51
|
Huh SU, Lee IJ, Ham BK, Paek KH. Nicotiana tabacum Tsip1-interacting ferredoxin 1 affects biotic and abiotic stress resistance. Mol Cells 2012; 34:43-52. [PMID: 22699755 PMCID: PMC3887776 DOI: 10.1007/s10059-012-0066-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/30/2012] [Indexed: 01/16/2023] Open
Abstract
Tsip1, a Zn finger protein that was isolated as a direct interactor with tobacco stress-induced 1 (Tsi1), plays an important role in both biotic and abiotic stress signaling. To further understand Tsip1 function, we searched for more Tsip1-interacting proteins by yeast two-hybrid screening using a tobacco cDNA library. Screening identified a new Tsip1-interacting protein, Nicotiana tabacum Tsip1-interacting ferredoxin 1 (NtTfd1), and binding specificity was confirmed both in vitro and in vivo. The four repeats of a cysteine-rich motif (CXXCXGXG) of Tsip1 proved important for binding to NtTfd1. Virus-induced gene silencing of NtTfd1, Tsip1, and NtTfd1/Tsip1 rendered plants more susceptible to salinity stress compared with TRV2 control plants. NtTfd1- and Tsip1-silenced tobacco plants were more susceptible to infection by Cucumber mosaic virus compared with control plants. These results suggest that NtTfd1 might be involved in the regulation of biotic and abiotic stresses in chloroplasts by interaction with Tsip1.
Collapse
Affiliation(s)
- Sung Un Huh
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701,
Korea
| | - In-Ju Lee
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701,
Korea
| | - Byung-Kook Ham
- Section of Plant Biology, College of Biological Sciences, University of California, California 95616,
USA
| | - Kyung-Hee Paek
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701,
Korea
| |
Collapse
|
52
|
Luo H, Chen S, Jiang J, Teng N, Chen Y, Chen F. The AP2-like gene NsAP2 from water lily is involved in floral organogenesis and plant height. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:992-8. [PMID: 22591856 DOI: 10.1016/j.jplph.2012.02.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 02/19/2012] [Accepted: 02/21/2012] [Indexed: 05/07/2023]
Abstract
APETALA2 (AP2) genes are ancient and widely distributed among the seed plants, and play an important role during the plant life cycle, acting as key regulators of many developmental processes. In this study, an AP2 homologue, NsAP2, was characterized from water lily (Nymphaea sp. cv. 'Yellow Prince') and is believed to be rather primitive in the evolution of the angiosperms. In situ RNA hybridization showed that NsAP2 transcript was present in all regions of the floral primordium, but had the highest level in the emerging floral organ primordium. After the differentiation of floral organs, NsAP2 was strongly expressed in sepals and petals, while low levels were found in stamens and carpels. The NsAP2 protein was suggested to be localized in the cell nucleus by onion transient expression experiment. Overexpression of NsAP2 in Arabidopsis led to more petal numbers, and Arabidopsis plants expressing NsAP2 exhibited higher plant height, which may be a result of down-regulated expression of GA2ox2 and GA2ox7. Our results indicated that the NsAP2 protein may function in flower organogenesis in water lily, and it is a promising gene for plant height improvement.
Collapse
Affiliation(s)
- Huolin Luo
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | | | | | | | | | | |
Collapse
|
53
|
Tsugama D, Liu S, Takano T. A bZIP protein, VIP1, is a regulator of osmosensory signaling in Arabidopsis. PLANT PHYSIOLOGY 2012; 159:144-55. [PMID: 22452852 PMCID: PMC3375958 DOI: 10.1104/pp.112.197020] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 03/25/2012] [Indexed: 05/18/2023]
Abstract
Abscisic acid is a stress-related phytohormone that has roles in dehydration and rehydration. In Arabidopsis (Arabidopsis thaliana), two genes that inactivate abscisic acid, CYP707A1 and CYP707A3, are rapidly up-regulated upon rehydration. The factors that regulate CYP707A1/3 are not well characterized. We expressed a bZIP protein, VIP1, as a green fluorescent protein fusion protein in Arabidopsis and found that the nuclear localization of VIP1 was enhanced within 10 min after rehydration. A yeast one-hybrid assay revealed that the amino-terminal region of VIP1 has transcriptional activation potential. In a transient reporter assay using Arabidopsis protoplasts, VIP1 enhanced the promoter activities of CYP707A1/3. In gel shift and chromatin immunoprecipitation analyses, VIP1 directly bound to DNA fragments of the CYP707A1/3 promoters. Transgenic plants expressing VIP1-green fluorescent protein were found to overexpress CYP707A1/3 mRNAs. The time course of nuclear-cytoplasmic shuttling of VIP1 was consistent with the time courses of the expression of CYP707A1/3. These results suggest that VIP1 functions as a regulator of osmosensory signaling in Arabidopsis.
Collapse
|
54
|
Mang HG, Qian W, Zhu Y, Qian J, Kang HG, Klessig DF, Hua J. Abscisic acid deficiency antagonizes high-temperature inhibition of disease resistance through enhancing nuclear accumulation of resistance proteins SNC1 and RPS4 in Arabidopsis. THE PLANT CELL 2012; 24:1271-84. [PMID: 22454454 PMCID: PMC3336126 DOI: 10.1105/tpc.112.096198] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 02/28/2012] [Accepted: 03/08/2012] [Indexed: 05/20/2023]
Abstract
Plant defense responses to pathogens are influenced by abiotic factors, including temperature. Elevated temperatures often inhibit the activities of disease resistance proteins and the defense responses they mediate. A mutant screen with an Arabidopsis thaliana temperature-sensitive autoimmune mutant bonzai1 revealed that the abscisic acid (ABA)-deficient mutant aba2 enhances resistance mediated by the resistance (R) gene suppressor of npr1-1 constitutive1 (SNC1) at high temperature. ABA deficiency promoted nuclear accumulation of SNC1, which was essential for it to function at low and high temperatures. Furthermore, the effect of ABA deficiency on SNC1 protein accumulation is independent of salicylic acid, whose effects are often antagonized by ABA. ABA deficiency also promotes the activity and nuclear localization of R protein resistance to Pseudomonas syringae4 at higher temperature, suggesting that the effect of ABA on R protein localization and nuclear activity is rather broad. By contrast, mutations that confer ABA insensitivity did not promote defense responses at high temperature, suggesting either tissue specificity of ABA signaling or a role of ABA in defense regulation independent of the core ABA signaling machinery. Taken together, this study reveals a new intersection between ABA and disease resistance through R protein localization and provides further evidence of antagonism between abiotic and biotic responses.
Collapse
Affiliation(s)
- Hyung-Gon Mang
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Weiqiang Qian
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Ying Zhu
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jun Qian
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Hong-Gu Kang
- Boyce Thompson Institute, Ithaca, New York 14853
- Department of Biology, Texas State University, San Marcos, Texas 78666
| | | | - Jian Hua
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
55
|
Alinsug MV, Chen FF, Luo M, Tai R, Jiang L, Wu K. Subcellular localization of class II HDAs in Arabidopsis thaliana: nucleocytoplasmic shuttling of HDA15 is driven by light. PLoS One 2012; 7:e30846. [PMID: 22363501 PMCID: PMC3281883 DOI: 10.1371/journal.pone.0030846] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 12/23/2011] [Indexed: 11/18/2022] Open
Abstract
Class II histone deacetylases in humans and other model organisms undergo nucleocytoplasmic shuttling. This unique functional regulatory mechanism has been well elucidated in eukaryotic organisms except in plant systems. In this study, we have paved the baseline evidence for the cytoplasmic and nuclear localization of Class II HDAs as well as their mRNA expression patterns. RT-PCR analysis on the different vegetative parts and developmental stages reveal that Class II HDAs are ubiquitously expressed in all tissues with minimal developmental specificity. Moreover, stable and transient expression assays using HDA-YFP/GFP fusion constructs indicate cytoplasmic localization of HDA5, HDA8, and HDA14 further suggesting their potential for nuclear transport and deacetylating organellar and cytoplasmic proteins. Organelle markers and stains confirm HDA14 to abound in the mitochondria and chloroplasts while HDA5 localizes in the ER. HDA15, on the other hand, shuttles in and out of the nucleus upon light exposure. In the absence of light, it is exported out of the nucleus where further re-exposition to light treatments signals its nuclear import. Unlike HDA5 which binds with 14-3-3 proteins, HDA15 fails to interact with these chaperones. Instead, HDA15 relies on its own nuclear localization and export signals to navigate its subcellular compartmentalization classifying it as a Class IIb HDA. Our study indicates that nucleocytoplasmic shuttling is indeed a hallmark for all eukaryotic Class II histone deacetylases.
