51
|
Hajheidari M, Koncz C, Eick D. Emerging roles for RNA polymerase II CTD in Arabidopsis. TRENDS IN PLANT SCIENCE 2013; 18:633-43. [PMID: 23910452 DOI: 10.1016/j.tplants.2013.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/12/2013] [Accepted: 07/01/2013] [Indexed: 05/20/2023]
Abstract
Post-translational modifications of the carboxy-terminal domain of the largest subunit of RNA polymerase II (RNAPII CTD) provide recognition marks to coordinate recruitment of numerous nuclear factors controlling transcription, cotranscriptional RNA processing, chromatin remodeling, and RNA export. Compared with the progress in yeast and mammals, deciphering the regulatory roles of position-specific combinatorial CTD modifications, the so-called CTD code, is still at an early stage in plants. In this review, we discuss some of the recent advances in understanding of the molecular mechanisms controlling the deposition and recognition of RNAPII CTD marks in plants during the transcriptional cycle and highlight some intriguing differences between regulatory components characterized in yeast, mammals, and plants.
Collapse
Affiliation(s)
- Mohsen Hajheidari
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany.
| | | | | |
Collapse
|
52
|
Ding L, Kim SY, Michaels SD. FLOWERING LOCUS C EXPRESSOR family proteins regulate FLOWERING LOCUS C expression in both winter-annual and rapid-cycling Arabidopsis. PLANT PHYSIOLOGY 2013; 163:243-52. [PMID: 23899645 PMCID: PMC3762645 DOI: 10.1104/pp.113.223958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Many naturally occurring Arabidopsis (Arabidopsis thaliana) are very late flowering, unless flowering is promoted by a prolonged period of cold (e.g. winter) known as vernalization. In these winter-annual strains, flowering prior to winter is blocked by the synergistic interaction of FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). FLC acts as a strong floral inhibitor, and FRI is required for high levels of FLC expression. Vernalization, in turn, leads to an epigenetic down-regulation of FLC expression. Most rapid-cycling Arabidopsis carry loss-of-function mutations in FRI, leading to low levels of FLC and rapid flowering in the absence of vernalization. Recent work has shown that FRI acts as a scaffolding protein for the assembly of a FRI complex (FRI-C) that includes both general transcription and chromatin-modifying factors, as well as FRI-specific components such as FRI-LIKE1, FRI ESSENTIAL1 (FES1), SUPPRESSOR OF FRI4 (SUF4), and FLC EXPRESSOR (FLX). Here, we show that FLX-LIKE4 (FLX4) is a novel component of the FRI-C and is essential for the activation of FLC by FRI. Both FLX and FLX4 contain leucine zipper domains that facilitate interaction with FRI. In addition, FLX and FLX4 interact with each other and show synergistic transcription activation activity. Interestingly, we show that FLX, FLX4, FES1, and SUF4 are required for basal levels of FLC expression in the absence of FRI. Thus, components of the FRI-C play a role in the regulation of FLC expression in both FRI-containing winter annuals, as well as fri-null rapid-cycling strains.
Collapse
|
53
|
Zografou T, Turck F. Epigenetic Control of Flowering Time. EPIGENETIC MEMORY AND CONTROL IN PLANTS 2013. [DOI: 10.1007/978-3-642-35227-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
54
|
Chen C, DeClerck G, Tian F, Spooner W, McCouch S, Buckler E. PICARA, an analytical pipeline providing probabilistic inference about a priori candidates genes underlying genome-wide association QTL in plants. PLoS One 2012; 7:e46596. [PMID: 23144785 PMCID: PMC3492367 DOI: 10.1371/journal.pone.0046596] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/04/2012] [Indexed: 01/28/2023] Open
Abstract
PICARA is an analytical pipeline designed to systematically summarize observed SNP/trait associations identified by genome wide association studies (GWAS) and to identify candidate genes involved in the regulation of complex trait variation. The pipeline provides probabilistic inference about a priori candidate genes using integrated information derived from genome-wide association signals, gene homology, and curated gene sets embedded in pathway descriptions. In this paper, we demonstrate the performance of PICARA using data for flowering time variation in maize – a key trait for geographical and seasonal adaption of plants. Among 406 curated flowering time-related genes from Arabidopsis, we identify 61 orthologs in maize that are significantly enriched for GWAS SNP signals, including key regulators such as FT (Flowering Locus T) and GI (GIGANTEA), and genes centered in the Arabidopsis circadian pathway, including TOC1 (Timing of CAB Expression 1) and LHY (Late Elongated Hypocotyl). In addition, we discover a regulatory feature that is characteristic of these a priori flowering time candidates in maize. This new probabilistic analytical pipeline helps researchers infer the functional significance of candidate genes associated with complex traits and helps guide future experiments by providing statistical support for gene candidates based on the integration of heterogeneous biological information.
