51
|
Vandenbussche F, Vaseva I, Vissenberg K, Van Der Straeten D. Ethylene in vegetative development: a tale with a riddle. THE NEW PHYTOLOGIST 2012; 194:895-909. [PMID: 22404712 DOI: 10.1111/j.1469-8137.2012.04100.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The vegetative development of plants is strongly dependent on the action of phytohormones. For over a century, the effects of ethylene on plants have been studied, illustrating the profound impact of this gaseous hormone on plant growth, development and stress responses. Ethylene signaling is under tight self-control at various levels. Feedback regulation occurs on both biosynthesis and signaling. For its role in developmental processes, ethylene has a close and reciprocal relation with auxin, another major determinant of plant architecture. Here, we discuss, in view of novel findings mainly in the reference plant Arabidopsis, how ethylene is distributed and perceived throughout the plant at the organ, tissue and cellular levels, and reflect on how plants benefit from the complex interaction of ethylene and auxin, determining their shape. Furthermore, we elaborate on the implications of recent discoveries on the control of ethylene signaling.
Collapse
Affiliation(s)
- Filip Vandenbussche
- Department of Physiology, Faculty of Sciences, Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Irina Vaseva
- Department of Physiology, Faculty of Sciences, Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Kris Vissenberg
- Laboratory of Plant Growth and Development, University of Antwerp, Department of Biology, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | - Dominique Van Der Straeten
- Department of Physiology, Faculty of Sciences, Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
52
|
van Zanten M, Ritsema T, Polko JK, Leon-Reyes A, Voesenek LACJ, Millenaar FF, Pieterse CMJ, Peeters AJM. Modulation of ethylene- and heat-controlled hyponastic leaf movement in Arabidopsis thaliana by the plant defence hormones jasmonate and salicylate. PLANTA 2012; 235:677-685. [PMID: 22009062 PMCID: PMC3313027 DOI: 10.1007/s00425-011-1528-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/25/2011] [Indexed: 05/29/2023]
Abstract
Upward leaf movement (hyponastic growth) is adopted by several plant species including Arabidopsis thaliana, as a mechanism to escape adverse growth conditions. Among the signals that trigger hyponastic growth are, the gaseous hormone ethylene, low light intensities, and supra-optimal temperatures (heat). Recent studies indicated that the defence-related phytohormones jasmonic acid (JA) and salicylic acid (SA) synthesized by the plant upon biotic infestation repress low light-induced hyponastic growth. The hyponastic growth response induced by high temperature (heat) treatment and upon application of the gaseous hormone ethylene is highly similar to the response induced by low light. To test if these environmental signals induce hyponastic growth via parallel pathways or converge downstream, we studied here the roles of Methyl-JA (MeJA) and SA on ethylene- and heat-induced hyponastic growth. For this, we used a time-lapse camera setup. Our study includes pharmacological application of MeJA and SA and biological infestation using the JA-inducing caterpillar Pieris rapae as well as mutants lacking JA or SA signalling components. The data demonstrate that MeJA is a positive, and SA, a negative regulator of ethylene-induced hyponastic growth and that both hormones repress the response to heat. Taking previous studies into account, we conclude that SA is the first among many tested components which is repressing hyponastic growth under all tested inductive environmental stimuli. However, since MeJA is a positive regulator of ethylene-induced hyponastic growth and is inhibiting low light- and heat-induced leaf movement, we conclude that defence hormones control hyponastic growth by affecting stimulus-specific signalling pathways.
Collapse
Affiliation(s)
- Martijn van Zanten
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Vile D, Pervent M, Belluau M, Vasseur F, Bresson J, Muller B, Granier C, Simonneau T. Arabidopsis growth under prolonged high temperature and water deficit: independent or interactive effects? PLANT, CELL & ENVIRONMENT 2012; 35:702-18. [PMID: 21988660 DOI: 10.1111/j.1365-3040.2011.02445.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
High temperature (HT) and water deficit (WD) are frequent environmental constraints restricting plant growth and productivity. These stresses often occur simultaneously in the field, but little is known about their combined impacts on plant growth, development and physiology. We evaluated the responses of 10 Arabidopsis thaliana natural accessions to prolonged elevated air temperature (30 °C) and soil WD applied separately or in combination. Plant growth was significantly reduced under both stresses and their combination was even more detrimental to plant performance. The effects of the two stresses were globally additive, but some traits responded specifically to one but not the other stress. Root allocation increased in response to WD, while reproductive allocation, hyponasty and specific leaf area increased under HT. All the traits that varied in response to combined stresses also responded to at least one of them. Tolerance to WD was higher in small-sized accessions under control temperature and HT and in accessions with high biomass allocation to root under control conditions. Accessions that originate from sites with higher temperature have less stomatal density and allocate less biomass to the roots when cultivated under HT. Independence and interaction between stresses as well as the relationships between traits and stress responses are discussed.
