51
|
Wu X, Ye J. Manipulation of Jasmonate Signaling by Plant Viruses and Their Insect Vectors. Viruses 2020; 12:v12020148. [PMID: 32012772 PMCID: PMC7077190 DOI: 10.3390/v12020148] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/12/2022] Open
Abstract
Plant viruses pose serious threats to stable crop yield. The majority of them are transmitted by insects, which cause secondary damage to the plant host from the herbivore-vector's infestation. What is worse, a successful plant virus evolves multiple strategies to manipulate host defenses to promote the population of the insect vector and thereby furthers the disease pandemic. Jasmonate (JA) and its derivatives (JAs) are lipid-based phytohormones with similar structures to animal prostaglandins, conferring plant defenses against various biotic and abiotic challenges, especially pathogens and herbivores. For survival, plant viruses and herbivores have evolved strategies to convergently target JA signaling. Here, we review the roles of JA signaling in the tripartite interactions among plant, virus, and insect vectors, with a focus on the molecular and biochemical mechanisms that drive vector-borne plant viral diseases. This knowledge is essential for the further design and development of effective strategies to protect viral damages, thereby increasing crop yield and food security.
Collapse
Affiliation(s)
- Xiujuan Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
52
|
Khan RSA, Ali Z, Niazi AK, Carolan JC, Wilkinson TL. In silico Characterization of a Candidate Protein from Aphid Gelling Saliva with Potential for Aphid Control in Plants. Protein Pept Lett 2020; 27:158-167. [DOI: 10.2174/0929866526666191014145839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/13/2019] [Accepted: 08/02/2019] [Indexed: 11/22/2022]
Abstract
Background:
Sheath or gelling saliva, secreted during feeding by aphids, is a hard material that
supports the piercing mouthparts and remains in the plant after feeding. Solidification or gelling of the saliva
might be due to the composition of amino acids in the constituent proteins, many of which probably interact
with plant defenses.
Objective :
The complete complement of proteins in the gelling saliva are still unknown, although one sheath
protein (SHP) has previously been identified as a potential candidate protein to control aphid feeding, but its
structure and its physiochemical role remains obscure. The current study provides structural information and
biochemical properties of the aphid sheath protein.
Methods:
The Sheath protein encoding gene was amplified from cDNA of the pea aphid (Acyrthosiphon pisum)
through PCR using specific gene primers. Sequence was in silico characterized by using EXPASY, Berkeley
Drosophila Genome Project (BDGP) Neural Network Promoter Prediction, BioEdit, Mega7, ProtParam, Phyre
server, 3D LigandSite SMART, MEME and GSDS programs, available online.
Results:
BLASTp analysis revealed that the sequenced gene was identical (100%) to the sequence from
Acyrthosiphon pisum, with 87% identity to Metpolophium dirhodum and 84% identity to Sitobion avenae.
Phylogenetically monocot feeders such as M. dirhodum and S. avenae are in a sister taxa to dicot feeders. In
silico analysis of the sequence revealed that sheath protein has a molecular weight of 144 kDa and 50% of the
protein is composed of only six amino acids, i.e., threonine, serine, aspartic acid, glutamic acid, isoleucine and
tyrosine. The computed IP value revealed that sheath protein is acidic in nature. Ligand binding sites for sheath
protein were predicted on residues 1123 and 1125 (isoleucine and glutamine, respectively). Metallic heterogens
are also present in sheath protein that are iron, zinc and magnesium, respectively.
Conclusion :
It is conceivable that variation in the salivary gene sequences may reveal important biological
information of relevance to the insect-plant interaction. Further exploration of insect salivary proteins, their
composition and structure will provide powerful information, especially when these proteins are interacting with
plant proteins, and specific information about the sheath protein, which is interacting with plants at a
molecular/cellular level, will be important to progress strategies aimed specifically against sucking pests such as
aphids.
