length, rice grain size, plant architecture, etc. The identified downstream target genes and possible interaction proteins of HOS59 improve our understanding of the KNOX regulatory networks.
Collapse
Affiliation(s)
- Minghao Sheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuelian Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiyao Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianxi Xue
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhongqiu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yaxin Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyue Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
56
|
Wang Y, Xu J, Yu J, Zhu D, Zhao Q. Maize GSK3-like kinase ZmSK2 is involved in embryonic development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111221. [PMID: 35351312 DOI: 10.1016/j.plantsci.2022.111221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 05/28/2023]
Abstract
Grain size and weight are closely related to the yield of cereal crops. Abnormal development of the embryo, an important part of the grain, not only affects crop yield but also impacts next-generation survival. Here, we found that maize GSK3-like kinase ZmSK2, a homolog of BIN2 in Arabidopsis, is involved in embryonic development. ZmSK2 overexpression resulted in severe BR defective phenotypes and arrested embryonic development at the transition stage, while the zmsk2 knockout lines showed enlarged embryos. ZmSK2 interacts with Aux/IAA-transcription factor 28 (ZmIAA28), a negative regulator of auxin signaling, and the interaction region is the auxin degron "GWPPV" motif of ZmIAA28 domain II. Coexpression of ZmSK2 with ZmIAA28 increased the accumulation of ZmIAA28 in maize protoplasts, which may have been due to phosphorylation by ZmSK2. In conclusion, this study reveals the function of ZmSK2 in maize embryonic development and proposes that ZmSK2-ZmIAA28 may be another link in the signaling pathway that integrates BR and auxin.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jianghai Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Dengyun Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Qian Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
57
|
Ahmad H, Zafar SA, Naeem MK, Shokat S, Inam S, Rehman MAU, Naveed SA, Xu J, Li Z, Ali GM, Khan MR. Impact of Pre-Anthesis Drought Stress on Physiology, Yield-Related Traits, and Drought-Responsive Genes in Green Super Rice. Front Genet 2022; 13:832542. [PMID: 35401708 PMCID: PMC8987348 DOI: 10.3389/fgene.2022.832542] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Optimum soil water availability is vital for maximum yield production in rice which is challenged by increasing spells of drought. The reproductive stage drought is among the main limiting factors leading to the drastic reduction in grain yield. The objective of this study was to investigate the molecular and morphophysiological responses of pre-anthesis stage drought stress in green super rice. The study assessed the performance of 26 rice lines under irrigated and drought conditions. Irrigated treatment was allowed to grow normally, while drought stress was imposed for 30 days at the pre-anthesis stage. Three important physiological traits including pollen fertility percentage (PFP), cell membrane stability (CMS), and normalized difference vegetative index (NDVI) were recorded at anthesis stage during the last week of drought stress. Agronomic traits of economic importance including grain yield were recorded at maturity stage. The analysis of variance demonstrated significant variation among the genotypes for most of the studied traits. Correlation and principal component analyses demonstrated highly significant associations of particular agronomic traits with grain yield, and genetic diversity among genotypes, respectively. Our study demonstrated a higher drought tolerance potential of GSR lines compared with local cultivars, mainly by higher pollen viability, plant biomass, CMS, and harvest index under drought. In addition, the molecular basis of drought tolerance in GSR lines was related to upregulation of certain drought-responsive genes including OsSADRI, OsDSM1, OsDT11, but not the DREB genes. Our study identified novel drought-responsive genes (LOC_Os11g36190, LOC_Os12g04500, LOC_Os12g26290, and LOC_Os02g11960) that could be further characterized using reverse genetics to be utilized in molecular breeding for drought tolerance.
Collapse
Affiliation(s)
- Hassaan Ahmad
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad, Pakistan
| | - Syed Adeel Zafar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad, Pakistan
| | - Muhammad Kashif Naeem
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad, Pakistan
| | - Sajid Shokat
- Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Safeena Inam
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad, Pakistan
| | - Malik Attique ur Rehman
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad, Pakistan
| | - Shahzad Amir Naveed
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhikang Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ghulam Muhammad Ali
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Islamabad, Pakistan
- *Correspondence: Muhammad Ramzan Khan,
| |
Collapse
|
58
|
Over-expression of TaDWF4 increases wheat productivity under low and sufficient nitrogen through enhanced carbon assimilation. Commun Biol 2022; 5:193. [PMID: 35241776 PMCID: PMC8894359 DOI: 10.1038/s42003-022-03139-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
There is a strong pressure to reduce nitrogen (N) fertilizer inputs while maintaining or increasing current cereal crop yields. We show that overexpression of TaDWF4-B, the dominant shoot expressed homoeologue of OsDWF4, in wheat can increase plant productivity by up to 105% under a range of N levels on marginal soils, resulting in increased N use efficiency (NUE). We show that a two to four-fold increase in TaDWF4 transcript levels enhances the responsiveness of genes regulated by N. The productivity increases seen were primarily due to the maintenance of photosystem II operating efficiency and carbon assimilation in plants when grown under limiting N conditions and not an overall increase in photosynthesis capacity. The increased biomass production and yield per plant in TaDWF4 OE lines could be linked to modified carbon partitioning and changes in expression pattern of the growth regulator Target Of Rapamycin, offering a route towards breeding for sustained yield and lower N inputs. In wheat, overexpression of TaDWF4 overrides normal nutrient sensing allowing for increased biomass when grown under limiting nutrient conditions. This maintenance of growth is associated with modified carbon partitioning and changes in expression of growth regulator TaTOR, offering a route towards breeding for sustained yields with lower nitrogen inputs.
Collapse
|
59
|
Cao Y, Zhong Z, Wang H, Shen R. Leaf angle: a target of genetic improvement in cereal crops tailored for high-density planting. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:426-436. [PMID: 35075761 PMCID: PMC8882799 DOI: 10.1111/pbi.13780] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 05/12/2023]
Abstract
High-density planting is an effective measure for increasing crop yield per unit land area. Leaf angle (LA) is a key trait of plant architecture and a target for genetic improvement of crops. Upright leaves allow better light capture in canopy under high-density planting, thus enhancing photosynthesis efficiency, ventilation and stress resistance, and ultimately higher grain yield. Here, we summarized the latest progress on the cellular and molecular mechanisms regulating LA formation in rice and maize. We suggest several standing out questions for future studies and then propose some promising strategies to manipulate LA for breeding of cereal crops tailored for high-density planting.
Collapse
Affiliation(s)
- Yingying Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Zhuojun Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Rongxin Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
60
|
Wu Q, Liu Y, Huang J. CRISPR-Cas9 Mediated Mutation in OsPUB43 Improves Grain Length and Weight in Rice by Promoting Cell Proliferation in Spikelet Hull. Int J Mol Sci 2022; 23:ijms23042347. [PMID: 35216463 PMCID: PMC8877319 DOI: 10.3390/ijms23042347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/27/2022] Open
Abstract
Grain weight, a crucial trait that determines the grain yield in rice, is influenced by grain size. Although a series of regulators that control grain size have been identified in rice, the mechanisms underlying grain development are not yet well understood. In this study, we identified OsPUB43, a U-box E3 ubiquitin ligase, as an important negative regulator determining the gain size and grain weight in rice. Phenotypes of large grain are observed in ospub43 mutants, whereas overexpression of OsPUB43 results in short grains. Scanning electron microscopy analysis reveals that OsPUB43 modulates the grain size mainly by inhibiting cell proliferation in the spikelet hull. The OsPUB43 protein is localized in the cytoplasm and nucleus. The ospub43 mutants display high sensitivity to exogenous BR, while OsPUB43-OE lines are hyposensitive to BR. Furthermore, the transient transcriptional activity assay shows that OsBZR1 can activate the expression of OsPUB43. Collectively, our results indicate that OsPUB43 negatively controls the gain size by modulating the expression of BR-responsive genes as well as MADS-box genes that are required for lemma/palea specification, suggesting that OsPUB43 has a potential valuable application in the enlargement of grain size in rice.
Collapse
|
61
|
Jin Y, Li J, Zhu Q, Du X, Liu F, Li Y, Ahmar S, Zhang X, Sun J, Xue F. GhAPC8 regulates leaf blade angle by modulating multiple hormones in cotton (Gossypium hirsutum L.). Int J Biol Macromol 2022; 195:217-228. [PMID: 34896470 DOI: 10.1016/j.ijbiomac.2021.11.205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023]
Abstract
Leaf angle, including leaf petiole angle (LPA) and leaf blade angle (LBA), is an important trait affecting plant architecture. Anaphase-promoting complex/cyclosome (APC/C) genes play a vital role in plant growth and development, including regulation of leaf angle. Here, we identified and characterized the APC genes in Upland cotton (G. hirsutum L.) with a focus on GhAPC8, a homolog of soybean GmILPA1 involved in regulation of LPA. We showed that independently silencing the At or Dt sub-genome homoeolog of GhAPC8 using virus-induced gene silencing reduced plant height and LBA, and that reduction of LBA could be caused by uneven growth of cortex parenchyma cells on the adaxial and abaxial sides of the junction between leaf blade and leaf petiole. The junction between leaf blade and leaf petiole of the GhAPC8-silenced plants had an elevated level of brassinosteroid (BR) and a decreased levels of auxin and gibberellin. Consistently, comparative transcriptome analysis found that silencing GhAPC8 activated genes of the BR biosynthesis and signaling pathways as well as genes related to ubiquitin-mediated proteolysis. Weighted gene co-expression network analysis (WGCNA) identified gene modules significantly associated with plant height and LBA, and candidate genes bridging GhAPC8, the pathways of BR biosynthesis and signaling and ubiquitin-mediated proteolysis. These results demonstrated a role of GhAPC8 in regulating LBA, likely achieved by modulating the accumulation and signaling of multiple phytohormones.
