51
|
Cheng J, Zhang M, Tan B, Jiang Y, Zheng X, Ye X, Guo Z, Xiong T, Wang W, Li J, Feng J. A single nucleotide mutation in GID1c disrupts its interaction with DELLA1 and causes a GA-insensitive dwarf phenotype in peach. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1723-1735. [PMID: 30776191 PMCID: PMC6686139 DOI: 10.1111/pbi.13094] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 05/20/2023]
Abstract
Plant stature is one important factor that affects the productivity of peach orchards. However, little is known about the molecular mechanism(s) underlying the dwarf phenotype of peach tree. Here, we report a dwarfing mechanism in the peach cv. FenHuaShouXingTao (FHSXT). The dwarf phenotype of 'FHSXT' was caused by shorter cell length compared to the standard cv. QiuMiHong (QMH). 'FHSXT' contained higher endogenous GA levels than did 'QMH' and did not response to exogenous GA treatment (internode elongation). These results indicated that 'FHSXT' is a GA-insensitive dwarf mutant. A dwarf phenotype-related single nucleotide mutation in the gibberellic acid receptor GID1 was identified in 'FHSXT' (GID1cS191F ), which was also cosegregated with dwarf phenotype in 30 tested cultivars. GID1cS191F was unable to interact with the growth-repressor DELLA1 even in the presence of GA. 'FHSXT' accumulated a higher level of DELLA1, the degradation of which is normally induced by its interaction with GID1. The DELLA1 protein level was almost undetectable in 'QMH', but not reduced in 'FHSXT' after GA3 treatment. Our results suggested that a nonsynonymous single nucleotide mutation in GID1c disrupts its interaction with DELLA1 resulting in a GA-insensitive dwarf phenotype in peach.
Collapse
Affiliation(s)
- Jun Cheng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Mengmeng Zhang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Bin Tan
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Yajun Jiang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Xianbo Zheng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Xia Ye
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Zijing Guo
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Tingting Xiong
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Wei Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Jidong Li
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Jiancan Feng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
52
|
Chu Y, Xu N, Wu Q, Yu B, Li X, Chen R, Huang J. Rice transcription factor OsMADS57 regulates plant height by modulating gibberellin catabolism. RICE (NEW YORK, N.Y.) 2019; 12:38. [PMID: 31139953 PMCID: PMC6538746 DOI: 10.1186/s12284-019-0298-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/16/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND The MADS-box transcription factors mainly function in floral organ organogenesis and identity specification. Few research on their roles in vegetative growth has been reported. RESULTS Here we investigated the functions of OsMADS57 in plant vegetative growth in rice (Oryza sativa). Knockdown of OsMADS57 reduced the plant height, internode elongation and panicle exsertion in rice plants. Further study showed that the cell length was remarkably reduced in the uppermost internode in OsMADS57 knockdown plants at maturity. Moreover, OsMADS57 knockdown plants were more sensitive to gibberellic acid (GA3), and contained less bioactive GA3 than wild-type plants, which implied that OsMADS57 is involved in gibberellin (GA) pathway. Expectedly, the transcript levels of OsGA2ox3, encoding GAs deactivated enzyme, were significantly enhanced in OsMADS57 knockdown plants. The level of EUI1 transcripts involved in GA deactivation was also increased in OsMADS57 knockdown plants. More importantly, dual-luciferase reporter assay and electrophoretic mobility shift assay showed that OsMADS57 directly regulates the transcription of OsGA2ox3 as well as EUI1 through binding to the CArG-box motifs in their promoter regions. In addition, OsMADS57 also modulated the expression of multiple genes involved in GA metabolism or GA signaling pathway, indicating the key and complex regulatory role of OsMADS57 in GA pathway in rice. CONCLUSIONS These results indicated that OsMADS57 acts as an important transcriptional regulator that regulates stem elongation and panicle exsertion in rice via GA-mediated regulatory pathway.