Collapse
Affiliation(s)
- Charles Chen
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York, United States of America.
| | | | | | | | | | | |
Collapse
|
55
|
He Y. Chromatin regulation of flowering. TRENDS IN PLANT SCIENCE 2012; 17:556-62. [PMID: 22658650 DOI: 10.1016/j.tplants.2012.05.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/25/2012] [Accepted: 05/01/2012] [Indexed: 05/08/2023]
Abstract
The transition to flowering is a major developmental switch in the life cycle of plants. In Arabidopsis (Arabidopsis thaliana), chromatin mechanisms play critical roles in flowering-time regulation through the expression control of key flowering-regulatory genes. Various conserved chromatin modifiers, plant-specific factors, and long noncoding RNAs are involved in chromatin regulation of FLOWERING LOCUS C (FLC, a potent floral repressor). The well-studied FLC regulation has provided a paradigm for chromatin-based control of other developmental genes. In addition, chromatin modification plays an important role in the regulation of FLOWERING LOCUS T (FT, encoding florigen), which is widely conserved in angiosperm species. The chromatin mechanisms underlying FT regulation in Arabidopsis are likely involved in the regulation of FT relatives and, therefore, flowering-time control in other plants.
Collapse
Affiliation(s)
- Yuehui He
- Department of Biological Sciences, National University of Singapore, Temasek Life Sciences Laboratory, Singapore 117604, Republic of Singapore.
| |
Collapse
|
56
|
Song J, Angel A, Howard M, Dean C. Vernalization - a cold-induced epigenetic switch. J Cell Sci 2012; 125:3723-31. [PMID: 22935652 DOI: 10.1242/jcs.084764] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growth and development are modulated by environmental signals in many organisms. These signals are often perceived at one stage and 'remembered' until later in development. An increasingly well-understood example of this process in plants is provided by vernalization, which refers to the acquisition of the ability to flower after prolonged exposure to cold. In Arabidopsis thaliana, vernalization involves downregulation and epigenetic silencing of the gene encoding the floral repressor FLOWERING LOCUS C (FLC). This epigenetic silencing is quantitative and increases with the duration of exposure to cold. Vernalization involves a Polycomb-based switching mechanism, with localized nucleation of silencing during periods of cold, and spreading of the silencing complex over the whole gene after the exposure to cold. A number of characteristics of vernalization have recently been elaborated on through the use of mathematical modelling. This has revealed the importance of chromatin dynamics for the switching mechanism and has shown that the quantitative nature of the process is due to cell-autonomous switching of an increasing proportion of cells. The principles derived from vernalization are likely to be widely relevant to epigenetic reprogramming in many organisms.