Collapse
Affiliation(s)
- Malona V. Alinsug
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Fang Fang Chen
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ming Luo
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ready Tai
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Keqiang Wu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
56
|
Campo S, Peris-Peris C, Montesinos L, Peñas G, Messeguer J, San Segundo B. Expression of the maize ZmGF14-6 gene in rice confers tolerance to drought stress while enhancing susceptibility to pathogen infection. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:983-99. [PMID: 22016430 PMCID: PMC3254693 DOI: 10.1093/jxb/err328] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
14-3-3 proteins are found in all eukaryotes where they act as regulators of diverse signalling pathways associated with a wide range of biological processes. In this study the functional characterization of the ZmGF14-6 gene encoding a maize 14-3-3 protein is reported. Gene expression analyses indicated that ZmGF14-6 is up-regulated by fungal infection and salt treatment in maize plants, whereas its expression is down-regulated by drought stress. It is reported that rice plants constitutively expressing ZmGF14-6 displayed enhanced tolerance to drought stress which was accompanied by a stronger induction of drought-associated rice genes. However, rice plants expressing ZmGF14-6 either in a constitutive or under a pathogen-inducible regime showed a higher susceptibility to infection by the fungal pathogens Fusarium verticillioides and Magnaporthe oryzae. Under infection conditions, a lower intensity in the expression of defence-related genes occurred in ZmGF14-6 rice plants. These findings support that ZmGF14-6 positively regulates drought tolerance in transgenic rice while negatively modulating the plant defence response to pathogen infection. Transient expression assays of fluorescently labelled ZmGF14-6 protein in onion epidermal cells revealed a widespread distribution of ZmGF14-6 in the cytoplasm and nucleus. Additionally, colocalization experiments of fluorescently labelled ZmGF14-6 with organelle markers, in combination with cell labelling with the endocytic tracer FM4-64, revealed a subcellular localization of ZmGF14-6 in the early endosomes. Taken together, these results improve our understanding of the role of ZmGF14-6 in stress signalling pathways, while indicating that ZmGF14-6 inversely regulates the plant response to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Sonia Campo
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Parc de Recerca UAB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Cristina Peris-Peris
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Parc de Recerca UAB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Laura Montesinos
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Parc de Recerca UAB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Gisela Peñas
- Department of Plant Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Parc de Recerca UAB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Joaquima Messeguer
- Department of Plant Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Parc de Recerca UAB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Blanca San Segundo
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Parc de Recerca UAB, Edifici CRAG, Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
57
|
Wang H, Yang C, Zhang C, Wang N, Lu D, Wang J, Zhang S, Wang ZX, Ma H, Wang X. Dual role of BKI1 and 14-3-3 s in brassinosteroid signaling to link receptor with transcription factors. Dev Cell 2011; 21:825-34. [PMID: 22075146 DOI: 10.1016/j.devcel.2011.08.018] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 06/17/2011] [Accepted: 08/23/2011] [Indexed: 10/15/2022]
Abstract
The plasma membrane-localized plant steroid hormone receptor, BRASSINOSTEROID INSENSITIVE 1 (BRI1), is quiescent in the absence of steroids, largely due to a negative regulator, BRI1 KINASE INHIBITOR 1 (BKI1). Here, we report that the steroid-induced, plasma membrane-dissociated and phosphorylated BKI1 also plays positive roles in BR signaling by interacting with a subset of 14-3-3 proteins. The cytosolic fraction of BKI1 carboxyl terminal region enhances BR signaling. Mutations of two serine residues in this region lead to reduced phosphorylation by the BRI1 kinase and constitutive plasma membrane localization. The 14-3-3 proteins can interact with the phosphorylated BKI1 through a motif that contains the two phosphorylation sites to release inhibition of BRI1 by BKI1. Meanwhile, the cytosolic BKI1 antagonizes the 14-3-3 s and enhances accumulation of BRI1 EMS SUPPRESSOR 1 (BES1)/BRASSINAZOLE RESISTANT 1 (BZR1) in the nucleus to regulate BR-responses.
Collapse
Affiliation(s)
- Haijiao Wang
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Meier I, Somers DE. Regulation of nucleocytoplasmic trafficking in plants. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:538-46. [PMID: 21764628 DOI: 10.1016/j.pbi.2011.06.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 05/20/2023]
Abstract
The timing and position of molecular components within the cell are clearly important in the context of signal transduction. One challenge in attaining correct cellular positioning is the nuclear envelope, which separates the cell into two fundamentally different compartments. Molecular passaging from one to the other is highly selective due to the required recognition by the nucleocytoplasmic transport machinery. It is becoming increasingly clear that a highly diverse set of mechanisms have developed to allow environmental (biotic and abiotic) and endogenous signals to alter the nucleocytoplasmic partitioning of key molecules. In many cases this occurs by adjusting the access of the regulated species to the canonical import/export machinery. Recent studies are uncovering the sophistication and complexity of the processes that use the canonical transport machinery in the service of a diversity of signaling pathways.
Collapse
Affiliation(s)
- Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
59
|
Ito T, Nakata M, Ishida S, Takahashi Y. The mechanism of substrate recognition of Ca2+-dependent protein kinases. PLANT SIGNALING & BEHAVIOR 2011; 6:924-6. [PMID: 21633192 PMCID: PMC3257762 DOI: 10.4161/psb.6.7.15604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ca2+-dependent protein kinases (CDPKs) are encoded by a multigene family and are thought to play central roles in Ca2+ signaling in plants. Although the primary structures of CDPK isoforms are highly conserved, several studies suggested a distinct physiological function for each CDPK isoform in plants. Hence, there should be mechanisms by which individual CDPK specifically recognizes its substrate. Recently, the variable N-terminal domain of NtCDPK1 was shown to play an essential role in the specific recognition of the substrate. Because the variable N-terminal domain of other CDPKs may also be involved in the substrate recognition, the search for interacting proteins of the variable N-terminal domain would provide important clues to identify the physiological substrates of each CDPK. Additionally, manipulation of the variable N-terminal domain may enable us to engineer the substrate specificity of CDPK, leading a rational rewiring of cellular signaling pathways.
Collapse
Affiliation(s)
- Takeshi Ito
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan.
| | | | | | | |
Collapse
|
60
|
Li X, Dhaubhadel S. Soybean 14-3-3 gene family: identification and molecular characterization. PLANTA 2011; 233:569-82. [PMID: 21120521 DOI: 10.1007/s00425-010-1315-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/03/2010] [Indexed: 05/08/2023]
Abstract
The 14-3-3s are a group of proteins that are ubiquitously found in eukaryotes. Plant 14-3-3 proteins are encoded by a large multigene family and are involved in signaling pathways to regulate plant development and protection from stress. Recent studies in Arabidopsis and rice have demonstrated the isoform specificity in 14-3-3s and their client protein interactions. However, detailed characterization of 14-3-3 gene family in legumes has not been reported. In this study, soybean 14-3-3 proteins were identified and their molecular characterization performed. Data mining of soybean genome and expressed sequence tag databases identified 18 14-3-3 genes, of them 16 are transcribed. All 16 SGF14s have higher expression in embryo tissues suggesting their potential role in seed development. Subcellular localization of all transcribed SGF14s demonstrated that 14-3-3 proteins in soybean have isoform specificity, however, some overlaps were also observed between closely related isoforms. A comparative analysis of SGF14s with Arabidopsis and rice 14-3-3s indicated that SGF14s also group into epsilon and non-epsilon classes. However, unlike Arabidopsis and rice 14-3-3s, SGF14s contained only one kind of gene structure belonging to each class. Overall, soybean consists of the largest family of 14-3-3 proteins characterized to date. Our results provide a solid framework for further investigations into the role of SGF14s and their involvement in legume-specific functions.
