51
|
Molecular bases of rice grain size and quality for optimized productivity. Sci Bull (Beijing) 2023; 68:314-350. [PMID: 36710151 DOI: 10.1016/j.scib.2023.01.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The accomplishment of further optimization of crop productivity in grain yield and quality is a great challenge. Grain size is one of the crucial determinants of rice yield and quality; all of these traits are typical quantitative traits controlled by multiple genes. Research advances have revealed several molecular and developmental pathways that govern these traits of agronomical importance. This review provides a comprehensive summary of these pathways, including those mediated by G-protein, the ubiquitin-proteasome system, mitogen-activated protein kinase, phytohormone, transcriptional regulators, and storage product biosynthesis and accumulation. We also generalize the excellent precedents for rice variety improvement of grain size and quality, which utilize newly developed gene editing and conventional gene pyramiding capabilities. In addition, we discuss the rational and accurate breeding strategies, with the aim of better applying molecular design to breed high-yield and superior-quality varieties.
Collapse
|
52
|
Li Z, Liu J, Wang X, Wang J, Ye J, Xu S, Zhang Y, Hu D, Zhang M, Xu Q, Wang S, Yang Y, Wei X, Feng Y, Wang S. LG5, a Novel Allele of EUI1, Regulates Grain Size and Flag Leaf Angle in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:675. [PMID: 36771759 PMCID: PMC9921835 DOI: 10.3390/plants12030675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Grain size and flag leaf angle are two important traits that determining grain yield in rice. However, the mechanisms regulating these two traits remain largely unknown. In this study, a rice long grain 5 (lg5) mutant with a large flag leaf angle was identified, and map-based cloning revealed that a single base substitution followed by a 2 bp insertion in the LOC_Os05g40384 gene resulted in larger grains, a larger flag leaf angle, and higher plant height than the wild type. Sequence analysis revealed that lg5 is a novel allele of elongated uppermost internode-1 (EUI1), which encodes a cytochrome P450 protein. Functional complementation and overexpression tests showed that LG5 can rescue the bigger grain size and larger flag leaf angle in the Xiushui11 (XS) background. Knockdown of the LG5 transcription level by RNA interference resulted in elevated grain size and flag leaf angle in the Nipponbare (NIP) background. Morphological and cellular analyses suggested that LG5 regulated grain size and flag leaf angle by promoting cell expansion and cell proliferation. Our results provided new insight into the functions of EUI1 in rice, especially in regulating grain size and flag leaf angle, indicating a potential target for the improvement of rice breeding.
Collapse
Affiliation(s)
- Zhen Li
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Junrong Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xingyu Wang
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jing Wang
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Junhua Ye
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Siliang Xu
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yuanyuan Zhang
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Dongxiu Hu
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Mengchen Zhang
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Qun Xu
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Shan Wang
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yaolong Yang
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xinghua Wei
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Yue Feng
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Shu Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
53
|
Tian P, Liu J, Yan B, Zhou C, Wang H, Shen R. BRASSINOSTEROID-SIGNALING KINASE1-1, a positive regulator of brassinosteroid signalling, modulates plant architecture and grain size in rice. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:283-295. [PMID: 36346128 DOI: 10.1093/jxb/erac429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Brassinosteroids (BRs) are a crucial class of plant hormones that regulate plant growth and development, thus affecting many important agronomic traits in crops. However, there are still significant gaps in our understanding of the BR signalling pathway in rice. In this study, we provide multiple lines of evidence to indicate that BR-SIGNALING KINASE1-1 (OsBSK1-1) likely represents a missing component in the BR signalling pathway in rice. We showed that knockout mutants of OsBSK1-1 are less sensitive to BR and exhibit a pleiotropic phenotype, including lower plant height, less tiller number and shortened grain length, whereas transgenic plants overexpressing a gain-of-function dominant mutant form of OsBSK1-1 (OsBSK1-1A295V) are hypersensitive to BR, and exhibit some enhanced BR-responsive phenotypes. We found that OsBSK1-1 physically interacts with the BR receptor BRASSINOSTEROID INSENSITIVE1 (OsBRI1), and GLYCOGEN SYNTHASE KINASE2 (OsGSK2), a downstream component crucial for BR signalling. Moreover, we showed that OsBSK1-1 can be phosphorylated by OsBRI1 and can inhibit OsGSK2-mediated phosphorylation of BRASSINOSTEROID RESISTANT1 (OsBZR1). We further demonstrated that OsBSK1-1 genetically acts downstream of OsBRI1, but upstream of OsGSK2. Together, our results suggest that OsBSK1-1 may serve as a scaffold protein directly bridging OsBRI1 and OsGSK2 to positively regulate BR signalling, thus affecting plant architecture and grain size in rice.
Collapse
Affiliation(s)
- Peng Tian
- Biotechnology Research Institute, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Jiafan Liu
- College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Baohui Yan
- Biotechnology Research Institute, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Chunlei Zhou
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyang Wang
- College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Rongxin Shen
- College of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
54
|
Mao Z, Di X, Xia S, Chen Q, Ma X, Chen M, Yang Z, Zhao F, Ling Y. Detecting and pyramiding target QTL for plant- and grain-related traits via chromosomal segment substitution line of rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1020847. [PMID: 36589042 PMCID: PMC9800928 DOI: 10.3389/fpls.2022.1020847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Plant height and grain length are important agronomic traits in rice, exhibiting a strong effect on plant architecture and grain quality of rice varieties. METHODS Methods: A novel rice chromosomal segment substitution line (CSSL), i.e., CSSL-Z1357, with significantly increased plant height (PH) and grain length (GL) was identified from CSSLs constructed by using Nipponbare as a receptor and a restorer line Xihui 18 as a donor. Seven agronomic traits of PH, PL, GL, GW, GPP, SPP, and TGW were phenotyped, and REML implemented in HPMIXED of SAS were used to detect the QTL for these traits. Secondary CSSLs were screened out via marker-assisted selection (MAS) to estimate the additive and epistatic effects of detected QTLs, evaluating the potential utilization of pyramiding the target QTLs for yield and quality improvement of rice varieties. RESULTS AND DISCUSSION Results and Discussion: CSSL-Z1357 carried nine segments from Xihui 18 with an average segment length of 4.13 Mb. The results show that the long grain of CSSL-Z1357 was caused by the increased number of surface cells and the length of the inner glume. Thirteen quantitative trait loci were identified via the F2 population of Nipponbare/CSSL-Z1357, including three each for GL (qGL-3, qGL-6, and qGL-7) and PH (qPH-1, qPH-7, and qPH-12I), among which qGL-3 increased GL by 0.23 mm with synergistic allele from CSSL-Z1357. Additionally, three single (S1 to S3), two double (D1, D2), and one triple segment (T1) substitution lines were developed in F3 via MAS. Results show that pyramiding the segments from Chr.3 (qGL-3 and qPH-3), Chr.6 (qGL-6 and qPH-6), and Chr.7 (Null and qPH-7) tended to result in better phenotype of increased GL and PH and decreased grain width, providing a potential basis for enhancing grain yield and quality in rice breeding.
Collapse
|
55
|
Huang J, Chen Z, Lin J, Guan B, Chen J, Zhang Z, Chen F, Jiang L, Zheng J, Wang T, Chen H, Xie W, Huang S, Wang H, Huang Y, Huang R. gw2.1, a new allele of GW2, improves grain weight and grain yield in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111495. [PMID: 36240912 DOI: 10.1016/j.plantsci.2022.111495] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Grain weight is an important characteristic of grain shape and a key contributing factor to the grain yield in rice. Here, we report that gw2.1, a new allele of the Grain Width and Weight 2 (GW2) gene, regulates grain size and grain weight. A single nucleotide substitution in the coding sequence (CDS) of gw2.1 resulted in the change of glutamate to lysine (E128K) in GW2.1 protein. Complementation tests and GW2 overexpression experiments demonstrated that the missense mutation in gw2.1 was responsible for the phenotype of enlarged grain size in the mutant line jf42. The large grain trait of the near-isogenic line NIL-gw2.1 was found to result from increased cell proliferation during flower development. Meanwhile, NIL-gw2.1 was shown to increase grain yield without compromising the grain quality. The GW2 protein was localized to the cell nucleus and membrane, and interacted with CHB705, a subunit of the chromatin remodeling complex. Finally, the F1 hybrids from crosses of NIL-gw2.1 with 7 cytoplasmic male-sterile lines exhibited large grains and desirable grain appearance. Thus, gw2.1 is a promising allele that could be applied to improve grain yield and grain appearance in rice. AVAILABILITY OF DATA AND MATERIALS: The datasets generated and/or analyzed in the study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Jinpeng Huang
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhiming Chen
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jiajia Lin
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Binbin Guan
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jinwen Chen
- Quanzhou Agricultural Science Institute, Quanzhou 362212, China
| | - Zesen Zhang
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Fangyu Chen
- Key Laboratory of Ministry of Education for Genetic Improvement and Comprehensive Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangrong Jiang
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jingsheng Zheng
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Tiansheng Wang
- Quanzhou Agricultural Science Institute, Quanzhou 362212, China
| | - Huiqing Chen
- Quanzhou Agricultural Science Institute, Quanzhou 362212, China
| | - Wangyou Xie
- Quanzhou Agricultural Science Institute, Quanzhou 362212, China
| | - Senhao Huang
- Key Laboratory of Ministry of Education for Genetic Improvement and Comprehensive Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Houcong Wang
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yumin Huang
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Rongyu Huang
- School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
56
|
Mannu J, Latha AM, Rajagopal S, Lalitha HDA, Muthurajan R, Loganathan A, Subbarayalu M, Ramasamy G, Jegadeesan R. Whole genome sequencing of ASD 16 and ADT 43 to identify predominant grain size and starch associated alleles in rice. Mol Biol Rep 2022; 49:11743-11754. [PMID: 36201102 DOI: 10.1007/s11033-022-07935-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/07/2022] [Indexed: 10/10/2022]
Abstract
BACKGROUND The rice cultivars ASD 16 and ADT 43 are the most popular high-yielding Indica rice cultivars in southern India. Despite their popularity very little is known about their genetic basis due to lack of studies on the complete genome. In the current study, efforts were made to identify alleles and SNP markers that differentiate the two contrasting rice genotypes, ASD 16 and ADT 43 for grain shape and starch content. METHODS AND RESULTS The complete genome of bold grain ASD 16 and slender grain ADT 43 were sequenced via Illumina's paired-end sequencing and the reads obtained were mapped to the Oryza sativa Indica Group cultivar 93-11 reference genome. The grain size of rice is controlled by Quantitative Trait Loci (QTL) that has a robust effect on grain yield and quality. To gain insight into genes that controlling grain size and starch content, an in-silico analysis was performed by taking into account of 72 grain elongation and starch biosynthesis genes. The identified alleles were further validated in the whole genome sequencing data of 32 bold grain and 25 slender grain varieties that were retrieved from the 3 K rice genome project. CONCLUSION An "A to G" polymorphism leading to SER 74 PRO was identified at the CDS position 220 of the An-1 gene, encoding bHLH domain-containing protein that regulates awn formation and increase in grain length. The non-synonymous substitutions such as A545C variant leading PHE 182 CYS in ADP Glucose Pyrophosphorylase large subunit IV (AGPL4) and C3094G variant leading to VAL 1032 LEU in Starch synthase IIIb (OsSSIIIb) were also identified in the starch biosynthesis genes. These identified allelic variants may contribute to the crop improvement programs in rice.