Collapse
Affiliation(s)
- Jie Song
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | | | |
Collapse
|
57
|
Kim JM, To TK, Ishida J, Matsui A, Kimura H, Seki M. Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2012; 53:847-56. [PMID: 22505693 DOI: 10.1093/pcp/pcs053] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Changes in chromatin status are correlated with gene regulation of biological processes such as development and stress responses in plants. In this study, we focused on the transition of chromatin status toward gene repression during the process of recovery from drought stress of drought-inducible genes (RD20, RD29A and AtGOLS2) and a rehydration-inducible gene (ProDH). In response to drought, RNA polymerase II was recruited on the drought-inducible genes and rapidly disappeared after rehydration, although mRNA levels of these genes were maintained to some degree after rehydration, suggesting that the transcriptional activities of these genes were rapidly inactivated by rehydration treatment. Histone H3K9ac was enriched by drought and rapidly removed from these regions by rehydration. In contrast, histone H3K4me3 was gradually decreased by rehydration but was maintained at low levels after rehydration, suggesting that H3K4me3 functions as an epigenetic mark of stress memory. These results show that the transcriptional activity and chromatin status are rapidly changed from an active to inactive mode during the recovery process. Our results demonstrate that histone modifications are correlated with the inactivation of drought-inducible genes during the recovery process by rehydration.
Collapse
Affiliation(s)
- Jong-Myong Kim
- Plant Genomic Network Research Team, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
58
|
Kim DH, Sung S. Environmentally coordinated epigenetic silencing of FLC by protein and long noncoding RNA components. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:51-6. [PMID: 22078062 DOI: 10.1016/j.pbi.2011.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/17/2011] [Accepted: 10/19/2011] [Indexed: 05/18/2023]
Abstract
In Arabidopsis, the role of the vernalization pathway is to repress expression of a potent floral repressor, FLOWERING LOCUS C (FLC), after a sufficient period of winter cold has been perceived. Following winter, the lack of FLC expression allows unimpeded operation of the photoperiod pathway and hence rapid flowering of vernalized plants in spring via the activation of floral integrator genes. Molecular studies revealed that regulation of the key floral repressor, FLC, is under the control of the interplay between Trithorax group (TrxG)-mediated activation and Polycomb group (PcG)-mediated repression. On-off switch of genes by TrxG and PcG is an evolutionarily conserved mechanism to coordinate cellular identity in eukaryotes. Regulation of FLC by external cues provides an excellent model system to study mechanisms in which cell identity is influenced by environment. In this review, we discuss coordinated contributions by protein and long noncoding RNA components to this environmentally induced epigenetic switch of a developmental program in plants.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
59
|
Shi Y, Zhang X, Xu ZY, Li L, Zhang C, Schläppi M, Xu ZQ. Influence of EARLI1-like genes on flowering time and lignin synthesis of Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:731-9. [PMID: 21815977 DOI: 10.1111/j.1438-8677.2010.00428.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
EARLI1 encodes a 14.7 kDa protein in the cell wall, is a member of the PRP (proline-rich protein) family and has multiple functions, including resistance to low temperature and fungal infection. RNA gel blot analyses in the present work indicated that expression of EARLI1-like genes, EARLI1, At4G12470 and At4G12490, was down-regulated in Col-FRI-Sf2 RNAi plants derived from transformation with Agrobacterium strain ABI, which contains a construct encoding a double-strand RNA targeting 8CM of EARLI1. Phenotype analyses revealed that Col-FRI-Sf2 RNAi plants of EARLI1 flowered earlier than Col-FRI-Sf2 wild-type plants. The average bolting time of Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants was 39.7 and 19.4 days, respectively, under a long-day photoperiod. In addition, there were significant differences in main stem length, internode number and rosette leaf number between Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants. RT-PCR showed that EARLI1-like genes might delay flowering time through the autonomous and long-day photoperiod pathways by maintaining the abundance of FLC transcripts. In Col-FRI-Sf2 RNAi plants, transcription of FLC was repressed, while expression of SOC1 and FT was activated. Microscopy observations showed that EARLI1-like genes were also associated with morphogenesis of leaf cells in Arabidopsis. Using histochemical staining, EARLI1-like genes were found to be involved in regulation of lignin synthesis in inflorescence stems, and Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants had 9.67% and 8.76% dry weight lignin, respectively. Expression analysis revealed that cinnamoyl-CoA reductase, a key enzyme in lignin synthesis, was influenced by EARLI1-like genes. These data all suggest that EARLI1-like genes could control the flowering process and lignin synthesis in Arabidopsis.