Collapse
Affiliation(s)
- Denis Vile
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, UMR 759, INRA-SUPAGRO, F-34060 Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Seymour DK, Filiault DL, Henry IM, Monson-Miller J, Ravi M, Pang A, Comai L, Chan SWL, Maloof JN. Rapid creation of Arabidopsis doubled haploid lines for quantitative trait locus mapping. Proc Natl Acad Sci U S A 2012; 109:4227-32. [PMID: 22371599 PMCID: PMC3306714 DOI: 10.1073/pnas.1117277109] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quantitative trait loci (QTL) mapping is a powerful tool for investigating the genetic basis of natural variation. QTL can be mapped using a number of different population designs, but recombinant inbred lines (RILs) are among the most effective. Unfortunately, homozygous RIL populations are time consuming to construct, typically requiring at least six generations of selfing starting from a heterozygous F(1). Haploid plants produced from an F(1) combine the two parental genomes and have only one allele at every locus. Converting these sterile haploids into fertile diploids (termed "doubled haploids," DHs) produces immortal homozygous lines in only two steps. Here we describe a unique technique for rapidly creating recombinant doubled haploid populations in Arabidopsis thaliana: centromere-mediated genome elimination. We generated a population of 238 doubled haploid lines that combine two parental genomes and genotyped them by reduced representation Illumina sequencing. The recombination rate and parental allele frequencies in our population are similar to those found in existing RIL sets. We phenotyped this population for traits related to flowering time and for petiole length and successfully mapped QTL controlling each trait. Our work demonstrates that doubled haploid populations offer a rapid, easy alternative to RILs for Arabidopsis genetic analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Luca Comai
- Department of Plant Biology
- Genome Center, and
| | - Simon W. L. Chan
- Department of Plant Biology
- Howard Hughes Medical Institute, University of California, Davis, CA 95616
| | | |
Collapse
|
55
|
Polko JK, van Zanten M, van Rooij JA, Marée AFM, Voesenek LACJ, Peeters AJM, Pierik R. Ethylene-induced differential petiole growth in Arabidopsis thaliana involves local microtubule reorientation and cell expansion. THE NEW PHYTOLOGIST 2012; 193:339-48. [PMID: 21973123 DOI: 10.1111/j.1469-8137.2011.03920.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
• Hyponastic growth is an upward petiole movement induced by plants in response to various external stimuli. It is caused by unequal growth rates between adaxial and abaxial sides of the petiole, which bring rosette leaves to a more vertical position. The volatile hormone ethylene is a key regulator inducing hyponasty in Arabidopsis thaliana. Here, we studied whether ethylene-mediated hyponasty occurs through local stimulation of cell expansion and whether this involves the reorientation of cortical microtubules (CMTs). • To study cell size differences between the two sides of a petiole in ethylene and control conditions, we analyzed epidermal imprints. We studied the involvement of CMT orientation in epidermal cells using the tubulin marker line as well as genetic and pharmacological means of CMT manipulation. • Our results demonstrate that ethylene induces cell expansion at the abaxial side of the- petiole and that this can account for the observed differential growth. At the abaxial side, ethylene induces CMT reorientation from longitudinal to transverse, whereas, at the adaxial side, it has an opposite effect. The inhibition of CMTs disturbed ethylene-induced hyponastic growth. • This work provides evidence that ethylene stimulates cell expansion in a tissue-specific manner and that it is associated with tissue-specific changes in the arrangement of CMTs along the petiole.
Collapse
Affiliation(s)
- Joanna K Polko
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
56
|
Polko JK, Voesenek LACJ, Peeters AJM, Pierik R. Petiole hyponasty: an ethylene-driven, adaptive response to changes in the environment. AOB PLANTS 2011; 2011:plr031. [PMID: 22476501 PMCID: PMC3249691 DOI: 10.1093/aobpla/plr031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/05/2011] [Indexed: 05/23/2023]
Abstract
BACKGROUND Many plant species can actively reorient their organs in response to dynamic environmental conditions. Organ movement can be an integral part of plant development or can occur in response to unfavourable external circumstances. These active reactions take place with or without a directional stimulus and can be driven either by changes in turgor pressure or by asymmetric growth. Petiole hyponasty is upward movement driven by a higher rate of cell expansion on the lower (abaxial) compared with the upper (adaxial) side. Hyponasty is common among rosette species facing environmental stresses such as flooding, proximity of neighbours or elevated ambient temperature. The complex regulatory mechanism of hyponasty involves activation of pathways at molecular and developmental levels, with ethylene playing a crucial role. SCOPE We present current knowledge on the mechanisms that promote hyponasty in the context of other organ movements, including tropic and nastic reactions together with circumnutation. We describe major environmental cues resulting in hyponasty and briefly discuss their perception and signal transduction. Since ethylene is a central agent triggering hyponasty, we focus on ethylene in controlling different stages during plant development and summarize current knowledge on the relationship between ethylene and cell growth.