Collapse
Affiliation(s)
- Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Abillasha Mohan Latha
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Shalini Rajagopal
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Hari Dharani A Lalitha
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Arul Loganathan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Mohankumar Subbarayalu
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Gnanam Ramasamy
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641 003, India
| | - Ramalingam Jegadeesan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003, India.
| |
Collapse
|
57
|
Huang Y, Dong H, Mou C, Wang P, Hao Q, Zhang M, Wu H, Zhang F, Ma T, Miao R, Fu K, Chen Y, Zhu Z, Chen C, Tong Q, Wang Z, Zhou S, Liu X, Liu S, Tian Y, Jiang L, Wan J. Ribonuclease H-like gene SMALL GRAIN2 regulates grain size in rice through brassinosteroid signaling pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1883-1900. [PMID: 35904032 DOI: 10.1111/jipb.13333] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Grain size is a key agronomic trait that determines the yield in plants. Regulation of grain size by brassinosteroids (BRs) in rice has been widely reported. However, the relationship between the BR signaling pathway and grain size still requires further study. Here, we isolated a rice mutant, named small grain2 (sg2), which displayed smaller grain and a semi-dwarf phenotype. The decreased grain size was caused by repressed cell expansion in spikelet hulls of the sg2 mutant. Using map-based cloning combined with a MutMap approach, we cloned SG2, which encodes a plant-specific protein with a ribonuclease H-like domain. SG2 is a positive regulator downstream of GLYCOGEN SYNTHASE KINASE2 (GSK2) in response to BR signaling, and its mutation causes insensitivity to exogenous BR treatment. Genetical and biochemical analysis showed that GSK2 interacts with and phosphorylates SG2. We further found that BRs enhance the accumulation of SG2 in the nucleus, and subcellular distribution of SG2 is regulated by GSK2 kinase activity. In addition, Oryza sativa OVATE family protein 19 (OsOFP19), a negative regulator of grain shape, interacts with SG2 and plays an antagonistic role with SG2 in controlling gene expression and grain size. Our results indicated that SG2 is a new component of GSK2-related BR signaling response and regulates grain size by interacting with OsOFP19.
Collapse
Affiliation(s)
- Yunshuai Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Dong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changling Mou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qixian Hao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongmin Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fulin Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tengfei Ma
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rong Miao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Fu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaping Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziyan Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cheng Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qikai Tong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhuoran Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shirong Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlu Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Nanjing National Field Scientific Observation and Research Station for Rice Germplasm, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
58
|
Hu B, Chen W, Wan L, Li T, Wang H, Wang Y, Pu Z, Tu B, Yuan H, Wang Y, Ma B, Qin P, Li S. Short grain 5 controls grain length in rice by regulating cell expansion. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111412. [PMID: 35961516 DOI: 10.1016/j.plantsci.2022.111412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/22/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Grain shape is a crucial determinant of grain weight and quality and plays a vital role in rice breeding. Although many grain shape-related genes have been reported, the regulatory relationship between them has not been well characterized in rice. In this study, we report the isolation of a short-grain-length mutant called sg5 from the heavy-panicle-type hybrid rice elite restorer line 'ShuhuiR498' (R498) after ethyl methanesulfonate (EMS) treatment. MutMap cloning revealed that SG5 encodes a Myb-like transcription factor. A missense mutation in the first exon of SG5 was found to cause an amino acid change from leucine to proline at position 197 in the mutant SG5 protein. Gene knockout and genetic complementation experiments confirmed that the point mutation in SG5 was responsible for the sg5 mutant phenotype. SG5 is mainly expressed in young panicles and hulls. In addition, the SG5 protein is found in the nucleus and does not affect subcellular localization. Histochemical observation and gene expression analysis indicated that SG5 regulates spikelet hull development by mediating cell expansion. Moreover, the expression levels of BG1, GS2, and DEP1 were reduced in sg5 plants, and dual-luciferase (LUC) assays showed that SG5 can bind to the BG1 gene promoter. The effect of pyramiding sg5 and GS3 suggests that sg5 and GS3 regulate grain length independently. The results of our study show that the missense mutation in sg5 is essential for the molecular function of SG5 and SG5 is involved in regulating cell expansion and expression of grain-shape-related genes to regulate grain length. This work provides new data to help study and understand the molecular function of SG5.
Collapse
Affiliation(s)
- Binhua Hu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610061, China; Rice Research Institute, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weilan Chen
- Rice Research Institute, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Li Wan
- Rice Research Institute, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ting Li
- Rice Research Institute, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hao Wang
- Rice Research Institute, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yangkai Wang
- Rice Research Institute, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhigang Pu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610061, China
| | - Bin Tu
- Rice Research Institute, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hua Yuan
- Rice Research Institute, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuping Wang
- Rice Research Institute, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bingtian Ma
- Rice Research Institute, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Peng Qin
- Rice Research Institute, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Shigui Li
- Rice Research Institute, State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
59
|
Wu X, Cai X, Zhang B, Wu S, Wang R, Li N, Li Y, Sun Y, Tang W. ERECTA regulates seed size independently of its intracellular domain via MAPK-DA1-UBP15 signaling. THE PLANT CELL 2022; 34:3773-3789. [PMID: 35848951 PMCID: PMC9516062 DOI: 10.1093/plcell/koac194] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Seed size is determined by the coordinated growth of the embryo, endosperm, and integument. Growth of the integument is initiated by signal molecules released from the developing endosperm or embryo. Although recent studies have identified many components that regulate seed size by controlling integument growth, the upstream signals and the signal transduction pathway that activate these components after double fertilization are unclear. Here, we report that the receptor-like kinase ERECTA (ER) controls seed size by regulating outer integument cell proliferation in Arabidopsis thaliana. Seeds from er mutants were smaller, while those from ER-overexpressing plants were larger, than those of control plants. Different from its role in regulating the development of other organs, ER regulates seed size via a novel mechanism that is independent of its intracellular domain. Our genetic and biochemical data show that a MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) signaling pathway comprising MAPK-KINASE 4/5, MAPK 3/6 (MPK3/6), DA1, and UBIQUITIN SPECIFIC PROTEASE 15 (UBP15) functions downstream of ER and modulates seed size. MPK3/6 phosphorylation inactivates and destabilizes DA1 to increase the abundance of UBP15, promoting outer integument cell proliferation and increasing seed size. Our study illustrates a nearly completed ER-mediated signaling pathway that regulates seed size and will help uncover the mechanism that coordinates embryo, endosperm, and integument growth after double fertilization.
Collapse
Affiliation(s)
| | | | - Baowen Zhang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Shuting Wu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ruiju Wang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Sun
- Author for correspondence: (Y.S.), (W.T.)
| | | |
Collapse
|
60
|
Bretani G, Shaaf S, Tondelli A, Cattivelli L, Delbono S, Waugh R, Thomas W, Russell J, Bull H, Igartua E, Casas AM, Gracia P, Rossi R, Schulman AH, Rossini L. Multi-environment genome -wide association mapping of culm morphology traits in barley. FRONTIERS IN PLANT SCIENCE 2022; 13:926277. [PMID: 36212331 PMCID: PMC9539552 DOI: 10.3389/fpls.2022.926277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/28/2022] [Indexed: 06/16/2023]
Abstract
In cereals with hollow internodes, lodging resistance is influenced by morphological characteristics such as internode diameter and culm wall thickness. Despite their relevance, knowledge of the genetic control of these traits and their relationship with lodging is lacking in temperate cereals such as barley. To fill this gap, we developed an image analysis-based protocol to accurately phenotype culm diameters and culm wall thickness across 261 barley accessions. Analysis of culm trait data collected from field trials in seven different environments revealed high heritability values (>50%) for most traits except thickness and stiffness, as well as genotype-by-environment interactions. The collection was structured mainly according to row-type, which had a confounding effect on culm traits as evidenced by phenotypic correlations. Within both row-type subsets, outer diameter and section modulus showed significant negative correlations with lodging (<-0.52 and <-0.45, respectively), but no correlation with plant height, indicating the possibility of improving lodging resistance independent of plant height. Using 50k iSelect SNP genotyping data, we conducted multi-environment genome-wide association studies using mixed model approach across the whole panel and row-type subsets: we identified a total of 192 quantitative trait loci (QTLs) for the studied traits, including subpopulation-specific QTLs and 21 main effect loci for culm diameter and/or section modulus showing effects on lodging without impacting plant height. Providing insights into the genetic architecture of culm morphology in barley and the possible role of candidate genes involved in hormone and cell wall-related pathways, this work supports the potential of loci underpinning culm features to improve lodging resistance and increase barley yield stability under changing environments.
Collapse
Affiliation(s)
- Gianluca Bretani
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Salar Shaaf
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Tondelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Stefano Delbono
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - William Thomas
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Joanne Russell
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Hazel Bull
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Ernesto Igartua
- Aula Dei Experimental Station (EEAD-CSIC), Spanish Research Council, Zaragoza, Spain
| | - Ana M. Casas
- Aula Dei Experimental Station (EEAD-CSIC), Spanish Research Council, Zaragoza, Spain
| | - Pilar Gracia
- Aula Dei Experimental Station (EEAD-CSIC), Spanish Research Council, Zaragoza, Spain
| | - Roberta Rossi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Alan H. Schulman
- Viikki Plant Sciences Centre, Natural Resources Institue (LUKE), HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Laura Rossini
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
61
|
Yuan H, Xu Z, Chen W, Deng C, Liu Y, Yuan M, Gao P, Shi H, Tu B, Li T, Kang L, Ma B, Wang Y, Wang J, Chen X, Li S, Qin P. OsBSK2, a putative brassinosteroid-signalling kinase, positively controls grain size in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5529-5542. [PMID: 35595300 DOI: 10.1093/jxb/erac222] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Grain size is an important trait that directly affects grain yield in rice; however, the genetic and molecular mechanisms regulating grain size remain unclear. In this study, we identified a mutant, grain length and grain weight 10 (glw10), which exhibited significantly reduced grain length and grain weight. Histological analysis demonstrated that GLW10 affects cell expansion, which regulates grain size. MutMap-based gene mapping and transgenic experiments demonstrated that GLW10 encodes a putative brassinosteroid (BR) signalling kinase, OsBSK2. OsBSK2 is a plasma membrane protein, and an N-myristoylation site is needed for both membrane localization and function. OsBSK2 directly interacts with the BR receptor kinase OsBRI1; however, genetic experiments have demonstrated that OsBSK2 may regulate grain size independent of the BR signalling pathway. OsBSK2 can form a homodimer or heterodimer with OsBSK3 and OsBSK4, and silencing OsBSK2, OsBSK3, and OsBSK4 reduce grain size. This indicates that OsBSKs seem to function as homodimers or heterodimers to positively regulate grain size in rice. OsBSK2/3/4 are all highly expressed in young panicles and spikelet hulls, suggesting that they control grain size. In summary, our results provide novel insights into the function of BSKs in rice, and identify novel targets for improving grain size during crop breeding.