Collapse
Affiliation(s)
- Rao Sohail Ahmad Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Zainab Ali
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Adnan Khan Niazi
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | | | - Thomas L. Wilkinson
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
53
|
Jiang Y, Zhang CX, Chen R, He SY. Challenging battles of plants with phloem-feeding insects and prokaryotic pathogens. Proc Natl Acad Sci U S A 2019; 116:23390-23397. [PMID: 31712429 PMCID: PMC6876188 DOI: 10.1073/pnas.1915396116] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For the past 4 decades, intensive molecular studies of mostly leaf mesophyll cell-infecting pathogens and chewing insects have led to compelling models of plant-pathogen and plant-insect interactions. Yet, some of the most devastating pathogens and insect pests live in or feed on the phloem, a systemic tissue belonging to the plant vascular system. Phloem tissues are difficult to study, and phloem-inhabiting pathogens are often impossible to culture, thus limiting our understanding of phloem-insect/pathogen interactions at a molecular level. In this Perspective, we highlight recent literature that reports significant advances in the understanding of phloem interactions with insects and prokaryotic pathogens and attempt to identify critical questions that need attention for future research. It is clear that study of phloem-insect/pathogen interactions represents an exciting frontier of plant science, and influx of new scientific expertise and funding is crucial to achieve faster progress in this important area of research that is integral to global food security.
Collapse
Affiliation(s)
- Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China;
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming 650223, China
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430070, China
| | - Sheng Yang He
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI 48824;
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
54
|
Neupane S, Purintun JM, Mathew FM, Varenhorst AJ, Nepal MP. Molecular Basis of Soybean Resistance to Soybean Aphids and Soybean Cyst Nematodes. PLANTS 2019; 8:plants8100374. [PMID: 31561499 PMCID: PMC6843664 DOI: 10.3390/plants8100374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 01/25/2023]
Abstract
Soybean aphid (SBA; Aphis glycines Matsumura) and soybean cyst nematode (SCN; Heterodera glycines Ichninohe) are major pests of the soybean (Glycine max [L.] Merr.). Substantial progress has been made in identifying the genetic basis of limiting these pests in both model and non-model plant systems. Classical linkage mapping and genome-wide association studies (GWAS) have identified major and minor quantitative trait loci (QTLs) in soybean. Studies on interactions of SBA and SCN effectors with host proteins have identified molecular cues in various signaling pathways, including those involved in plant disease resistance and phytohormone regulations. In this paper, we review the molecular basis of soybean resistance to SBA and SCN, and we provide a synthesis of recent studies of soybean QTLs/genes that could mitigate the effects of virulent SBA and SCN populations. We also review relevant studies of aphid–nematode interactions, particularly in the soybean–SBA–SCN system.
Collapse
Affiliation(s)
- Surendra Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Jordan M Purintun
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Febina M Mathew
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Adam J Varenhorst
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
55
|
Varsani S, Grover S, Zhou S, Koch KG, Huang PC, Kolomiets MV, Williams WP, Heng-Moss T, Sarath G, Luthe DS, Jander G, Louis J. 12-Oxo-Phytodienoic Acid Acts as a Regulator of Maize Defense against Corn Leaf Aphid. PLANT PHYSIOLOGY 2019; 179:1402-1415. [PMID: 30643012 PMCID: PMC6446797 DOI: 10.1104/pp.18.01472] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/03/2019] [Indexed: 05/25/2023]
Abstract
The corn leaf aphid (CLA; Rhopalosiphum maidis) is a phloem sap-sucking insect that attacks many cereal crops, including maize (Zea mays). We previously showed that the maize inbred line Mp708, which was developed by classical plant breeding, provides enhanced resistance to CLA. Here, using electrophysiological monitoring of aphid feeding behavior, we demonstrate that Mp708 provides phloem-mediated resistance to CLA. Furthermore, feeding by CLA on Mp708 plants enhanced callose deposition, a potential defense mechanism utilized by plants to limit aphid feeding and subsequent colonization. In maize, benzoxazinoids (BX) or BX-derived metabolites contribute to enhanced callose deposition by providing heightened resistance to CLA. However, BX and BX-derived metabolites were not significantly altered in CLA-infested Mp708 plants, indicating BX-independent defense against CLA. Evidence presented here suggests that the constitutively higher levels of 12-oxo-phytodienoic acid (OPDA) in Mp708 plants contributed to enhanced callose accumulation and heightened CLA resistance. OPDA enhanced the expression of ethylene biosynthesis and receptor genes, and the synergistic interactions of OPDA and CLA feeding significantly induced the expression of the transcripts encoding Maize insect resistance1-Cysteine Protease, a key defensive protein against insect pests, in Mp708 plants. Furthermore, exogenous application of OPDA on maize jasmonic acid-deficient plants caused enhanced callose accumulation and heightened resistance to CLA, suggesting that the OPDA-mediated resistance to CLA is independent of the jasmonic acid pathway. We further demonstrate that the signaling function of OPDA, rather than a direct toxic effect, contributes to enhanced CLA resistance in Mp708.