Collapse
Affiliation(s)
- Y Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Provincial Key Laboratory of Biotechnology, Institute of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
60
|
Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell 2011; 42:330-41. [PMID: 21549310 DOI: 10.1016/j.molcel.2011.03.025] [Citation(s) in RCA: 542] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 12/08/2010] [Accepted: 03/18/2011] [Indexed: 02/01/2023]
Abstract
The Polycomb repressive complex 2 (PRC2) confers transcriptional repression through histone H3 lysine 27 trimethylation (H3K27me3). Here, we examined how PRC2 is modulated by histone modifications associated with transcriptionally active chromatin. We provide the molecular basis of histone H3 N terminus recognition by the PRC2 Nurf55-Su(z)12 submodule. Binding of H3 is lost if lysine 4 in H3 is trimethylated. We find that H3K4me3 inhibits PRC2 activity in an allosteric fashion assisted by the Su(z)12 C terminus. In addition to H3K4me3, PRC2 is inhibited by H3K36me2/3 (i.e., both H3K36me2 and H3K36me3). Direct PRC2 inhibition by H3K4me3 and H3K36me2/3 active marks is conserved in humans, mouse, and fly, rendering transcriptionally active chromatin refractory to PRC2 H3K27 trimethylation. While inhibition is present in plant PRC2, it can be modulated through exchange of the Su(z)12 subunit. Inhibition by active chromatin marks, coupled to stimulation by transcriptionally repressive H3K27me3, enables PRC2 to autonomously template repressive H3K27me3 without overwriting active chromatin domains.
Collapse
|
61
|
Park S, Ek-Ramos MJ, Oh S, van Nocker S. Potential role of Arabidopsis PHP as an accessory subunit of the PAF1 transcriptional cofactor. PLANT SIGNALING & BEHAVIOR 2011; 6:1094-1096. [PMID: 21720211 PMCID: PMC3260700 DOI: 10.4161/psb.6.8.16364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 05/07/2011] [Indexed: 05/31/2023]
Abstract
Paf1C is a transcriptional cofactor that has been implicated in various transcription-associated mechanisms spanning initiation, elongation and RNA processing, and is important for multiple aspects of development in Arabidopsis. Our recent studies suggest Arabidopsis Paf1C is crucial for proper regulation of genes within H3K27me3-enriched chromatin, and that a protein named PHP may act as an accessory subunit of Paf1C that promotes this function.
Collapse
Affiliation(s)
- Sunchung Park
- MSU-DOE Plant Research Laboratory; Michigan State University; East Lansing, MI USA
| | | | - Sookyung Oh
- Plant Research Laboratory; Michigan State University; East Lansing, MI USA
| | - Steven van Nocker
- Department of Horticulture; Michigan State University; East Lansing, MI USA
| |
Collapse
|
62
|
Park HY, Lee SY, Seok HY, Kim SH, Sung ZR, Moon YH. EMF1 interacts with EIP1, EIP6 or EIP9 involved in the regulation of flowering time in Arabidopsis. PLANT & CELL PHYSIOLOGY 2011; 52:1376-1388. [PMID: 21700722 DOI: 10.1093/pcp/pcr084] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The EMBRYONIC FLOWER (EMF) 1 gene has been shown to be necessary for maintenance of vegetative development. To investigate the molecular mechanism of EMF1-mediated plant development, we screened EMF1-interacting proteins and identified 11 candidate proteins using the yeast two-hybrid system. Among the candidate genes, three EMF1-Interacting Protein (EIP) genes, EIP1, EIP6 and EIP9, are predicted to encode a WNK (with-no-lysine) kinase, a B-box zinc-finger protein and a DnaJ-domain protein, respectively. The expression patterns of EIP1, EIP6 and EIP9 were similar to that of EMF1, and EMF1-EIP1, EMF1-EIP6 and EMF1-EIP9 heterodimers were localized in the nucleus. In addition, eip1, eip6 and eip9 mutants flowered early and showed increased expression of flowering-time and floral organ identity genes, while EIP1-, EIP6- and EIP9-overexpressing transgenic plants showed late flowering phenotypes. Our results suggest that EMF1 interacts with EIP1, EIP6 and EIP9 during vegetative development to regulate flowering time in Arabidopsis.
