51
|
Xu C, Fan J, Shanklin J. Metabolic and functional connections between cytoplasmic and chloroplast triacylglycerol storage. Prog Lipid Res 2020; 80:101069. [DOI: 10.1016/j.plipres.2020.101069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022]
|
52
|
Zhou B, Fei W, Yang S, Yang F, Qu G, Tang W, Ou J, Peng D. Alteration of the fatty acid composition of Brassica napus L. via overexpression of phospholipid: Diacylglycerol acyltransferase 1 from Sapium sebiferum (L.) Roxb. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110562. [PMID: 32771163 DOI: 10.1016/j.plantsci.2020.110562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Sapium sebiferum (L.) Roxb. plays an important role in traditional Chinese medicine and is one of major woody oil tree in China. Phospholipid: diacylglycerol acyltransferase 1 (PDAT1), as an important catalytic enzyme for the formation of triacylglycerol (TAG), is mainly responsible for the transfer of an acyl group from the sn-2 position of phospholipids to the sn-3 position of sn-1, 2-diacylglycerol (DAG) to produce TAG and sn-1 lysophospholipids. The importance of PDAT1 in triacylglycerol biosynthesis has been illustrated in previous research, and at least 67 PDAT1 sequences have been identified from 31 organisms. However, little is known about the gene encoding PDAT1 in S. sebiferum (SsPDAT1), which is involved in seed oil biosynthesis. To explore the functional characteristics of SsPDAT1, we cloned and analyzed the full-length cDNA in the coding region of SsPDAT1, which consists of 2040 bp and encodes a putative protein of 680 amino acid (aa) residues. Thin-layer chromatography (TLC) analysis showed that recombinant SsPDAT1 could restore TAG accumulation in TAG-deficient mutant yeast (Saccharomyces cerevisiae) H1246, which revealed the enzyme activity of SsPDAT1. Moreover, transgenic Brassica napus L. W10 plants overexpressing SsPDAT1 showed significant increases of 19.6-28.9 % in linoleic acid levels but decreases of 27.3-37.1 % in linolenic acid. Furthermore, the total oil content increased by 8.1 %-10.8 % in SsPDAT1 transgenic seeds. These results confirmed the role of SsPDAT1 in stabilizing oil biosynthesis and suggested that SsPDAT1 could be exploitable to specifically regulate the oil composition of plants. These experimental results provide a new concept that may enable the industrial development of plants with high-linoleic-acid oil through overexpression of SsPDAT1 in S. sebiferum L.
Collapse
Affiliation(s)
- Bo Zhou
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, China; Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, 410018, Changsha, China; Forestry Biotechnology Hunan Key Laboratories, Hunan, Changsha, 410004, China; National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, Changsha, 410004, Hunan, China; Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, 438107, China.
| | - Wenjie Fei
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, China
| | - Shiquan Yang
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, China
| | - Feng Yang
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, China
| | - Gaoyi Qu
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, China
| | - Weiwei Tang
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, China
| | - Jianping Ou
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, China
| | - Dan Peng
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, China; Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, 410018, Changsha, China.
| |
Collapse
|
53
|
Lechowicz K, Pawłowicz I, Perlikowski D, Arasimowicz-Jelonek M, Blicharz S, Skirycz A, Augustyniak A, Malinowski R, Rapacz M, Kosmala A. Adjustment of Photosynthetic and Antioxidant Activities to Water Deficit Is Crucial in the Drought Tolerance of Lolium multiflorum/Festuca arundinacea Introgression Forms. Int J Mol Sci 2020; 21:ijms21165639. [PMID: 32781659 PMCID: PMC7460672 DOI: 10.3390/ijms21165639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 01/03/2023] Open
Abstract
Lolium multiflorum/Festuca arundinacea introgression forms have been proved several times to be good models to identify key components of grass metabolism involved in the mechanisms of tolerance to water deficit. Here, for the first time, a relationship between photosynthetic and antioxidant capacities with respect to drought tolerance of these forms was analyzed in detail. Two closely related L. multiflorum/F. arundinacea introgression forms distinct in their ability to re-grow after cessation of prolonged water deficit in the field were selected and subjected to short-term drought in pots to dissect precisely mechanisms of drought tolerance in this group of plants. The studies revealed that the form with higher drought tolerance was characterized by earlier and higher accumulation of abscisic acid, more stable cellular membranes, and more balanced reactive oxygen species metabolism associated with a higher capacity of the antioxidant system under drought conditions. On the other hand, both introgression forms revealed the same levels of stomatal conductance, CO2 assimilation, and consequently, intrinsic water use efficiency under drought and recovery conditions. However, simultaneous higher adjustment of the Calvin cycle to water deficit and reduced CO2 availability, with respect to the accumulation and activity of plastid fructose-1,6-bisphosphate aldolase, were clearly visible in the form with higher drought tolerance.