Collapse
Affiliation(s)
- Suresh Varsani
- Department of Entomology, University of Nebraska, Lincoln, Nebraska 68583
| | - Sajjan Grover
- Department of Entomology, University of Nebraska, Lincoln, Nebraska 68583
| | - Shaoqun Zhou
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853
- School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853
| | - Kyle G Koch
- Department of Entomology, University of Nebraska, Lincoln, Nebraska 68583
| | - Pei-Cheng Huang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - W Paul Williams
- United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit, Mississippi State, Mississippi 39762
| | - Tiffany Heng-Moss
- Department of Entomology, University of Nebraska, Lincoln, Nebraska 68583
| | - Gautam Sarath
- Wheat, Sorghum, and Forage Research Unit, United States Department of Agriculture-Agricultural Research Service, Lincoln, Nebraska 68583
| | - Dawn S Luthe
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Georg Jander
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853
| | - Joe Louis
- Department of Entomology, University of Nebraska, Lincoln, Nebraska 68583
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68583
| |
Collapse
|
56
|
Nalam V, Louis J, Shah J. Plant defense against aphids, the pest extraordinaire. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:96-107. [PMID: 30709498 DOI: 10.1016/j.plantsci.2018.04.027] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/02/2018] [Accepted: 04/30/2018] [Indexed: 05/20/2023]
Abstract
Aphids are amongst the most damaging pests of plants that use their stylets to penetrate the plant tissue to consume large amounts of phloem sap and thus deprive the plant of photoassimilates. In addition, some aphids vector important viral diseases of plants. Plant defenses targeting aphids are broadly classified as antibiosis, which interferes with aphid growth, survival and fecundity, and antixenosis, which influences aphid behavior, including plant choice and feeding from the sieve elements. Here we review the multitude of steps in the infestation process where these defenses can be exerted and highlight the progress made on identifying molecular factors and mechanisms that contribute to host defense, including plant resistance genes and signaling components, as well as aphid-derived effectors that elicit or attenuate host defenses. Also discussed is the impact of aphid-vectored plant viruses on plant-aphid interaction and the concept of tolerance, which allows plant to withstand or recover from damage resulting from the infestation.
Collapse
Affiliation(s)
- Vamsi Nalam
- Department of Biology, Indiana University-Purdue University, Fort Wayne, Indiana, 46805, USA.
| | - Joe Louis
- Department of Entomology and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| | - Jyoti Shah
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA.
| |
Collapse
|
57
|
Chaudhary R, Peng HC, He J, MacWilliams J, Teixeira M, Tsuchiya T, Chesnais Q, Mudgett MB, Kaloshian I. Aphid effector Me10 interacts with tomato TFT7, a 14-3-3 isoform involved in aphid resistance. THE NEW PHYTOLOGIST 2019; 221:1518-1528. [PMID: 30357852 DOI: 10.1111/nph.15475] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/31/2018] [Indexed: 05/08/2023]
Abstract
We demonstrated previously that expression of Macrosiphum euphorbiae salivary protein Me10 enhanced aphid reproduction on its host tomato (Solanum lycopersicum). However, the mechanism of action of Me10 remained elusive. To confirm the secretion of Me10 by the aphid into plant tissues, we produced Me10 polyclonal antibodies. To identify the plant targets of Me10, we developed a tomato immune induced complementary DNA yeast two-hybrid library and screened it with Me10 as bait. Immunoprecipitation and bimolecular fluorescence complementation (BiFC) assays were performed to validate one of the interactions in planta, and virus-induced gene silencing was used for functional characterization in tomato. We demonstrated that Me10 is secreted into the plant tissues and interacts with tomato 14-3-3 isoform 7 (TFT7) in yeast. Immunoprecipitation assays confirmed that Me10 and its homologue in Aphis gossypii, Ag10k, interact with TFT7 in planta. Further, BiFC revealed that Me10 interaction with TFT7 occurs in the plant cell cytoplasm. While silencing of TFT7 in tomato leaves did not affect tomato susceptibility to M. euphorbiae, it enhanced longevity and fecundity of A. gossypii, the non-host aphid. Our results suggest the model whereby TFT7 plays a role in aphid resistance in tomato and effectors of the Me10/Ag10k family interfere with TFT7 function during aphid infestation.