Collapse
Affiliation(s)
- Hee-Yeon Park
- Department of Molecular Biology, Pusan National University, Busan, 609-735, Korea
| | | | | | | | | | | |
Collapse
|
63
|
Berr A, Shafiq S, Shen WH. Histone modifications in transcriptional activation during plant development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:567-76. [PMID: 21777708 DOI: 10.1016/j.bbagrm.2011.07.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/30/2011] [Accepted: 07/06/2011] [Indexed: 12/24/2022]
Abstract
In eukaryotic cell nuclei, chromatin states dictated by different combinations of post-translational modifications of histones, such as acetylation, methylation and monoubiquitination of lysine residues, are part of the multitude of epigenomes involved in the fine-tuning of all genetic functions and in particular transcription. During the past decade, an increasing number of 'writers', 'readers' and 'erasers' of histone modifications have been identified. Characterization of these factors in Arabidopsis has unraveled their pivotal roles in the regulation of essential processes, such as floral transition, cell differentiation, gametogenesis, and plant response/adaptation to environmental stresses. In this review we focus on histone modification marks associated with transcriptional activation to highlight current knowledge on Arabidopsis 'writers', 'readers' and 'erasers' of histone modifications and to discuss recent findings on molecular mechanisms of integration of histone modifications with the RNA polymerase II transcriptional machinery during transcription of the flowering repressor gene FLC.
Collapse
Affiliation(s)
- Alexandre Berr
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg CEDEX, France
| | | | | |
Collapse
|
64
|
Arabidopsis COMPASS-like complexes mediate histone H3 lysine-4 trimethylation to control floral transition and plant development. PLoS Genet 2011; 7:e1001330. [PMID: 21423667 PMCID: PMC3053346 DOI: 10.1371/journal.pgen.1001330] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 02/08/2011] [Indexed: 12/15/2022] Open
Abstract
Histone H3 lysine-4 (H3K4) methylation is associated with transcribed genes in eukaryotes. In Drosophila and mammals, both di- and tri-methylation of H3K4 are associated with gene activation. In contrast to animals, in Arabidopsis H3K4 trimethylation, but not mono- or di-methylation of H3K4, has been implicated in transcriptional activation. H3K4 methylation is catalyzed by the H3K4 methyltransferase complexes known as COMPASS or COMPASS-like in yeast and mammals. Here, we report that Arabidopsis homologs of the COMPASS and COMPASS-like complex core components known as Ash2, RbBP5, and WDR5 in humans form a nuclear subcomplex during vegetative and reproductive development, which can associate with multiple putative H3K4 methyltransferases. Loss of function of ARABIDOPSIS Ash2 RELATIVE (ASH2R) causes a great decrease in genome-wide H3K4 trimethylation, but not in di- or mono-methylation. Knockdown of ASH2R or the RbBP5 homolog suppresses the expression of a crucial Arabidopsis floral repressor, FLOWERING LOCUS C (FLC), and FLC homologs resulting in accelerated floral transition. ASH2R binds to the chromatin of FLC and FLC homologs in vivo and is required for H3K4 trimethylation, but not for H3K4 dimethylation in these loci; overexpression of ASH2R causes elevated H3K4 trimethylation, but not H3K4 dimethylation, in its target genes FLC and FLC homologs, resulting in activation of these gene expression and consequent late flowering. These results strongly suggest that H3K4 trimethylation in FLC and its homologs can activate their expression, providing concrete evidence that H3K4 trimethylation accumulation can activate eukaryotic gene expression. Furthermore, our findings suggest that there are multiple COMPASS-like complexes in Arabidopsis and that these complexes deposit trimethyl but not di- or mono-methyl H3K4 in target genes to promote their expression, providing a molecular explanation for the observed coupling of H3K4 trimethylation (but not H3K4 dimethylation) with active gene expression in Arabidopsis. Histones can be covalently modified and histone modifications regulate chromatin structure and gene transcription. One such modification is histone H3 lysine-4 (H3K4) methylation, which can be