Collapse
Affiliation(s)
- Katarzyna Lechowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.L.); (D.P.); (S.B.); (A.A.); (R.M.); (A.K.)
| | - Izabela Pawłowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.L.); (D.P.); (S.B.); (A.A.); (R.M.); (A.K.)
- Correspondence:
| | - Dawid Perlikowski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.L.); (D.P.); (S.B.); (A.A.); (R.M.); (A.K.)
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Sara Blicharz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.L.); (D.P.); (S.B.); (A.A.); (R.M.); (A.K.)
| | - Aleksandra Skirycz
- Department of Molecular Physiology, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany;
| | - Adam Augustyniak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.L.); (D.P.); (S.B.); (A.A.); (R.M.); (A.K.)
| | - Robert Malinowski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.L.); (D.P.); (S.B.); (A.A.); (R.M.); (A.K.)
| | - Marcin Rapacz
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Kraków, Podłużna 3, 30-239 Kraków, Poland;
| | - Arkadiusz Kosmala
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.L.); (D.P.); (S.B.); (A.A.); (R.M.); (A.K.)
| |
Collapse
|
54
|
Shiva S, Samarakoon T, Lowe KA, Roach C, Vu HS, Colter M, Porras H, Hwang C, Roth MR, Tamura P, Li M, Schrick K, Shah J, Wang X, Wang H, Welti R. Leaf Lipid Alterations in Response to Heat Stress of Arabidopsis thaliana. PLANTS 2020; 9:plants9070845. [PMID: 32635518 PMCID: PMC7412450 DOI: 10.3390/plants9070845] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 01/19/2023]
Abstract
In response to elevated temperatures, plants alter the activities of enzymes that affect lipid composition. While it has long been known that plant leaf membrane lipids become less unsaturated in response to heat, other changes, including polygalactosylation of galactolipids, head group acylation of galactolipids, increases in phosphatidic acid and triacylglycerols, and formation of sterol glucosides and acyl sterol glucosides, have been observed more recently. In this work, by measuring lipid levels with mass spectrometry, we confirm the previously observed changes in Arabidopsis thaliana leaf lipids under three heat stress regimens. Additionally, in response to heat, increased oxidation of the fatty acyl chains of leaf galactolipids, sulfoquinovosyldiacylglycerols, and phosphatidylglycerols, and incorporation of oxidized acyl chains into acylated monogalactosyldiacylglycerols are shown. We also observed increased levels of digalactosylmonoacylglycerols and monogalactosylmonoacylglycerols. The hypothesis that a defect in sterol glycosylation would adversely affect regrowth of plants after a severe heat stress regimen was tested, but differences between wild-type and sterol glycosylation-defective plants were not detected.
Collapse
Affiliation(s)
- Sunitha Shiva
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
- Correspondence: (S.S.); (R.W.)
| | - Thilani Samarakoon
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Kaleb A. Lowe
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Charles Roach
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Hieu Sy Vu
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Madeline Colter
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Hollie Porras
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Caroline Hwang
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Mary R. Roth
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Pamela Tamura
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Maoyin Li
- Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA; (M.L.); (X.W.)
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121-4499, USA
| | - Kathrin Schrick
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
| | - Jyoti Shah
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA;
| | - Xuemin Wang
- Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA; (M.L.); (X.W.)
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121-4499, USA
| | - Haiyan Wang
- Department of Statistics, Kansas State University, Manhattan, KS 66506-0802, USA;
| | - Ruth Welti
- Division of Biology, Kansas State University, Ackert Hall, Manhattan, KS 66506-4901, USA; (T.S.); (K.A.L.); (C.R.); (H.S.V.); (M.C.); (H.P.); (C.H.); (M.R.R.); (P.T.); (K.S.)