Collapse
Affiliation(s)
- Yanlong Jin
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jinghui Li
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China
| | - Qianhao Zhu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Xin Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China
| | - Yanjun Li
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China
| | - Sunny Ahmar
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| |
Collapse
|
62
|
Jin SK, Zhang MQ, Leng YJ, Xu LN, Jia SW, Wang SL, Song T, Wang RA, Yang QQ, Tao T, Cai XL, Gao JP. OsNAC129 Regulates Seed Development and Plant Growth and Participates in the Brassinosteroid Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2022; 13:905148. [PMID: 35651773 PMCID: PMC9149566 DOI: 10.3389/fpls.2022.905148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/26/2022] [Indexed: 05/14/2023]
Abstract
Grain size and the endosperm starch content determine grain yield and quality in rice. Although these yield components have been intensively studied, their regulatory mechanisms are still largely unknown. In this study, we show that loss-of-function of OsNAC129, a member of the NAC transcription factor gene family that has its highest expression in the immature seed, greatly increased grain length, grain weight, apparent amylose content (AAC), and plant height. Overexpression of OsNAC129 had the opposite effect, significantly decreasing grain width, grain weight, AAC, and plant height. Cytological observation of the outer epidermal cells of the lemma using a scanning electron microscope (SEM) revealed that increased grain length in the osnac129 mutant was due to increased cell length compared with wild-type (WT) plants. The expression of OsPGL1 and OsPGL2, two positive grain-size regulators that control cell elongation, was consistently upregulated in osnac129 mutant plants but downregulated in OsNAC129 overexpression plants. Furthermore, we also found that several starch synthase-encoding genes, including OsGBSSI, were upregulated in the osnac129 mutant and downregulated in the overexpression plants compared with WT plants, implying a negative regulatory role for OsNAC129 both in grain size and starch biosynthesis. Additionally, we found that the expression of OsNAC129 was induced exclusively by abscisic acid (ABA) in seedlings, but OsNAC129-overexpressing plants displayed reduced sensitivity to exogenous brassinolide (BR). Therefore, the results of our study demonstrate that OsNAC129 negatively regulates seed development and plant growth, and further suggest that OsNAC129 participates in the BR signaling pathway.
Collapse
Affiliation(s)
- Su-Kui Jin
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Qiu Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Yu-Jia Leng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Li-Na Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Shu-Wen Jia
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Shui-Lian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruo-An Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qing-Qing Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Tao Tao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Xiu-Ling Cai
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Xiu-Ling Cai,
| | - Ji-Ping Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Ji-Ping Gao,
| |
Collapse
|
63
|
Zhang L, Wang R, Xing Y, Xu Y, Xiong D, Wang Y, Yao S. Separable regulation of POW1 in grain size and leaf angle development in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2517-2531. [PMID: 34343399 PMCID: PMC8633490 DOI: 10.1111/pbi.13677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 05/27/2023]
Abstract
Leaf angle is one of the key factors that determines rice plant architecture. However, the improvement of leaf angle erectness is often accompanied by unfavourable changes in other traits, especially grain size reduction. In this study, we identified the pow1 (put on weight 1) mutant that leads to increased grain size and leaf angle, typical brassinosteroid (BR)-related phenotypes caused by excessive cell proliferation and cell expansion. We show that modulation of the BR biosynthesis genes OsDWARF4 (D4) and D11 and the BR signalling gene D61 could rescue the phenotype of leaf angle but not grain size in the pow1 mutant. We further demonstrated that POW1 functions in grain size regulation by repressing the transactivation activity of the interacting protein TAF2, a highly conserved member of the TFIID transcription initiation complex. Down-regulation of TAF2 rescued the enlarged grain size of pow1 but had little effect on the increased leaf angle phenotype of the mutant. The separable functions of the POW1-TAF2 and POW1-BR modules in grain size and leaf angle control provide a promising strategy for designing varieties with compact plant architecture and increased grain size, thus promoting high-yield breeding in rice.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Ruci Wang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Yide Xing
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yufang Xu
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
- College of Life ScienceHenan Agricultural UniversityZhengzhouChina
| | - Dunping Xiong
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yueming Wang
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Shanguo Yao
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| |
Collapse
|
64
|
Chen S, Liu F, Wu W, Jiang Y, Zhan K. A SNP-based GWAS and functional haplotype-based GWAS of flag leaf-related traits and their influence on the yield of bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3895-3909. [PMID: 34436627 DOI: 10.1007/s00122-021-03935-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The genetic architecture of five flag leaf morphology traits was dissected by the functional haplotype-based GWAS and a standard SNP-based GWAS in a diverse population consisting of 197 varieties. Flag leaf morphology (FLM) is a critical factor affecting plant architecture and grain yield in wheat. The genetic architecture of FLM traits has been extensively studied with QTL mapping in bi-parental populations, while few studies exploited genome-wide association studies (GWAS) in diverse populations. In this study, a panel of 197 elite and historical varieties from China was evaluated for five FLM traits including the length (FLL), width (FLW), ratio (FLR), area (FLA) and angle (FLANG) as well as yield in nine environments. Based on the phenotypic correlation between yield and FLL (-0.43), FLA (- 0.32) and FLW (0.11), an empirical FLM index combining the three FLM traits proved to be a good predictor for yield. Two GWAS approaches were applied to dissect the genetic architecture of five FLM traits with a Wheat660K SNP array. The functional haplotype-based GWAS revealed 6, 5 and 7 QTL for FLANG, FLL and FLR, respectively, whereas two QTL for FLW and one for FLR were identified by the standard SNP-based GWAS. Due to co-localization, there were 18 independent QTL and 10 of them were close to known ones. One co-localized QTL on chromosome 5A was associated with FLL, FLANG and FLR. Moreover, both GWAS approaches identified a novel QTL for FLR on chromosome 6B which was not reported in previous studies. This study provides new insights into the relationship between FLM and yield and broadens our understanding of the genetic architecture of FLM traits in wheat.
Collapse
Affiliation(s)
- Shulin Chen
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Fang Liu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Stadt Seeland OT Gatersleben, Germany
| | - Wenxue Wu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yong Jiang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Stadt Seeland OT Gatersleben, Germany
| | - Kehui Zhan
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
65
|
Wang S, Zhang F, Jiang P, Zhang H, Zheng H, Chen R, Xu Z, Ikram AU, Li E, Xu Z, Fan J, Su Y, Ding Y. SDG128 is involved in maize leaf inclination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1597-1608. [PMID: 34612535 DOI: 10.1111/tpj.15527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/04/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Maize leaf angle (LA) is a complex quantitative trait that is controlled by developmental signals, hormones, and environmental factors. However, the connection between histone methylation and LAs in maize remains unclear. Here, we reported that SET domain protein 128 (SDG128) is involved in leaf inclination in maize. Knockdown of SDG128 using an RNA interference approach resulted in an expanded architecture, less large vascular bundles, more small vascular bundles, and larger spacing of large vascular bundles in the auricles. SDG128 interacts with ZmGID2 both in vitro and in vivo. Knockdown of ZmGID2 also showed a larger LA with less large vascular bundles and larger spacing of vascular bundles. In addition, the transcription level of cell wall expansion family genes ZmEXPA1, ZmEXPB2, and GRMZM2G005887; transcriptional factor genes Lg1, ZmTAC1, and ZmCLA4; and auxin pathway genes ZmYUCCA7, ZmYUCCA8, and ZmARF22 was reduced in SDG128 and ZmGID2 knockdown plants. SDG128 directly targets ZmEXPA1, ZmEXPB2, LG1, and ZmTAC1 and is required for H3K4me3 deposition at these genes. Together, the results of the present study suggest that SDG128 and ZmGID2 are involved in the maize leaf inclination.
Collapse
Affiliation(s)
- Shiliang Wang
- National Engineering Laboratory of Crop Stress Resistance/Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular Cell Biophysics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Fei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular Cell Biophysics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Pengfei Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular Cell Biophysics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Heng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular Cell Biophysics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Han Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular Cell Biophysics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Rihong Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular Cell Biophysics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Zuntao Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular Cell Biophysics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Aziz Ul Ikram
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular Cell Biophysics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Enze Li
- National Engineering Laboratory of Crop Stress Resistance/Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular Cell Biophysics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Zaoshi Xu
- Anhui Forestry High-Tech Development Center, Hefei, Anhui, 230041, China
| | - Jun Fan
- National Engineering Laboratory of Crop Stress Resistance/Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yanhua Su
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular Cell Biophysics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| | - Yong Ding
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular Cell Biophysics, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui, 230027, China
| |
Collapse
|
66
|
Liu Z, Mei E, Tian X, He M, Tang J, Xu M, Liu J, Song L, Li X, Wang Z, Guan Q, Xu Q, Bu Q. OsMKKK70 regulates grain size and leaf angle in rice through the OsMKK4-OsMAPK6-OsWRKY53 signaling pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:2043-2057. [PMID: 34561955 DOI: 10.1111/jipb.13174] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Grain size and leaf angle are key agronomic traits that determine final yields in rice. However, the underlying molecular mechanisms are not well understood. Here we demonstrate that the Oryza sativa Mitogen Activated Protein Kinase Kinase Kinase OsMKKK70 regulates grain size and leaf angle in rice. Overexpressing OsMKKK70 caused plants to produce longer seeds. The osmkkk62/70 double mutant and the osmkkk55/62/70 triple mutant displayed significantly smaller seeds and a more erect leaf angle compared to the wild type, indicating that OsMKKK70 functions redundantly with its homologs OsMKKK62 and OsMKKK55. Biochemical analysis demonstrated that OsMKKK70 is an active kinase and that OsMKKK70 interacts with OsMKK4 and promotes OsMAPK6 phosphorylation. In addition, the osmkkk62/70 double mutant showed reduced sensitivity to Brassinosteroids (BRs). Finally, overexpressing constitutively active OsMKK4, OsMAPK6, and OsWRKY53 can partially complement the smaller seed size, erect leaf, and BR hyposensitivity of the osmkkk62/70 double mutant. Taken together, these findings suggest that OsMKKK70 might regulate grain size and leaf angle in rice by activating OsMAPK6 and that OsMKKK70, OsMKK4, OsMAPK6, and OsWRKY53 function in a common signaling pathway that controls grain shape and leaf angle.