Collapse
Affiliation(s)
| | | | | | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
57
|
Vasseur F, Pantin F, Vile D. Changes in light intensity reveal a major role for carbon balance in Arabidopsis responses to high temperature. PLANT, CELL & ENVIRONMENT 2011; 34:1563-76. [PMID: 21707647 DOI: 10.1111/j.1365-3040.2011.02353.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
High temperature (HT) is a major limiting factor for plant productivity. Because some responses to HT, notably hyponasty, resemble those encountered in low light (LL), we hypothesized that plant responses to HT are under the control of carbon balance. We analysed the interactive effects of HT and irradiance level on hyponasty and a set of traits related to plant growth in natural accessions of Arabidopsis thaliana and mutants affected in heat dissipation through transpiration (NCED6-OE, ost2) and starch metabolism (pgm). HT induced hyponasty, reduced plant growth and modified leaf structure. LL worsened the effects of HT, while increasing light restored trait values close to levels observed at control temperature. Leaf temperature per se did not play a major role in the observed responses. By contrast, a major role of carbon balance was supported by hyponastic growth of pgm, as well as morphological, physiological (photosynthesis, sugar and starch contents) and transcriptional data. Carbon balance could be a common sensor of HT and LL, leading to responses specific of the shade avoidance syndrome. Hyponasty and associated changes in plant traits could be key traits conditioning plant performance under competition for light, particularly in warm environments.
Collapse
Affiliation(s)
- François Vasseur
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, UMR 759, INRA-SUPAGRO, F-34060 Montpellier, France
| | | | | |
Collapse
|
58
|
Peña-Castro JM, van Zanten M, Lee SC, Patel MR, Voesenek LAJC, Fukao T, Bailey-Serres J. Expression of rice SUB1A and SUB1C transcription factors in Arabidopsis uncovers flowering inhibition as a submergence tolerance mechanism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:434-46. [PMID: 21481028 DOI: 10.1111/j.1365-313x.2011.04605.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Submergence of plant organs perturbs homeostasis by limiting diffusion of oxygen, carbon dioxide and ethylene. In rice (Oryza sativa L.), the haplotype at the multigenic SUBMERGENCE1 (SUB1) locus determines whether plants survive prolonged submergence. SUB1 encodes two or three transcription factors of the group VII ethylene response factor family: SUB1A, SUB1B and SUB1C. The presence of SUB1A-1 and its strong submergence-triggered ethylene-mediated induction confers submergence tolerance through a quiescence survival strategy that inhibits gibberellin (GA)-induced carbohydrate consumption and elongation growth. SUB1C is invariably present and acts downstream of the enhancement of GA responsiveness during submergence. In this study, heterologous ectopic expression of rice SUB1A and SUB1C in Arabidopsis thaliana was used to explore conserved mechanisms of action associated with these genes using developmental, physiological and molecular metrics. As in rice transgenic plants that ectopically express SUB1A-1, Arabidopsis transgenic plants that constitutively express SUB1A displayed GA insensitivity and abscisic acid hypersensitivity. Ectopic SUB1C expression had more limited effects on development, stress responses and the transcriptome. Observation of a delayed flowering phenotype in lines over-expressing SUB1A led to the finding that inhibition of floral initiation is a component of the quiescence survival strategy in rice. Together, these analyses demonstrate conserved as well as specific roles for group VII ethylene response factors in integration of abiotic responses with development.
Collapse
Affiliation(s)
- Julián M Peña-Castro
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Pierik R, De Wit M, Voesenek LACJ. Growth-mediated stress escape: convergence of signal transduction pathways activated upon exposure to two different environmental stresses. THE NEW PHYTOLOGIST 2011; 189:122-34. [PMID: 20854397 DOI: 10.1111/j.1469-8137.2010.03458.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
• Plants can escape from specific environmental stresses through active growth strategies. Here, we compared two such stress-escape syndromes to investigate whether plants use conserved signal transduction pathways to escape from different stresses. • Full submergence is a threat to terrestrial plants as it cuts off their access to oxygen and CO(2). Proximate neighbors, in contrast, take away resources such as light. Both submergence and shade can be escaped through rapid shoot elongation. We analysed the precise kinetics and physiological control of petiole elongation responses to shade and submergence in the flood-tolerant species Rumex palustris. • We found that petiole elongation induced by submergence and that induced by shade occurred with similar kinetics, both involving cell expansion. These responses were induced by two different signals, elevated ethylene and a reduced red : far-red light ratio (R : FR), respectively. A downstream target for ethylene was abscisic acid, but low R : FR appeared to act independently of this hormone. Gibberellin, however, appeared to be essential to both ethylene- and low R : FR-induced petiole elongation. • We propose that gibberellin and expansins, a family of cell wall-loosening proteins, represent elements of a conserved growth machinery that is activated by stress-specific signaling events to regulate escape from stress.