- Correspondence: (S.S.); (R.W.)
| |
Collapse
|
55
|
Janni M, Gullì M, Maestri E, Marmiroli M, Valliyodan B, Nguyen HT, Marmiroli N. Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3780-3802. [PMID: 31970395 PMCID: PMC7316970 DOI: 10.1093/jxb/eraa034] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 01/20/2020] [Indexed: 05/21/2023]
Abstract
To ensure the food security of future generations and to address the challenge of the 'no hunger zone' proposed by the FAO (Food and Agriculture Organization), crop production must be doubled by 2050, but environmental stresses are counteracting this goal. Heat stress in particular is affecting agricultural crops more frequently and more severely. Since the discovery of the physiological, molecular, and genetic bases of heat stress responses, cultivated plants have become the subject of intense research on how they may avoid or tolerate heat stress by either using natural genetic variation or creating new variation with DNA technologies, mutational breeding, or genome editing. This review reports current understanding of the genetic and molecular bases of heat stress in crops together with recent approaches to creating heat-tolerant varieties. Research is close to a breakthrough of global relevance, breeding plants fitter to face the biggest challenge of our time.
Collapse
Affiliation(s)
- Michela Janni
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Amendola, Bari, Italy
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze, Parma, Italy
| | - Mariolina Gullì
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, Parma, Italy
| | - Elena Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, Parma, Italy
| | - Babu Valliyodan
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
- Lincoln University, Jefferson City, MO, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, Parma, Italy
- CINSA Interuniversity Consortium for Environmental Sciences, Parma/Venice, Italy
| |
Collapse
|
56
|
The Role of Triacylglycerol in Plant Stress Response. PLANTS 2020; 9:plants9040472. [PMID: 32276473 PMCID: PMC7238164 DOI: 10.3390/plants9040472] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
Vegetable oil is mainly composed of triacylglycerol (TAG), a storage lipid that serves as a major commodity for food and industrial purposes, as well as an alternative biofuel source. While TAG is typically not produced at significant levels in vegetative tissues, emerging evidence suggests that its accumulation in such tissues may provide one mechanism by which plants cope with abiotic stress. Different types of abiotic stress induce lipid remodeling through the action of specific lipases, which results in various alterations in membrane lipid composition. This response induces the formation of toxic lipid intermediates that cause membrane damage or cell death. However, increased levels of TAG under stress conditions are believed to function, at least in part, as a means of sequestering these toxic lipid intermediates. Moreover, the lipid droplets (LDs) in which TAG is enclosed also function as a subcellular factory to provide binding sites and substrates for the biosynthesis of bioactive compounds that protect against insects and fungi. Though our knowledge concerning the role of TAG in stress tolerance is expanding, many gaps in our understanding of the mechanisms driving these processes are still evident. In this review, we highlight progress that has been made to decipher the role of TAG in plant stress response, and we discuss possible ways in which this information could be utilized to improve crops in the future.
Collapse
|
57
|
Lamers J, van der Meer T, Testerink C. How Plants Sense and Respond to Stressful Environments. PLANT PHYSIOLOGY 2020; 182:1624-1635. [PMID: 32132112 PMCID: PMC7140927 DOI: 10.1104/pp.19.01464] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/26/2020] [Indexed: 05/18/2023]
Abstract
Plants are exposed to an ever-changing environment to which they have to adjust accordingly. Their response is tightly regulated by complex signaling pathways that all start with stimulus perception. Here, we give an overview of the latest developments in the perception of various abiotic stresses, including drought, salinity, flooding, and temperature stress. We discuss whether proposed perception mechanisms are true sensors, which is well established for some abiotic factors but not yet fully elucidated for others. In addition, we review the downstream cellular responses, many of which are shared by various stresses but result in stress-specific physiological and developmental output. New sensing mechanisms have been identified, including heat sensing by the photoreceptor phytochrome B, salt sensing by glycosylinositol phosphorylceramide sphingolipids, and drought sensing by the specific calcium influx channel OSCA1. The simultaneous occurrence of multiple stress conditions shows characteristic downstream signaling signatures that were previously considered general signaling responses. The integration of sensing of multiple stress conditions and subsequent signaling responses is a promising venue for future research to improve the understanding of plant abiotic stress perception.