Collapse
Affiliation(s)
- Zhiqi Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Enyang Mei
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, CAS, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojie Tian
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, CAS, Harbin, 150081, China
| | - Mingliang He
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, CAS, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqi Tang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, CAS, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Xu
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, CAS, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiali Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Lu Song
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, CAS, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiufeng Li
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, CAS, Harbin, 150081, China
| | - Zhenyu Wang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, CAS, Harbin, 150081, China
| | - Qingjie Guan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Qijiang Xu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Qingyun Bu
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, CAS, Harbin, 150081, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
67
|
Wang S, Zhang J, Gu M, Xu G. OsWRKY108 is an integrative regulator of phosphorus homeostasis and leaf inclination in rice. PLANT SIGNALING & BEHAVIOR 2021; 16:1976545. [PMID: 34523389 PMCID: PMC8525937 DOI: 10.1080/15592324.2021.1976545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P), which is taken up by plants as inorganic phosphate (Pi), is one of the most important macronutrients for plant growth and development. Meanwhile, it determines plant architecture in several ways, including leaf inclination. However, the molecular basis underlying the crosstalk between the signaling pathways of plant P homeostasis and architecture maintenance remains elusive. We recently characterized a WRKY transcription factor, OsWRKY108, in rice (Oryza sativa). It functions redundantly with OsWRKY21 to promote Pi uptake in response to Pi supply. Overexpression of either OsWRKY108 or OsWRKY21 led to up-regulation of Pi transporter genes and thus enhanced Pi accumulation. By contrast, transgenic rice plants expressing OsWRKY21-SRDX (a fusion protein transforming OsWRKY21 from an activator into a dominant repressor) but not the OsWRKY108-SRDX fusion showed decreased Pi accumulation under Pi-replete conditions. Here, we report that OsWRKY108 acts as a positive regulator of leaf inclination. OsWRKY108 overexpressors showed increased leaf inclination and OsWRKY108-SRDX plants showed an erect-leaf phenotype, irrespective of the Pi regimes. Nevertheless, the response of leaf inclination to Pi starvation was largely impaired upon OsWRKY108 overexpression. Moreover, in both OsWRKY108-SRDX plants and OsWRKY108 overexpressors, the 'percentage of leaf angle alteration relative to wild-type' under Pi-starvation condition was more significant than that under Pi-replete condition. These results suggest that the regulation of OsWRKY108 on leaf inclination is in part dependent on Pi availability. Altogether, our findings demonstrate that OsWRKY108 is an integrative regulator of P homeostasis and leaf inclination, serving as a link between plant nutrient signaling and developmental cues.
Collapse
Affiliation(s)
- Shichao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Moa Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Moa Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, China
| |
Collapse
|
68
|
Jiang C, Li B, Song Z, Zhang Y, Yu C, Wang H, Wang L, Zhang H. PtBRI1.2 promotes shoot growth and wood formation through a brassinosteroid-mediated PtBZR1-PtWNDs module in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6350-6364. [PMID: 34089602 DOI: 10.1093/jxb/erab260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
Brassinosteroid-insensitive-1 (BRI1) plays important roles in various signalling pathways controlling plant growth and development. However, the regulatory mechanism of BRI1 in brassinosteroid (BR)-mediated signalling for shoot growth and wood formation in woody plants is largely unknown. In this study, PtBRI1.2, a brassinosteroid-insensitive-1 gene, was overexpressed in poplar. Shoot growth and wood formation of transgenic plants were examined and the regulatory genes involved were verified. PtBRI1.2 was localized to the plasma membrane, with a predominant expression in leaves. Ectopic expression of PtBRI1.2 in Arabidopsis bri1-201 and bri1-5 mutants rescued their retarded-growth phenotype. Overexpression of PtBRI1.2 in poplar promoted shoot growth and wood formation in transgenic plants. Further studies revealed that overexpression of PtBRI1.2 promoted the accumulation of PtBZR1 (BRASSINAZOLE RESISTANT1) in the nucleus, which subsequently activated PtWNDs (WOOD-ASSOCIATED NAC DOMAIN transcription factors) to up-regulate expression of secondary cell wall biosynthesis genes involved in wood formation. Our results suggest that PtBRI1.2 plays a crucial role in regulating shoot growth and wood formation by activating BR signalling.
Collapse
Affiliation(s)
- Chunmei Jiang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Bei Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and abiotic Resistant Plants in the Universities of Shandong, and Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
| | - Zhizhong Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and abiotic Resistant Plants in the Universities of Shandong, and Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
| | - Yuliang Zhang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Chunyan Yu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and abiotic Resistant Plants in the Universities of Shandong, and Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and abiotic Resistant Plants in the Universities of Shandong, and Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- The Key Laboratory of Molecular Module-Based Breeding of High Yield and abiotic Resistant Plants in the Universities of Shandong, and Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
69
|
Tian X, He M, Mei E, Zhang B, Tang J, Xu M, Liu J, Li X, Wang Z, Tang W, Guan Q, Bu Q. WRKY53 integrates classic brassinosteroid signaling and the mitogen-activated protein kinase pathway to regulate rice architecture and seed size. THE PLANT CELL 2021; 33:2753-2775. [PMID: 34003966 PMCID: PMC8408444 DOI: 10.1093/plcell/koab137] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/06/2021] [Indexed: 05/27/2023]
Abstract
In rice (Oryza sativa) and other plants, plant architecture and seed size are closely related to yield. Brassinosteroid (BR) signaling and the mitogen-activated protein kinase (MAPK) pathway (MAPK kinase kinase 10 [MAPKKK10]-MAPK kinase 4 [MAPKK4]-MAPK6) are two major regulatory pathways that control rice architecture and seed size. However, their possible relationship and crosstalk remain elusive. Here, we show that WRKY53 mediated the crosstalk between BR signaling and the MAPK pathway. Biochemical and genetic assays demonstrated that glycogen synthase kinase-2 (GSK2) phosphorylates WRKY53 and lowers its stability, indicating that WRKY53 is a substrate of GSK2 in BR signaling. WRKY53 interacted with BRASSINAZOLE-RESISTANT 1(BZR1); they function synergistically to regulate BR-related developmental processes. We also provide genetic evidence showing that WRKY53 functions in a common pathway with the MAPKKK10-MAPKK4-MAPK6 cascade in leaf angle and seed size control, suggesting that WRKY53 is a direct substrate of this pathway. Moreover, GSK2 phosphorylated MAPKK4 to suppress MAPK6 activity, suggesting that GSK2-mediated BR signaling might also regulated MAPK pathway. Together, our results revealed a critical role for WRKY53 and uncovered sophisticated levels of interplay between BR signaling and the MAPK pathway in regulating rice architecture and seed size.
Collapse
Affiliation(s)
- Xiaojie Tian
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Mingliang He
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enyang Mei
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baowen Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Jiaqi Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Xu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiali Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiufeng Li
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Zhenyu Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Wenqiang Tang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qingjie Guan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Qingyun Bu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
70
|
Niu Y, Chen T, Wang C, Chen K, Shen C, Chen H, Zhu S, Wu Z, Zheng T, Zhang F, Xu J. Identification and allele mining of new candidate genes underlying rice grain weight and grain shape by genome-wide association study. BMC Genomics 2021; 22:602. [PMID: 34362301 PMCID: PMC8349016 DOI: 10.1186/s12864-021-07901-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Grain weight and grain shape are important agronomic traits that affect the grain yield potential and grain quality of rice. Both grain weight and grain shape are controlled by multiple genes. The 3,000 Rice Genomes Project (3 K RGP) greatly facilitates the discovery of agriculturally important genetic variants and germplasm resources for grain weight and grain shape. RESULTS Abundant natural variations and distinct phenotic differentiation among the subgroups in grain weight and grain shape were observed in a large population of 2,453 accessions from the 3 K RGP. A total of 21 stable quantitative trait nucleotides (QTNs) for the four traits were consistently identified in at least two of 3-year trials by genome-wide association study (GWAS), including six new QTNs (qTGW3.1, qTGW9, qTGW11, qGL4/qRLW4, qGL10, and qRLW1) for grain weight and grain shape. We further predicted seven candidate genes (Os03g0186600, Os09g0544400, Os11g0163600, Os04g0580700, Os10g0399700, Os10g0400100 and Os01g0171000) for the six new QTNs by high-density association and gene-based haplotype analyses. The favorable haplotypes of the seven candidate genes and five previously cloned genes in elite accessions with high TGW and RLW are also provided. CONCLUSIONS Our results deepen the understanding of the genetic basis of grain weight and grain shape in rice and provide valuable information for improving rice grain yield and grain quality through molecular breeding.
Collapse
Affiliation(s)
- Yanan Niu
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Tasmanian Institute of Agriculture, University of Tasmania, 7250, Prospect, TAS, Australia
| | - Tianxiao Chen
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Tasmanian Institute of Agriculture, University of Tasmania, 7250, Prospect, TAS, Australia
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chunchao Wang
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Kai Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Congcong Shen
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huizhen Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Pingxiang Institute of Agricultural Sciences, 337000, Pingxiang, China
| | - Shuangbing Zhu
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Zhichao Wu
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Tianqing Zheng
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Fan Zhang
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Jianlong Xu
- Institute of Crop Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
71
|
Wang S, Lv S, Zhao T, Jiang M, Liu D, Fu S, Hu M, Huang S, Pei Y, Wang X. Modification of Threonine-825 of SlBRI1 Enlarges Cell Size to Enhance Fruit Yield by Regulating the Cooperation of BR-GA Signaling in Tomato. Int J Mol Sci 2021; 22:ijms22147673. [PMID: 34299293 PMCID: PMC8305552 DOI: 10.3390/ijms22147673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Brassinosteroids (BRs) are growth-promoting phytohormones that can efficiently function by exogenous application at micromolar concentrations or by endogenous fine-tuning of BR-related gene expression, thus, precisely controlling BR signal strength is a key factor in exploring the agricultural potential of BRs. BRASSINOSTEROID INSENSITIVE1 (BRI1), a BR receptor, is the rate-limiting enzyme in BR signal transduction, and the phosphorylation of each phosphorylation site of SlBRI1 has a distinct effect on BR signal strength and botanic characteristics. We recently demonstrated that modifying the phosphorylation sites of tomato SlBRI1 could improve the agronomic traits of tomato to different extents; however, the associated agronomic potential of SlBRI1 phosphorylation sites in tomato has not been fully exploited. In this research, the biological functions of the phosphorylation site threonine-825 (Thr-825) of SlBRI1 in tomato were investigated. Phenotypic analysis showed that, compared with a tomato line harboring SlBRI1, transgenic tomato lines expressing SlBRI1 with a nonphosphorylated Thr-825 (T825A) exhibited a larger plant size due to a larger cell size and higher yield, including a greater plant height, thicker stems, longer internodal lengths, greater plant expansion, a heavier fruit weight, and larger fruits. Molecular analyses further indicated that the autophosphorylation level of SlBRI1, BR signaling, and gibberellic acid (GA) signaling were elevated when SlBRI1 was dephosphorylated at Thr-825. Taken together, the results demonstrated that dephosphorylation of Thr-825 can enhance the functions of SlBRI1 in BR signaling, which subsequently activates and cooperates with GA signaling to stimulate cell elongation and then leads to larger plants and higher yields per plant. These results also highlight the agricultural potential of SlBRI1 phosphorylation sites for breeding high-yielding tomato varieties through precise control of BR signaling.