Collapse
Affiliation(s)
- Ritu Chaudhary
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Hsuan-Chieh Peng
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Jiangman He
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Jacob MacWilliams
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Marcella Teixeira
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Tokuji Tsuchiya
- College of Bioresource Sciences, Nihon University, Kanagawa, 252-0880, Japan
| | - Quentin Chesnais
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Mary Beth Mudgett
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Isgouhi Kaloshian
- Department of Nematology, University of California, Riverside, CA, 92521, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
58
|
Åhman I, Kim SY, Zhu LH. Plant Genes Benefitting Aphids-Potential for Exploitation in Resistance Breeding. FRONTIERS IN PLANT SCIENCE 2019; 10:1452. [PMID: 31798609 PMCID: PMC6874142 DOI: 10.3389/fpls.2019.01452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/18/2019] [Indexed: 05/17/2023]
Abstract
Aphids are phloem sap-feeding insects common as pests in various crops. Here we review 62 omics studies of aphid/plant interactions to search for indications of how aphids may manipulate the plants to make them more suitable as hosts, i.e. more susceptible. Our aim is to try to reveal host plant susceptibility (S) genes, knowledge which can be exploited for making a plant more resistant to its pest by using new plant breeding techniques to knock out or down such S genes. S genes may be of two types, those that are involved in reducing functional plant defense and those involved in further increasing plant factors that are positive to the aphid, such as facilitated access to food or improved nutritional quality. Approximately 40% of the omics studies we have reviewed indicate how aphids may modify their host to their advantage. To exploit knowledge obtained so far, we suggest knocking out/down candidate aphid S genes using CRISPR/Cas9 or RNAi techniques in crops to evaluate if this will be sufficient to keep the aphid pest at economically viable levels without severe pleiotropic effects. As a complement, we also propose functional studies of recessively inherited resistance previously discovered in some aphid-crop combinations, to potentially identify new types of S genes that later could be knocked out or down also in other crops to improve their resistance to aphids.
Collapse
|
59
|
A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway. Proc Natl Acad Sci U S A 2018; 116:490-495. [PMID: 30584091 DOI: 10.1073/pnas.1714990116] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phloem-feeding insects feed on plant phloem using their stylets. While ingesting phloem sap, these insects secrete saliva to circumvent plant defenses. Previous studies have shown that, to facilitate their feeding, many phloem-feeding insects can elicit the salicylic acid- (SA-) signaling pathway and thus suppress effective jasmonic acid defenses. However, the molecular basis for the regulation of the plant's defense by phloem-feeding insects remains largely unknown. Here, we show that Bt56, a whitefly-secreted low molecular weight salivary protein, is highly expressed in the whitefly primary salivary gland and is delivered into host plants during feeding. Overexpression of the Bt56 gene in planta promotes susceptibility of tobacco to the whitefly and elicits the SA-signaling pathway. In contrast, silencing the whitefly Bt56 gene significantly decreases whitefly performance on host plants and interrupts whitefly phloem feeding with whiteflies losing the ability to activate the SA pathway. Protein-protein interaction assays show that the Bt56 protein directly interacts with a tobacco KNOTTED 1-like homeobox transcription factor that decreases whitefly performance and suppresses whitefly-induced SA accumulation. The Bt56 orthologous genes are highly conserved but differentially expressed in different species of whiteflies. In conclusion, Bt56 is a key salivary effector that promotes whitefly performance by eliciting salicylic acid-signaling pathway.
Collapse
|
60
|
Abd-El-Haliem AM, Hoogstrate SW, Schuurink RC. A Robust Functional Genomics Approach to Identify Effector Genes Required for Thrips ( Frankliniella occidentalis) Reproductive Performance on Tomato Leaf Discs. FRONTIERS IN PLANT SCIENCE 2018; 9:1852. [PMID: 30607142 PMCID: PMC6301195 DOI: 10.3389/fpls.2018.01852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/30/2018] [Indexed: 05/31/2023]
Abstract
Thrips (Frankliniella occidentalis) is a persistent plant pest that is able to vector pathogenic viruses. Natural plant resistance to thrips has become a prominent breeding target in commercial crops. The main reason for this is the shift toward banning key pesticides used for controlling thrips infestations and the lack of effective alternatives. Despite this urgent need for crop plants that are resistant, or tolerant, to thrips infestation, the toolbox for studying genetic resistance to this insect is still underdeveloped. Essentially, there is a lack of robust protocols for the screening and identification of thrips genes relevant to its performance on crop plants. To bridge this gap, we have developed a functional analysis screening method. Our approach relies on the, Agrobacterium tumefaciens-mediated, homogeneous, and transient ectopic expression of thrips genes in large tomato leaf discs followed by the assessment of thrips reproductive performance. The setup is designed to maintain gene expression during the course of the assay, where GFP signal in the control treatment is used as a reporter of expression. The screen is conducted in a climate box under controlled settings. As a result, multiple genes can be screened for their effect on thrips reproductive performance in a single experiment and in a relatively small space, without the need for generating stable transgenic plants. The method also eliminates the need for a greenhouse equipped to accommodate the combination of A. tumefaciens-infiltrations and thrips infestations. It is not only flexible and convenient for screening genes encoding putative thrips effectors but also for plant resistance genes or effector-targets of host plants and can be adapted for other crop plants, or other herbivorous arthropods.