Collapse
Affiliation(s)
- Yanli Chu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Ning Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Qi Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Bo Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Xingxing Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Rongrong Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
53
|
Wang L, Yin Y, Wang LF, Wang M, Zhao M, Tian Y, Li YF. Transcriptome Profiling of the Elongating Internode of Cotton ( Gossypium hirsutum L.) Seedlings in Response to Mepiquat Chloride. FRONTIERS IN PLANT SCIENCE 2019; 10:1751. [PMID: 32047505 PMCID: PMC6997534 DOI: 10.3389/fpls.2019.01751] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/13/2019] [Indexed: 05/22/2023]
Abstract
The plant growth retardant mepiquat chloride (MC) has been extensively used to produce compact plant canopies and increase yield in cotton (Gossypium hirsutum L.). Previous studies showed that MC reduced plant height and internode length by inhibiting GA biosynthesis and cell elongation. However, whether there are other molecular mechanisms underlying MC-induced growth retardation has remained largely unknown. In the present study, we conducted histological, transcriptomic, and phytohormone analyses of the second elongating internodes of cotton seedlings treated with MC. Histological analysis revealed that the MC shortened the internodes through suppressing both cell division and cell elongation. Consistent with the observed phenotype, many genes related to cell growth were significantly downregulated by MC. Transcriptome profiling showed that the expression of genes related not only to GA, but also to auxin, brassinosteroid (BR), and ethylene metabolism and signaling was remarkably suppressed, whereas that of genes related to cytokinin (CK) and abscisic acid (ABA) metabolism was induced by MC. Consistent with the expression pattern, significant decrease of endogenous GA, auxin, and BR content, but an increase in CK content was observed after MC treatment. Most of these hormone related genes displayed opposite regulation pattern by exogenous GA3 treatment compared to MC; simultaneous application of MC and GA3 could alleviate the genes expression changes induced by MC treatment, indicating MC does not directly affect other plant hormones, but through the inhibition of the GA biosynthesis. In addition, the expression of genes related to secondary metabolism and many transcription factors (TFs) were differentially regulated by MC. In summary, we confirmed the important role of GA in MC-induced growth inhibition of cotton, and further found that other hormones were also involved in this process in a GA-dependent manner. This study provides novel insights into the molecular mechanism underlying the MC-mediated inhibition of internode elongation in cotton seedlings.
Collapse
Affiliation(s)
- Li Wang
- *Correspondence: Yong-Fang Li, ; Li Wang,
| | | | | | | | | | | | | |
Collapse
|
54
|
Kuroha T, Nagai K, Gamuyao R, Wang DR, Furuta T, Nakamori M, Kitaoka T, Adachi K, Minami A, Mori Y, Mashiguchi K, Seto Y, Yamaguchi S, Kojima M, Sakakibara H, Wu J, Ebana K, Mitsuda N, Ohme-Takagi M, Yanagisawa S, Yamasaki M, Yokoyama R, Nishitani K, Mochizuki T, Tamiya G, McCouch SR, Ashikari M. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science 2018; 361:181-186. [PMID: 30002253 DOI: 10.1126/science.aat1577] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/18/2018] [Indexed: 01/19/2023]
Abstract
Most plants do poorly when flooded. Certain rice varieties, known as deepwater rice, survive periodic flooding and consequent oxygen deficiency by activating internode growth of stems to keep above the water. Here, we identify the gibberellin biosynthesis gene, SD1 (SEMIDWARF1), whose loss-of-function allele catapulted the rice Green Revolution, as being responsible for submergence-induced internode elongation. When submerged, plants carrying the deepwater rice-specific SD1 haplotype amplify a signaling relay in which the SD1 gene is transcriptionally activated by an ethylene-responsive transcription factor, OsEIL1a. The SD1 protein directs increased synthesis of gibberellins, largely GA4, which promote internode elongation. Evolutionary analysis shows that the deepwater rice-specific haplotype was derived from standing variation in wild rice and selected for deepwater rice cultivation in Bangladesh.
Collapse
Affiliation(s)
- Takeshi Kuroha
- Graduate School of Life Sciences, Tohoku University, Miyagi 890-8577, Japan.
| | - Keisuke Nagai
- Bioscience and Biotechnology Center, Nagoya University, Aichi 464-8601, Japan
| | - Rico Gamuyao
- Bioscience and Biotechnology Center, Nagoya University, Aichi 464-8601, Japan
| | - Diane R Wang
- Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Tomoyuki Furuta
- Bioscience and Biotechnology Center, Nagoya University, Aichi 464-8601, Japan
| | - Masanari Nakamori
- Bioscience and Biotechnology Center, Nagoya University, Aichi 464-8601, Japan
| | - Takuya Kitaoka
- Bioscience and Biotechnology Center, Nagoya University, Aichi 464-8601, Japan
| | - Keita Adachi
- Bioscience and Biotechnology Center, Nagoya University, Aichi 464-8601, Japan
| | - Anzu Minami
- Bioscience and Biotechnology Center, Nagoya University, Aichi 464-8601, Japan
| | - Yoshinao Mori
- Bioscience and Biotechnology Center, Nagoya University, Aichi 464-8601, Japan
| | - Kiyoshi Mashiguchi
- Graduate School of Life Sciences, Tohoku University, Miyagi 890-8577, Japan
| | - Yoshiya Seto
- Graduate School of Life Sciences, Tohoku University, Miyagi 890-8577, Japan
| | - Shinjiro Yamaguchi
- Graduate School of Life Sciences, Tohoku University, Miyagi 890-8577, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan.,Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Jianzhong Wu
- Institute of Crop Science, NARO, Ibaraki 305-8518, Japan
| | - Kaworu Ebana
- Genetic Resources Center, NARO, Ibaraki 305-8518, Japan
| | | | - Masaru Ohme-Takagi
- Bioproduction Research Institute, AIST, Ibaraki 305-8566, Japan.,Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Shuichi Yanagisawa
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masanori Yamasaki
- Graduate School of Agricultural Science, Kobe University, Hyogo 675-2103, Japan
| | - Ryusuke Yokoyama
- Graduate School of Life Sciences, Tohoku University, Miyagi 890-8577, Japan
| | - Kazuhiko Nishitani
- Graduate School of Life Sciences, Tohoku University, Miyagi 890-8577, Japan
| | | | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, Miyagi 980-8575, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Susan R McCouch
- Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Aichi 464-8601, Japan.