Collapse
Affiliation(s)
- Xuyan Li
- Southern Crop Protection and Food Research Center, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| | | |
Collapse
|
61
|
Merkle T. Nucleo-cytoplasmic transport of proteins and RNA in plants. PLANT CELL REPORTS 2011; 30:153-76. [PMID: 20960203 PMCID: PMC3020307 DOI: 10.1007/s00299-010-0928-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 09/30/2010] [Indexed: 05/19/2023]
Abstract
Transport of macromolecules between the nucleus and the cytoplasm is an essential necessity in eukaryotic cells, since the nuclear envelope separates transcription from translation. In the past few years, an increasing number of components of the plant nuclear transport machinery have been characterised. This progress, although far from being completed, confirmed that the general characteristics of nuclear transport are conserved between plants and other organisms. However, plant-specific components were also identified. Interestingly, several mutants in genes encoding components of the plant nuclear transport machinery were investigated, revealing differential sensitivity of plant-specific pathways to impaired nuclear transport. These findings attracted attention towards plant-specific cargoes that are transported over the nuclear envelope, unravelling connections between nuclear transport and components of signalling and developmental pathways. The current state of research in plants is summarised in comparison to yeast and vertebrate systems, and special emphasis is given to plant nuclear transport mutants.
Collapse
Affiliation(s)
- Thomas Merkle
- Faculty of Biology, Institute for Genome Research and Systems Biology, University of Bielefeld, 33594 Bielefeld, Germany.
| |
Collapse
|
62
|
Fukazawa J, Nakata M, Ito T, Matsushita A, Yamaguchi S, Takahashi Y. bZIP transcription factor RSG controls the feedback regulation of NtGA20ox1 via intracellular localization and epigenetic mechanism. PLANT SIGNALING & BEHAVIOR 2011; 6:26-8. [PMID: 21248488 PMCID: PMC3122000 DOI: 10.4161/psb.6.1.14114] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 11/04/2010] [Indexed: 05/05/2023]
Abstract
Gibberellins (GAs) are phytohormones that regulate growth and development throughout the life cycle of plants. Negative feedback contributes to homeostasis of GA levels. DELLA proteins are involved in this process. Since DELLA proteins do not have apparent DNA binding motifs, other DNA binding proteins might act as a mediator downstream of DELLA proteins in the GA feedback regulation. In this review, we highlight the mechanisms of GA feedback regulation, specifically the differential regulation of GA 20-oxidase (GA20ox) and GA 3-oxidase (GA3ox) by transcription factors. RSG (REPRESSION OF SHOOT GROWTH) is a tobacco (Nicotiana tabacum) transcriptional activator with a basic leucine zipper domain that controls the levels of endogenous GAs through the regulation of GA biosynthesis genes. Recently we reported that RSG not only regulates the expression of ent-kaurene oxidase gene but is also involved in the negative feedback of NtGA20ox1 by GAs. RSG plays a role in the homeostasis of GAs through direct binding to the NtGA20ox1 promoter triggered by a decrease in GA levels in the cell. Furthermore, decreases in GA levels promote modifications of active histone marks on the NtGA20ox1 promoter. We have developed a hypothetical model to explain how RSG regulates dual target genes via epigenetic regulation.
Collapse
|
63
|
Shin R, Jez JM, Basra A, Zhang B, Schachtman DP. 14-3-3 proteins fine-tune plant nutrient metabolism. FEBS Lett 2010; 585:143-7. [PMID: 21094157 DOI: 10.1016/j.febslet.2010.11.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 11/17/2022]
Abstract
14-3-3 Proteins regulate many cellular processes by binding to phosphorylated proteins. Previous findings suggest a connection between three 14-3-3 isoforms and plant nutrient signaling. To better understand how these 14-3-3s regulate metabolism in response to changes in plant nutrient status, putative new targets involved in nitrogen (N) and sulfur (S) metabolisms have been identified. The interactions between these 14-3-3s and multiple proteins involved in N and S metabolism and altered activity of the target proteins were confirmed in planta. Using a combination of methods, this work elucidates how 14-3-3s function as modulators of plant N and S metabolic pathways.
Collapse
Affiliation(s)
- Ryoung Shin
- RIKEN Plant Science Center, Yokohama, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
64
|
Hong SY, Kim OK, Kim SG, Yang MS, Park CM. Nuclear import and DNA binding of the ZHD5 transcription factor is modulated by a competitive peptide inhibitor in Arabidopsis. J Biol Chem 2010; 286:1659-68. [PMID: 21059647 PMCID: PMC3020774 DOI: 10.1074/jbc.m110.167692] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Competitive inhibition of transcription factors by small proteins is an intriguing component of gene regulatory networks in both animals and plants. The small interfering proteins possess limited sequence homologies to specific transcription factors but lack one or more protein motifs required for transcription factor activities. They interfere with the activities of transcription factors, such as DNA binding and transcriptional activation, by forming nonfunctional heterodimers. A potential example is the Arabidopsis MIF1 (mini zinc finger 1) protein consisting of 101 residues. It has a zinc finger domain but lacks other protein motifs normally present in transcription factors. In this work, we show that MIF1 and its functional homologues physically interact with a group of zinc finger homeodomain (ZHD) transcription factors, such as ZHD5, that regulate floral architecture and leaf development. Gel mobility shift assays revealed that MIF1 blocks the DNA binding activity of ZHD5 homodimers by competitively forming MIF1-ZHD5 heterodimers. Accordingly, the transcriptional activation activity of ZHD5 was significantly suppressed by MIF1 coexpressed transiently in Arabidopsis protoplasts. Notably, MIF1 also prevents ZHD5 from nuclear localization. Although ZHD5 was localized exclusively in the nucleus, it was scattered throughout the cytoplasm when MIF1 was coexpressed. Transgenic plants overexpressing the ZHD5 gene (35S:ZHD5) exhibited accelerated growth with larger leaves. Consistent with the negative regulation of ZHD5 by MIF1, the 35S:ZHD5 phenotypes were diminished by MIF1 coexpression. These observations indicate that MIF1 regulates the ZHD5 activities in a dual step manner: nuclear import and DNA binding.