Collapse
|
61
|
Boulain H, Legeai F, Guy E, Morlière S, Douglas NE, Oh J, Murugan M, Smith M, Jaquiéry J, Peccoud J, White FF, Carolan JC, Simon JC, Sugio A. Fast Evolution and Lineage-Specific Gene Family Expansions of Aphid Salivary Effectors Driven by Interactions with Host-Plants. Genome Biol Evol 2018; 10:1554-1572. [PMID: 29788052 PMCID: PMC6012102 DOI: 10.1093/gbe/evy097] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 12/31/2022] Open
Abstract
Effector proteins play crucial roles in plant-parasite interactions by suppressing plant defenses and hijacking plant physiological responses to facilitate parasite invasion and propagation. Although effector proteins have been characterized in many microbial plant pathogens, their nature and role in adaptation to host plants are largely unknown in insect herbivores. Aphids rely on salivary effector proteins injected into the host plants to promote phloem sap uptake. Therefore, gaining insight into the repertoire and evolution of aphid effectors is key to unveiling the mechanisms responsible for aphid virulence and host plant specialization. With this aim in mind, we assembled catalogues of putative effectors in the legume specialist aphid, Acyrthosiphon pisum, using transcriptomics and proteomics approaches. We identified 3,603 candidate effector genes predicted to be expressed in A. pisum salivary glands (SGs), and 740 of which displayed up-regulated expression in SGs in comparison to the alimentary tract. A search for orthologs in 17 arthropod genomes revealed that SG-up-regulated effector candidates of A. pisum are enriched in aphid-specific genes and tend to evolve faster compared with the whole gene set. We also found that a large fraction of proteins detected in the A. pisum saliva belonged to three gene families, of which certain members show evidence consistent with positive selection. Overall, this comprehensive analysis suggests that the large repertoire of effector candidates in A. pisum constitutes a source of novelties promoting plant adaptation to legumes.
Collapse
Affiliation(s)
- Hélène Boulain
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Fabrice Legeai
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France.,Inria/IRISA GenScale, Campus de Beaulieu, Rennes, France
| | - Endrick Guy
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Stéphanie Morlière
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Nadine E Douglas
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,UCD School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Jonghee Oh
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas
| | - Marimuthu Murugan
- Community Science College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Michael Smith
- Department of Entomology, Kansas State University, Manhattan, Kansas
| | - Julie Jaquiéry
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Jean Peccoud
- UMR CNRS 7267 Ecologie et Biologie des Interactions, équipe Ecologie Evolution Symbiose, Université de Poitiers, Poitiers, France
| | - Frank F White
- Department of Plant Pathology, University of Florida, Gainesville, Florida
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Jean-Christophe Simon
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Akiko Sugio
- INRA, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| |
Collapse
|
62
|
Thorpe P, Escudero-Martinez CM, Cock PJA, Eves-van den Akker S, Bos JIB. Shared Transcriptional Control and Disparate Gain and Loss of Aphid Parasitism Genes. Genome Biol Evol 2018; 10:2716-2733. [PMID: 30165560 PMCID: PMC6186164 DOI: 10.1093/gbe/evy183] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2018] [Indexed: 12/27/2022] Open
Abstract
Aphids are a diverse group of taxa that contain agronomically important species, which vary in their host range and ability to infest crop plants. The genome evolution underlying agriculturally important aphid traits is not well understood. We generated draft genome assemblies for two aphid species: Myzus cerasi (black cherry aphid) and the cereal specialist Rhopalosiphum padi. Using a de novo gene prediction pipeline on both these, and three additional aphid genome assemblies (Acyrthosiphon pisum, Diuraphis noxia, and Myzus persicae), we show that aphid genomes consistently encode similar gene numbers. We compare gene content, gene duplication, synteny, and putative effector repertoires between these five species to understand the genome evolution of globally important plant parasites. Aphid genomes show signs of relatively distant gene duplication, and substantial, relatively recent, gene birth. Putative effector repertoires, originating from duplicated and other loci, have an unusual genomic organization and evolutionary history. We identify a highly conserved effector pair that is tightly physically linked in the genomes of all aphid species tested. In R. padi, this effector pair is tightly transcriptionally linked and shares an unknown transcriptional control mechanism with a subset of ∼50 other putative effectors and secretory proteins. This study extends our current knowledge on the evolution of aphid genomes and reveals evidence for an as-of-yet unknown shared control mechanism, which underlies effector expression, and ultimately plant parasitism.