Collapse
Affiliation(s)
- Jasper Lamers
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| | - Tom van der Meer
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, 6708PB, Wageningen, The Netherlands
| |
Collapse
|
58
|
Havé M, Luo J, Tellier F, Balliau T, Cueff G, Chardon F, Zivy M, Rajjou L, Cacas JL, Masclaux-Daubresse C. Proteomic and lipidomic analyses of the Arabidopsis atg5 autophagy mutant reveal major changes in endoplasmic reticulum and peroxisome metabolisms and in lipid composition. THE NEW PHYTOLOGIST 2019; 223:1461-1477. [PMID: 31077612 DOI: 10.1111/nph.15913] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/29/2019] [Indexed: 05/21/2023]
Abstract
Autophagy is a universal mechanism in eukaryotic cells that facilitates the degradation of unwanted cell constituents and is essential for cell homeostasis and nutrient recycling. The salicylic acid-independent effects of autophagy defects on leaf metabolism were determined through large-scale proteomic and lipidomic analyses of atg5 and atg5/sid2 mutants under different nitrogen and sulfur growth conditions. Results revealed that irrespective of the growth conditions, plants carrying the atg5 mutation presented all the characteristics of endoplasmic reticulum (ER) stress. Increases in peroxisome and ER proteins involved in very long chain fatty acid synthesis and β-oxidation indicated strong modifications of lipid metabolism. Lipidomic analyses revealed changes in the concentrations of sphingolipids, phospholipids and galactolipids. Significant accumulations of phospholipids and ceramides and changes in GIPCs (glycosyl-inositol-phosphoryl-ceramides) in atg5 mutants indicated large modifications in endomembrane-lipid and especially plasma membrane-lipid composition. Decreases in chloroplast proteins and galactolipids in atg5 under low nutrient conditions, indicated that chloroplasts were used as lipid reservoirs for β-oxidation in atg5 mutants. In conclusion, this report demonstrates the strong impact of autophagy defect on ER stress and reveals the role of autophagy in the control of plant lipid metabolism and catabolism, influencing both lipid homeostasis and endomembrane composition.
Collapse
Affiliation(s)
- Marien Havé
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Jie Luo
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Frédérique Tellier
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Thierry Balliau
- UMR GQE- le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Gwendal Cueff
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Fabien Chardon
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Michel Zivy
- UMR GQE- le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Loic Rajjou
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Jean-Luc Cacas
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| |
Collapse
|
59
|
Lipidomic studies of membrane glycerolipids in plant leaves under heat stress. Prog Lipid Res 2019; 75:100990. [DOI: 10.1016/j.plipres.2019.100990] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/13/2019] [Accepted: 07/14/2019] [Indexed: 12/29/2022]
|
60
|
Xin Y, Shen C, She Y, Chen H, Wang C, Wei L, Yoon K, Han D, Hu Q, Xu J. Biosynthesis of Triacylglycerol Molecules with a Tailored PUFA Profile in Industrial Microalgae. MOLECULAR PLANT 2019; 12:474-488. [PMID: 30580039 DOI: 10.1016/j.molp.2018.12.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 05/06/2023]
Abstract
The composition of polyunsaturated fatty acids (PUFAs) in triacylglycerols (TAGs) is key to health benefits and for oil applications, yet the underlying genetic mechanism remains poorly understood. In this study, by in silico, ex vivo, and in vivo profiling of type-2 diacylglycerol acyltransferases (DGAT2s) in Nannochloropsis oceanica we revealed two novel PUFA-preferring enzymes that discriminate individual PUFA species in TAG assembly, with NoDGAT2J for linoleic acid (LA) and NoDGAT2K for eicosapentaenoic acid (EPA). The LA and EPA composition of TAG molecules is mediated in vivo via the functional partitioning between NoDGAT2J and 2K, both of which are localized in the chloroplast envelope. By modulating transcript abundance of the DGAT2s, an N. oceanica strain bank was created, where proportions of LA and EPA in TAG vary by 18.7-fold (between 0.21% and 3.92% dry weight) and 34.7-fold (between 0.09% and 3.12% dry weight), respectively. These findings lay the foundation for producing designer TAG molecules with tailored health benefits or for biofuel applications in industrial microalgae and higher-plant crops.