Collapse
Affiliation(s)
- Shin-Young Hong
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
65
|
Zhang ZT, Zhou Y, Li Y, Shao SQ, Li BY, Shi HY, Li XB. Interactome analysis of the six cotton 14-3-3s that are preferentially expressed in fibres and involved in cell elongation. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3331-44. [PMID: 20519337 PMCID: PMC2905198 DOI: 10.1093/jxb/erq155] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 04/25/2010] [Accepted: 05/12/2010] [Indexed: 05/18/2023]
Abstract
Proteins of the 14-3-3 family regulate a divergent set of signalling pathways in all eukaryotic organisms. In this study, several cDNAs encoding 14-3-3 proteins were isolated from a cotton fibre cDNA library. The Gh14-3-3 genes share high sequence homology at the nucleotide level in the coding region and at the amino acid level. Real-time quantitative RT-PCR analysis indicated that the expression of these Gh14-3-3 genes is developmentally regulated in fibres, and reached their peak at the stage of rapid cell elongation of fibre development. Furthermore, overexpression of Gh14-3-3a, Gh14-3-3e, and Gh14-3-3L in fission yeast promoted atypical longitudinal growth of the host cells. Yeast two-hybrid analysis revealed that the interaction between cotton 14-3-3 proteins is isoform selective. Through yeast two-hybrid screening, 38 novel interaction partners of the six 14-3-3 proteins (Gh14-3-3a, Gh14-3-3e, Gh14-3-3f, Gh14-3-3g, Gh14-3-3h, and Gh14-3-3L), which are involved in plant development, metabolism, signalling transduction, and other cellular processes, were identified in cotton fibres. Taking these data together, it is proposed that the Gh14-3-3 proteins may participate in regulation of fibre cell elongation. Thus, the results of this study provide novel insights into the 14-3-3 signalling related to fibre development of cotton.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xue-Bao Li
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
66
|
Ito T, Nakata M, Fukazawa J, Ishida S, Takahashi Y. Alteration of substrate specificity: the variable N-terminal domain of tobacco Ca(2+)-dependent protein kinase is important for substrate recognition. THE PLANT CELL 2010; 22:1592-604. [PMID: 20442373 PMCID: PMC2899867 DOI: 10.1105/tpc.109.073577] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/05/2010] [Accepted: 04/20/2010] [Indexed: 05/03/2023]
Abstract
Protein kinases are major signaling molecules that are involved in a variety of cellular processes. However, the molecular mechanisms whereby protein kinases discriminate specific substrates are still largely unknown. Ca(2+)-dependent protein kinases (CDPKs) play central roles in Ca(2+) signaling in plants. Previously, we found that a tobacco (Nicotiana tabacum) CDPK1 negatively regulated the transcription factor REPRESSION OF SHOOT GROWTH (RSG), which is involved in gibberellin feedback regulation. Here, we found that the variable N-terminal domain of CDPK1 is necessary for the recognition of RSG. A mutation (R10A) in the variable N-terminal domain of CDPK1 reduced both RSG binding and RSG phosphorylation while leaving kinase activity intact. Furthermore, the R10A mutation suppressed the in vivo function of CDPK1. The substitution of the variable N-terminal domain of an Arabidopsis thaliana CDPK, At CPK9, with that of Nt CDPK1 conferred RSG kinase activities. This chimeric CDPK behaved according to the identity of the variable N-terminal domain in transgenic plants. Our results open the possibility of engineering the substrate specificity of CDPK by manipulation of the variable N-terminal domain, enabling a rational rewiring of cellular signaling pathways.
Collapse
Affiliation(s)
- Takeshi Ito
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Masaru Nakata
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | | | - Sarahmi Ishida
- Department of Biological Sciences, Graduate School of Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yohsuke Takahashi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
67
|
Zhang G, Chen M, Chen X, Xu Z, Li L, Guo J, Ma Y. Isolation and characterization of a novel EAR-motif-containing gene GmERF4 from soybean (Glycine max L.). Mol Biol Rep 2010; 37:809-18. [PMID: 19597961 DOI: 10.1007/s11033-009-9616-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 07/02/2009] [Indexed: 12/24/2022]
Abstract
Transcriptional repressors are emerging as central regulators of development and stress responses in different organisms. The ERF-associated amphiphilic repression (EAR) motif was identified as essential for transcriptional repression. To gain a better understanding of this type of protein, we reported here a novel GmERF4 protein from soybean. Sequence alignment showed that GmERF4 contains one AP2/ERF domain, two putative nuclear localization signal regions and one EAR motif. The GmERF4 protein was preferentially localized to the nucleus of onion epidermis cells and bound specifically to the GCC box and DRE/CRT element in vitro. Furthermore, the expression of GmERF4 was induced by ethylene, JA, SA, cold, salt, drought, and soybean mosaic virus, and repressed by ABA. Constitutive expression of GmERF4 in transgenic tobacco plants increased tolerance to salt and drought stresses compared with wild-type plants, but did not exhibit detectable resistance against bacterial infection.
Collapse
Affiliation(s)
- Gaiyun Zhang
- Department of Chemistry, University of Science and Technology of China, 230026, Hefei, China
| | | | | | | | | | | | | |
Collapse
|
68
|
Meier I, Brkljacic J. The Arabidopsis nuclear pore and nuclear envelope. THE ARABIDOPSIS BOOK 2010; 8:e0139. [PMID: 22303264 PMCID: PMC3244964 DOI: 10.1199/tab.0139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities of nuclear transport receptors, nucleoporins, and elements of the Ran GTPase cycle. In addition to directional and possibly selective protein and RNA nuclear import and export, the nuclear pore gains increasing prominence as a spatial organizer of cellular processes, such as sumoylation and desumoylation. Individual nucleoporins and whole nuclear pore subcomplexes traffic to specific mitotic locations and have mitotic functions, for example at the kinetochores, in spindle assembly, and in conjunction with the checkpoints. Mutants of nucleoporin genes and genes of nuclear transport components lead to a wide array of defects from human diseases to compromised plant defense responses. The nuclear envelope acts as a repository of calcium, and its inner membrane is populated by functionally unique proteins connected to both chromatin and-through the nuclear envelope lumen-the cytoplasmic cytoskeleton. Plant nuclear pore and nuclear envelope research-predominantly focusing on Arabidopsis as a model-is discovering both similarities and surprisingly unique aspects compared to the more mature model systems. This chapter gives an overview of our current knowledge in the field and of exciting areas awaiting further exploration.
Collapse
Affiliation(s)
- Iris Meier
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, 520 Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210
- Address correspondence to
| | - Jelena Brkljacic
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, 520 Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210
| |
Collapse
|
69
|
Chang IF, Curran A, Woolsey R, Quilici D, Cushman JC, Mittler R, Harmon A, Harper JF. Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana. Proteomics 2009; 9:2967-85. [PMID: 19452453 DOI: 10.1002/pmic.200800445] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In eukaryotes, 14-3-3 dimers regulate hundreds of functionally diverse proteins (clients), typically in phosphorylation-dependent interactions. To uncover new clients, 14-3-3 omega (At1g78300) from Arabidopsis was engineered with a "tandem affinity purification" tag and expressed in transgenic plants. Purified complexes were analyzed by tandem MS. Results indicate that 14-3-3 omega can dimerize with at least 10 of the 12 14-3-3 isoforms expressed in Arabidopsis. The identification here of 121 putative clients provides support for in vivo 14-3-3 interactions with a diverse array of proteins, including those involved in: (i) Ion transport, such as a K(+) channel (GORK), a Cl(-) channel (CLCg), Ca(2+) channels belonging to the glutamate receptor family (1.2, 2.1, 2.9, 3.4, 3.7); (ii) hormone signaling, such as ACC synthase (isoforms ACS-6, -7 and -8 involved in ethylene synthesis) and the brassinolide receptors BRI1 and BAK1; (iii) transcription, such as 7 WRKY family transcription factors; (iv) metabolism, such as phosphoenol pyruvate carboxylase; and (v) lipid signaling, such as phospholipase D (beta and gamma). More than 80% (101) of these putative clients represent previously unidentified 14-3-3 interactors. These results raise the number of putative 14-3-3 clients identified in plants to over 300.
Collapse
Affiliation(s)
- Ing-Feng Chang
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Nakata M, Yuasa T, Takahashi Y, Ishida S. CDPK1, a calcium-dependent protein kinase, regulates transcriptional activator RSG in response to gibberellins. PLANT SIGNALING & BEHAVIOR 2009; 4:372-4. [PMID: 19816103 PMCID: PMC2676745 DOI: 10.4161/psb.4.5.8229] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The homeostasis of gibberellins (GAs) is maintained by negative-feedback regulation in plant cells. REPRESSION OF SHOOT GROWTH (RSG) is a transcriptional activator with a basic Leu zipper domain suggested to contribute GA feedback regulation by the transcriptional regulation of genes encoding GA biosynthetic enzymes. The 14-3-3 signaling proteins negatively regulate RSG by sequestering it in the cytoplasm in response to GAs. The phosphorylation on Ser-114 of RSG is essential for 14-3-3 binding of RSG; however, the kinase that catalyzes the reaction is unknown. Recently a Ca(2+)-dependent protein kinase (CDPK) was identified as an RSG kinase that promotes 14-3-3 binding of RSG by phosphorylation of the Ser-114 of RSG. Our results suggest that CDPK decodes the Ca(2+) signal produced by GAs and regulates the intracellular localization of RSG in plant cells.