Collapse
Affiliation(s)
- Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands.
| | | | | |
Collapse
|
60
|
van Zanten M, Snoek LB, van Eck-Stouten E, Proveniers MCG, Torii KU, Voesenek LACJ, Millenaar FF, Peeters AJM. ERECTA controls low light intensity-induced differential petiole growth independent of phytochrome B and cryptochrome 2 action in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2010; 5:284-6. [PMID: 20037477 PMCID: PMC2881279 DOI: 10.4161/psb.5.3.10706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plants can respond quickly and profoundly to changes in their environment. Several species, including Arabidopsis thaliana, are capable of differential petiole growth driven upward leaf movement (hyponastic growth) to escape from detrimental environmental conditions. Recently, we demonstrated that the leucine-rich repeat receptor-like Ser/Thr kinase gene ERECTA, explains a major effect Quantitative Trait Locus (QTL) for ethylene-induced hyponastic growth in Arabidopsis. Here, we demonstrate that ERECTA controls the hyponastic growth response to low light intensity treatment in a genetic background dependent manner. Moreover, we show that ERECTA affects low light-induced hyponastic growth independent of Phytochrome B and Cryptochrome 2 signaling, despite that these photoreceptors are positive regulators of low light-induced hyponastic growth.
Collapse
Affiliation(s)
- Martijn van Zanten
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
van Zanten M, Basten Snoek L, van Eck-Stouten E, Proveniers MCG, Torii KU, Voesenek LACJ, Peeters AJM, Millenaar FF. Ethylene-induced hyponastic growth in Arabidopsis thaliana is controlled by ERECTA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:83-95. [PMID: 19796369 DOI: 10.1111/j.1365-313x.2009.04035.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants can respond quickly and profoundly to detrimental changes in their environment. For example, Arabidopsis thaliana can induce an upward leaf movement response through differential petiole growth (hyponastic growth) to outgrow complete submergence. This response is induced by accumulation of the phytohormone ethylene in the plant. Currently, only limited information is available on how this response is molecularly controlled. In this study, we utilized quantitative trait loci (QTL) analysis of natural genetic variation among Arabidopsis accessions to isolate novel factors controlling constitutive petiole angles and ethylene-induced hyponastic growth. Analysis of mutants in various backgrounds and complementation analysis of naturally occurring mutant accessions provided evidence that the leucin-rich repeat receptor-like Ser/Thr kinase gene, ERECTA, controls ethylene-induced hyponastic growth. Moreover, ERECTA controls leaf positioning in the absence of ethylene treatment. Our data demonstrate that this is not due to altered ethylene production or sensitivity.
Collapse
Affiliation(s)
- Martijn van Zanten
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Kami C, Lorrain S, Hornitschek P, Fankhauser C. Light-regulated plant growth and development. Curr Top Dev Biol 2010; 91:29-66. [PMID: 20705178 DOI: 10.1016/s0070-2153(10)91002-8] [Citation(s) in RCA: 458] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Plants are sessile and photo-autotrophic; their entire life cycle is thus strongly influenced by the ever-changing light environment. In order to sense and respond to those fluctuating conditions higher plants possess several families of photoreceptors that can monitor light from UV-B to the near infrared (far-red). The molecular nature of UV-B sensors remains unknown, red (R) and far-red (FR) light is sensed by the phytochromes (phyA-phyE in Arabidopsis) while three classes of UV-A/blue photoreceptors have been identified: cryptochromes, phototropins, and members of the Zeitlupe family (cry1, cry2, phot1, phot2, ZTL, FKF1, and LKP2 in Arabidopsis). Functional specialization within photoreceptor families gave rise to members optimized for a wide range of light intensities. Genetic and photobiological studies performed in Arabidopsis have shown that these light sensors mediate numerous adaptive responses (e.g., phototropism and shade avoidance) and developmental transitions (e.g., germination and flowering). Some physiological responses are specifically triggered by a single photoreceptor but in many cases multiple light sensors ensure a coordinated response. Recent studies also provide examples of crosstalk between the responses of Arabidopsis to different external factors, in particular among light, temperature, and pathogens. Although the different photoreceptors are unrelated in structure, in many cases they trigger similar signaling mechanisms including light-regulated protein-protein interactions or light-regulated stability of several transcription factors. The breath and complexity of this topic forced us to concentrate on specific aspects of photomorphogenesis and we point the readers to recent reviews for some aspects of light-mediated signaling (e.g., transition to flowering).
Collapse
Affiliation(s)
- Chitose Kami
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|