Collapse
Affiliation(s)
- Yi Xin
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Shen
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiting She
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Chen
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Cong Wang
- Core Laboratory, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Li Wei
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangsup Yoon
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Danxiang Han
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Qiang Hu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
61
|
Vanhercke T, Dyer JM, Mullen RT, Kilaru A, Rahman MM, Petrie JR, Green AG, Yurchenko O, Singh SP. Metabolic engineering for enhanced oil in biomass. Prog Lipid Res 2019; 74:103-129. [PMID: 30822461 DOI: 10.1016/j.plipres.2019.02.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
The world is hungry for energy. Plant oils in the form of triacylglycerol (TAG) are one of the most reduced storage forms of carbon found in nature and hence represent an excellent source of energy. The myriad of applications for plant oils range across foods, feeds, biofuels, and chemical feedstocks as a unique substitute for petroleum derivatives. Traditionally, plant oils are sourced either from oilseeds or tissues surrounding the seed (mesocarp). Most vegetative tissues, such as leaves and stems, however, accumulate relatively low levels of TAG. Since non-seed tissues constitute the majority of the plant biomass, metabolic engineering to improve their low-intrinsic TAG-biosynthetic capacity has recently attracted significant attention as a novel, sustainable and potentially high-yielding oil production platform. While initial attempts predominantly targeted single genes, recent combinatorial metabolic engineering strategies have focused on the simultaneous optimization of oil synthesis, packaging and degradation pathways (i.e., 'push, pull, package and protect'). This holistic approach has resulted in dramatic, seed-like TAG levels in vegetative tissues. With the first proof of concept hurdle addressed, new challenges and opportunities emerge, including engineering fatty acid profile, translation into agronomic crops, extraction, and downstream processing to deliver accessible and sustainable bioenergy.
Collapse
Affiliation(s)
- Thomas Vanhercke
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia.
| | - John M Dyer
- USDA-ARS, US Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - James R Petrie
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia; Folear, Goulburn, NSW, Australia
| | - Allan G Green
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Olga Yurchenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Surinder P Singh
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| |
Collapse
|
62
|
Xu Y, Caldo KMP, Pal-Nath D, Ozga J, Lemieux MJ, Weselake RJ, Chen G. Properties and Biotechnological Applications of Acyl-CoA:diacylglycerol Acyltransferase and Phospholipid:diacylglycerol Acyltransferase from Terrestrial Plants and Microalgae. Lipids 2018; 53:663-688. [PMID: 30252128 DOI: 10.1002/lipd.12081] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022]
Abstract
Triacylglycerol (TAG) is the major storage lipid in most terrestrial plants and microalgae, and has great nutritional and industrial value. Since the demand for vegetable oil is consistently increasing, numerous studies have been focused on improving the TAG content and modifying the fatty-acid compositions of plant seed oils. In addition, there is a strong research interest in establishing plant vegetative tissues and microalgae as platforms for lipid production. In higher plants and microalgae, TAG biosynthesis occurs via acyl-CoA-dependent or acyl-CoA-independent pathways. Diacylglycerol acyltransferase (DGAT) catalyzes the last and committed step in the acyl-CoA-dependent biosynthesis of TAG, which appears to represent a bottleneck in oil accumulation in some oilseed species. Membrane-bound and soluble forms of DGAT have been identified with very different amino-acid sequences and biochemical properties. Alternatively, TAG can be formed through acyl-CoA-independent pathways via the catalytic action of membrane-bound phospholipid:diacylglycerol acyltransferase (PDAT). As the enzymes catalyzing the terminal steps of TAG formation, DGAT and PDAT play crucial roles in determining the flux of carbon into seed TAG and thus have been considered as the key targets for engineering oil production. Here, we summarize the most recent knowledge on DGAT and PDAT in higher plants and microalgae, with the emphasis on their physiological roles, structural features, and regulation. The development of various metabolic engineering strategies to enhance the TAG content and alter the fatty-acid composition of TAG is also discussed.