Collapse
Affiliation(s)
- Peter Thorpe
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- Dundee Effector Consortium, The James Hutton Institute, Dundee, United Kingdom
| | - Carmen M Escudero-Martinez
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- Dundee Effector Consortium, The James Hutton Institute, Dundee, United Kingdom
| | - Peter J A Cock
- Dundee Effector Consortium, The James Hutton Institute, Dundee, United Kingdom
- Information and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Sebastian Eves-van den Akker
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Corresponding authors: E-mails: ;
| | - Jorunn I B Bos
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- Dundee Effector Consortium, The James Hutton Institute, Dundee, United Kingdom
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Corresponding authors: E-mails: ;
| |
Collapse
|
63
|
Blaazer CJH, Villacis-Perez EA, Chafi R, Van Leeuwen T, Kant MR, Schimmel BCJ. Why Do Herbivorous Mites Suppress Plant Defenses? FRONTIERS IN PLANT SCIENCE 2018; 9:1057. [PMID: 30105039 PMCID: PMC6077234 DOI: 10.3389/fpls.2018.01057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/28/2018] [Indexed: 05/03/2023]
Abstract
Plants have evolved numerous defensive traits that enable them to resist herbivores. In turn, this resistance has selected for herbivores that can cope with defenses by either avoiding, resisting or suppressing them. Several species of herbivorous mites, such as the spider mites Tetranychus urticae and Tetranychus evansi, were found to maximize their performance by suppressing inducible plant defenses. At first glimpse it seems obvious why such a trait will be favored by natural selection. However, defense suppression appeared to readily backfire since mites that do so also make their host plant more suitable for competitors and their offspring more attractive for natural enemies. This, together with the fact that spider mites are infamous for their ability to resist (plant) toxins directly, justifies the question as to why traits that allow mites to suppress defenses nonetheless seem to be relatively common? We argue that this trait may facilitate generalist herbivores, like T. urticae, to colonize new host species. While specific detoxification mechanisms may, on average, be suitable only on a narrow range of similar hosts, defense suppression may be more broadly effective, provided it operates by targeting conserved plant signaling components. If so, resistance and suppression may be under frequency-dependent selection and be maintained as a polymorphism in generalist mite populations. In that case, the defense suppression trait may be under rapid positive selection in subpopulations that have recently colonized a new host but may erode in relatively isolated populations in which host-specific detoxification mechanisms emerge. Although there is empirical evidence to support these scenarios, it contradicts the observation that several of the mite species found to suppress plant defenses actually are relatively specialized. We argue that in these cases buffering traits may enable such mites to mitigate the negative side effects of suppression in natural communities and thus shield this trait from natural selection.
Collapse
Affiliation(s)
- C. Joséphine H. Blaazer
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Ernesto A. Villacis-Perez
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Rachid Chafi
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Thomas Van Leeuwen
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Merijn R. Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Bernardus C. J. Schimmel
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
64
|
Yates AD, Michel A. Mechanisms of aphid adaptation to host plant resistance. CURRENT OPINION IN INSECT SCIENCE 2018; 26:41-49. [PMID: 29764659 DOI: 10.1016/j.cois.2018.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/11/2018] [Accepted: 01/14/2018] [Indexed: 05/27/2023]
Abstract
Host-plant resistant (HPR) crops can play a major role in preventing insect damage, but their durability is limited due to insect adaptation. Research in basal plant resistance provides a framework to investigate adaptation against HPR. Resistance and adaptation are predicted to follow the gene-for-gene and zigzag models of plant defense. These models also highlight the importance of insect effectors, which are small molecules that modulate host plant defense signaling. We highlight research in insect adaptation to plant resistance, and then draw parallels to virulence adaptation. We focus on virulent biotype evolution within the Aphididae, since this group has the highest number of described virulent biotypes. Understanding how virulence occurs will lead to more durable insect management strategies and enhance food production and security.