Collapse
Affiliation(s)
- Masaru Nakata
- Department of Biological Science; Graduate School of Science; Hiroshima University; Kagamiyama, Higashi-Hiroshima Japan
| | - Takashi Yuasa
- Department of Plant Resources; Faculty of Agriculture; Kyushu University; Hakozaki; Higashi-ku, Fukuoka, Japan
| | - Yohsuke Takahashi
- Department of Biological Science; Graduate School of Science; Hiroshima University; Kagamiyama, Higashi-Hiroshima Japan
| | - Sarahmi Ishida
- Department of Biological Sciences; Graduate School of Science; University of Tokyo; Hongo; Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
71
|
Ishida S, Yuasa T, Nakata M, Takahashi Y. A tobacco calcium-dependent protein kinase, CDPK1, regulates the transcription factor REPRESSION OF SHOOT GROWTH in response to gibberellins. THE PLANT CELL 2008; 20:3273-88. [PMID: 19106376 PMCID: PMC2630431 DOI: 10.1105/tpc.107.057489] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 11/08/2008] [Accepted: 12/04/2008] [Indexed: 05/18/2023]
Abstract
The homeostasis of gibberellins (GAs) is maintained by negative feedback in plants. REPRESSION OF SHOOT GROWTH (RSG) is a tobacco (Nicotiana tabacum) transcriptional activator that has been suggested to play a role in GA feedback by the regulation of GA biosynthetic enzymes. The 14-3-3 signaling proteins negatively regulate RSG by sequestering it in the cytoplasm in response to GAs. The phosphorylation on Ser-114 of RSG is essential for 14-3-3 binding of RSG. Here, we identified tobacco Ca(2+)-dependent protein kinase (CDPK1) as an RSG kinase that promotes 14-3-3 binding to RSG by phosphorylation of Ser-114 of RSG. CDPK1 interacts with RSG in a Ca(2+)-dependent manner in vivo and in vitro and specifically phosphorylates Ser-114 of RSG. Inhibition of CDPK repressed the GA-induced phosphorylation of Ser-114 of RSG and the GA-induced nuclear export of RSG. Overexpression of CDPK1 inhibited the feedback regulation of a GA 20-oxidase gene and resulted in sensitization to the GA biosynthetic inhibitor. Our results suggest that CDPK1 decodes the Ca(2+) signal produced by GAs and regulates the intracellular localization of RSG.
Collapse
Affiliation(s)
- Sarahmi Ishida
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
72
|
Whalen M, Richter T, Zakhareyvich K, Yoshikawa M, Al-Azzeh D, Adefioye A, Spicer G, Mendoza LL, Morales CQ, Klassen V, Perez-Baron G, Toebe CS, Tzovolous A, Gerstman E, Evans E, Thompson C, Lopez M, Ronald PC. Identification of a host 14-3-3 Protein that Interacts with Xanthomonas effector AvrRxv. PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2008; 72:46-55. [PMID: 21796232 PMCID: PMC3142867 DOI: 10.1016/j.pmpp.2008.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
AvrRxv is a member of a family of pathogen effectors present in pathogens of both plant and mammalian species. Xanthomonas campestris pv. vesicatoria strains carrying AvrRxv induce a hypersensitive response (HR) in the tomato cultivar Hawaii 7998. Using a yeast two-hybrid screen, we identified a 14-3-3 protein from tomato that interacts with AvrRxv called AvrRxv Interactor 1 (ARI1). The interaction was confirmed in vitro with affinity chromatography. Using mutagenesis, we identified a 14-3-3-binding domain in AvrRxv and demonstrated that a mutant in that domain showed concomitant loss of interaction with ARI1 and HR-inducing activity in tomato. These results demonstrate that the AvrRxv bacterial effector recruits 14-3-3 proteins for its function within host cells. AvrRxv homologues YopP and YopJ from Yersinia do not have AvrRxv-specific HR-inducing activity when delivered into tomato host cells by Agrobacterium. Although YopP itself cannot induce HR, its C-terminal domain containing the catalytic residues can replace that of AvrRxv in an AvrRxv-YopP chimera for HR-inducing activity. Phylogenetic analysis indicates that the sequences encoding the C-termini of family members are evolving independently from those encoding the N-termini. Our results support a model in which there are three functional domains in proteins of the family, translocation, interaction, and catalytic.
Collapse
Affiliation(s)
- Maureen Whalen
- Crop Improvement and Utilization Unit, Western Regional Research Center, ARS USDA, 800 Buchanan Street, Albany, CA 94710, US
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
- Corresponding author. Crop Improvement and Utilization Unit, Western Regional Research Center, ARS USDA, 800 Buchanan Street, Albany, CA 94710, USA. Tel.: +1 510 559 5950; fax: + 1 510 559 5818. (M.C. Whalen), (P.C. Ronald)
| | - Todd Richter
- Department of Plant Pathology, University of California at Davis, One Shields Ave, Davis CA 95616, USA
| | - Kseniya Zakhareyvich
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Masayasu Yoshikawa
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Dana Al-Azzeh
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Adeshola Adefioye
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Greg Spicer
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Laura L. Mendoza
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Christine Q. Morales
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Vicki Klassen
- Department of Biology, City College of San Francisco, 50 Phelan Avenue, San Francisco, CA 94112, USA
| | - Gina Perez-Baron
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Carole S. Toebe
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
- Department of Biology, City College of San Francisco, 50 Phelan Avenue, San Francisco, CA 94112, USA
| | - Ageliki Tzovolous
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Emily Gerstman
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Erika Evans
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Cheryl Thompson
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Mary Lopez
- Biology Department, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Pamela C. Ronald
- Department of Plant Pathology, University of California at Davis, One Shields Ave, Davis CA 95616, USA
| |
Collapse
|
73
|
Mayfield JD, Folta KM, Paul AL, Ferl RJ. The 14-3-3 Proteins mu and upsilon influence transition to flowering and early phytochrome response. PLANT PHYSIOLOGY 2007; 145:1692-702. [PMID: 17951453 PMCID: PMC2151679 DOI: 10.1104/pp.107.108654] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 09/29/2007] [Indexed: 05/18/2023]
Abstract
14-3-3 proteins regulate a diverse set of biological responses but developmental phenotypes associated with 14-3-3 mutations have not been described in plants. Here, physiological and biochemical tests demonstrate interactions between 14-3-3s and the well-established mechanisms that govern light sensing and photoperiodic flowering control. Plants featuring homozygous disruption of 14-3-3 isoforms upsilon and mu display defects in light sensing and/or response. Mutant plants flower late and exhibit long hypocotyls under red light, with little effect under blue or far-red light. The long hypocotyl phenotype is consistent with a role for 14-3-3 upsilon and mu in phytochrome B signaling. Yeast two-hybrid and coimmunoprecipitation assays indicate that 14-3-3 upsilon and mu proteins physically interact with CONSTANS, a central regulator of the photoperiod pathway. Together, these data indicate a potential role for specific 14-3-3 isoforms in affecting photoperiodic flowering via interaction with CONSTANS, possibly as integrators of light signals sensed through the phytochrome system.
Collapse
Affiliation(s)
- John D Mayfield
- Plant Molecular and Cellular Biology Program and Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | |
Collapse
|
74
|
Gampala SS, Kim TW, He JX, Tang W, Deng Z, Bai MY, Guan S, Lalonde S, Sun Y, Gendron JM, Chen H, Shibagaki N, Ferl RJ, Ehrhardt D, Chong K, Burlingame AL, Wang ZY. An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Dev Cell 2007; 13:177-89. [PMID: 17681130 PMCID: PMC2000337 DOI: 10.1016/j.devcel.2007.06.009] [Citation(s) in RCA: 350] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 05/12/2007] [Accepted: 06/18/2007] [Indexed: 12/27/2022]
Abstract
Brassinosteroids (BRs) are essential hormones for plant growth and development. BRs regulate gene expression by inducing dephosphorylation of two key transcription factors, BZR1 and BZR2/BES1, through a signal transduction pathway that involves cell-surface receptors (BRI1 and BAK1) and a GSK3 kinase (BIN2). How BR-regulated phosphorylation controls the activities of BZR1/BZR2 is not fully understood. Here, we show that BIN2-catalyzed phosphorylation of BZR1/BZR2 not only inhibits DNA binding, but also promotes binding to the 14-3-3 proteins. Mutations of a BIN2-phosphorylation site in BZR1 abolish 14-3-3 binding and lead to increased nuclear localization of BZR1 protein and enhanced BR responses in transgenic plants. Further, BR deficiency increases cytoplasmic localization, and BR treatment induces rapid nuclear localization of BZR1/BZR2. Thus, 14-3-3 binding is required for efficient inhibition of phosphorylated BR transcription factors, largely through cytoplasmic retention. This study demonstrates that multiple mechanisms are required for BR regulation of gene expression and plant growth.