Collapse
|
72
|
Guo J, Li W, Shang L, Wang Y, Yan P, Bai Y, Da X, Wang K, Guo Q, Jiang R, Mao C, Mo X. OsbHLH98 regulates leaf angle in rice through transcriptional repression of OsBUL1. THE NEW PHYTOLOGIST 2021; 230:1953-1966. [PMID: 33638214 DOI: 10.1111/nph.17303] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 05/27/2023]
Abstract
Leaf angle is an important agronomic trait in cereals that helps determine plant yield by affecting planting density. However, the regulation mechanism of leaf angle remained elusive. Here, we show that OsbHLH98, a rice bHLH transcription factor, negatively regulates leaf angle. osbhlh98 mutant leaves formed a larger leaf angle, whereas transgenic plants overexpressing OsbHLH98 exhibited a slight reduction in leaf angle. We determined that the changes in leaf angle resulted from increased number and size of parenchyma cells on the adaxial side of the lamina joint in osbhlh98 mutants. Experiments using reporter constructs showed that OsbHLH98 is expressed on the adaxial side of lamina joints, consistent with its proposed function in regulating leaf angle. Furthermore, we established by chromatin immunoprecipitation and CUT&RUN that OsBUL1 is a direct downstream target of OsbHLH98. Transactivation assays and reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis indicated that OsbHLH98 represses OsBUL1 transcription. Our results demonstrate that OsbHLH98 negatively regulates leaf angle by counteracting brassinosteroid-induced cell elongation via the repression of OsBUL1 transcription. The characterization of OsbHLH98 and its role in determining leaf angle will lay the foundation to develop the ideal plant architecture for adaptation to high planting density.
Collapse
Affiliation(s)
- Jiangfan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lianguang Shang
- Lingnan Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yuguang Wang
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150000, China
| | - Peng Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Youhuang Bai
- Department of Bioinformatics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaowen Da
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kai Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qianqian Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruirui Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
73
|
Kothari A, Lachowiec J. Roles of Brassinosteroids in Mitigating Heat Stress Damage in Cereal Crops. Int J Mol Sci 2021; 22:2706. [PMID: 33800127 PMCID: PMC7962182 DOI: 10.3390/ijms22052706] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 01/24/2023] Open
Abstract
Heat stress causes huge losses in the yield of cereal crops. Temperature influences the rate of plant metabolic and developmental processes that ultimately determine the production of grains, with high temperatures causing a reduction in grain yield and quality. To ensure continued food security, the tolerance of high temperature is rapidly becoming necessary. Brassinosteroids (BR) are a class of plant hormones that impact tolerance to various biotic and abiotic stresses and regulate cereal growth and fertility. Fine-tuning the action of BR has the potential to increase cereals' tolerance and acclimation to heat stress and maintain yields. Mechanistically, exogenous applications of BR protect yields through amplifying responses to heat stress and rescuing the expression of growth promoters. Varied BR compounds and differential signaling mechanisms across cereals point to a diversity of mechanisms that can be leveraged to mitigate heat stress. Further, hormone transport and BR interaction with other molecules in plants may be critical to utilizing BR as protective agrochemicals against heat stress. Understanding the interplay between heat stress responses, growth processes and hormone signaling may lead us to a comprehensive dogma of how to tune BR application for optimizing cereal growth under challenging environments in the field.
Collapse
Affiliation(s)
| | - Jennifer Lachowiec
- Plant Sciences and Plant Pathology Department, Montana State University, Bozeman, MT 59717, USA;
| |
Collapse
|
74
|
Dou D, Han S, Cao L, Ku L, Liu H, Su H, Ren Z, Zhang D, Zeng H, Dong Y, Liu Z, Zhu F, Zhao Q, Xie J, Liu Y, Cheng H, Chen Y. CLA4 regulates leaf angle through multiple hormone signaling pathways in maize. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1782-1794. [PMID: 33270106 DOI: 10.1093/jxb/eraa565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Leaf angle is an important agronomic trait in cereals and shares a close relationship with crop architecture and grain yield. Although it has been previously reported that ZmCLA4 can influence leaf angle, the underlying mechanism remains unclear. In this study, we used the Gal4-LexA/UAS system and transactivation analysis to demonstrate in maize (Zea mays) that ZmCLA4 is a transcriptional repressor that regulates leaf angle. DNA affinity purification sequencing (DAP-Seq) analysis revealed that ZmCLA4 mainly binds to promoters containing the EAR motif (CACCGGAC) as well as to two other motifs (CCGARGS and CDTCNTC) to inhibit the expression of its target genes. Further analysis of ZmCLA4 target genes indicated that ZmCLA4 functions as a hub of multiple plant hormone signaling pathways: ZmCLA4 was found to directly bind to the promoters of multiple genes including ZmARF22 and ZmIAA26 in the auxin transport pathway, ZmBZR3 in the brassinosteroid signaling pathway, two ZmWRKY genes involved in abscisic acid metabolism, ZmCYP genes (ZmCYP75B1, ZmCYP93D1) related to jasmonic acid metabolism, and ZmABI3 involved in the ethylene response pathway. Overall, our work provides deep insights into the ZmCLA4 regulatory network in controlling leaf angle in maize.
Collapse
Affiliation(s)
- Dandan Dou
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Shengbo Han
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Liru Cao
- Henan Academy of Agricultural Science, Zhengzhou, Henan, China
| | - Lixia Ku
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Huafeng Liu
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Huihui Su
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Zhenzhen Ren
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Dongling Zhang
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Haixia Zeng
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Yahui Dong
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Zhixie Liu
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Fangfang Zhu
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Qiannan Zhao
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Jiarong Xie
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Yajing Liu
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Haiyang Cheng
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Yanhui Chen
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| |
Collapse
|
75
|
Zhong X, Lin N, Ding J, Yang Q, Lan J, Tang H, Qi P, Deng M, Ma J, Wang J, Chen G, Lan X, Wei Y, Zheng Y, Jiang Q. Genome-wide transcriptome profiling indicates the putative mechanism underlying enhanced grain size in a wheat mutant. 3 Biotech 2021; 11:54. [PMID: 33489673 DOI: 10.1007/s13205-020-02579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/01/2020] [Indexed: 11/26/2022] Open
Abstract
Grain size is an important trait for crops. The endogenous hormones brassinosteroids (BRs) play key roles in grain size and mass. In this study, we identified an ethyl methylsulfonate (EMS) mutant wheat line, SM482gs, with increased grain size, 1000-grain weight, and protein content, but decreased starch content, compared with the levels in the wild type (WT). Comparative transcriptomic analysis of SM482gs and WT at four developmental stages [9, 15, 20, and 25 days post-anthesis (DPA)] revealed a total of 264, 267, 771, and 1038 differentially expressed genes (DEGs) at these stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) database analysis showed that some DEGs from the comparison at 15 DPA were involved in the pathway of "brassinosteroid biosynthesis," and eight genes involved in BR biosynthesis and signal transduction were significantly upregulated in SM482gs during at least one stage. This indicated that the enhanced BR signaling in SM482gs might have contributed to its increased grain size via network interactions. The expression of seed storage protein (SSP)-encoding genes in SM482gs was upregulated, mostly at 15 and 20 DPA, while most of the starch synthetase genes showed lower expression in SM482gs at all stages, compared with that in WT. The expression patterns of starch synthase genes and seed storage protein-encoding genes paralleled the decreased level of starch and increased storage protein content of SM482gs, which might be related to the increased seed weight and wrinkled phenotype. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02579-6.
Collapse
Affiliation(s)
- Xiaojuan Zhong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Na Lin
- College of Sichuan Tea, Yibin University, Yibin, 64400 Sichuan China
| | - Jinjin Ding
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Qiang Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Jingyu Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| |
Collapse
|
76
|
Pan YH, Gao LJ, Liang YT, Zhao Y, Liang HF, Chen WW, Yang XH, Qing DJ, Gao J, Wu H, Huang J, Zhou WY, Huang CC, Dai GX, Deng GF. OrMKK3 Influences Morphology and Grain Size in Rice. JOURNAL OF PLANT BIOLOGY = SINGMUL HAKHOE CHI 2021; 66:269-282. [PMID: 33424241 PMCID: PMC7780602 DOI: 10.1007/s12374-020-09290-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 05/28/2023]
Abstract
Although morphology and grain size are important to rice growth and yield, the identity of abundant natural allelic variations that determine agronomically important differences in crops is unknown. Here, we characterized the function of mitogen-activated protein kinase 3 from Oryza officinalis Wall. ex Watt encoded by OrMKK3. Different alternative splicing variants occurred in OrMKK3. Green fluorescent protein (GFP)-OrMKK3 fusion proteins localized to the cell membrane and nuclei of rice protoplasts. Overexpression of OrMKK3 influenced the expression levels of the grain size-related genes SMG1, GW8, GL3, GW2, and DEP3. Phylogenetic analysis showed that OrMKK3 is well conserved in plants while showing large amounts of variation between indica, japonica, and wild rice. In addition, OrMKK3 slightly influenced brassinosteroid (BR) responses and the expression levels of BR-related genes. Our findings thus identify a new gene, OrMKK3, influencing morphology and grain size and that represents a possible link between mitogen-activated protein kinase and BR response pathways in grain growth. Supplementary Information The online version contains supplementary material available at 10.1007/s12374-020-09290-2.
Collapse
Affiliation(s)
- Ying Hua Pan
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007 China
| | - Li Jun Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, 530007 China
| | - Yun Tao Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007 China
| | - Yan Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 Shandong China
| | - Hai Fu Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007 China
| | - Wei Wei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007 China
| | - Xing Hai Yang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007 China
| | - Dong Jin Qing
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, 530007 China
| | - Ju Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, 530007 China
| | - Hao Wu
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, 530007 China
| | - Juan Huang
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, 530007 China
| | - Wei Yong Zhou
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, 530007 China
| | - Cheng Cui Huang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007 China
| | - Gao Xing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007 China
| | - Guo Fu Deng
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, 530007 China
| |
Collapse
|
77
|
Mantilla-Perez MB, Bao Y, Tang L, Schnable PS, Salas-Fernandez MG. Toward "Smart Canopy" Sorghum: Discovery of the Genetic Control of Leaf Angle Across Layers. PLANT PHYSIOLOGY 2020; 184:1927-1940. [PMID: 33093232 PMCID: PMC7723111 DOI: 10.1104/pp.20.00632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/09/2020] [Indexed: 05/15/2023]
Abstract
A "smart canopy" ideotype has been proposed with leaves being upright at the top and more horizontal toward the bottom of the plant to maximize light interception and conversion efficiencies, and thus increasing yield. The genetic control of leaf angle has, to date, been studied on one or two leaves, or data have been merged from multiple leaves to generate average values. This approach has limited our understanding of the diversity of leaf angles across layers and their genetic control. Genome-wide association studies and quantitative trait loci mapping studies in sorghum (Sorghum bicolor) were performed using layer-specific angle data collected manually and via high-throughput phenotyping strategies. The observed distribution of angles in indoor and field settings is opposite to the ideotype. Several genomic regions were associated with leaf angle within layers or across the canopy. The expression of the brassinosteroid-related transcription factor BZR1/BES1 and the auxin-transporter Dwarf3 were found to be highly correlated with the distribution of angles at different layers. The application of a brassinosteroid biosynthesis inhibitor could not revert the undesirable overall angle distribution. These discoveries demonstrate that the exploitation of layer-specific quantitative trait loci/genes will be instrumental to reversing the natural angle distribution in sorghum according to the "smart canopy" ideotype.