Collapse
Affiliation(s)
- Ashley D Yates
- Center for Applied Plant Sciences, and The Ohio State Center for Soybean Research, USA
| | - Andy Michel
- Center for Applied Plant Sciences, and The Ohio State Center for Soybean Research, USA; Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Ave., Wooster, OH, USA.
| |
Collapse
|
65
|
Stahl E, Hilfiker O, Reymond P. Plant-arthropod interactions: who is the winner? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:703-728. [PMID: 29160609 DOI: 10.1111/tpj.13773] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 05/17/2023]
Abstract
Herbivorous arthropods have interacted with plants for millions of years. During feeding they release chemical cues that allow plants to detect the attack and mount an efficient defense response. A signaling cascade triggers the expression of hundreds of genes, which encode defensive proteins and enzymes for synthesis of toxic metabolites. This direct defense is often complemented by emission of volatiles that attract beneficial parasitoids. In return, arthropods have evolved strategies to interfere with plant defenses, either by producing effectors to inhibit detection and downstream signaling steps, or by adapting to their detrimental effect. In this review, we address the current knowledge on the molecular and chemical dialog between plants and herbivores, with an emphasis on co-evolutionary aspects.
Collapse
Affiliation(s)
- Elia Stahl
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Olivier Hilfiker
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| |
Collapse
|
66
|
Jonckheere W, Dermauw W, Khalighi M, Pavlidi N, Reubens W, Baggerman G, Tirry L, Menschaert G, Kant MR, Vanholme B, Van Leeuwen T. A Gene Family Coding for Salivary Proteins (SHOT) of the Polyphagous Spider Mite Tetranychus urticae Exhibits Fast Host-Dependent Transcriptional Plasticity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:112-124. [PMID: 29094648 DOI: 10.1094/mpmi-06-17-0139-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The salivary protein repertoire released by the herbivorous pest Tetranychus urticae is assumed to hold keys to its success on diverse crops. We report on a spider mite-specific protein family that is expanded in T. urticae. The encoding genes have an expression pattern restricted to the anterior podocephalic glands, while peptide fragments were found in the T. urticae secretome, supporting the salivary nature of these proteins. As peptide fragments were identified in a host-dependent manner, we designated this family as the SHOT (secreted host-responsive protein of Tetranychidae) family. The proteins were divided in three groups based on sequence similarity. Unlike TuSHOT3 genes, TuSHOT1 and TuSHOT2 genes were highly expressed when feeding on a subset of family Fabaceae, while expression was depleted on other hosts. TuSHOT1 and TuSHOT2 expression was induced within 24 h after certain host transfers, pointing toward transcriptional plasticity rather than selection as the cause. Transfer from an 'inducer' to a 'noninducer' plant was associated with slow yet strong downregulation of TuSHOT1 and TuSHOT2, occurring over generations rather than hours. This asymmetric on and off regulation points toward host-specific effects of SHOT proteins, which is further supported by the diversity of SHOT genes identified in Tetranychidae with a distinct host repertoire.
Collapse
Affiliation(s)
- Wim Jonckheere
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
- 2 Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Wannes Dermauw
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Mousaalreza Khalighi
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Nena Pavlidi
- 2 Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Wim Reubens
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Geert Baggerman
- 3 Center for Proteomics (CFP), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- 4 Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Luc Tirry
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Gerben Menschaert
- 5 Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University
| | - Merijn R Kant
- 6 Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam
| | - Bartel Vanholme
- 7 Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium; and
- 8 Centre for Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium
| | - Thomas Van Leeuwen
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
- 2 Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
67
|
Shangguan X, Zhang J, Liu B, Zhao Y, Wang H, Wang Z, Guo J, Rao W, Jing S, Guan W, Ma Y, Wu Y, Hu L, Chen R, Du B, Zhu L, Yu D, He G. A Mucin-Like Protein of Planthopper Is Required for Feeding and Induces Immunity Response in Plants. PLANT PHYSIOLOGY 2018; 176:552-565. [PMID: 29133370 PMCID: PMC5761773 DOI: 10.1104/pp.17.00755] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/09/2017] [Indexed: 05/20/2023]
Abstract
The brown planthopper, Nilaparvata lugens, is a pest that threatens rice (Oryza sativa) production worldwide. While feeding on rice plants, planthoppers secrete saliva, which plays crucial roles in nutrient ingestion and modulating plant defense responses, although the specific functions of salivary proteins remain largely unknown. We identified an N. lugens-secreted mucin-like protein (NlMLP) by transcriptome and proteome analyses and characterized its function, both in brown planthopper and in plants. NlMLP is highly expressed in salivary glands and is secreted into rice during feeding. Inhibition of NlMLP expression in planthoppers disturbs the formation of salivary sheaths, thereby reducing their performance. In plants, NlMLP induces cell death, the expression of defense-related genes, and callose deposition. These defense responses are related to Ca2+ mobilization and the MEK2 MAP kinase and jasmonic acid signaling pathways. The active region of NlMLP that elicits plant responses is located in its carboxyl terminus. Our work provides a detailed characterization of a salivary protein from a piercing-sucking insect other than aphids. Our finding that the protein functions in plant immune responses offers new insights into the mechanism underlying interactions between plants and herbivorous insects.