Collapse
Affiliation(s)
- Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Zhengyan Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weilan Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chaoyang Deng
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Min Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Peng Gao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hui Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Bin Tu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Liangzhu Kang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bingtian Ma
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuping Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
62
|
Cao Y, Li Y, Wang L, Zhang L, Jiang L. Evolution and function of ubiquitin-specific proteases (UBPs): Insight into seed development roles in tung tree (Vernicia fordii). Int J Biol Macromol 2022; 221:796-805. [PMID: 36037910 DOI: 10.1016/j.ijbiomac.2022.08.163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022]
Abstract
The tung oil produced by the tung tree (Vernicia fordii) provides resources for the manufacture of biodiesel. Ubiquitin-specific proteases (UBPs) are the largest group of deubiquitinases and play key roles in regulating development and stress responses. Here, 21 UBPs were identified in V. fordii, roughly one-half the number found in Manihot esculenta and Hevea brasiliensis. Most UBP duplications are produced from whole-genome duplication (WGD), and significant differences in gene retention existed among Euphorbiaceae. The great majority of UBP-containing blocks in V. fordii, V. montana, Ricinus communis, and Jatropha curcas exhibited extensive conservation with the duplicated regions of M. esculenta and H. brasiliensis. These blocks formed 14 orthologous groups, indicating they shared WGD with UBPs in M. esculenta and H. brasiliensis, but most of these UBPs copies were lost. The UBP orthologs contained significant functional divergence which explained the susceptibility of V. fordii to Fusarium wilt and the resistance of V. montana to Fusarium wilt. The expression patterns and experiments suggested that Vf03G1417 could affect the seed-related traits and positively regulate the seed oil accumulation. This study provided important insights into the evolution of UBPs in Euphorbiaceae and identified important candidate VfUBPs for marker-assisted breeding in V. fordii.
Collapse
Affiliation(s)
- Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China; College of Forestry, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Yanli Li
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Lihu Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Lin Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, 430000 Wuhan, China.
| | - Lan Jiang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China.
| |
Collapse
|
63
|
GLW7.1, a Strong Functional Allele of Ghd7, Enhances Grain Size in Rice. Int J Mol Sci 2022; 23:ijms23158715. [PMID: 35955848 PMCID: PMC9369204 DOI: 10.3390/ijms23158715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Grain size is a key determinant of both grain weight and grain quality. Here, we report the map-based cloning of a novel quantitative trait locus (QTL), GLW7.1 (Grain Length, Width and Weight 7.1), which encodes the CCT motif family protein, GHD7. The QTL is located in a 53 kb deletion fragment in the cultivar Jin23B, compared with the cultivar CR071. Scanning electron microscopy analysis and expression analysis revealed that GLW7.1 promotes the transcription of several cell division and expansion genes, further resulting in a larger cell size and increased cell number, and finally enhancing the grain size as well as grain weight. GLW7.1 could also increase endogenous GA content by up-regulating the expression of GA biosynthesis genes. Yeast two-hybrid assays and split firefly luciferase complementation assays revealed the interactions of GHD7 with seven grain-size-related proteins and the rice DELLA protein SLR1. Haplotype analysis and transcription activation assay revealed the effect of six amino acid substitutions on GHD7 activation activity. Additionally, the NIL with GLW7.1 showed reduced chalkiness and improved cooking and eating quality. These findings provide a new insight into the role of Ghd7 and confirm the great potential of the GLW7.1 allele in simultaneously improving grain yield and quality.
Collapse
|
64
|
Gong P, Demuynck K, De Block J, Aesaert S, Coussens G, Pauwels L, Inzé D, Nelissen H. Modulation of the DA1 pathway in maize shows that translatability of information from Arabidopsis to crops is complex. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111295. [PMID: 35696903 DOI: 10.1016/j.plantsci.2022.111295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Modern agriculture is struggling to meet the increasing food, silage and raw material demands due to the rapid growth of population and climate change. In Arabidopsis, DA1 and DAR1 are proteases that negatively regulate cell proliferation and control organ size. DA1 and DAR1 are activated by ubiquitination catalyzed by the E3 ligase BIG BROTHER (BB). Here, we characterized the DA1, DAR1 and BB gene families in maize and analyzed whether perturbation of these genes regulates organ size similar to what was observed in Arabidopsis. We generated da1_dar1a_dar1b triple CRISPR maize mutants and bb1_bb2 double mutants. Detailed phenotypic analysis showed that the size of leaf, stem, cob, and seed was not consistently enlarged in these mutants. Also overexpression of a dominant-negative DA1R333K allele, resembling the da1-1 allele of Arabidopsis which has larger leaves and seeds, did not alter the maize phenotype. The mild negative effects on plant height of the DA1R333K_bb1_bb2 mutant indicate that the genes in the DA1 pathway may control organ size in maize, albeit less obvious than in Arabidopsis.
Collapse
Affiliation(s)
- Pan Gong
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Kirin Demuynck
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jolien De Block
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Stijn Aesaert
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Griet Coussens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Laurens Pauwels
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Hilde Nelissen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| |
Collapse
|
65
|
Gu H, Zhang K, Gull S, Chen C, Ran J, Zou B, Wang P, Liang G. Fine Mapping of qTGW7b, a Minor Effect QTL for Grain Weight in Rice ( Oryza sativa L.). Int J Mol Sci 2022; 23:8296. [PMID: 35955422 PMCID: PMC9368273 DOI: 10.3390/ijms23158296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Grain weight is a key trait that determines rice quality and yield, and it is primarily controlled by quantitative trait loci (QTL). Recently, attention has been paid to minor QTLs. A minor effect QTL qTGW7 that controls grain weight was previously identified in a set of chromosomal fragment substitution lines (CSSLs) derived from Nipponbare (NPB)/93-11. Compared to NPB, the single segment substitution line (SSSL) N83 carrying the qTGW7 introgression exhibited an increase in grain length and width and a 4.5% increase in grain weight. Meanwhile, N83 was backcrossed to NPB to create a separating population, qTGW7b, a QTL distinct from qTGW7, which was detected between markers G31 and G32. Twelve near-isogenic lines (NILs) from the BC9F3 population and progeny of five NILs from the BC9F3:4 population were genotyped and phenotyped, resulting in the fine mapping of the minor effect QTL qTGW7b to the approximately 86.2-kb region between markers G72 and G32. Further sequence comparisons and expression analysis confirmed that five genes, including Os07g39370, Os07g39430, Os07g39440, Os07g39450, and Os07g39480, were considered as the candidate genes underlying qTGW7b. These results provide a crucial foundation for further cloning of qTGW7b and molecular breeding design in rice.
Collapse
Affiliation(s)
- Houwen Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China; (H.G.); (K.Z.); (S.G.); (C.C.); (J.R.); (B.Z.); (P.W.)
| | - Kunming Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China; (H.G.); (K.Z.); (S.G.); (C.C.); (J.R.); (B.Z.); (P.W.)
| | - Sadia Gull
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China; (H.G.); (K.Z.); (S.G.); (C.C.); (J.R.); (B.Z.); (P.W.)
| | - Chuyan Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China; (H.G.); (K.Z.); (S.G.); (C.C.); (J.R.); (B.Z.); (P.W.)
| | - Jinhui Ran
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China; (H.G.); (K.Z.); (S.G.); (C.C.); (J.R.); (B.Z.); (P.W.)
| | - Bingyin Zou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China; (H.G.); (K.Z.); (S.G.); (C.C.); (J.R.); (B.Z.); (P.W.)
| | - Ping Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China; (H.G.); (K.Z.); (S.G.); (C.C.); (J.R.); (B.Z.); (P.W.)
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China; (H.G.); (K.Z.); (S.G.); (C.C.); (J.R.); (B.Z.); (P.W.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Department, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
66
|
Du Y, Liu L, Zhang X, Li F, Kong F, Zhang J, Li J, Peng T, Sun H, Zhao Q. Regulation of OsPIL15 on rice quality. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:39. [PMID: 37313503 PMCID: PMC10248670 DOI: 10.1007/s11032-022-01311-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The phytochrome-interacting factor-like gene OsPIL15 negatively regulates grain size and 1000-grain weight, but its regulatory effect on rice quality traits is unknown. Here, knock-down, knock-out, and over-expression of OsPIL15 transgenic rice lines were used to investigate the effects of OsPIL15 on rice yield and quality traits. The results showed that knock-down or knock-out of OsPIL15 increased grain length and width, chalkiness, amylose content, glutenin and globulin content, and total protein content but reduced amylopectin content, total starch content, prolamin and albumin content, and gel consistency. Over-expression of OsPIL15 showed the opposite results, except for the reduction of prolamin content. Although OsPIL15 changed the grain size and weight, it had no effect on grain length/width ratio, brown rice rate, and milled rice rate. KEGG pathway enrichment analysis of differentially expressed genes between transgenic lines and wild type showed that OsPIL15 mainly regulated genes related to ribosome, metabolic pathways, and biosynthesis of secondary metabolites. Gene expression analysis showed that RNAi transgenic lines decreased OsCIN2 and OsSUS1 expression and increased OsGBSSI, OsSSI, OsAPGL2, and OsAPGL3 expression level, while over-expression of OsPIL15 increased OsCIN2, OsSUS1, OsSUS6, and OsSSI and decreased OsSSIIa, OsSSIIc, and OsAPGL2 expression level. These results revealed that OsPIL15 plays an important role in rice grain development. In addition to grain shape, OsPIL15 also regulates chalkiness, starch content, protein content, and gel consistency. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01311-x.