Collapse
Affiliation(s)
- Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| | - Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
- Department of Biochemistry, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2H7, Canada
| | - Dipasmita Pal-Nath
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Jocelyn Ozga
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2H7, Canada
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
63
|
Arisz SA, Heo JY, Koevoets IT, Zhao T, van Egmond P, Meyer AJ, Zeng W, Niu X, Wang B, Mitchell-Olds T, Schranz ME, Testerink C. DIACYLGLYCEROL ACYLTRANSFERASE1 Contributes to Freezing Tolerance. PLANT PHYSIOLOGY 2018; 177:1410-1424. [PMID: 29907701 PMCID: PMC6084661 DOI: 10.1104/pp.18.00503] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 06/06/2018] [Indexed: 05/18/2023]
Abstract
Freezing limits plant growth and crop productivity, and plant species in temperate zones have the capacity to develop freezing tolerance through complex modulation of gene expression affecting various aspects of metabolism and physiology. While many components of freezing tolerance have been identified in model species under controlled laboratory conditions, little is known about the mechanisms that impart freezing tolerance in natural populations of wild species. Here, we performed a quantitative trait locus (QTL) study of acclimated freezing tolerance in seedlings of Boechera stricta, a highly adapted relative of Arabidopsis (Arabidopsis thaliana) native to the Rocky Mountains. A single QTL was identified that contained the gene encoding ACYL-COENZYME A:DIACYLGLYCEROL ACYLTRANSFERASE1 (BstDGAT1), whose expression is highly cold responsive. The primary metabolic enzyme DGAT1 catalyzes the final step in assembly of triacylglycerol (TAG) by acyl transfer from acyl-CoA to diacylglycerol. Freezing tolerant plants showed higher DGAT1 expression during cold acclimation than more sensitive plants, and this resulted in increased accumulation of TAG in response to subsequent freezing. Levels of oligogalactolipids that are produced by SFR2 (SENSITIVE TO FREEZING2), an indispensable element of freezing tolerance in Arabidopsis, were also higher in freezing-tolerant plants. Furthermore, overexpression of AtDGAT1 led to increased freezing tolerance. We propose that DGAT1 confers freezing tolerance in plants by supporting SFR2-mediated remodeling of chloroplast membranes.
Collapse
Affiliation(s)
- Steven A Arisz
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | - Jae-Yun Heo
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Iko T Koevoets
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Tao Zhao
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Pieter van Egmond
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | - A Jessica Meyer
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
| | | | | | - Baosheng Wang
- Department of Biology, Duke University, Durham, North Carolina 27708
| | | | - M Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Christa Testerink
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090GE Amsterdam, The Netherlands
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
64
|
Durgud M, Gupta S, Ivanov I, Omidbakhshfard MA, Benina M, Alseekh S, Staykov N, Hauenstein M, Dijkwel PP, Hörtensteiner S, Toneva V, Brotman Y, Fernie AR, Mueller-Roeber B, Gechev TS. Molecular Mechanisms Preventing Senescence in Response to Prolonged Darkness in a Desiccation-Tolerant Plant. PLANT PHYSIOLOGY 2018; 177:1319-1338. [PMID: 29789435 PMCID: PMC6053018 DOI: 10.1104/pp.18.00055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/09/2018] [Indexed: 05/28/2023]
Abstract
The desiccation-tolerant plant Haberlea rhodopensis can withstand months of darkness without any visible senescence. Here, we investigated the molecular mechanisms of this adaptation to prolonged (30 d) darkness and subsequent return to light. H. rhodopensis plants remained green and viable throughout the dark treatment. Transcriptomic analysis revealed that darkness regulated several transcription factor (TF) genes. Stress- and autophagy-related TFs such as ERF8, HSFA2b, RD26, TGA1, and WRKY33 were up-regulated, while chloroplast- and flowering-related TFs such as ATH1, COL2, COL4, RL1, and PTAC7 were repressed. PHYTOCHROME INTERACTING FACTOR4, a negative regulator of photomorphogenesis and promoter of senescence, also was down-regulated. In response to darkness, most of the photosynthesis- and photorespiratory-related genes were strongly down-regulated, while genes related to autophagy were up-regulated. This occurred concomitant with the induction of SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASES (SnRK1) signaling pathway genes, which regulate responses to stress-induced starvation and autophagy. Most of the genes associated with chlorophyll catabolism, which are induced by darkness in dark-senescing species, were either unregulated (PHEOPHORBIDE A OXYGENASE, PAO; RED CHLOROPHYLL CATABOLITE REDUCTASE, RCCR) or repressed (STAY GREEN-LIKE, PHEOPHYTINASE, and NON-YELLOW COLORING1). Metabolite profiling revealed increases in the levels of many amino acids in darkness, suggesting increased protein degradation. In darkness, levels of the chloroplastic lipids digalactosyldiacylglycerol, monogalactosyldiacylglycerol, phosphatidylglycerol, and sulfoquinovosyldiacylglycerol decreased, while those of storage triacylglycerols increased, suggesting degradation of chloroplast membrane lipids and their conversion to triacylglycerols for use as energy and carbon sources. Collectively, these data show a coordinated response to darkness, including repression of photosynthetic, photorespiratory, flowering, and chlorophyll catabolic genes, induction of autophagy and SnRK1 pathways, and metabolic reconfigurations that enable survival under prolonged darkness.