Collapse
Affiliation(s)
| | - Yin Bao
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011
| | - Lie Tang
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011
| | | | | |
Collapse
|
78
|
Wang S, Hu T, Tian A, Luo B, Du C, Zhang S, Huang S, Zhang F, Wang X. Modification of Serine 1040 of SIBRI1 Increases Fruit Yield by Enhancing Tolerance to Heat Stress in Tomato. Int J Mol Sci 2020; 21:ijms21207681. [PMID: 33081382 PMCID: PMC7589314 DOI: 10.3390/ijms21207681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/27/2022] Open
Abstract
High temperature is a major environmental factor that adversely affects plant growth and production. SlBRI1 is a critical receptor in brassinosteroid signalling, and its phosphorylation sites have differential functions in plant growth and development. However, the roles of the phosphorylation sites of SIBRI1 in stress tolerance are unknown. In this study, we investigated the biological functions of the phosphorylation site serine 1040 (Ser-1040) of SlBRI1 in tomato. Phenotype analysis indicated that transgenic tomato harbouring SlBRI1 dephosphorylated at Ser-1040 showed increased tolerance to heat stress, exhibiting better plant growth and plant yield under high temperature than transgenic lines expressing SlBRI1 or SlBRI1 phosphorylated at Ser-1040. Biochemical and physiological analyses further showed that antioxidant activity, cell membrane integrity, osmo-protectant accumulation, photosynthesis and transcript levels of heat stress defence genes were all elevated in tomato plants harbouring SlBRI1 dephosphorylated at Ser-1040, and the autophosphorylation level of SlBRI1 was inhibited when SlBRI1 dephosphorylated at Ser-1040. Taken together, our results demonstrate that the phosphorylation site Ser-1040 of SlBRI1 affects heat tolerance, leading to improved plant growth and yield under high-temperature conditions. Our results also indicate the promise of phosphorylation site modification as an approach for protecting crop yields from high-temperature stress.
Collapse
Affiliation(s)
- Shufen Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Tixu Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Aijuan Tian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Bote Luo
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Chenxi Du
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Siwei Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Shuhua Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Fei Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
| | - Xiaofeng Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China; (S.W.); (T.H.); (A.T.); (B.L.); (C.D.); (S.Z.); (S.H.); (F.Z.)
- Shaanxi Engineering Research Center for Vegetables, Yangling 712100, China
- Correspondence:
| |
Collapse
|
79
|
Zhang XF, Tong JH, Bai AN, Liu CM, Xiao LT, Xue HW. Phytohormone dynamics in developing endosperm influence rice grain shape and quality. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1625-1637. [PMID: 32198820 DOI: 10.1111/jipb.12927] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
Hormones are important signaling molecules regulating developmental processes and responses to environmental stimuli in higher plants. Rice endosperm, the portion of the seed surrounding the embryo, is the main determinant of rice grain shape and yield; however, the dynamics and exact functions of phytohormones in developing endosperm remain elusive. Through a systemic study including transcriptome analysis, hormone measurement, and transgene-based endosperm-specific expression of phytohormone biosynthetic enzymes, we demonstrated that dynamic phytohormone levels play crucial roles in the developing rice endosperm, particularly in regard to grain shape and quality. We detected diverse, differential, and dramatically changing expression patterns of genes related to hormone biosynthesis and signaling during endosperm development, especially at early developmental stages. Liquid chromatography measurements confirmed the dynamic accumulation of hormones in developing endosperm. Further transgenic analysis performed on plants expressing hormone biosynthesis genes driven by an endosperm-specific promoter revealed differential effects of the hormones, especially auxin and brassinosteroids, in regulating grain shape and quality. Our studies help elucidate the distinct roles of hormones in developing endosperm and provide novel and useful tools for influencing crop seed shape and yield.
Collapse
Affiliation(s)
- Xiao-Fan Zhang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Jian-Hua Tong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128, China
| | - Ai-Ning Bai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lang-Tao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, 410128, China
| | - Hong-Wei Xue
- Joint Center for Single Cell Biology/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
80
|
Jaiswal S, Båga M, Chibbar RN. Brassinosteroid receptor mutation influences starch granule size distribution in barley grains. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:369-378. [PMID: 32623092 DOI: 10.1016/j.plaphy.2020.05.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Brassinosteroids (BR) are plant-based steroids which influence several morphogenetic and developmental processes. A barley (Hordeum vulgare L.) genotype Kinai Kyoshinkai-2 (KK-2) carrying the uzu mutation exhibited altered starch granule size distribution. Hybridizing KK-2 with a barley genotype CDC Kendall with bi-modal starch granules produced progeny lines (116, 144 and 168) with almost uni-modal starch granules. Bioassays correlated uzu mutation with defective BR perception. DNA sequence analysis of the BR receptor-1 (BRI-1) gene detected a single-nucleotide A > G substitution at the position 2612 in the kinase domain which resulted in the change of His (CAC) to Arg (CGC) at residue 857 in subdomain IV of the kinase domain of the respective polypeptide. The study focused on the development of barley grain, accumulation of starch and composition influenced by defective BR perception due to the mutation detected in KK-2 and three other barley-breeding lines (116, 144 and 168). Aberrant BRI-1 delayed grain development, amylose synthesis and starch accumulation in the endosperm. The barley breeding lines 116, 144 and 168 carrying the aberrant BRI-1, exhibited altered granule size distribution with significant shift in the diameter maxima, but insignificant differences in amylose concentration. The BRI-1 mutation also altered amylopectin fine structure in both B- and C- type small starch granules, resulting in an increased fraction of short A-type glucan chains (<10 DP) and decreased fraction of B2 chains (25-36 DP) in genotypes carrying the BRI-1 mutation. The results show the influence of BR on barley grain development, starch accumulation, granule size distribution and amylopectin structure.
Collapse
Affiliation(s)
- Sarita Jaiswal
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan, S7N5A8, Canada
| | - Monica Båga
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan, S7N5A8, Canada
| | - Ravindra N Chibbar
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan, S7N5A8, Canada.
| |
Collapse
|
81
|
Synergistic Interaction of Phytohormones in Determining Leaf Angle in Crops. Int J Mol Sci 2020; 21:ijms21145052. [PMID: 32709150 PMCID: PMC7404121 DOI: 10.3390/ijms21145052] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Leaf angle (LA), defined as the angle between the plant stem and leaf adaxial side of the blade, generally shapes the plant architecture into a loosen or dense structure, and thus influences the light interception and competition between neighboring plants in natural settings, ultimately contributing to the crop yield and productivity. It has been elucidated that brassinosteroid (BR) plays a dominant role in determining LA, and other phytohormones also positively or negatively participate in regulating LA. Accumulating evidences have revealed that these phytohormones interact with each other in modulating various biological processes. However, the comprehensive discussion of how the phytohormones and their interaction involved in shaping LA is relatively lack. Here, we intend to summarize the advances in the LA regulation mediated by the phytohormones and their crosstalk in different plant species, mainly in rice and maize, hopefully providing further insights into the genetic manipulation of LA trait in crop breeding and improvement in regarding to overcoming the challenge from the continuous demands for food under limited arable land area.
Collapse
|
82
|
Knock-Down the Expression of Brassinosteroid Receptor TaBRI1 Reduces Photosynthesis, Tolerance to High Light and High Temperature Stresses and Grain Yield in Wheat. PLANTS 2020; 9:plants9070840. [PMID: 32635376 PMCID: PMC7411796 DOI: 10.3390/plants9070840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/03/2022]
Abstract
Brassinosteroid (BR)-deficient or -insensitive mutants exhibited altered plant architecture with the potential to impact yield, the underlying physiological and molecular mechanisms are still to be explored. In this study, we cloned three BR receptor homologous genes TaBRI1-A1, -B1 and -D1 from hexaploid wheat (Triticum estivum L.) and further isolated the TaBRI1-A1, TaBRI1-D1 deletion mutants from the ion beam-induced mutants of variety Xiaoyan81, TaBRI1-A1 and TaBRI1-D1 in which the expression of total receptor TaBRI1 was significantly decreased. The TaBRI1 knock-down mutants exhibited relatively erect leaves and a significant decrease in the 1000-grain weight. Further studies showed that TaBRI1 knock-down mutants showed a significant reduction in photosynthetic rate during the whole grain-filling stage. TaBRI1 knock-down plants generated by TaBRI1-A1, TaBRI1-D1 deletion or using virus-induced gene silencing exhibited the reduction in the efficiency of photosystem II (PSII) (Fv/Fm, ΦPSII and electron transport rate, ETR) especially under high light and high temperature stresses. The 24-epibrassinolide (EBR) treatment increased CO2 assimilation rate in the wild type under both normal and high light and high temperature stresses conditions, but this increasing effect was not observed in the TaBRI1 knock-down mutants. Meanwhile, the expression levels of BR biosynthetic genes including TaDWARF4, TaCPD1 and TaCPD90C1 is not decreased or decreased to a lesser extent in the TaBRI1 knock-down mutants after EBR treatment. These results suggested that TaBRI1 is required for maintaining photosynthesis and tolerance to high light and high temperature stresses both of which are important for grain yield and will be a possible engineered target to control plant photosynthesis and yields in wheat.