| |
Collapse
|
55
|
Li Y, Tang D, Li L, Zhao X, Lin J, Liu X. Plant Stature Related receptor-like Kinanse2 (PSRK2) acts as a factor that determines stem elongation toward gibberellins response in rice. Biosci Biotechnol Biochem 2018; 82:1931-1941. [PMID: 30096253 DOI: 10.1080/09168451.2018.1501266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Gibberellins (GAs) are a family of plant hormones that are important to multiple aspects of plant growth and development, especially stem elongation. A PSRK2 was obtained through screening and identifying RLK dominant negative mutants. Phenotype of the loss-of-function mutants, psrk2-DN and psrk2-RNAi, showed that PSRK2 could influence the length of the uppermost and fourth internodes, indicating that PSRK2 might regulate cell division in the intercalary meristems and/or cell elongation in the internodes. Moreover, the expression pattern showed that PSRK2 was strongly expressed in the joined-nodes after the start-up of reproductive growth, but undetectable in leaves. PSRK2 expression was also found to be induced by GA3, and PSRK2 was involved in GA signaling in cereal aleurone cells, and PSRK2 influence the relative length of the second leaf sheaths in seedling stage. These results indicate PSRK2 is a component of GA signaling pathway that controls stem elongation by negatively regulating GA responses. Abbreviations: Os: Oryza sativa; At: Arabidopsis thaliana; RNAi: RNA interfere; DN: Dominate Negative; SMART: Simple Modular Architecture Research Tool; Uni : Uniconazol; PSRK2: Plant Stature Related receptor-like Kinase 2; RLK: Receptor-like Kinase; GA: Gibberellin; IAA: indole-3-acetic acid; BL: Brassinosteroid.
Collapse
Affiliation(s)
- Yixing Li
- a Hunan Province Key laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology , Hunan University , Changsha , China
| | - Dongying Tang
- a Hunan Province Key laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology , Hunan University , Changsha , China
| | - Li Li
- b State Key Laboratory of Hybrid Rice , Hunan Hybrid Rice Research Center , Changsha , China
| | - Xiaoying Zhao
- a Hunan Province Key laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology , Hunan University , Changsha , China
| | - Jianzhong Lin
- a Hunan Province Key laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology , Hunan University , Changsha , China
| | - Xuanming Liu
- a Hunan Province Key laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology , Hunan University , Changsha , China
| |
Collapse
|
56
|
Li KT, Zhang J, Kang YH, Chen MC, Song TT, Geng H, Tian J, Yao YC. McMYB10 Modulates the Expression of a Ubiquitin Ligase, McCOP1 During Leaf Coloration in Crabapple. FRONTIERS IN PLANT SCIENCE 2018; 9:704. [PMID: 29915606 PMCID: PMC5994411 DOI: 10.3389/fpls.2018.00704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/08/2018] [Indexed: 05/23/2023]
Abstract
In higher plants, anthocyanins are protective secondary metabolites, which contribute to the color of leaves, stems, flowers, and fruits, and have been found to have an antioxidant role in human health. In this study, we determined the expression of McMYB10 and its specific E3 ubiquitin ligase, McCOP1, in crabapple leaves during the course of a day and in five leaf development stages. Interestingly, the results showed that the transcription level of McCOP1 genes was higher in daylight than at night, and the transcripts of McMYB10 presented a positive correlation with the transcription of McCOP1-1 and McCOP1-2 and anthocyanin accumulation in a crabapple cultivar with red-colored leaves. Several MYB transcription factor (TF) binding sites of the MYBCORE type were found in the McCOP1-1 and McCOP1-2 promoters, and we deduced that there may be a relationship between McMYB10 and McCOP1-1 and McCOP1-2 at the transcriptional level. Yeast one hybrid (Y1H) and electrophoretic mobility shift assays (EMSA) demonstrated that the McMYB10 TF binds specifically to the promoter of McCOP1-1 and McCOP1-2. Furthermore, increased levels of McMYB10 promoted anthocyanin biosynthesis and the expression level of McCOP1-1 and McCOP1-2 in crabapple leaves during continuous light treatments, and overexpression or silencing of McMYB10 in crabapple leaves and apple fruits also result in an increase or decrease, respectively, in the expression of McCOP1-1 and McCOP1-2 and in anthocyanin biosynthesis. Our results reveal a new self-regulation mechanism in where McMYB10 modulates its own expression by activating McCOP1-1 and McCOP1-2 expression to promote ubiquitination of the McMYB10 protein by McCOP1.