Collapse
Affiliation(s)
- Meriem Durgud
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Institute of Molecular Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Saurabh Gupta
- Department Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Ivan Ivanov
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Institute of Molecular Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - M Amin Omidbakhshfard
- Department Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
- Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Maria Benina
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Saleh Alseekh
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Nikola Staykov
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Institute of Molecular Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Mareike Hauenstein
- Department of Plant and Microbial Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Paul P Dijkwel
- Institute of Fundamental Sciences, Massey University, 4474 Palmerston North, New Zealand
| | - Stefan Hörtensteiner
- Department of Plant and Microbial Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Valentina Toneva
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Institute of Molecular Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Bernd Mueller-Roeber
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Tsanko S Gechev
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Institute of Molecular Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv 4000, Bulgaria
| |
Collapse
|
65
|
Tan WJ, Yang YC, Zhou Y, Huang LP, Xu L, Chen QF, Yu LJ, Xiao S. DIACYLGLYCEROL ACYLTRANSFERASE and DIACYLGLYCEROL KINASE Modulate Triacylglycerol and Phosphatidic Acid Production in the Plant Response to Freezing Stress. PLANT PHYSIOLOGY 2018; 177:1303-1318. [PMID: 29853600 PMCID: PMC6053003 DOI: 10.1104/pp.18.00402] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/24/2018] [Indexed: 05/18/2023]
Abstract
Plants accumulate the lipids phosphatidic acid (PA), diacylglycerol (DAG), and triacylglycerol (TAG) during cold stress, but how plants balance the levels of these lipids to mediate cold responses remains unknown. The enzymes ACYL-COENZYME A:DIACYLGLYCEROL ACYLTRANSFERASE (DGAT) and DIACYLGLYCEROL KINASE (DGK) catalyze the conversion of DAG to TAG and PA, respectively. Here, we show that DGAT1, DGK2, DGK3, and DGK5 contribute to the response to cold in Arabidopsis (Arabidopsis thaliana). With or without cold acclimation, the dgat1 mutants exhibited higher sensitivity upon freezing exposure compared with the wild type. Under cold conditions, the dgat1 mutants showed reduced expression of C-REPEAT/DRE BINDING FACTOR2 and its regulons, which are essential for the acquisition of cold tolerance. Lipid profiling revealed that freezing significantly increased the levels of PA and DAG while decreasing TAG in the rosettes of dgat1 mutant plants. During freezing stress, the accumulation of PA in dgat1 plants stimulated NADPH oxidase activity and enhanced RbohD-dependent hydrogen peroxide production compared with the wild type. Moreover, the cold-inducible transcripts of DGK2, DGK3, and DGK5 were significantly more up-regulated in the dgat1 mutants than in the wild type during cold stress. Consistent with this observation, dgk2, dgk3, and dgk5 knockout mutants showed improved tolerance and attenuated PA production in response to freezing temperatures. Our findings demonstrate that the conversion of DAG to TAG by DGAT1 is critical for plant freezing tolerance, acting by balancing TAG and PA production in Arabidopsis.