mono-, di-, or tri-methylated. In animals such as fruitfly and mammals, both di- and tri-methylation of H3K4 are associated with active gene expression. In contrast to animals, in the flowering plant Arabidopsis only H3K4 trimethylation has been implicated in gene transcriptional activation. H3K4 methylation is catalyzed by the H3K4 methyltransferase complexes known as COMPASS-like in mammals. Here, we report that COMPASS-like H3K4 methyltransferase complexes exist in Arabidopsis. Loss of function of a core complex protein causes a great decrease in Arabidopsis genome-wide H3K4 trimethylation, but not in di- or mono-methylation. Our analyses of several direct target genes of these COMPASS-like complexes show that they mediate deposition of trimethyl but not dimethyl H3K4 in these loci to activate their expression, providing concrete evidence for the notion that H3K4 trimethylation accumulation can activate eukaryotic gene expression. Furthermore, our findings provide a molecular explanation for the observed coupling of trimethylation but not dimethylation of H3K4 with active gene expression in Arabidopsis. In addition, we found that H3K4 trimethylation regulates leaf growth and development, flowering, and embryo development.
Collapse
|
65
|
Buzas DM, Robertson M, Finnegan EJ, Helliwell CA. Transcription-dependence of histone H3 lysine 27 trimethylation at the Arabidopsis polycomb target gene FLC. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:872-81. [PMID: 21276103 DOI: 10.1111/j.1365-313x.2010.04471.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The FLC gene encodes a MADS box repressor of flowering that is the main cause of the late-flowering phenotype of many Arabidopsis ecotypes. Expression of FLC is repressed by vernalization; maintenance of this repression is associated with the deposition of histone 3 K27 trimethylation (H3K27me3) at the FLC locus. However, whether this increased H3K27me3 is a consequence of reduced FLC transcription or the cause of transcriptional repression is not well defined. In this study we investigate the effect of changes in transcription rate on the abundance of H3K27me3 in the FLC gene body, a chromatin region that includes sequences required to maintain FLC repression following vernalization. We show that H3K27me3 is inversely correlated with transcription across the FLC gene body in a range of ecotypes and mutants with different flowering times. We demonstrate that the FLC gene body becomes marked with H3K27me3 in the absence of transcription. When transcription of the gene body is directed by an inducible promoter, H3K27me3 is removed following activation of transcription and H3K27me3 is added after transcription is decreased. The rate of addition of H3K27me3 to the FLC transgene following inactivation of transcription is similar to that observed in the FLC gene body following vernalization. Our data suggest that reduction of FLC transcription during vernalization leads to an increase of H3K27me3 levels in the FLC gene body that in turn maintains FLC repression.
Collapse
|
66
|
Crevillén P, Dean C. Regulation of the floral repressor gene FLC: the complexity of transcription in a chromatin context. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:38-44. [PMID: 20884277 DOI: 10.1016/j.pbi.2010.08.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 08/30/2010] [Indexed: 05/20/2023]
Abstract
The genetic pathways regulating the floral transition in Arabidopsis are becoming increasingly well understood. The ease with which mutant phenotypes can be quantified has led to many suppressor screens and the molecular identification of the underlying genes. One focus has been on the pathways that regulate the gene encoding the floral repressor FLC. This has revealed a set of antagonistic pathways comprising evolutionary conserved activities that link chromatin regulation, transcription level and co-transcriptional RNA metabolism. Here we discuss our current understanding of the transcriptional activation of FLC, how different activities are integrated at this one locus and why FLC regulation seems so sensitive to mutation in these conserved gene regulatory pathways.
Collapse
Affiliation(s)
- Pedro Crevillén
- Department of Cell & Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | | |
Collapse
|