Collapse
Affiliation(s)
- Srinivas S Gampala
- Department of Plant Biology, Carnegie Institution, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Ryu H, Kim K, Cho H, Park J, Choe S, Hwang I. Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. THE PLANT CELL 2007; 19:2749-62. [PMID: 17873094 PMCID: PMC2048706 DOI: 10.1105/tpc.107.053728] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Phytohormone brassinosteroids (BRs) play critical roles in plant growth and development. BR acts by modulating the phosphorylation status of two key transcriptional factors, BRI1 EMS SUPPRESSOR1 and BRASSINAZOLE RESISTANT1 (BZR1), through the action of BRASSINOSTEROID INSENSITIVE1/BRI1 ASSOCIATED RECEPTOR KINASE1 receptors and a GSK3 kinase, BRASSINOSTEROID INSENSITIVE2 (BIN2). It is still unknown how the perception of BR at the plasma membrane connects to the expression of BR target genes in the nucleus. We show here that BZR1 functions as a nucleocytoplasmic shuttling protein and GSK3-like kinases induce the nuclear export of BZR1 by modulating BZR1 interaction with the 14-3-3 proteins. BR-activated phosphatase mediates rapid nuclear localization of BZR1. Besides the phosphorylation domain for 14-3-3 binding, another phosphorylation domain in BZR1 is required for the BIN2-induced nuclear export of BZR1. Mutations of putative phosphorylation sites in two distinct domains enhance the nuclear retention of BZR1 and BR responses in transgenic plants. We propose that the spatial redistribution of BZR1 is critical for proper BR signaling in plant growth and development.
Collapse
Affiliation(s)
- Hojin Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | | | |
Collapse
|
76
|
Sato Y, Morita R, Nishimura M, Yamaguchi H, Kusaba M. Mendel's green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway. Proc Natl Acad Sci U S A 2007; 104:14169-74. [PMID: 17709752 PMCID: PMC1955798 DOI: 10.1073/pnas.0705521104] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Indexed: 11/18/2022] Open
Abstract
Mutants that retain greenness of leaves during senescence are known as "stay-green" mutants. The most famous stay-green mutant is Mendel's green cotyledon pea, one of the mutants used in determining the law of genetics. Pea plants homozygous for this recessive mutation (known as i at present) retain greenness of the cotyledon during seed maturation and of leaves during senescence. We found tight linkage between the I locus and stay-green gene originally found in rice, SGR. Molecular analysis of three i alleles including one with no SGR expression confirmed that the I gene encodes SGR in pea. Functional analysis of sgr mutants in pea and rice further revealed that leaf functionality is lowered despite a high chlorophyll a (Chl a) and chlorophyll b (Chl b) content in the late stage of senescence, suggesting that SGR is primarily involved in Chl degradation. Consistent with this observation, a wide range of Chl-protein complexes, but not the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit, were shown to be more stable in sgr than wild-type plants. The expression of OsCHL and NYC1, which encode the first enzymes in the degrading pathways of Chl a and Chl b, respectively, was not affected by sgr in rice. The results suggest that SGR might be involved in activation of the Chl-degrading pathway during leaf senescence through translational or posttranslational regulation of Chl-degrading enzymes.
Collapse
Affiliation(s)
- Yutaka Sato
- *Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Ryouhei Morita
- Institute of Radiation Breeding, National Institute of Agrobiological Sciences, Hitachi-ohmiya 219-2293, Japan; and
| | - Minoru Nishimura
- Institute of Radiation Breeding, National Institute of Agrobiological Sciences, Hitachi-ohmiya 219-2293, Japan; and
| | - Hiroyasu Yamaguchi
- National Institute of Floricultural Sciences, National Agriculture and Food Research Organization, Tsukuba 305-8519, Japan
| | - Makoto Kusaba
- *Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
77
|
Bai MY, Zhang LY, Gampala SS, Zhu SW, Song WY, Chong K, Wang ZY. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci U S A 2007; 104:13839-44. [PMID: 17699623 PMCID: PMC1959469 DOI: 10.1073/pnas.0706386104] [Citation(s) in RCA: 320] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Indexed: 12/31/2022] Open
Abstract
Brassinosteroids (BR) are essential growth hormones found throughout the plant kingdom. BR bind to the receptor kinase BRI1 on the cell surface to activate a signal transduction pathway that regulates nuclear gene expression and plant growth. To understand the downstream BR signaling mechanism in rice, we studied the function of OsBZR1 using reverse genetic approaches and identified OsBZR1-interacting proteins. Suppressing OsBZR1 expression by RNAi resulted in dwarfism, erect leaves, reduced BR sensitivity, and altered BR-responsive gene expression in transgenic rice plants, demonstrating an essential role of OsBZR1 in BR responses in rice. Moreover, a yeast two-hybrid screen identified 14-3-3 proteins as OsBZR1-interacting proteins. Mutation of a putative 14-3-3-binding site of OsBZR1 abolished its interaction with the 14-3-3 proteins in yeast and in vivo. Such mutant OsBZR1 proteins suppressed the phenotypes of the Arabidopsis bri1-5 mutant and showed an increased nuclear distribution compared with the wild-type protein, suggesting that 14-3-3 proteins directly inhibit OsBZR1 function at least in part by reducing its nuclear localization. These results demonstrate a conserved function of OsBZR1 and an important role of 14-3-3 proteins in brassinosteroid signal transduction in rice.
Collapse
Affiliation(s)
- Ming-Yi Bai
- *Key Laboratory of Photosynthesis and Environmental Molecular Biology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Li-Ying Zhang
- *Key Laboratory of Photosynthesis and Environmental Molecular Biology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | - Sheng-Wei Zhu
- *Key Laboratory of Photosynthesis and Environmental Molecular Biology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wen-Yuan Song
- Department of Plant Pathology, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611
| | - Kang Chong
- *Key Laboratory of Photosynthesis and Environmental Molecular Biology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhi-Yong Wang
- *Key Laboratory of Photosynthesis and Environmental Molecular Biology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Department of Plant Biology, Carnegie Institution, Stanford, CA 94305; and
| |
Collapse
|
78
|
Robb J, Lee B, Nazar RN. Gene suppression in a tolerant tomato-vascular pathogen interaction. PLANTA 2007; 226:299-309. [PMID: 17308929 DOI: 10.1007/s00425-007-0482-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 01/19/2007] [Indexed: 05/14/2023]
Abstract
A plant can respond to the threat of a pathogen through resistance defenses or through tolerance. Resistance has been widely studied in many host pathogen systems but little is known about genetic changes which underlie a tolerant interaction. A recently developed model system for a tolerant tomato (Lycopersicon esculentum Mill) interaction with a fungal wilt pathogen, Verticillium dahliae Kleb, is examined with respect to changes in gene expression and compared to a susceptible infection. The results indicate that genetic changes can be dramatically different and some genes that are strongly elevated in the susceptible interaction are actually down-regulated in tolerance. Similar levels of fungal DNA and an up-regulation of many pathogenesis related genes indicate that in both types of interaction the presence of fungus is clearly recognized by the plant but other changes correlate with the absence of symptoms in the tolerant interaction. For example, a gene encoding a known 14-3-3 regulatory protein and a number of genes normally affected by this protein are down-regulated. Furthermore, genes which may contribute to foliar necrosis and cell death in the susceptible interaction also appear to be suppressed in the tolerant interaction, raising the possibility that the wilt symptoms, chlorosis and necrosis which are observed in the susceptible interaction, are actually programmed to further limit the growth of the fungal pathogen, and protect the general tomato population.