Collapse
Affiliation(s)
- Wei-Juan Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi-Cong Yang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ying Zhou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li-Ping Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Le Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Lu-Jun Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
66
|
Yurchenko O, Kimberlin A, Mehling M, Koo AJ, Chapman KD, Mullen RT, Dyer JM. Response of high leaf-oil Arabidopsis thaliana plant lines to biotic or abiotic stress. PLANT SIGNALING & BEHAVIOR 2018; 13:e1464361. [PMID: 29701541 PMCID: PMC6103283 DOI: 10.1080/15592324.2018.1464361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Recent studies have shown that it is possible to engineer substantial increases in triacylglycerol (TAG) content in plant vegetative biomass, which offers a novel approach for increasing the energy density of food, feed, and bioenergy crops or for creating a sink for the accumulation of unusual, high-value fatty acids. However, whether or not these changes in lipid metabolism affect plant responses to biotic and/or abiotic stresses is an open question. Here we show that transgenic Arabidopsis thaliana plant lines engineered for elevated leaf oil content, as well as lines engineered for accumulation of unusual conjugated fatty acids in leaf oil, had similar short-term responses to heat stress (e.g., 3 days at 37°C) as wild-type plants, including a reduction in polyunsaturated fatty acid (PUFA)-containing polar lipids and an increase in PUFA-containing neutral lipids. At extended time periods (e.g., 14 days at 37°C), however, plant lines containing accumulated conjugated fatty acids displayed earlier senescence and plant death. Further, no-choice feeding studies demonstrated that plants with the highest leaf oil content generated cabbage looper (Trichoplusia ni) insects with significantly heavier body weights. Taken together, these results suggest that biotic and abiotic responses will be important considerations when developing and deploying high-oil-biomass crops in the field.
Collapse
Affiliation(s)
- Olga Yurchenko
- USDA-ARS, Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Athen Kimberlin
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Marina Mehling
- USDA-ARS, Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Abraham J. Koo
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Kent D. Chapman
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, USA
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - John M. Dyer
- USDA-ARS, Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| |
Collapse
|
67
|
Martin-Sanchez D, Fontecha-Barriuso M, Sanchez-Niño MD, Ramos AM, Cabello R, Gonzalez-Enguita C, Linkermann A, Sanz AB, Ortiz A. Cell death-based approaches in treatment of the urinary tract-associated diseases: a fight for survival in the killing fields. Cell Death Dis 2018; 9:118. [PMID: 29371637 PMCID: PMC5833412 DOI: 10.1038/s41419-017-0043-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/26/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Urinary tract-associated diseases comprise a complex set of disorders with a variety of etiologic agents and therapeutic approaches and a huge global burden of disease, estimated at around 1 million deaths per year. These diseases include cancer (mainly prostate, renal, and bladder), urinary tract infections, and urolithiasis. Cell death plays a key role in the pathogenesis and therapy of these conditions. During urinary tract infections, invading bacteria may either promote or prevent host cell death by interfering with cell death pathways. This has been studied in detail for uropathogenic E. coli (UPEC). Inhibition of host cell death may allow intracellular persistence of live bacteria, while promoting host cell death causes tissue damage and releases the microbes. Both crystals and urinary tract obstruction lead to tubular cell death and kidney injury. Among the pathomechanisms, apoptosis, necroptosis, and autophagy represent key processes. With respect to malignant disorders, traditional therapeutic efforts have focused on directly promoting cancer cell death. This may exploit tumor-specific characteristics, such as targeting Vascular Endothelial Growth Factor (VEGF) signaling and mammalian Target of Rapamycin (mTOR) activity in renal cancer and inducing survival factor deprivation by targeting androgen signaling in prostate cancer. An area of intense research is the use of immune checkpoint inhibitors, aiming at unleashing the full potential of immune cells to kill cancer cells. In the future, this may be combined with additional approaches exploiting intrinsic sensitivities to specific modes of cell death such as necroptosis and ferroptosis. Here, we review the contribution of diverse cell death mechanisms to the pathogenesis of urinary tract-associated diseases as well as the potential for novel therapeutic approaches based on an improved molecular understanding of these mechanisms.
Collapse
Affiliation(s)
- Diego Martin-Sanchez
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Miguel Fontecha-Barriuso
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Adrian M Ramos
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Ramiro Cabello
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | | | - Andreas Linkermann
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Ana Belén Sanz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.
- IRSIN, Madrid, Spain.
- REDINREN, Madrid, Spain.
| | - Alberto Ortiz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.
- IRSIN, Madrid, Spain.
- REDINREN, Madrid, Spain.
| |
Collapse
|