Collapse
|
83
|
Xiao Y, Zhang G, Liu D, Niu M, Tong H, Chu C. GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1187-1201. [PMID: 31950543 DOI: 10.1111/tpj.14692] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 12/22/2019] [Accepted: 01/06/2020] [Indexed: 05/23/2023]
Abstract
Brassinosteroids (BRs) are a class of phytohormones that modulate several important agronomic traits in rice (Oryza sativa). GSK2 is one of the critical suppressors of BR signalling and targets transcription factors such as OsBZR1 and DLT to regulate BR responses. Here, we identified OFP3 (OVATE FAMILY PROTEIN 3) as an interactor of both GSK2 and DLT by yeast-two-hybrid screening and demonstrated that OFP3 plays a distinctly negative role in BR responses. While knockout of OFP3 promoted rice seedling growth, overexpression of OFP3 led to strong BR insensitivity, which resulted in reduced plant height, leaf angle, and grain size. Interestingly, both BR biosynthetic and signalling genes had decreased expression in the overexpression plants. OFP3 overexpression also enhanced the phenotypes of BR-deficient mutants, but largely suppressed those of BR-enhanced plants. Moreover, treatment with either BR or bikinin, a GSK3-like kinase inhibitor, induced OFP3 depletion, whereas GSK2 or brassinazole, a BR synthesis inhibitor, promoted OFP3 accumulation. Furthermore, OFP3 exhibited transcription repressor activity and was able to interact with itself as well as additional BR-related components, including OFP1, OSH1, OSH15, OsBZR1, and GF14c. Importantly, GSK2 can phosphorylate OFP3 and enhance these interactions. We propose that OFP3, as a suppressor of both BR synthesis and signalling but stabilized by GSK2, incorporates into a transcription factor complex to facilitate BR signalling control, which is critical for the proper development of various tissues.
Collapse
Affiliation(s)
- Yunhua Xiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guoxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dapu Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei Niu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongning Tong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
84
|
Seo H, Kim SH, Lee BD, Lim JH, Lee SJ, An G, Paek NC. The Rice Basic Helix-Loop-Helix 79 ( OsbHLH079) Determines Leaf Angle and Grain Shape. Int J Mol Sci 2020; 21:ijms21062090. [PMID: 32197452 PMCID: PMC7139501 DOI: 10.3390/ijms21062090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 11/20/2022] Open
Abstract
Changes in plant architecture, such as leaf size, leaf shape, leaf angle, plant height, and floral organs, have been major factors in improving the yield of cereal crops. Moreover, changes in grain size and weight can also increase yield. Therefore, screens for additional factors affecting plant architecture and grain morphology may enable additional improvements in yield. Among the basic Helix-Loop-Helix (bHLH) transcription factors in rice (Oryza sativa), we found an enhancer-trap T-DNA insertion mutant of OsbHLH079 (termed osbhlh079-D). The osbhlh079-D mutant showed a wide leaf angle phenotype and produced long grains, similar to the phenotypes of mutants with increased brassinosteroid (BR) levels or enhanced BR signaling. Reverse transcription-quantitative PCR analysis showed that BR signaling-associated genes are largely upregulated in osbhlh079-D, but BR biosynthesis-associated genes are not upregulated, compared with its parental japonica cultivar ‘Dongjin’. Consistent with this, osbhlh079-D was hypersensitive to BR treatment. Scanning electron microscopy revealed that the expansion of cell size in the adaxial side of the lamina joint was responsible for the increase in leaf angle in osbhlh079-D. The expression of cell-elongation-associated genes encoding expansins and xyloglucan endotransglycosylases/hydrolases increased in the lamina joints of leaves in osbhlh079-D. The regulatory function of OsbHLH079 was further confirmed by analyzing 35S::OsbHLH079 overexpression and 35S::RNAi-OsbHLH079 gene silencing lines. The 35S::OsbHLH079 plants showed similar phenotypes to osbhlh079-D, and the 35S::RNAi-OsbHLH079 plants displayed opposite phenotypes to osbhlh079-D. Taking these observations together, we propose that OsbHLH079 functions as a positive regulator of BR signaling in rice.
Collapse
Affiliation(s)
- Hyoseob Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (H.S.); (S.-H.K.); (B.-D.L.); (J.-H.L.); (S.-J.L.)
| | - Suk-Hwan Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (H.S.); (S.-H.K.); (B.-D.L.); (J.-H.L.); (S.-J.L.)
| | - Byoung-Doo Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (H.S.); (S.-H.K.); (B.-D.L.); (J.-H.L.); (S.-J.L.)
| | - Jung-Hyun Lim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (H.S.); (S.-H.K.); (B.-D.L.); (J.-H.L.); (S.-J.L.)
| | - Sang-Ji Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (H.S.); (S.-H.K.); (B.-D.L.); (J.-H.L.); (S.-J.L.)
| | - Gynheung An
- Department of Plant Molecular Systems Biotechnology, Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea;
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (H.S.); (S.-H.K.); (B.-D.L.); (J.-H.L.); (S.-J.L.)
- Correspondence: ; Tel.: +82-2-880-4543; Fax: +82-2-877-4550
| |
Collapse
|
85
|
Systems Metabolic Alteration in a Semi-Dwarf Rice Mutant Induced by OsCYP96B4 Gene Mutation. Int J Mol Sci 2020; 21:ijms21061924. [PMID: 32168953 PMCID: PMC7139402 DOI: 10.3390/ijms21061924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 02/06/2023] Open
Abstract
Dwarfism and semi-dwarfism are among the most valuable agronomic traits in crop breeding, which were adopted by the “Green Revolution”. Previously, we reported a novel semi-dwarf rice mutant (oscyp96b4) derived from the insertion of a single copy of Dissociator (Ds) transposon into the gene OsCYP96B4. However, the systems metabolic effect of the mutation is not well understood, which is important for understanding the gene function and developing new semi-dwarf mutants. Here, the metabolic phenotypes in the semi-dwarf mutant (M) and ectopic expression (ECE) rice line were compared to the wild-type (WT) rice, by using nuclear magnetic resonance (NMR) metabolomics and quantitative real-time polymerase chain reaction (qRT-PCR). Compared with WT, ECE of the OsCYP96B4 gene resulted in significant increase of γ-aminobutyrate (GABA), glutamine, and alanine, but significant decrease of glutamate, aromatic and branched-chain amino acids, and some other amino acids. The ECE caused significant increase of monosaccharides (glucose, fructose), but significant decrease of disaccharide (sucrose); induced significant changes of metabolites involved in choline metabolism (phosphocholine, ethanolamine) and nucleotide metabolism (adenosine, adenosine monophosphate, uridine). These metabolic profile alterations were accompanied with changes in the gene expression levels of some related enzymes, involved in GABA shunt, glutamate and glutamine metabolism, choline metabolism, sucrose metabolism, glycolysis/gluconeogenesis pathway, tricarboxylic acid (TCA) cycle, nucleotide metabolism, and shikimate-mediated secondary metabolism. The semi-dwarf mutant showed corresponding but less pronounced changes, especially in the gene expression levels. It indicates that OsCYP96B4 gene mutation in rice causes significant alteration in amino acid metabolism, carbohydrate metabolism, nucleotide metabolism, and shikimate-mediated secondary metabolism. The present study will provide essential information for the OsCYP96B4 gene function analysis and may serve as valuable reference data for the development of new semi-dwarf mutants.
Collapse
|
86
|
Zheng X, Xiao Y, Tian Y, Yang S, Wang C. PcDWF1, a pear brassinosteroid biosynthetic gene homologous to AtDWARF1, affected the vegetative and reproductive growth of plants. BMC PLANT BIOLOGY 2020; 20:109. [PMID: 32143576 PMCID: PMC7060609 DOI: 10.1186/s12870-020-2323-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/28/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND The steroidal hormones brassinosteroids (BRs) play important roles in plant growth and development. The pathway and genes involved in BR biosynthesis have been identified primarily in model plants like Arabidopsis, but little is known about BR biosynthesis in woody fruits such as pear. RESULTS In this study, we found that applying exogenous brassinolide (BL) could significantly increase the stem growth and rooting ability of Pyrus ussuriensis. PcDWF1, which had a significantly lower level of expression in the dwarf-type pear than in the standard-type pear, was cloned for further analysis. A phylogenetic analysis showed that PcDWF1 was a pear brassinosteroid biosynthetic gene that was homologous to AtDWARF1. The subcellular localization analysis indicated that PcDWF1 was located in the plasma membrane. Overexpression of PcDWF1 in tobacco (Nicotiana tabacum) or pear (Pyrus ussuriensis) plants promoted the growth of the stems, which was caused by a larger cell size and more developed xylem than those in the control plants, and the rooting ability was significantly enhanced. In addition to the change in vegetative growth, the tobacco plants overexpressing PcDWF1 also had a delayed flowering time and larger seed size than did the control tobacco plants. These phenotypes were considered to result from the higher BL contents in the transgenic lines than in the control tobacco and pear plants. CONCLUSIONS Taken together, these results reveal that the pear BR biosynthetic gene PcDWF1 affected the vegetative and reproductive growth of Pyrus ussuriensis and Nicotiana tabacum and could be characterized as an important BR biosynthetic gene in perennial woody fruit plants.
Collapse
Affiliation(s)
- Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109 China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109 China
| | - Yuxiong Xiao
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109 China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109 China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109 China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109 China
| | - Shaolan Yang
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109 China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109 China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109 China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109 China
| |
Collapse
|
87
|
Into the Seed: Auxin Controls Seed Development and Grain Yield. Int J Mol Sci 2020; 21:ijms21051662. [PMID: 32121296 PMCID: PMC7084539 DOI: 10.3390/ijms21051662] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/17/2022] Open
Abstract
Seed development, which involves mainly the embryo, endosperm and integuments, is regulated by different signaling pathways, leading to various changes in seed size or seed weight. Therefore, uncovering the genetic and molecular mechanisms of seed development has great potential for improving crop yields. The phytohormone auxin is a key regulator required for modulating different cellular processes involved in seed development. Here, we provide a comprehensive review of the role of auxin biosynthesis, transport, signaling, conjugation, and catabolism during seed development. More importantly, we not only summarize the research progress on the genetic and molecular regulation of seed development mediated by auxin but also discuss the potential of manipulating auxin metabolism and its signaling pathway for improving crop seed weight.
Collapse
|
88
|
Nolan TM, Vukašinović N, Liu D, Russinova E, Yin Y. Brassinosteroids: Multidimensional Regulators of Plant Growth, Development, and Stress Responses. THE PLANT CELL 2020; 32:295-318. [PMID: 31776234 PMCID: PMC7008487 DOI: 10.1105/tpc.19.00335] [Citation(s) in RCA: 491] [Impact Index Per Article: 98.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/01/2019] [Accepted: 11/26/2019] [Indexed: 05/18/2023]
Abstract
Brassinosteroids (BRs) are a group of polyhydroxylated plant steroid hormones that are crucial for many aspects of a plant's life. BRs were originally characterized for their function in cell elongation, but it is becoming clear that they play major roles in plant growth, development, and responses to several stresses such as extreme temperatures and drought. A BR signaling pathway from cell surface receptors to central transcription factors has been well characterized. Here, we summarize recent progress toward understanding the BR pathway, including BR perception and the molecular mechanisms of BR signaling. Next, we discuss the roles of BRs in development and stress responses. Finally, we show how knowledge of the BR pathway is being applied to manipulate the growth and stress responses of crops. These studies highlight the complex regulation of BR signaling, multiple points of crosstalk between BRs and other hormones or stress responses, and the finely tuned spatiotemporal regulation of BR signaling.