Collapse
Affiliation(s)
- Jane Robb
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | | | | |
Collapse
|
79
|
Gibberellins and heterosis of plant height in wheat (Triticum aestivum L.). BMC Genet 2007; 8:40. [PMID: 17598921 PMCID: PMC1929121 DOI: 10.1186/1471-2156-8-40] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 06/29/2007] [Indexed: 12/16/2022] Open
Abstract
Background Heterosis in internode elongation and plant height are commonly observed in hybrid plants, and higher GAs contents were found to be correlated with the heterosis in plant height. However, the molecular basis for the increased internode elongation in hybrids is unknown. Results In this study, heterosis in plant height was determined in two wheat hybrids, and it was found that the increased elongation of the uppermost internode contributed mostly to the heterosis in plant height. Higher GA4 level was also observed in a wheat hybrid. By using the uppermost internode tissues of wheat, we examined expression patterns of genes participating in both GA biosynthesis and GA response pathways between a hybrid and its parental inbreds. Our results indicated that among the 18 genes analyzed, genes encoding enzymes that promote synthesis of bioactive GAs, and genes that act as positive components in the GA response pathways were up-regulated in hybrid, whereas genes encoding enzymes that deactivate bioactive GAs, and genes that act as negative components of GA response pathways were down-regulated in hybrid. Moreover, the putative wheat GA receptor gene TaGID1, and two GA responsive genes participating in internode elongation, GIP and XET, were also up-regulated in hybrid. A model for GA and heterosis in wheat plant height was proposed. Conclusion Our results provided molecular evidences not only for the higher GA levels and more active GA biosynthesis in hybrid, but also for the heterosis in plant height of wheat and possibly other cereal crops.
Collapse
|
80
|
Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. THE PLANT CELL 2007; 19:1362-75. [PMID: 17416733 PMCID: PMC1913755 DOI: 10.1105/tpc.106.042911] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chlorophyll degradation is an aspect of leaf senescence, which is an active process to salvage nutrients from old tissues. non-yellow coloring1 (nyc1) is a rice (Oryza sativa) stay-green mutant in which chlorophyll degradation during senescence is impaired. Pigment analysis revealed that degradation of not only chlorophylls but also light-harvesting complex II (LHCII)-bound carotenoids was repressed in nyc1, in which most LHCII isoforms were selectively retained during senescence. Ultrastructural analysis of nyc1 chloroplasts revealed that large and thick grana were present even in the late stage of senescence, suggesting that degradation of LHCII is required for the proper degeneration of thylakoid membranes. Map-based cloning of NYC1 revealed that it encodes a chloroplast-localized short-chain dehydrogenase/reductase (SDR) with three transmembrane domains. The predicted structure of the NYC1 protein and the phenotype of the nyc1 mutant suggest the possibility that NYC1 is a chlorophyll b reductase. Although we were unable to detect the chlorophyll b reductase activity of NYC1, NOL (for NYC1-like), a protein closely related to NYC1 in rice, showed chlorophyll b reductase activity in vitro. We suggest that NYC1 and NOL encode chlorophyll b reductases with divergent functions. Our data collectively suggest that the identified SDR protein NYC1 plays essential roles in the regulation of LHCII and thylakoid membrane degradation during senescence.
Collapse
Affiliation(s)
- Makoto Kusaba
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Matsushita A, Furumoto T, Ishida S, Takahashi Y. AGF1, an AT-hook protein, is necessary for the negative feedback of AtGA3ox1 encoding GA 3-oxidase. PLANT PHYSIOLOGY 2007; 143:1152-62. [PMID: 17277098 PMCID: PMC1820926 DOI: 10.1104/pp.106.093542] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Negative feedback is a fundamental mechanism of organisms to maintain the internal environment within tolerable limits. Gibberellins (GAs) are essential regulators of many aspects of plant development, including seed germination, stem elongation, and flowering. GA biosynthesis is regulated by the feedback mechanism in plants. GA 3-oxidase (GA3ox) catalyzes the final step of the biosynthetic pathway to produce the physiologically active GAs. Here, we found that only the AtGA3ox1 among the AtGA3ox family of Arabidopsis (Arabidopsis thaliana) is under the regulation of GA-negative feedback. We have identified a cis-acting sequence responsible for the GA-negative feedback of AtGA3ox1 using transgenic plants. Furthermore, we have identified an AT-hook protein, AGF1 (for the AT-hook protein of GA feedback regulation), as a DNA-binding protein for the cis-acting sequence of GA-negative feedback. The mutation in the cis-acting sequence abolished both GA-negative feedback and AGF1 binding. In addition, constitutive expression of AGF1 affected GA-negative feedback in Arabidopsis. Our results suggest that AGF1 plays a role in the homeostasis of GAs through binding to the cis-acting sequence of the GA-negative feedback of AtGA3ox1.
Collapse
Affiliation(s)
- Akane Matsushita
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
82
|
Schoonheim PJ, Veiga H, Pereira DDC, Friso G, van Wijk KJ, de Boer AH. A comprehensive analysis of the 14-3-3 interactome in barley leaves using a complementary proteomics and two-hybrid approach. PLANT PHYSIOLOGY 2007; 143:670-83. [PMID: 17172288 PMCID: PMC1803744 DOI: 10.1104/pp.106.090159] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This study describes the identification of over 150 target proteins of the five 14-3-3 isoforms in 7-d-old barley (Hordeum vulgare) cv Himalaya seedlings using yeast two-hybrid screens complemented with 14-3-3 protein affinity purification and tandem mass spectrometry. Independent experiments for a subset of genes confirmed the yeast two-hybrid interactions, demonstrating a low false positive identification rate. These combined approaches resulted in the identification of more than 150 putative targets; 15% were previously reported to be 14-3-3 interactors, including, for example, Serpin, RF2A, WPK4 kinase, P-type proton-translocating adenosine triphosphatase, EF1A, glutamine synthetase, and invertases. The affinity purification resulted in 30 interactors, of which 44% function in metabolism, while the yeast two-hybrid screens identified 132 different proteins, with 35% of the proteins involved in signal transduction. A number of proteins have a well-described function in hormonal signaling, such as the auxin transport protein PIN1 and NPH3 and components of the brassinosteroid pathway, such as the receptor kinase BAK1 (OsPERK1) and BRI1-kinase domain-interacting protein 129. However, 14-3-3 interactions with these signal mediators have not been confirmed in the affinity purification. Confirmations of the 14-3-3 interaction with the three ABF-like transcription factors are shown using far western analysis. Also, a REPRESSION OF SHOOT GROWTH ortholog named RF2A was identified; these transcription factors play important roles in the abscisic acid and gibberellin pathways, respectively. We speculate that 14-3-3 proteins have a role in cross talk between these hormonal pathways. The specificity and complementary nature of both the affinity purification and the yeast two-hybrid approaches is discussed.
Collapse
Affiliation(s)
- Peter J Schoonheim
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
83
|
Tillemans V, Leponce I, Rausin G, Dispa L, Motte P. Insights into nuclear organization in plants as revealed by the dynamic distribution of Arabidopsis SR splicing factors. THE PLANT CELL 2006; 18:3218-34. [PMID: 17114353 PMCID: PMC1693954 DOI: 10.1105/tpc.106.044529] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Serine/arginine-rich (SR) proteins are splicing regulators that share a modular structure consisting of one or two N-terminal RNA recognition motif domains and a C-terminal RS-rich domain. We investigated the dynamic localization of the Arabidopsis thaliana SR protein RSZp22, which, as we showed previously, distributes in predominant speckle-like structures and in the nucleolus. To determine the role of RSZp22 diverse domains in its nucleolar distribution, we investigated the subnuclear localization of domain-deleted mutant proteins. Our results suggest that the nucleolar localization of RSZp22 does not depend on a single targeting signal but likely involves different domains/motifs. Photobleaching experiments demonstrated the unrestricted dynamics of RSZp22 between nuclear compartments. Selective inhibitor experiments of ongoing cellular phosphorylation influenced the rates of exchange of RSZp22 between the different nuclear territories, indicating that SR protein mobility is dependent on the phosphorylation state of the cell. Furthermore, based on a leptomycin B- and fluorescence loss in photobleaching-based sensitive assay, we suggest that RSZp22 is a nucleocytoplasmic shuttling protein. Finally, with electron microscopy, we confirmed that RSp31, a plant-specific SR protein, is dynamically distributed in nucleolar cap-like structures upon phosphorylation inhibition. Our findings emphasize the high mobility of Arabidopsis SR splicing factors and provide insights into the dynamic relationships between the different nuclear compartments.