Collapse
Affiliation(s)
- Yanxiu Du
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Lingzhi Liu
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Xiaohua Zhang
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Fei Li
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Fanshu Kong
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Jing Zhang
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Junzhou Li
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Ting Peng
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Hongzheng Sun
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Quanzhi Zhao
- Henan Key Laboratory of Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
67
|
Zhao D, Zhang C, Li Q, Liu Q. Genetic control of grain appearance quality in rice. Biotechnol Adv 2022; 60:108014. [PMID: 35777622 DOI: 10.1016/j.biotechadv.2022.108014] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 02/08/2023]
Abstract
Grain appearance, one of the key determinants of rice quality, reflects the ability to attract consumers, and is characterized by four major properties: grain shape, chalkiness, transparency, and color. Mining of valuable genes, genetic mechanisms, and breeding cultivars with improved grain appearance are essential research areas in rice biology. However, grain appearance is a complex and comprehensive trait, making it challenging to understand the molecular details, and therefore, achieve precise improvement. This review highlights the current findings of grain appearance control, including a detailed description of the key genes involved in the formation of grain appearance, and the major environmental factors affecting chalkiness. We also discuss the integration of current knowledge on valuable genes to enable accurate breeding strategies for generation of rice grains with superior appearance quality.
Collapse
Affiliation(s)
- Dongsheng Zhao
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
68
|
Li J, Yang H, Xu G, Deng K, Yu J, Xiang S, Zhou K, Zhang Q, Li R, Li M, Ling Y, Yang Z, He G, Zhao F. QTL Analysis of Z414, a Chromosome Segment Substitution Line with Short, Wide Grains, and Substitution Mapping of qGL11 in Rice. RICE (NEW YORK, N.Y.) 2022; 15:25. [PMID: 35532865 PMCID: PMC9085999 DOI: 10.1186/s12284-022-00571-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/27/2022] [Indexed: 05/17/2023]
Abstract
Most agronomic traits of rice (Oryza sativa), such as grain length, are complex traits controlled by multiple genes. Chromosome segment substitution lines (CSSLs) are ideal materials for dissecting these complex traits. We developed the novel rice CSSL 'Z414', which has short, wide grains, from progeny of the recipient parent 'Xihui 18' (an indica restorer line) and the donor parent 'Huhan 3' (a japonica cultivar). Z414 contains four substitution segments with an average length of 3.04 Mb. Z414 displays seven traits that significantly differ from those of Xihui 18, including differences in grain length, width, and weight; degree of chalkiness; and brown rice rate. We identified seven quantitative trait loci (QTL) that are responsible for these differences in an F2 population from a cross between Xihui 18 and Z414. Among these, six QTL (qPL3, qGW5, qGL11, qRLW5, qRLW11, and qGWT5) were detected in newly developed single-segment substitution lines (SSSLs) S1-S6. In addition, four QTL (qGL3, qGL5, qCD3, and qCD5) were detected in S1 and S5. Analysis of these SSSLs attributed the short, wide grain trait of Z414 to qGL11, qGL3, qGL5, and qGW5. Substitution mapping delimited qGL11 within an 810-kb interval on chromosome 11. Sequencing, real time quantitative PCR, and cell morphology analysis revealed that qGL11 might be a novel QTL encoding the cyclin CycT1;3. Finally, pyramiding qGL3 (a = 0.43) and qGL11 (a = - 0.37) led to shorter grains in the dual-segment substitution line D2 and revealed that qGL11 is epistatic to qGL3. In addition, S1 and D2 exhibited different grain sizes and less chalkiness than Z414. In conclusion, the short grain phenotype of the CSSL Z414 is controlled by qGL11, qGL3, and qGL5. qGL11 might be a novel QTL encoding CycT1;3, whose specific role in regulating grain length was previously unknown, and qGL11 is epistatic to qGL3. S1 and D2 could potentially be used in hybrid rice breeding.
Collapse
Affiliation(s)
- Juan Li
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Hongxia Yang
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guangyi Xu
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Keli Deng
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jinjin Yu
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Siqian Xiang
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Kai Zhou
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Qiuli Zhang
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Ruxiang Li
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Miaomiao Li
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yinghua Ling
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Zhenglin Yang
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guanghua He
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Fangming Zhao
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
69
|
Li R, Li Z, Ye J, Yang Y, Ye J, Xu S, Liu J, Yuan X, Wang Y, Zhang M, Yu H, Xu Q, Wang S, Yang Y, Wang S, Wei X, Feng Y. Identification of SMG3, a QTL Coordinately Controls Grain Size, Grain Number per Panicle, and Grain Weight in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:880919. [PMID: 35548297 PMCID: PMC9085218 DOI: 10.3389/fpls.2022.880919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Grain size, grain number per panicle, and grain weight are key agronomic traits that determine grain yield in rice. However, the molecular mechanisms coordinately controlling these traits remain largely unknown. In this study, we identified a major QTL, SMG3, that is responsible for grain size, grain number per panicle, and grain weight in rice, which encodes a MYB-like protein. The SMG3 allele from M494 causes an increase in the number of grains per panicle but produces smaller grain size and thousand grain weight. The SMG3 is constitutively expressed in various organs in rice, and the SMG3 protein is located in the nucleus. Microscopy analysis shows that SMG3 mainly produces long grains by increasing in both cell length and cell number in the length direction, which thus enhances grain weight by promoting cell expansion and cell proliferation. Overexpression of SMG3 in rice produces a phenotype with more grains but reduces grain length and weight. Our results reveal that SMG3 plays an important role in the coordinated regulation of grain size, grain number per panicle, and grain weight, providing a new insight into synergistical modification on the grain appearance quality, grain number per panicle, and grain weight in rice.
Collapse
Affiliation(s)
- Ruosi Li
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhen Li
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Jing Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingying Yang
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Juahua Ye
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Siliang Xu
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Junrong Liu
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xiaoping Yuan
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yiping Wang
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Mengchen Zhang
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Hanyong Yu
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Qun Xu
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shan Wang
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yaolong Yang
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shu Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xinghua Wei
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yue Feng
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
70
|
Liu G, Liang J, Lou L, Tian M, Zhang X, Liu L, Zhao Q, Xia R, Wu Y, Xie Q, Yu F. The deubiquitinases UBP12 and UBP13 integrate with the E3 ubiquitin ligase XBAT35.2 to modulate VPS23A stability in ABA signaling. SCIENCE ADVANCES 2022; 8:eabl5765. [PMID: 35385312 PMCID: PMC8986106 DOI: 10.1126/sciadv.abl5765] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/11/2022] [Indexed: 06/01/2023]
Abstract
Ubiquitination-mediated protein degradation in both the 26S proteasome and vacuole is an important process in abscisic acid (ABA) signaling. However, the role of deubiquitination in this process remains elusive. Here, we demonstrate that two deubiquitinating enzymes (DUBs), ubiquitin-specific protease 12 (UBP12) and UBP13, modulate ABA signaling and drought tolerance by deubiquitinating and stabilizing the endosomal sorting complex required for transport-I (ESCRT-I) component vacuolar protein sorting 23A (VPS23A) and thereby affect the stability of ABA receptors in Arabidopsis thaliana. Genetic analysis showed that VPS23A overexpression could rescue the ABA hypersensitive and drought tolerance phenotypes of ubp12-2w or ubp13-1. In addition to the direct regulation of VPS23A, we found that UBP12 and UBP13 also stabilized the E3 ligase XB3 ortholog 5 in A. thaliana (XBAT35.2) in response to ABA treatment. Hence, we demonstrated that UBP12 and UBP13 are previously unidentified rheostatic regulators of ABA signaling and revealed a mechanism by which deubiquitination precisely monitors the XBAT35/VPS23A ubiquitination module in the ABA response.
Collapse
Affiliation(s)
- Guangchao Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jiaxuan Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lijuan Lou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206 Beijing, China
| | - Miaomiao Tian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiangyun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lijing Liu
- School of Life Sciences, Shandong University, Qingdao, 266237 Shandong, China
| | - Qingzhen Zhao
- College of Life Sciences, Liaocheng University, Liaocheng, 252000 Shandong, China
| | - Ran Xia
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Feifei Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
71
|
Identifying QTLs for Grain Size in a Colossal Grain Rice ( Oryza sativa L.) Line, and Analysis of Additive Effects of QTLs. Int J Mol Sci 2022; 23:ijms23073526. [PMID: 35408887 PMCID: PMC8998697 DOI: 10.3390/ijms23073526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
Grain size is an important component of quality and harvest traits in the field of rice breeding. Although numerous quantitative trait loci (QTLs) of grain size in rice have been reported, the molecular mechanisms of these QTLs remain poorly understood, and further research on QTL observation and candidate gene identification is warranted. In our research, we developed a suite of F2 intercross populations from a cross of 9311 and CG. These primary populations were used to map QTLs conferring grain size, evaluated across three environments, and then subjected to bulked-segregant analysis-seq (BSA-seq). In total, 4, 11, 12 and 14 QTLs for grain length (GL), grain width (GW), 1000-grain weight (TGW), and length/width ratio (LWR), respectively, were detected on the basis of a single-environment analysis. In particular, over 200 splicing-related sites were identified by whole-genome sequencing, including one splicing-site mutation with G>A at the beginning of intron 4 on Os03g0841800 (qGL3.3), producing a smaller open reading frame, without the third and fourth exons. A previous study revealed that the loss-of-function allele caused by this splicing site can negatively regulate rice grain length. Furthermore, qTGW2.1 and qGW2.3 were new QTLs for grain width. We used the near-isogenic lines (NILs) of these GW QTLs to study their genetic effects on individuals and pyramiding, and found that they have additive effects on GW. In summary, these discoveries provide a valuable genetic resource, which will facilitate further study of the genetic polymorphism of new rice varieties in rice breeding.