Collapse
Affiliation(s)
- Trevor M Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052, Ghent, Belgium
| | - Derui Liu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052, Ghent, Belgium
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie, 9052, Ghent, Belgium
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
89
|
Snouffer A, Kraus C, van der Knaap E. The shape of things to come: ovate family proteins regulate plant organ shape. CURRENT OPINION IN PLANT BIOLOGY 2020; 53:98-105. [PMID: 31837627 DOI: 10.1016/j.pbi.2019.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 05/14/2023]
Abstract
The shape of produce is an important agronomic trait. The knowledge of the cellular regulation of organ shapes can be implemented in the improvement of a variety of crops. The plant-specific Ovate Family Proteins (OFPs) regulate organ shape in Arabidopsis and many crops including rice, tomato, and melon. Although OFPs were previously described as transcriptional repressors, recent data support a role for the family in organ shape regulation through control of subcellular localization of protein complexes. OFPs interact with TONNEAU1 RECRUITMENT MOTIF (TRMs) and together they regulate cell division patterns in tomato fruit development. OFPs also respond to changes in plant hormones and responses to stress. The OFP-TRM interaction may work in conjunction with additional shape regulators such as IQ67 Domain (IQD) proteins to modulate the response to tissue level cues as well as external stimuli and stressors to form reproducible organ shapes by regulating cytoskeleton activities.
Collapse
Affiliation(s)
- Ashley Snouffer
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Rd, Athens GA, 30602 United States
| | - Carmen Kraus
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, 111 Riverbend Rd, Athens GA, 30602 United States
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Rd, Athens GA, 30602 United States; Institute for Plant Breeding, Genetics and Genomics, University of Georgia, 111 Riverbend Rd, Athens GA, 30602 United States; Department of Horticulture, University of Georgia, 111 Riverbend Rd, Athens GA, 30602 United States.
| |
Collapse
|
90
|
Nutan KK, Rathore RS, Tripathi AK, Mishra M, Pareek A, Singla-Pareek SL. Integrating the dynamics of yield traits in rice in response to environmental changes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:490-506. [PMID: 31410470 DOI: 10.1093/jxb/erz364] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/29/2019] [Indexed: 05/23/2023]
Abstract
Reductions in crop yields as a consequence of global climate change threaten worldwide food security. It is therefore imperative to develop high-yielding crop plants that show sustainable production under stress conditions. In order to achieve this aim through breeding or genetic engineering, it is crucial to have a complete and comprehensive understanding of the molecular basis of plant architecture and the regulation of its sub-components that contribute to yield under stress. Rice is one of the most widely consumed crops and is adversely affected by abiotic stresses such as drought and salinity. Using it as a model system, in this review we present a summary of our current knowledge of the physiological and molecular mechanisms that determine yield traits in rice under optimal growth conditions and under conditions of environmental stress. Based on physiological functioning, we also consider the best possible combination of genes that may improve grain yield under optimal as well as environmentally stressed conditions. The principles that we present here for rice will also be useful for similar studies in other grain crops.
Collapse
Affiliation(s)
- Kamlesh Kant Nutan
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ray Singh Rathore
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Amit Kumar Tripathi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Manjari Mishra
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
91
|
Exploring the Brassinosteroid Signaling in Monocots Reveals Novel Components of the Pathway and Implications for Plant Breeding. Int J Mol Sci 2020; 21:ijms21010354. [PMID: 31948086 PMCID: PMC6982108 DOI: 10.3390/ijms21010354] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 01/30/2023] Open
Abstract
Brassinosteroids (BRs) are a class of steroidal phytohormones which are key regulators of diverse processes during whole life cycle of plants. Studies conducted in the dicot model species Arabidopsis thaliana have allowed identification and characterization of various components of the BR signaling. It is currently known that the BR signaling is interconnected at various stages with other phytohormonal and stress signaling pathways. It enables a rapid and efficient adaptation of plant metabolism to constantly changing environmental conditions. However, our knowledge about mechanism of the BR signaling in the monocot species is rather limited. Thus, identification of new components of the BR signaling in monocots, including cereals, is an ongoing process and has already led to identification of some monocot-specific components of the BR signaling. It is of great importance as disturbances in the BR signaling influence architecture of mutant plants, and as a consequence, the reaction to environmental conditions. Currently, the modulation of the BR signaling is considered as a target to enhance yield and stress tolerance in cereals, which is of particular importance in the face of global climate change.
Collapse
|
92
|
Lin WH. Designed Manipulation of the Brassinosteroid Signal to Enhance Crop Yield. FRONTIERS IN PLANT SCIENCE 2020; 11:854. [PMID: 32595692 PMCID: PMC7300318 DOI: 10.3389/fpls.2020.00854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/27/2020] [Indexed: 05/23/2023]
Abstract
Brassinosteroid (BR), a plant steroid hormone, plays crucial role in modulating plant growth and development, which affect crop architecture and yield. However, BR application cannot highly benefit to agricultural production as expectation, because it regulates multiple processes in different tissues and leads to side effect. In addition, accurately modifying BR signal at transcriptional level is difficult. Effective manipulation of the BR signal and avoidance of side effects are required to enhance yield in different crops. Application of BR by spraying at specific developmental stages can enhance crop yield, but this method is impractical for use on a large scale. The accurate molecular design of crops would be much more helpful to manipulate the BR signal in specific organs and/or at particular developmental stages to enhance crop yield. This minireview summarizes the BR regulation of yield in different crops, especially horticultural crops, and the strategies used to regulate the BR signal to enhance crop yield. One popular strategy is to directly modulate the BR signal through modifying the functions of important components in the BR signal transduction pathway. Another strategy is to identify and modulate regulators downstream of, or in crosstalk with, the BR signal to manipulate its role in specific processes and increase crop yield. Efforts to accurately design a BR manipulation strategy will ultimately lead to effective control of the BR signal to avoid side effects and enhance crop yield.
Collapse
|
93
|
Zhang S, Hu X, Miao H, Chu Y, Cui F, Yang W, Wang C, Shen Y, Xu T, Zhao L, Zhang J, Chen J. QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.). BMC PLANT BIOLOGY 2019; 19:537. [PMID: 31795931 PMCID: PMC6892246 DOI: 10.1186/s12870-019-2164-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/26/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND The cultivated peanut is an important oil and cash crop grown worldwide. To meet the growing demand for peanut production each year, genetic studies and enhanced selection efficiency are essential, including linkage mapping, genome-wide association study, bulked-segregant analysis and marker-assisted selection. Specific locus amplified fragment sequencing (SLAF-seq) is a powerful tool for high density genetic map (HDGM) construction and quantitative trait loci (QTLs) mapping. In this study, a HDGM was constructed using SLAF-seq leading to identification of QTL for seed weight and size in peanut. RESULTS A recombinant inbred line (RIL) population was advanced from a cross between a cultivar 'Huayu36' and a germplasm line '6-13' with contrasting seed weight, size and shape. Based on the cultivated peanut genome, a HDGM was constructed with 3866 loci consisting of SLAF-seq and simple sequence repeat (SSR) markers distributed on 20 linkage groups (LGs) covering a total map distance of 1266.87 cM. Phenotypic data of four seed related traits were obtained in four environments, which mostly displayed normal distribution with varied levels of correlation. A total of 27 QTLs for 100 seed weight (100SW), seed length (SL), seed width (SW) and length to width ratio (L/W) were identified on 8 chromosomes, with LOD values of 3.16-31.55 and explaining phenotypic variance (PVE) from 0.74 to 83.23%. Two stable QTL regions were identified on chromosomes 2 and 16, and gene content within these regions provided valuable information for further functional analysis of yield component traits. CONCLUSIONS This study represents a new HDGM based on the cultivated peanut genome using SLAF-seq and SSRs. QTL mapping of four seed related traits revealed two stable QTL regions on chromosomes 2 and 16, which not only facilitate fine mapping and cloning these genes, but also provide opportunity for molecular breeding of new peanut cultivars with improved seed weight and size.
Collapse
Affiliation(s)
- Shengzhong Zhang
- Shandong Peanut Research Institute, Qingdao, 266100, People's Republic of China
| | - Xiaohui Hu
- Shandong Peanut Research Institute, Qingdao, 266100, People's Republic of China
| | - Huarong Miao
- Shandong Peanut Research Institute, Qingdao, 266100, People's Republic of China
| | - Ye Chu
- Department of Horticulture, University of Georgia Tifton Campus, Tifton, GA, 31793, USA
| | - Fenggao Cui
- Shandong Peanut Research Institute, Qingdao, 266100, People's Republic of China
| | - Weiqiang Yang
- Shandong Peanut Research Institute, Qingdao, 266100, People's Republic of China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yi Shen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Tingting Xu
- Shandong Peanut Research Institute, Qingdao, 266100, People's Republic of China
| | - Libo Zhao
- Qingdao Agricultural Radio and Television School, Qingdao, 266071, People's Republic of China
| | - Jiancheng Zhang
- Shandong Peanut Research Institute, Qingdao, 266100, People's Republic of China
| | - Jing Chen
- Shandong Peanut Research Institute, Qingdao, 266100, People's Republic of China.
| |
Collapse
|
94
|
Guo ZH, Haslam RP, Michaelson LV, Yeung EC, Lung SC, Napier JA, Chye ML. The overexpression of rice ACYL-CoA-BINDING PROTEIN2 increases grain size and bran oil content in transgenic rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1132-1147. [PMID: 31437323 DOI: 10.1111/tpj.14503] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/27/2019] [Accepted: 08/05/2019] [Indexed: 05/18/2023]
Abstract
As Oryza sativa (rice) seeds represent food for over three billion people worldwide, the identification of genes that enhance grain size and composition is much desired. Past reports have indicated that Arabidopsis thaliana acyl-CoA-binding proteins (ACBPs) are important in seed development but did not affect seed size. Herein, rice OsACBP2 was demonstrated not only to play a role in seed development and germination, but also to influence grain size. OsACBP2 mRNA accumulated in embryos and endosperm of germinating seeds in qRT-PCR analysis, while β-glucuronidase (GUS) assays on OsACBP2pro::GUS rice transformants showed GUS expression in embryos, as well as the scutellum and aleurone layer of germinating seeds. Deletion analysis of the OsACBP2 5'-flanking region revealed five copies of the seed cis-element, Skn-I-like motif (-1486/-1482, -956/-952, -939/-935, -826/-822, and -766/-762), and the removal of any adversely affected expression in seeds, thereby providing a molecular basis for OsACBP2 expression in seeds. When OsACBP2 function was investigated using osacbp2 mutants and transgenic rice overexpressing OsACBP2 (OsACBP2-OE), osacbp2 was retarded in germination, while OsACBP2-OEs performed better than the wild-type and vector-transformed controls, in germination, seedling growth, grain size and grain weight. Transmission electron microscopy of OsACBP2-OE mature seeds revealed an accumulation of oil bodies in the scutellum cells, while confocal laser scanning microscopy indicated oil accumulation in OsACBP2-OE aleurone tissues. Correspondingly, OsACBP2-OE seeds showed gain in triacylglycerols and long-chain fatty acids over the vector-transformed control. As dietary rice bran contains beneficial bioactive components, OsACBP2 appears to be a promising candidate for enriching seed nutritional value.