Collapse
Affiliation(s)
- Ke-Ting Li
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Jie Zhang
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Yan-Hui Kang
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Meng-Chen Chen
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Ting-Ting Song
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Hui Geng
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Ji Tian
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Yun-Cong Yao
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory of New Technology in Agricultural Application of Beijing, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| |
Collapse
|
57
|
Pimprikar P, Gutjahr C. Transcriptional Regulation of Arbuscular Mycorrhiza Development. PLANT & CELL PHYSIOLOGY 2018; 59:673-690. [PMID: 29425360 DOI: 10.1093/pcp/pcy024] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/29/2018] [Indexed: 05/15/2023]
Abstract
Arbuscular mycorrhiza (AM) is an ancient symbiosis between land plants and fungi of the glomeromycotina that is widespread in the plant kingdom. AM improves plant nutrition, stress resistance and general plant performance, and thus represents a promising addition to sustainable agricultural practices. In return for delivering mineral nutrients, the obligate biotrophic AM fungi receive up to 20% of the photosynthetically fixed carbon from the plant. AM fungi colonize the inside of roots and form highly branched tree-shaped structures, called arbuscules, in cortex cells. The pair of the arbuscule and its host cell is considered the central functional unit of the symbiosis as it mediates the bidirectional nutrient exchange between the symbionts. The development and spread of AM fungi within the root is predominantly under the control of the host plant and depends on its developmental and physiological status. Intracellular accommodation of fungal structures is enabled by the remarkable plasticity of plant cells, which undergo drastic subcellular rearrangements. These are promoted and accompanied by cell-autonomous transcriptional reprogramming. AM development can be dissected into distinct stages using plant mutants. Progress in the application of laser dissection technology has allowed the assignment of transcriptional responses to specific stages and cell types. The first transcription factors controlling AM-specific gene expression and AM development have been discovered, and cis-elements required for AM-responsive promoter activity have been identified. An understanding of their connectivity and elucidation of transcriptional networks orchestrating AM development can be expected in the near future.
Collapse
Affiliation(s)
- Priya Pimprikar
- Faculty of Biology, Genetics, LMU Munich, Biocenter Martinsried, Großhaderner Str. 2-4, D-82152 Martinsried, Germany
- Plant Genetics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Emil Ramann Str. 4, D-85354 Freising, Germany
| | - Caroline Gutjahr
- Faculty of Biology, Genetics, LMU Munich, Biocenter Martinsried, Großhaderner Str. 2-4, D-82152 Martinsried, Germany
- Plant Genetics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Emil Ramann Str. 4, D-85354 Freising, Germany
| |
Collapse
|
58
|
Ito T, Okada K, Fukazawa J, Takahashi Y. DELLA-dependent and -independent gibberellin signaling. PLANT SIGNALING & BEHAVIOR 2018; 13:e1445933. [PMID: 29485381 PMCID: PMC5927702 DOI: 10.1080/15592324.2018.1445933] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
DELLA proteins act as negative regulators in gibberellin (GA) signal transduction. GA-induced DELLA degradation is a central regulatory system in GA signaling pathway. Intensive studies have revealed the degradation mechanism of DELLA and the functions of DELLA as a transcriptional regulator. Meanwhile, recent studies suggest the existence of a DELLA-independent GA signaling pathway. In this review, we summarized the DELLA-independent GA signaling pathway together with the well-analyzed DELLA-dependent pathway.
Collapse
Affiliation(s)
- Takeshi Ito
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
- CONTACT Takeshi Ito Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima City, 739-8526, Japan
| | - Kanako Okada
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Jutarou Fukazawa
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Yohsuke Takahashi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| |
Collapse
|