Collapse
|
72
|
Li P, Chen YH, Lu J, Zhang CQ, Liu QQ, Li QF. Genes and Their Molecular Functions Determining Seed Structure, Components, and Quality of Rice. RICE (NEW YORK, N.Y.) 2022; 15:18. [PMID: 35303197 PMCID: PMC8933604 DOI: 10.1186/s12284-022-00562-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/01/2022] [Indexed: 05/14/2023]
Abstract
With the improvement of people's living standards and rice trade worldwide, the demand for high-quality rice is increasing. Therefore, breeding high quality rice is critical to meet the market demand. However, progress in improving rice grain quality lags far behind that of rice yield. This might be because of the complexity of rice grain quality research, and the lack of consensus definition and evaluation standards for high quality rice. In general, the main components of rice grain quality are milling quality (MQ), appearance quality (AQ), eating and cooking quality (ECQ), and nutritional quality (NQ). Importantly, all these quality traits are determined directly or indirectly by the structure and composition of the rice seeds. Structurally, rice seeds mainly comprise the spikelet hull, seed coat, aleurone layer, embryo, and endosperm. Among them, the size of spikelet hull is the key determinant of rice grain size, which usually affects rice AQ, MQ, and ECQ. The endosperm, mainly composed of starch and protein, is the major edible part of the rice seed. Therefore, the content, constitution, and physicochemical properties of starch and protein are crucial for multiple rice grain quality traits. Moreover, the other substances, such as lipids, minerals, vitamins, and phytochemicals, included in different parts of the rice seed, also contribute significantly to rice grain quality, especially the NQ. Rice seed growth and development are precisely controlled by many genes; therefore, cloning and dissecting these quality-related genes will enhance our knowledge of rice grain quality and will assist with the breeding of high quality rice. This review focuses on summarizing the recent progress on cloning key genes and their functions in regulating rice seed structure and composition, and their corresponding contributions to rice grain quality. This information will facilitate and advance future high quality rice breeding programs.
Collapse
Affiliation(s)
- Pei Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yu-Hao Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jun Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
73
|
Wu Q, Liu Y, Huang J. CRISPR-Cas9 Mediated Mutation in OsPUB43 Improves Grain Length and Weight in Rice by Promoting Cell Proliferation in Spikelet Hull. Int J Mol Sci 2022; 23:ijms23042347. [PMID: 35216463 PMCID: PMC8877319 DOI: 10.3390/ijms23042347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/27/2022] Open
Abstract
Grain weight, a crucial trait that determines the grain yield in rice, is influenced by grain size. Although a series of regulators that control grain size have been identified in rice, the mechanisms underlying grain development are not yet well understood. In this study, we identified OsPUB43, a U-box E3 ubiquitin ligase, as an important negative regulator determining the gain size and grain weight in rice. Phenotypes of large grain are observed in ospub43 mutants, whereas overexpression of OsPUB43 results in short grains. Scanning electron microscopy analysis reveals that OsPUB43 modulates the grain size mainly by inhibiting cell proliferation in the spikelet hull. The OsPUB43 protein is localized in the cytoplasm and nucleus. The ospub43 mutants display high sensitivity to exogenous BR, while OsPUB43-OE lines are hyposensitive to BR. Furthermore, the transient transcriptional activity assay shows that OsBZR1 can activate the expression of OsPUB43. Collectively, our results indicate that OsPUB43 negatively controls the gain size by modulating the expression of BR-responsive genes as well as MADS-box genes that are required for lemma/palea specification, suggesting that OsPUB43 has a potential valuable application in the enlargement of grain size in rice.
Collapse
|
74
|
Xue P, Chen YY, Wen XX, Wang BF, Yang QQ, Gong K, Kang YW, Sun LP, Yu P, Cao LY, Zhang YX, Zhan XD, Cheng SH. Dissection of Closely Linked Quantitative Trait Locis Controlling Grain Size in Rice. FRONTIERS IN PLANT SCIENCE 2022; 12:804444. [PMID: 35126429 PMCID: PMC8810522 DOI: 10.3389/fpls.2021.804444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Grain size is a key constituent of grain weight and appearance in rice. However, insufficient attention has been paid to the small-effect quantitative trait loci (QTLs) on the grain size. In the present study, residual heterozygous populations were developed for mapping two genetically linked small-effect QTLs for grain size. After the genotyping and the phenotyping of five successive generations, qGS7.1 was dissected into three QTLs and two were selected for further analysis. The qTGW7.2a was finally mapped into a 21.10 kb interval containing four annotated candidate genes. Transcript levels assay showed that the expression of the candidates LOC_Os07g39490 and the LOC_Os07g39500 were significantly reduced in the NIL-qTGW7.2aBG1 . The cytological observation indicated that qTGW7.2a regulated the grain width through controlling the cell expansion. Using the same strategy, qTGW7.2b was fine-mapped into a 52.71 kb interval containing eight annotated candidate genes, showing a significant effect on the grain length and width with opposite allelic directions, but little on the grain weight. Our study provides new genetic resources for yield improvement and for fine-tuning of grain size in rice.
Collapse
Affiliation(s)
- Pao Xue
- Zhejiang Key Laboratory of Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yu-yu Chen
- Zhejiang Key Laboratory of Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Department of Resource and Environment, Moutai Institute, Renhuai, China
| | - Xiao-xia Wen
- Zhejiang Key Laboratory of Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Bei-fang Wang
- Zhejiang Key Laboratory of Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Qin-qin Yang
- Zhejiang Key Laboratory of Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ke Gong
- Zhejiang Key Laboratory of Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yi-wei Kang
- Zhejiang Key Laboratory of Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lian-ping Sun
- Zhejiang Key Laboratory of Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ping Yu
- Zhejiang Key Laboratory of Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Li-yong Cao
- Zhejiang Key Laboratory of Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ying-xin Zhang
- Zhejiang Key Laboratory of Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiao-deng Zhan
- Zhejiang Key Laboratory of Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shi-hua Cheng
- Zhejiang Key Laboratory of Super Rice Research, State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
75
|
Sun J, Song W, Chang Y, Wang Y, Lu T, Zhang Z. OsLMP1, Encoding a Deubiquitinase, Regulates the Immune Response in Rice. FRONTIERS IN PLANT SCIENCE 2022; 12:814465. [PMID: 35116051 PMCID: PMC8805587 DOI: 10.3389/fpls.2021.814465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Lesion mimic mutants have become an effective material for understanding plant-microbe interactions and the immune mechanism in plants. Although many mechanisms responsible for the lesion mimic phenotype have been clarified in plants, the mechanism by which lesion mimic is regulated by posttranslational modification remained largely elusive, especially in rice. In this study, a mutant with the lesion mimic phenotype was obtained and named lmp1-1. Physiological measurements and quantitative real-time PCR analysis showed that the defense response was activated in the mutants. Transcriptome analysis showed that the phenylalanine ammonia lyase (PAL) pathway was activated in the mutant, causing the accumulation of salicylic acid (SA). The results of mapping based cloning showed that OsLMP1 encodes a deubiquitinase. OsLMP1 can cleave ubiquitination precursors. Furthermore, OsLMP1 epigenetically modifies SA synthetic pathway genes by deubiquitinating H2B and regulates the immune response in rice. In summary, this study deepens our understanding of the function of OsLMP1 in the plant immune response and provides further insight into the relationship between plants and pathogenic microorganisms.
Collapse
|
76
|
Rasheed H, Fiaz S, Khan MA, Mehmood S, Ullah F, Saeed S, Khan SU, Yaseen T, Hussain RM, Qayyum A. Characterization of functional genes GS3 and GW2 and their effect on the grain size of various landraces of rice (Oryza sativa). Mol Biol Rep 2022; 49:5397-5403. [PMID: 35025032 DOI: 10.1007/s11033-022-07119-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/04/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Grain size is an essential factor of grain quality and yield in rice. The genetic studies have substantially contributed to enhancing yield and maintaining a good quality of rice. The two major genes GS3 (a negative regulator of grain length) and GW2 (a negative regulator of grain width) with functional mutation play a significant role in controlling the grain size of rice. METHODS AND RESULTS: In the study, 17 different widely grown Pakistani landraces of various genetic and geographic backgrounds were evaluated for grain phenotypic traits (1000-grain weight, length, width, and thickness) and also screened for genotypic mutation in GS3 and GW2 genes. Phenotypic data revealed the range for grain weight from 16.86 g (Lateefy) to 26.91 g (PS2), grain length ranged from 7.27 mm (JP-5) to 12.18 mm (PS2), grain width ranged from 2.01 mm (Lateefy) to 3.51 mm (JP5), and grain thickness ranged from 1.79 mm to 2.19. Correlation revealed a negative and significant correlation between grain width and length. There was no significant correlation between grain length and 1000-grain weight and grain width. LSD test displayed that the means of three variables grain length, grain width, and 1000-grain weight were statistically different from one another except grain width and grain breadth. Fifteen accessions carried the domesticated allele of GS3 while JP5 and Fakhr-e-Malakand carried the dominant allele. Similarly, fifteen accessions carried the dominant allele of GW2 while JP-5 and Fakhr-e-Malakand carried the mutant allele. CONCLUSIONS The study shows that the mutant alleles of both genes are of significance to pyramid them in any breeding program. However, just incorporating favorable alleles is not the sole solution for improving the grain size. Therefore, further elucidation of GS3 and GW2 genes regulatory network, their interaction, trade-off, and pathways will better coordinate their marker-assisted selection in the future breeding program. Additionally, the study concluded that the selection of grain size was not dependent on 1000-grain weight in the selected germplasm.
Collapse
Affiliation(s)
- Haroon Rasheed
- Department of Botany, University of Science and Technology, Bannu, KPK, Pakistan.,Institute of Nuclear Agricultural Sciences College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, People's Republic of China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, 22620, Pakistan.
| | - Muhammad Abid Khan
- Department of Botany, University of Science and Technology, Bannu, KPK, Pakistan.,Department of Botany, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Sultan Mehmood
- Department of Botany, University of Science and Technology, Bannu, KPK, Pakistan
| | - Faizan Ullah
- Department of Botany, University of Science and Technology, Bannu, KPK, Pakistan
| | - Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shahid Ullah Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Tabassam Yaseen
- Department of Botany, Bacha khan University, Charsadda, Pakistan
| | - Reem M Hussain
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Faculty of Agriculture, Crop Field Department, Tishreen University, Lattakia, Syria
| | - Abdul Qayyum
- Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan
| |
Collapse
|
77
|
Yuan H, Gao P, Hu X, Yuan M, Xu Z, Jin M, Song W, Zhan S, Zhu X, Tu B, Li T, Wang Y, Ma B, Qin P, Chen W, Li S. Fine mapping and candidate gene analysis of qGSN5, a novel quantitative trait locus coordinating grain size and grain number in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:51-64. [PMID: 34689213 DOI: 10.1007/s00122-021-03951-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 05/02/2023]
Abstract
KEY MESSAGE: qGSN5, a novel quantitative trait locus coordinating grain size and grain number in rice, was fine-mapped to an 85.60-kb region. GS3 may be a suppressor of qGSN5. Grain size and grain number are two factors that directly determine rice grain yield; however, the underlying genetic mechanisms are complicated and remain largely unclear. In this study, a chromosome segment substitution line (CSSL), CSSL28, which showed increased grain size and decreased grain number per panicle, was identified in a set of CSSLs derived from a cross between 93-11 (recipient) and Nipponbare (donor). Four substitution segments were identified in CSSL28, and the substitution segment located on chromosome 5 was responsible for the phenotypes of CSSL28. Thus, we defined this quantitative trait locus (QTL) as grain size and grain number 5 (qGSN5). Cytological and quantitative PCR analysis showed that qGSN5 regulates the development of the spikelet hull by affecting cell proliferation. Genetic analysis showed that qGSN5 is a semi-dominant locus regulating grain size and grain number. Through map-based cloning and overlapping substitution segment analysis, qGSN5 was finally delimited to an 85.60-kb region. Based on sequence and quantitative PCR analysis, Os05g47510, which encodes a P-type pentatricopeptide repeat protein, is the most likely candidate gene for qGSN5. Pyramiding analysis showed that the effect of qGSN5 was significantly lower in the presence of a functional GS3 gene, indicating that GS3 may be a suppressor of qGSN5. In addition, we found that qGSN5 could improve the grain shape of hybrid rice. Together, our results lay the foundation for cloning a novel QTL coordinating grain size and grain number in rice and provide a good genetic material for long-grain hybrid rice breeding.