Collapse
Affiliation(s)
- Xinxin Shangguan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Jing Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Bingfang Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Yan Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Huiying Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Zhizheng Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Jianping Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Weiwei Rao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Shengli Jing
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Wei Guan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Yinhua Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Liang Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Dazhao Yu
- Institute for Plant Protection and Soil Sciences, Hubei Academy of Agricultural Sciences, 430064 Wuhan, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| |
Collapse
|
68
|
Dáder B, Then C, Berthelot E, Ducousso M, Ng JCK, Drucker M. Insect transmission of plant viruses: Multilayered interactions optimize viral propagation. INSECT SCIENCE 2017; 24:929-946. [PMID: 28426155 DOI: 10.1111/1744-7917.12470] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 05/15/2023]
Abstract
By serving as vectors of transmission, insects play a key role in the infection cycle of many plant viruses. Viruses use sophisticated transmission strategies to overcome the spatial barrier separating plants and the impediment imposed by the plant cell wall. Interactions among insect vectors, viruses, and host plants mediate transmission by integrating all organizational levels, from molecules to populations. Best-examined on the molecular scale are two basic transmission modes wherein virus-vector interactions have been well characterized. Whereas association of virus particles with specific sites in the vector's mouthparts or in alimentary tract regions immediately posterior to them is required for noncirculative transmission, the cycle of particles through the vector body is necessary for circulative transmission. Virus transmission is also determined by interactions that are associated with changes in vector feeding behaviors and with alterations in plant host's morphology and/or metabolism that favor the attraction or deterrence of vectors. A recent concept in virus-host-vector interactions proposes that when vectors land on infected plants, vector elicitors and effectors "inform" the plants of the confluence of interacting entities and trigger signaling pathways and plant defenses. Simultaneously, the plant responses may also influence virus acquisition and inoculation by vectors. Overall, a picture is emerging where transmission depends on multilayered virus-vector-host interactions that define the route of a virus through the vector, and on the manipulation of the host and the vector. These interactions guarantee virus propagation until one or more of the interactants undergo changes through evolution or are halted by environmental interventions.
Collapse
Affiliation(s)
- Beatriz Dáder
- INRA, UMR 385 BGPI (CIRAD-INRA-SupAgroM), Montpellier, France
| | - Christiane Then
- INRA, UMR 385 BGPI (CIRAD-INRA-SupAgroM), Montpellier, France
| | | | - Marie Ducousso
- INRA, UMR 385 BGPI (CIRAD-INRA-SupAgroM), Montpellier, France
| | - James C K Ng
- Department of Plant Pathology and Microbiology and Center for Disease Vector Research, University of California, Riverside, USA
| | - Martin Drucker
- INRA, UMR 385 BGPI (CIRAD-INRA-SupAgroM), Montpellier, France
| |
Collapse
|
69
|
Yun HS, Kwon C. Vesicle trafficking in plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:34-42. [PMID: 28735164 DOI: 10.1016/j.pbi.2017.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/27/2017] [Accepted: 07/09/2017] [Indexed: 05/23/2023]
Abstract
To defend against extracellular pathogens, plants primarily depend on cell-autonomous innate immunity due to the lack of the circulatory immune system including mobile immune cells. To extracellularly restrict or kill the pathogens, plant cells dump out antimicrobials. However, since antimicrobials are also toxic to plant cells themselves, they have to be safely delivered to the target sites in a separate vesicular compartment. In addition, because immune responses often requires energy otherwise used for the other metabolic processes, it is very important to properly control the duration and strength of immune responses depending on pathogen types. This can be achieved by regulating the sensing of immune signals and the delivery/discharge of extracellular immune molecules, all of which are controlled by membrane trafficking in plant cells. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are now considered as the minimal factors that can merge two distinct membranes of cellular compartments. Hence, in this review, known and potential immune functions of SNAREs as well as regulatory proteins will be discussed.
Collapse
Affiliation(s)
- Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|