Collapse
Affiliation(s)
- Ze-Hua Guo
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Richard P Haslam
- Department of Plant Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Louise V Michaelson
- Department of Plant Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Edward C Yeung
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4,, Canada
| | - Shiu-Cheung Lung
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Johnathan A Napier
- Department of Plant Science, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Mee-Len Chye
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
95
|
A novel single-base mutation in CaBRI1 confers dwarf phenotype and brassinosteroid accumulation in pepper. Mol Genet Genomics 2019; 295:343-356. [PMID: 31745640 DOI: 10.1007/s00438-019-01626-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/07/2019] [Indexed: 01/25/2023]
Abstract
Dwarfing is the development trend of pepper breeding. It is of great practical and scientific value to generate new dwarf germplasms, and identify new genes or alleles conferring dwarf traits in pepper. In our previous study, a weakly BR-insensitive dwarf mutant, E29, was obtained by EMS mutagenesis of the pepper inbred line 6421. It can be used as a good parent material for breeding new dwarf varieties. Here, we found that this dwarf phenotype was controlled by a single recessive gene. Whole-genome resequencing, dCAPs analysis, and VIGs validation revealed that this mutation was caused by a nonsynonymous single-nucleotide mutation (C to T) in CaBRI1. An enzyme activity assay, transcriptome sequencing, and BL content determination further revealed that an amino-acid change (Pro1157Ser) in the serine/threonine protein kinase and catalytic (S_TKc) domain of CaBRI1 impaired its kinase activity and caused the transcript levels of two important genes (CaDWF4 and CaROT3) participating in BR biosynthesis to increase dramatically in the E29 mutant, accompanied by significantly increased accumulation of brassinolide (BL). Therefore, we concluded that the novel single-base mutation in CaBRI1 conferred the dwarf phenotype and resulted in brassinosteroid (BR) accumulation in pepper. This study provides a new allelic variant of the height-regulating gene CaBRI1 that has theoretical and practical values for the breeding of the plants suitable for the facility cultivation and mechanized harvesting of pepper varieties.
Collapse
|
96
|
Ferrero-Serrano Á, Cantos C, Assmann SM. The Role of Dwarfing Traits in Historical and Modern Agriculture with a Focus on Rice. Cold Spring Harb Perspect Biol 2019; 11:a034645. [PMID: 31358515 PMCID: PMC6824242 DOI: 10.1101/cshperspect.a034645] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Semidwarf stature is a valuable agronomic trait in grain crops that reduces lodging and increases harvest index. A fundamental advance during the 1960s Green Revolution was the introduction of semidwarf cultivars of rice and wheat. Essentially, all semidwarf varieties of rice under cultivation today owe their diminished stature to a specific null mutation in the gibberellic acid (GA) biosynthesis gene, SD1 However, it is now well-established that, in addition to GAs, brassinosteroids and strigolactones also control plant height. In this review, we describe the synthesis and signaling pathways of these three hormones as understood in rice and discuss the mutants and transgenics in these pathways that confer semidwarfism and other valuable architectural traits. We propose that such genes offer underexploited opportunities for broadening the genetic basis and germplasm in semidwarf rice breeding.
Collapse
Affiliation(s)
| | - Christian Cantos
- Biology Department, Penn State University, University Park, Pennsylvania 16802, USA
| | - Sarah M Assmann
- Biology Department, Penn State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
97
|
Melatonin Deficiency Confers Tolerance to Multiple Abiotic Stresses in Rice via Decreased Brassinosteroid Levels. Int J Mol Sci 2019; 20:ijms20205173. [PMID: 31635310 PMCID: PMC6834310 DOI: 10.3390/ijms20205173] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 01/08/2023] Open
Abstract
Melatonin has long been recognized as a positive signaling molecule and potent antioxidant in plants, which alleviates damage caused by adverse conditions such as salt, cold, and heat stress. In this study, we found a paradoxical role for melatonin in abiotic stress responses. Suppression of the serotonin N-acetyltransferase 2 (snat2) gene encoding the penultimate enzyme in melatonin biosynthesis led to simultaneous decreases in both melatonin and brassinosteroid (BR) levels, causing a semi-dwarf with erect leaf phenotype, typical of BR deficiency. Here, we further characterized snat2 rice in terms of grain morphology and abiotic stress tolerance, to determine whether snat2 rice exhibited characteristics similar to those of BR-deficient rice. As expected, the snat2 rice exhibited tolerance to multiple stress conditions including cadmium, salt, cold, and heat, as evidenced by decreased malondialdehyde (MDA) levels and increased chlorophyll levels, in contrast with SNAT2 overexpression lines, which were less tolerant to stress than wild type plants. In addition, the length and width of grain from snat2 plants were reduced relative to the wild type, which is reminiscent of BR deficiency in rice. Other melatonin-deficient mutant rice lines with suppressed BR synthesis (i.e., comt and t5h) also showed tolerance to salt and heat stress, whereas melatonin-deficient rice seedlings without decreased BR levels (i.e., tdc) failed to exhibit increased stress tolerance, suggesting that stress tolerance was increased not by melatonin deficiency alone, but by a melatonin deficiency-mediated decrease in BR.
Collapse
|
98
|
Min HJ, Cui LH, Oh TR, Kim JH, Kim TW, Kim WT. OsBZR1 turnover mediated by OsSK22-regulated U-box E3 ligase OsPUB24 in rice BR response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:426-438. [PMID: 30920691 DOI: 10.1111/tpj.14332] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/01/2019] [Accepted: 03/22/2019] [Indexed: 05/28/2023]
Abstract
Oryza sativa BRASSINAZOLE RESISTANT 1 (OsBZR1) is the closest rice homolog of the Arabidopsis BZR1 and bri1-EMS-SUPPRESSOR 1 (BES1)/BZR2 transcription factors. OsBZR1 plays a central role in the rice brassinosteroid signaling pathway. Despite its functional importance, the control mechanism by which the cellular stability of OsBZR1 is regulated has not yet been fully elucidated. Here, we report that a rice U-box E3 ubiquitin (Ub) ligase OsPUB24 acts as a negative regulator in the BR signaling pathway via the 26S proteasome-dependent degradation of OsBZR1. The ospub24 T-DNA knock-out mutant and Ubi:RNAi-OsPUB24 knock-down rice plants displayed enhanced seedling growth, increased lamina joint bending, and hypersensitivity to brassinolide (BL). The expressions of the BR biosynthetic genes suppressed by BR in a negative feedback loop were lower in the mutant progeny than in the wild-type rice plants, which indicated increased BR responses in the mutant line. OsPUB24 ubiquitinated OsBZR1, resulting in the proteasomal degradation of OsBZR1. In addition, the stability of OsPUB24 was downregulated by BL and bikinin, an inhibitor of Oryza sativa Shaggy/GSK3-like kinase 22 (OsSK22). OsSK22, the homolog of Arabidopsis BRASSINOSTEROID INSENSITIVE 2 (BIN2) protein kinase, phosphorylated OsPUB24 and elevated the cellular stability of OsPUB24. Our findings suggest that OsPUB24 participates in OsBZR1 turnover, and that the regulatory networks of OsPUB24, OsSK22 and OsBZR1 are crucial for fine-tuning the BR response in rice.
Collapse
Affiliation(s)
- Hye Jo Min
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Li Hua Cui
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Tae Rin Oh
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Jong Hum Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Tae-Wuk Kim
- Department of Life Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Republic of Korea
| |
Collapse
|
99
|
Wang S, Liu J, Zhao T, Du C, Nie S, Zhang Y, Lv S, Huang S, Wang X. Modification of Threonine-1050 of SlBRI1 regulates BR Signalling and increases fruit yield of tomato. BMC PLANT BIOLOGY 2019; 19:256. [PMID: 31196007 PMCID: PMC6567510 DOI: 10.1186/s12870-019-1869-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 06/04/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Appropriate brassinosteroid (BR) signal strength caused by exogenous application or endogenous regulation of BR-related genes can increase crop yield. However, precise control of BR signals is difficult and can cause unstable effects and failure to reach full potential. Phosphorylated BRASSINOSTEROID INSENSITIVE1 (BRI1), the rate-limiting receptor in BR signalling, transduces BR signals, and we recently demonstrated that modifying BRI1 phosphorylation sites alters BR signal strength and botanical characteristics in Arabidopsis. However, the functions of such phosphorylation sites in agronomic characteristics of crops remain unclear. RESULTS In this work, we investigated the roles of tomato SlBRI1 threonine-1050 (Thr-1050). SlBRI1 mutant cu3-abs1 plants expressing SlBRI1 with a non-phosphorylatable Thr-1050 (T1050A), with a wild-type SlBRI1 transformant used as a control, were examined. The results showed enhanced autophosphorylation of SlBRI1 and BR signal strength for cu3-abs1 harbouring T1050A, which promoted yield through increased plant expansion, leaf area, fruit weight and fruit number per cluster but reduced nutrient contents, including ascorbic acid and soluble sugar levels. Moreover, plant height, stem diameter, and internodal distance were similar between the transgenic plants. CONCLUSION Our results reveal the biological role of Thr-1050 in tomato and provide a molecular basis for establishing high-yield crops by precisely controlling BR signal strength via phosphorylation site modification.
Collapse
Affiliation(s)
- Shufen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Jianwei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Tong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Chenxi Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Shuming Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yanyu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Siqi Lv
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Shuhua Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiaofeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
100
|
Yin W, Dong N, Niu M, Zhang X, Li L, Liu J, Liu B, Tong H. Brassinosteroid-regulated plant growth and development and gene expression in soybean. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2018.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|