Collapse
Affiliation(s)
- Hua Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China
| | - Peng Gao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoling Hu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Min Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China
| | - Zhengyan Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mengya Jin
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wencheng Song
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shijie Zhan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China
| | - Bin Tu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China
| | - Yuping Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bingtian Ma
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Peng Qin
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Weilan Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China.
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
78
|
Gao Q, Zhang N, Wang WQ, Shen SY, Bai C, Song XJ. The ubiquitin-interacting motif-type ubiquitin receptor HDR3 interacts with and stabilizes the histone acetyltransferase GW6a to control the grain size in rice. THE PLANT CELL 2021; 33:3331-3347. [PMID: 34323980 PMCID: PMC8505875 DOI: 10.1093/plcell/koab194] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/23/2021] [Indexed: 05/02/2023]
Abstract
For grain crops such as rice (Oryza sativa), grain size substantially affects yield. The histone acetyltransferase GRAIN WEIGHT 6a (GW6a) determines grain size and yield in rice. However, the gene regulatory network underlying GW6a-mediated regulation of grain size has remained elusive. In this study, we show that GW6a interacts with HOMOLOG OF DA1 ON RICE CHROMOSOME 3 (HDR3), a ubiquitin-interacting motif-containing ubiquitin receptor. Transgenic rice plants overexpressing HDR3 produced larger grains, whereas HDR3 knockout lines produce smaller grains compared to the control. Cytological data suggest that HDR3 modulates grain size in a similar manner to GW6a, by altering cell proliferation in spikelet hulls. Mechanistically, HDR3 physically interacts with and stabilizes GW6a in an ubiquitin-dependent manner, delaying protein degradation by the 26S proteasome. The delay in GW6a degradation results in dramatic enhancement of the local acetylation of H3 and H4 histones. Furthermore, RNA sequencing analysis and chromatin immunoprecipitation assays reveal that HDR3 and GW6a bind to the promoters of and modulate a common set of downstream genes. In addition, genetic analysis demonstrates that HDR3 functions in the same genetic pathway as GW6a to regulate the grain size. Therefore, we identified the grain size regulatory module HDR3-GW6a as a potential target for crop yield improvement.
Collapse
Affiliation(s)
- Qiong Gao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ning Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qing Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shao-Yan Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Bai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian-Jun Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Author for correspondence:
| |
Collapse
|
79
|
Du Z, Huang Z, Li J, Bao J, Tu H, Zeng C, Wu Z, Fu H, Xu J, Zhou D, Zhu C, Fu J, He H. qTGW12a, a naturally varying QTL, regulates grain weight in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2767-2776. [PMID: 34021769 PMCID: PMC8354980 DOI: 10.1007/s00122-021-03857-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/10/2021] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE A stable QTL associated with rice grain type with a large effect value was found in multiple environments, and its candidate genes were verified by genetic transformation. Rice (Oryza sativa L.) grain size is critical to both yield and appearance quality. Therefore, the discovery and identification of rice grain size genes can provide pathways for the cultivation of high-yielding varieties. In the present work, 45,607 SNP markers were used to construct a high-density genetic map of rice recombinant inbred lines, and hence a total of 14 quantitative trait loci (QTLs) were detected based on the phenotypic data of grain weight, grain length and grain width under four different environments. qTGW12a and qGL12 are newly detected QTLs related to grain weight, and are located between 22.43 Mb and 22.45 Mb on chromosome 12. Gene annotation shows that the QTL region contains the LOC_Os12g36660 annotated gene, which encodes the multidrug and toxic compound extrusion (MATE) transporter. Mutations in exons and the splice site were responsible for the changes in grain type and weight. Gene knockout experiments were used to verify these results. Hence, these results provide a basis for the cloning of qTGW12a. This discovery provides new insights for studying the genetic mechanism of rice grain morphology, and reveals a promising gene to ultimately increase rice yield.
Collapse
Affiliation(s)
- Zhixuan Du
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Zhou Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Jianbin Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Jianzhong Bao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Hang Tu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Chuihai Zeng
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Zheng Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Haihui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Jie Xu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Dahu Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Junru Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China.
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Research Center of Super Rice Engineering and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China.
| |
Collapse
|
80
|
Hao J, Wang D, Wu Y, Huang K, Duan P, Li N, Xu R, Zeng D, Dong G, Zhang B, Zhang L, Inzé D, Qian Q, Li Y. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice. MOLECULAR PLANT 2021; 14:1266-1280. [PMID: 33930509 DOI: 10.1016/j.molp.2021.04.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/05/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Regulation of seed size is a key strategy for improving crop yield and is also a basic biological question. However, the molecular mechanisms by which plants determine their seed size remain elusive. Here, we report that the GW2-WG1-OsbZIP47 regulatory module controls grain width and weight in rice. WG1, which encodes a glutaredoxin protein, promotes grain growth by increasing cell proliferation. Interestingly, WG1 interacts with the transcription factor OsbZIP47 and represses its transcriptional activity by associating with the transcriptional co-repressor ASP1, indicating that WG1 may act as an adaptor protein to recruit the transcriptional co-repressor. In contrary, OsbZIP47 restricts grain growth by decreasing cell proliferation. Further studies reveal that the E3 ubiquitin ligase GW2 ubiquitinates WG1 and targets it for degradation. Genetic analyses confirm that GW2, WG1, and OsbZIP47 function in a common pathway to control grain growth. Taken together, our findings reveal a genetic and molecular framework for the control of grain size and weight by the GW2-WG1-OsbZIP47 regulatory module, providing new targets for improving seed size and weight in crops.
Collapse
Affiliation(s)
- Jianqin Hao
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dekai Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yingbao Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Penggen Duan
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ran Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Baolan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Limin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
81
|
Chen K, Łyskowski A, Jaremko Ł, Jaremko M. Genetic and Molecular Factors Determining Grain Weight in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:605799. [PMID: 34322138 PMCID: PMC8313227 DOI: 10.3389/fpls.2021.605799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 06/22/2021] [Indexed: 05/06/2023]
Abstract
Grain weight is one of the major factors determining single plant yield production of rice and other cereal crops. Research has begun to reveal the regulatory mechanisms underlying grain weight as well as grain size, highlighting the importance of this research for plant molecular biology. The developmental trait of grain weight is affected by multiple molecular and genetic aspects that lead to dynamic changes in cell division, expansion and differentiation. Additionally, several important biological pathways contribute to grain weight, such as ubiquitination, phytohormones, G-proteins, photosynthesis, epigenetic modifications and microRNAs. Our review integrates early and more recent findings, and provides future perspectives for how a more complete understanding of grain weight can optimize strategies for improving yield production. It is surprising that the acquired wealth of knowledge has not revealed more insights into the underlying molecular mechanisms. To accelerating molecular breeding of rice and other cereals is becoming an emergent and critical task for agronomists. Lastly, we highlighted the importance of leveraging gene editing technologies as well as structural studies for future rice breeding applications.
Collapse
Affiliation(s)
- Ke Chen
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Andrzej Łyskowski
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Faculty of Chemistry, Rzeszow University of Technology, Rzeszow, Poland
| | - Łukasz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
82
|
Liang P, Wang H, Zhang Q, Zhou K, Li M, Li R, Xiang S, Zhang T, Ling Y, Yang Z, He G, Zhao F. Identification and Pyramiding of QTLs for Rice Grain Size Based on Short-Wide Grain CSSL-Z563 and Fine-Mapping of qGL3-2. RICE (NEW YORK, N.Y.) 2021; 14:35. [PMID: 33847838 PMCID: PMC8044274 DOI: 10.1186/s12284-021-00477-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/26/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Chromosome segment substitution lines (CSSLs) can be used to dissect complex traits, from which single-segment substitution lines (SSSLs) containing a target quantitative trait loci (QTL) can be developed, and they are thus important for functional analysis and molecular breeding. RESULTS A rice line with short wide grains, CSSL-Z563, was isolated from advanced-generation backcross population (BC3F6) derived from 'Xihui 18' (the recipient parent) and 'Huhan 3' (the donor parent). Z563 carried seven segments from 'Huhan 3', distributed on chromosomes 3, 7, and 8, with average substitution length of 5.52 Mb. Eleven QTLs for grain size were identified using secondary F2 population of 'Xihui 18'/Z563. The QTLs qGL3-1, qGL3-2, and qGL7 control grain length in Z563 and have additive effects to reduce grain length; qGW3-1 and qGW3-2 control grain width in Z563 and have additive effects to increase grain width. Four SSSLs, three double-segment substitution lines (D1-D3), and two triple-segment substitution lines (T1 and T2) were developed containing the target QTLs. The genetic stability of eight QTLs, including qGL3-2, qGL3-1, and qGL7, was verified by the SSSLs. D1 (containing qGL3-2 and qGL3-1), D2 (qGL3-1 and qGL7), and T1 (qGL3-2, qGL3-1, and qGL7) had positive epistatic effects on grain length, and their grain length was shorter than that of the corresponding SSSLs. The QTL qGL3-2 was fine-mapped to a 696 Kb region of chromosome 3 containing five candidate genes that differed between 'Xihui 18' and Z563. These results are important for functional research on qGL3-2 and molecular breeding of hybrid rice cultivars. CONCLUSIONS The short and wide grain of Z563 was mainly controlled by qGL3-1, qGL3-2, qGL7, qGW3-1 and qGW3-2. The major QTL qGL3-2 was fine-mapped to a 696 Kb region of chromosome 3 containing five candidate genes. Different QTLs pyramiding displayed various phenotypes. In essence, the performance after pyramiding of genes depended on the comparison between the algebraic sum of the additive and epistatic effects of QTLs in the pyramidal line and the additive effect value of the single QTL. The results lay good foundation in the functional analysis of qGL3-2 and molecular design breeding of novel hybrid rice cultivars.
Collapse
Affiliation(s)
- Peixuan Liang
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Hui Wang
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Qiuli Zhang
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Kai Zhou
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Miaomiao Li
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Ruxiang Li
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Siqian Xiang
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Ting Zhang
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yinghua Ling
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Zhenglin Yang
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guanghua He
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Fangming Zhao
- Rice Research Institute, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
83
|
Chen Y, Inzé D, Vanhaeren H. Post-translational modifications regulate the activity of the growth-restricting protease DA1. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3352-3366. [PMID: 33587751 DOI: 10.1093/jxb/erab062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Plants are a primary food source and can form the basis for renewable energy resources. The final size of their organs is by far the most important trait to consider when seeking increased plant productivity. Being multicellular organisms, plant organ size is mainly determined by the coordination between cell proliferation and cell expansion. The protease DA1 limits the duration of cell proliferation and thereby restricts final organ size. Since its initial identification as a negative regulator of organ growth, various transcriptional regulators of DA1, but also interacting proteins, have been identified. These interactors include cleavage substrates of DA1, and also proteins that modulate the activity of DA1 through post-translational modifications, such as ubiquitination, deubiquitination, and phosphorylation. In addition, many players in the DA1 pathway display conserved phenotypes in other dicot and even monocot species. In this review, we provide a timely overview of the complex, but intriguing, molecular mechanisms that fine-tune the activity of DA1 and therefore final organ size. Moreover, we lay out a roadmap to identify and characterize substrates of proteases and frame the substrate cleavage events in their biological context.
Collapse
Affiliation(s)
- Ying Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Hannes Vanhaeren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
84
|
Verma A, Prakash G, Ranjan R, Tyagi AK, Agarwal P. Silencing of an Ubiquitin Ligase Increases Grain Width and Weight in indica Rice. Front Genet 2021; 11:600378. [PMID: 33510769 PMCID: PMC7835794 DOI: 10.3389/fgene.2020.600378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/27/2020] [Indexed: 11/18/2022] Open
Abstract
Many quantitative trait loci (QTLs) have been identified by molecular genetic studies which control grain size by regulating grain width, length, and/or thickness. Grain width 2 (GW2) is one such QTL that codes for a RING-type E3 ubiquitin ligase and increases grain size by regulating grain width through ubiquitin-mediated degradation of unknown substrates. A natural variation (single-nucleotide polymorphism at the 346th position) in the functional domain-coding region of OsGW2 in japonica rice genotypes has been shown to cause an increase in grain width/weight in rice. However, this variation is absent in indica rice genotypes. In this study, we report that reduced expression of OsGW2 can alter grain size, even though natural sequence variation is not responsible for increased grain size in indica rice genotypes. OsGW2 shows high expression in seed development stages and the protein localizes to the nucleus and cytoplasm. Downregulation of OsGW2 by RNAi technology results in wider and heavier grains. Microscopic observation of grain morphology suggests that OsGW2 determines grain size by influencing both cell expansion and cell proliferation in spikelet hull. Using transcriptome analysis, upregulated genes related to grain size regulation have been identified among 1,426 differentially expressed genes in an OsGW2_RNAi transgenic line. These results reveal that OsGW2 is a negative regulator of grain size in indica rice and affects both cell number and cell size in spikelet hull.
Collapse
Affiliation(s)
- Ankit Verma
- National Institute of Plant Genome Research, New Delhi, India
| | - Geeta Prakash
- National Institute of Plant Genome Research, New Delhi, India.,Department of Botany, Gargi College, University of Delhi, New Delhi, India
| | - Rajeev Ranjan
- National Institute of Plant Genome Research, New Delhi, India.,Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research, New Delhi, India.,Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
85
|
Li J, Zhang Y, Gao Z, Xu X, Wang Y, Lin Y, Ye P, Huang T. Plant U-box E3 ligases PUB25 and PUB26 control organ growth in Arabidopsis. THE NEW PHYTOLOGIST 2021; 229:403-413. [PMID: 32810874 DOI: 10.1111/nph.16885] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/09/2020] [Indexed: 05/12/2023]
Abstract
Plant organs often grow into a genetically determined size and shape. How organ growth is finely regulated to achieve a well defined pattern is a fascinating, but largely unresolved, question in plant research. We utilised the Arabidopsis petal to study the genetic control of plant organ growth, and identify two closely related U-box E3 ligases PUB25 and PUB26 as important growth regulators by screening the targets of the petal-specific growth-promoting transcription factor RABBIT EARS (RBE). We showed that PUB25 is directly controlled by RBE in petal development in a spatial- and temporal-specific manner and acts as a major target to mediate RBE's function in petal growth. We also showed that PUB25 and PUB26 repress petal growth by restricting the period of cell proliferation, and their regulation appears to be independent of other plant E3 ligase genes implicated in growth control. PUB25 and PUB26 are among the first U-box E3 ligases shown to function in plant growth control. Furthermore, as they were also found to play a vital role in plant stress responses, PUB25 and PUB26 may act as a key hub to integrate developmental and environmental signals for balancing growth and defence in plants.
Collapse
Affiliation(s)
- Jing Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Yongxia Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Zhong Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Xiumei Xu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yanzhi Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Yaoxi Lin
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Peiming Ye
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Tengbo Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518071, China
| |
Collapse
|
86
|
Pang Y, Liu C, Wang D, St Amand P, Bernardo A, Li W, He F, Li L, Wang L, Yuan X, Dong L, Su Y, Zhang H, Zhao M, Liang Y, Jia H, Shen X, Lu Y, Jiang H, Wu Y, Li A, Wang H, Kong L, Bai G, Liu S. High-Resolution Genome-wide Association Study Identifies Genomic Regions and Candidate Genes for Important Agronomic Traits in Wheat. MOLECULAR PLANT 2020; 13:1311-1327. [PMID: 32702458 DOI: 10.1016/j.molp.2020.07.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/08/2020] [Accepted: 07/17/2020] [Indexed: 05/18/2023]
Abstract
Wheat (Triticum aestivum) is a major staple food crop worldwide. Genetic dissection of important agronomic traits is essential for continuous improvement of wheat yield to meet the demand of the world's growing population. We conducted a large-scale genome-wide association study (GWAS) using a panel of 768 wheat cultivars that were genotyped with 327 609 single-nucleotide polymorphisms generated by genotyping-by-sequencing and detected 395 quantitative trait loci (QTLs) for 12 traits under 7 environments. Among them, 273 QTLs were delimited to ≤1.0-Mb intervals and 7 of them are either known genes (Rht-D, Vrn-B1, and Vrn-D1) that have been cloned or known QTLs (TaGA2ox8, APO1, TaSus1-7B, and Rht12) that were previously mapped. Eight putative candidate genes were identified for three QTLs that enhance spike seed setting and grain size using gene expression data and were validated in three bi-parental populations. Protein sequence analysis identified 33 putative wheat orthologs that have high identity with rice genes in QTLs affecting similar traits. Large r2 values for additive effects observed among the QTLs for most traits indicated that the phenotypes of these identified QTLs were highly predictable. Results from this study demonstrated that significantly increasing GWAS population size and marker density greatly improves detection and identification of candidate genes underlying a QTL, solidifying the foundation for large-scale QTL fine mapping, candidate gene validation, and developing functional markers for genomics-based breeding in wheat.
Collapse
Affiliation(s)
- Yunlong Pang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Chunxia Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Danfeng Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Paul St Amand
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506, USA
| | - Amy Bernardo
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506, USA; Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Wenhui Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Fang He
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China; College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Linzhi Li
- Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Liming Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiufang Yuan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Lei Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Yu Su
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Huirui Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Meng Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Yunlong Liang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Hongze Jia
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Xitong Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Yue Lu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Hongming Jiang
- Yantai Academy of Agricultural Sciences, Yantai 265500, China
| | - Yuye Wu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Anfei Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Honggang Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Guihua Bai
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506, USA.
| | - Shubing Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
87
|
Linden KJ, Callis J. The ubiquitin system affects agronomic plant traits. J Biol Chem 2020; 295:13940-13955. [PMID: 32796036 DOI: 10.1074/jbc.rev120.011303] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
In a single vascular plant species, the ubiquitin system consists of thousands of different proteins involved in attaching ubiquitin to substrates, recognizing or processing ubiquitinated proteins, or constituting or regulating the 26S proteasome. The ubiquitin system affects plant health, reproduction, and responses to the environment, processes that impact important agronomic traits. Here we summarize three agronomic traits influenced by ubiquitination: induction of flowering, seed size, and pathogen responses. Specifically, we review how the ubiquitin system affects expression of genes or abundance of proteins important for determining when a plant flowers (focusing on FLOWERING LOCUS C, FRIGIDA, and CONSTANS), highlight some recent studies on how seed size is affected by the ubiquitin system, and discuss how the ubiquitin system affects proteins involved in pathogen or effector recognition with details of recent studies on FLAGELLIN SENSING 2 and SUPPRESSOR OF NPR CONSTITUTIVE 1, respectively, as examples. Finally, we discuss the effects of pathogen-derived proteins on plant host ubiquitin system proteins. Further understanding of the molecular basis of the above processes could identify possible genes for modification or selection for crop improvement.
Collapse
Affiliation(s)
- Katrina J Linden
- Department of Molecular and Cellular Biology and the Integrative Genetics and Genomics Graduate Group, University of California, Davis, California, USA
| | - Judy Callis
- Department of Molecular and Cellular Biology and the Integrative Genetics and Genomics Graduate Group, University of California, Davis, California, USA.
| |
Collapse
|
88
|
Wang GJ, Wang Y, Ying JZ, Song XJ. Identification of qLG2, qLG8, and qWG2 as novel quantitative trait loci for grain shape and the allelic analysis in cultivated rice. PLANTA 2020; 252:18. [PMID: 32671480 DOI: 10.1007/s00425-020-03420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Three novel QTLs for grain shape were genetically fine mapped, with two of which to a 250-kb target interval on rice chromosome 2 that contains fourteen candidate genes. Grain shape (grain length, width, and thickness) determines crop yield and grain quality. However, the trait is regulated by numerous naturally occurring quantitative trait loci (QTLs) and the underlying mechanism remains largely unknown. Here, we report the genetic mapping of three new QTLs, qLG2, qWG2, and qLG8 that each exerts a semi-dominant effect on grain shape in cultivated rice. These QTLs were validated using populations derived from the corresponding chromosome segment substitution lines (CSSLs), and were further delimited to small genomic intervals in progeny testing experiments. Especially, qLG2/qWG2 was placed into an about 250-kb genomic candidate region, and 14 predicted ORFs localized within the interval. We also evaluated the individual and pyramiding genetic effect(s) of these QTL(s) using the corresponding nearly isogenic lines, and found that they have additive effects on the traits. Collectively, these findings provided useful information as a tool to improve grain shape in crop breeding programs and established foundations for future QTL cloning.
Collapse
Affiliation(s)
- Gao-Jie Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie-Zheng Ying
- National Key Laboratory of Rice Biology and Chinese Center of Rice Improvement, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xian-Jun Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, China.
- The Innovative Academy of Seed Design, The Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
89
|
Huang Y, Bai X, Cheng N, Xiao J, Li X, Xing Y. Wide Grain 7 increases grain width by enhancing H3K4me3 enrichment in the OsMADS1 promoter in rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:517-528. [PMID: 31830332 DOI: 10.1111/tpj.14646] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/29/2019] [Indexed: 05/22/2023]
Abstract
Grain size is a major determinant of grain weight, a key component of grain yield of rice. Here, we identified the grain size gene WIDE GRAIN 7 (WG7) from a T-DNA insertion mutant. The grain size of WG7 knockout mutants and WG7 overexpression lines indicated that WG7 is a positive regulator of grain size. WG7 encodes a cysteine-tryptophan (CW) domain-containing transcriptional activator. EMSAs and ChIP-qPCR assay confirmed that WG7 directly bound to the promoter of OsMADS1, a grain size gene, and thereby significantly activated its expression. Point mutations showed that the cis-element CATTTC motif in the promoter was the binding site of WG7. Compared with the wild-type, deletion mutants of the cis-element motif exhibited lower expression of OsMADS1 and produced narrower grains, implicating the requirement of this motif for WG7 function. ChIP-qPCR assays showed that WG7 enhanced histone H3K4me3 enrichment in the promoter of OsMADS1. WG7 underwent directional selection due to the poor fertility of the non-functional mutant. These findings demonstrated that WG7 upregulated OsMADS1 expression by directly binding to its promoter, enhanced histone H3K4me3 enrichment in the promoter and ultimately increased grain width. This study will enrich the knowledge concerning the regulatory network of grain size formation in rice.
Collapse
Affiliation(s)
- Yong Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xufeng Bai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Niannian Cheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434100, China
| |
Collapse
|
90
|
Liu H, Li H, Hao C, Wang K, Wang Y, Qin L, An D, Li T, Zhang X. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1330-1342. [PMID: 31733093 PMCID: PMC7152612 DOI: 10.1111/pbi.13298] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/29/2019] [Accepted: 11/05/2019] [Indexed: 05/18/2023]
Abstract
Kernel size is an important trait determining cereal yields. In this study, we cloned and characterized TaDA1, a conserved negative regulator of kernel size in wheat (Triticum aestivum). The overexpression of TaDA1 decreased the size and weight of wheat kernels, while its down-regulation using RNA interference (RNAi) had the opposite effect. Three TaDA1-A haplotypes were identified in Chinese wheat core collections, and a haplotype association analysis showed that TaDA1-A-HapI was significantly correlated with the production of larger kernels and higher kernel weights in modern Chinese cultivars. The haplotype effect resulted from a difference in TaDA1-A expression levels between genotypes, with TaDA1-A-HapI resulting in lower TaDA1-A expression levels. This favourable haplotype was found having been positively selected during wheat breeding over the last century. Furthermore, we demonstrated that TaDA1-A physically interacts with TaGW2-B. The additive effects of TaDA1-A and TaGW2-B on kernel weight were confirmed not only by the phenotypic enhancement arising from the simultaneous down-regulation of TaDA1 and TaGW2 expression, but also by the combinational haplotype effects estimated from multi-environment field data from 348 wheat cultivars. A comparative proteome analysis of developing transgenic and wild-type grains indicated that TaDA1 and TaGW2 are involved in partially overlapping but relatively independent protein regulatory networks. Thus, we have identified an important gene controlling kernel size in wheat and determined its interaction with other genes regulating kernel weight, which could have beneficial applications in wheat breeding.
Collapse
Affiliation(s)
- Hong Liu
- Key Laboratory of Crop Gene Resources and Germplasm EnhancementMinistry of AgricultureInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- Center for Agricultural Resources ResearchInstitute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangHebeiChina
| | - Huifang Li
- Key Laboratory of Crop Gene Resources and Germplasm EnhancementMinistry of AgricultureInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm EnhancementMinistry of AgricultureInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Ke Wang
- Key Laboratory of Crop Gene Resources and Germplasm EnhancementMinistry of AgricultureInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yamei Wang
- Key Laboratory of Crop Gene Resources and Germplasm EnhancementMinistry of AgricultureInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Lin Qin
- Key Laboratory of Crop Gene Resources and Germplasm EnhancementMinistry of AgricultureInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Diaoguo An
- Center for Agricultural Resources ResearchInstitute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangHebeiChina
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm EnhancementMinistry of AgricultureInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm EnhancementMinistry of AgricultureInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- Agronomy CollegeGansu Agriculture UniversityLanzhou, GansuChina
| |
Collapse
|
91
|
Ponce K, Zhang Y, Guo L, Leng Y, Ye G. Genome-Wide Association Study of Grain Size Traits in Indica Rice Multiparent Advanced Generation Intercross (MAGIC) Population. FRONTIERS IN PLANT SCIENCE 2020; 11:395. [PMID: 32391027 PMCID: PMC7193545 DOI: 10.3389/fpls.2020.00395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/19/2020] [Indexed: 05/15/2023]
Abstract
Rice grain size plays a crucial role in determining grain quality and yield. In this study, two multiparent advanced generation intercross (MAGIC) populations, DC1 and BIM, were evaluated for grain size across three environments and genotyped with 55K array-based SNP detection and genotype-by-sequencing (GBS), respectively, to identify QTLs and SNPs associated with grain length, grain width, grain length-width ratio, grain thickness, and thousand grain weight. A total of 18 QTLs were identified for the five grain size-related traits and explained 6.43-63.35% of the total phenotypic variance. Twelve of these QTLs colocalized with the cloned genes, GS3, GW5/qSW5, GW7/GL7/SLG7, and GW8/OsSPL16, of which the first two genes showed the strongest effect for grain length and grain width, respectively. Four potential new genes were also identified from the QTLs, which exhibited both genetic background independency and environment stability and could be validated in future studies. Moreover, the significant SNP markers identified are valuable for direct utilization in marker-assisted breeding to improve rice grain size.
Collapse
Affiliation(s)
- Kimberly Ponce
- CAAS-IRRI Joint Laboratory for Genomics-assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ya Zhang
- CAAS-IRRI Joint Laboratory for Genomics-assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Longbiao Guo
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yujia Leng
- CAAS-IRRI Joint Laboratory for Genomics-assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Strategic Innovation Platform, International Rice Research Institute, Metro Manila, Philippines
| |
Collapse
|
92
|
Paul MJ, Watson A, Griffiths CA. Linking fundamental science to crop improvement through understanding source and sink traits and their integration for yield enhancement. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2270-2280. [PMID: 31665486 PMCID: PMC7134924 DOI: 10.1093/jxb/erz480] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/11/2019] [Indexed: 05/19/2023]
Abstract
Understanding processes in sources and sinks that contribute to crop yields has taken years of painstaking research. For crop yield improvement, processes need to be understood as standalone mechanisms in addition to how these mechanisms perform at the crop level; currently there is often a chasm between the two. Fundamental mechanisms need to be considered in the context of crop ideotypes and the agricultural environment which is often more water limited than carbon limited. Different approaches for improvement should be considered, namely is there genetic variation? Or if not, could genetic modification, genome editing, or alternative approaches be utilized? Currently, there are few examples where genetic modification has improved intrinsic yield in the field for commercial application in a major crop. Genome editing, particularly of negative yield regulators as a first step, is providing new opportunities. Here we highlight key mechanisms in source and sink, arguing that for large yield increases integration of key processes is likely to produce the biggest successes within the framework of crop ideotypes with optimized phenology. We highlight a plethora of recent papers that show breakthroughs in fundamental science and the promise of the trehalose 6-phosphate signalling pathway, which regulates carbohydrate allocation which is key for many crop traits.
Collapse
Affiliation(s)
- Matthew J Paul
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire, UK
- Correspondence:
| | - Amy Watson
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Cara A Griffiths
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire, UK
| |
Collapse
|
93
|
Zhou S, Zhang J, Han H, Zhang J, Ma H, Zhang Z, Lu Y, Liu W, Yang X, Li X, Li L. Full-length transcriptome sequences of Agropyron cristatum facilitate the prediction of putative genes for thousand-grain weight in a wheat-A. cristatum translocation line. BMC Genomics 2019; 20:1025. [PMID: 31881839 PMCID: PMC6935218 DOI: 10.1186/s12864-019-6416-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/19/2019] [Indexed: 01/09/2023] Open
Abstract
Background Agropyron cristatum (L.) Gaertn. (2n = 4x = 28; genomes PPPP) is a wild relative of common wheat (Triticum aestivum L.) and provides many desirable genetic resources for wheat improvement. However, there is still a lack of reference genome and transcriptome information for A. cristatum, which severely impedes functional and molecular breeding studies. Results Single-molecule long-read sequencing technology from Pacific Biosciences (PacBio) was used to sequence full-length cDNA from a mixture of leaves, roots, stems and caryopses and constructed the first full-length transcriptome dataset of A. cristatum, which comprised 44,372 transcripts. As expected, the PacBio transcripts were generally longer and more complete than the transcripts assembled via the Illumina sequencing platform in previous studies. By analyzing RNA-Seq data, we identified tissue-enriched transcripts and assessed their GO term enrichment; the results indicated that tissue-enriched transcripts were enriched for particular molecular functions that varied by tissue. We identified 3398 novel and 1352 A. cristatum-specific transcripts compared with the wheat gene model set. To better apply this A. cristatum transcriptome, the A. cristatum transcripts were integrated with the wheat genome as a reference sequence to try to identify candidate A. cristatum transcripts associated with thousand-grain weight in a wheat-A. cristatum translocation line, Pubing 3035. Conclusions Full-length transcriptome sequences were used in our study. The present study not only provides comprehensive transcriptomic insights and information for A. cristatum but also proposes a new method for exploring the functional genes of wheat relatives under a wheat genetic background. The sequence data have been deposited in the NCBI under BioProject accession number PRJNA534411.
Collapse
Affiliation(s)
- Shenghui Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinpeng Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haiming Han
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Huihui Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhi Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuqing Lu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weihua Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinming Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuquan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lihui Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|