Collapse
Affiliation(s)
- Vinciane Tillemans
- Laboratory of Plant Cell and Molecular Biology, Department of Life Sciences, Institute of Botany, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
84
|
Kaminaka H, Näke C, Epple P, Dittgen J, Schütze K, Chaban C, Holt BF, Merkle T, Schäfer E, Harter K, Dangl JL. bZIP10-LSD1 antagonism modulates basal defense and cell death in Arabidopsis following infection. EMBO J 2006; 25:4400-11. [PMID: 16957775 PMCID: PMC1570446 DOI: 10.1038/sj.emboj.7601312] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 08/08/2006] [Indexed: 12/20/2022] Open
Abstract
Plants use sophisticated strategies to balance responses to oxidative stress. Programmed cell death, including the hypersensitive response (HR) associated with successful pathogen recognition, is one cellular response regulated by reactive oxygen in various cellular contexts. The Arabidopsis basic leucine zipper (bZIP) transcription factor AtbZIP10 shuttles between the nucleus and the cytoplasm and binds consensus G- and C-box DNA sequences. Surprisingly, AtbZIP10 can be retained outside the nucleus by LSD1, a protein that protects Arabidopsis cells from death in the face of oxidative stress signals. We demonstrate that AtbZIP10 is a positive mediator of the uncontrolled cell death observed in lsd1 mutants. AtbZIP10 and LSD1 act antagonistically in both pathogen-induced HR and basal defense responses. LSD1 likely functions as a cellular hub, where its interaction with AtbZIP10 and additional, as yet unidentified, proteins contributes significantly to plant oxidative stress responses.
Collapse
Affiliation(s)
- Hironori Kaminaka
- Department of Biology, Curriculum in Genetics and Carolina Center for Genome Sciences, CB#3280, University of North Carolina, Chapel Hill, NC, USA
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Christian Näke
- Institut für Biologie II/Botanik, Universität Freiburg, Freiburg, Germany
| | - Petra Epple
- Department of Biology, Curriculum in Genetics and Carolina Center for Genome Sciences, CB#3280, University of North Carolina, Chapel Hill, NC, USA
| | - Jan Dittgen
- Institut für Biologie II/Botanik, Universität Freiburg, Freiburg, Germany
| | - Katia Schütze
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Tübingen, Germany
| | - Christina Chaban
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Tübingen, Germany
| | - Ben F Holt
- Department of Biology, Curriculum in Genetics and Carolina Center for Genome Sciences, CB#3280, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas Merkle
- Department of Genome Research, Center for Biotechnology, Universität Bielefeld, Bielefeld, Germany
| | - Eberhard Schäfer
- Institut für Biologie II/Botanik, Universität Freiburg, Freiburg, Germany
| | - Klaus Harter
- Institut für Biologie II/Botanik, Universität Freiburg, Freiburg, Germany
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Tübingen, Germany
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Auf der Morgenstelle 1, 72076 Tübingen, Germany. Tel.: +49 7071 2972605; Fax: +49 7071 293287; E-mail:
| | - Jeffery L Dangl
- Department of Biology, Curriculum in Genetics and Carolina Center for Genome Sciences, CB#3280, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, Curriculum in Genetics and Carolina Center for Genome Sciences, CB#3280, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, CB#3280, Coker Hall Rm 108, University of North Carolina, Chapel Hill, NC 27599, USA. Tel.: +1 919 962 5624; Fax: +1 919 962 1625; E-mail:
| |
Collapse
|
85
|
Carrasco JL, Castelló MJ, Vera P. 14-3-3 mediates transcriptional regulation by modulating nucleocytoplasmic shuttling of tobacco DNA-binding protein phosphatase-1. J Biol Chem 2006; 281:22875-81. [PMID: 16762921 DOI: 10.1074/jbc.m512611200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tobacco DBP1 is the founding member of a novel class of plant transcription factors featuring sequence-specific DNA binding and protein phosphatase activity. To understand the mechanisms underlying the function of this family of transcriptional regulators, we have identified the tobacco 14-3-3 isoform G as the first protein interacting with a DBP factor. 14-3-3 recognition involves the N-terminal region of DBP1, which also supports the DNA binding activity attributed to DBP1. The relevance of this interaction is reinforced by its conservation in Arabidopsis plants, where the closest relative of DBP1 in this species also interacts with a homologous 14-3-3 protein through its N-terminal region. Furthermore, we show that in planta 14-3-3 G is directly involved in regulating DBP1 function by promoting nuclear export and subsequent cytoplasmic retention of DBP1 under conditions that in turn alleviate DBP1-mediated repression of target gene expression.
Collapse
Affiliation(s)
- José L Carrasco
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | | | | |
Collapse
|
86
|
Ham BK, Park JM, Lee SB, Kim MJ, Lee IJ, Kim KJ, Kwon CS, Paek KH. Tobacco Tsip1, a DnaJ-type Zn finger protein, is recruited to and potentiates Tsi1-mediated transcriptional activation. THE PLANT CELL 2006; 18:2005-20. [PMID: 16844903 PMCID: PMC1533966 DOI: 10.1105/tpc.106.043158] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Revised: 04/08/2006] [Accepted: 06/20/2006] [Indexed: 05/10/2023]
Abstract
Tobacco stress-induced1 (Tsi1) is an ethylene-responsive-element binding protein/APETALA2-type transcription factor that plays an important role in both biotic and abiotic stress signaling pathways. We show that Tsi1-interacting protein1 (Tsip1), a DnaJ-type Zn finger protein, interacts with Tsi1 in vitro and in yeast (Saccharomyces cerevisiae). The transcript level of Tsip1 in tobacco (Nicotiana tabacum) increased upon treatment with salicylic acid (SA), ethylene, gibberellic acid, NaCl, and virus challenge. Tsip1 appeared to be physically associated with the chloroplast surface but dissociated from it after SA treatment. Tsip1 colocalized and coimmunoprecipitated with Tsi1 in plant cells following SA treatment. Tsip1 expression increased Tsi1-mediated transcription and was able to functionally compensate for loss of the Tsi1 transcriptional activation domain through a direct interaction with Tsi1. Transgenic plants simultaneously coexpressing Tsi1 and Tsip1 displayed stronger pathogen resistance and salt tolerance than did transgenic plants expressing either Tsi1 or Tsip1 alone. Concurrent with this, the expression of a subset of stress-related genes was induced in a cooperative manner in Tsi1/Tsip1 transgenic plants. These results together implied that Tsi1 recruits Tsip1 to the promoters of stress-related genes to potentiate Tsi1-mediated transcriptional activation.
Collapse
Affiliation(s)
- Byung-Kook Ham
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Li S, Ehrhardt DW, Rhee SY. Systematic analysis of Arabidopsis organelles and a protein localization database for facilitating fluorescent tagging of full-length Arabidopsis proteins. PLANT PHYSIOLOGY 2006; 141:527-39. [PMID: 16617091 PMCID: PMC1475441 DOI: 10.1104/pp.106.078881] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cells are organized into a complex network of subcellular compartments that are specialized for various biological functions. Subcellular location is an important attribute of protein function. To facilitate systematic elucidation of protein subcellular location, we analyzed experimentally verified protein localization data of 1,300 Arabidopsis (Arabidopsis thaliana) proteins. The 1,300 experimentally verified proteins are distributed among 40 different compartments, with most of the proteins localized to four compartments: mitochondria (36%), nucleus (28%), plastid (17%), and cytosol (13.3%). About 19% of the proteins are found in multiple compartments, in which a high proportion (36.4%) is localized to both cytosol and nucleus. Characterization of the overrepresented Gene Ontology molecular functions and biological processes suggests that the Golgi apparatus and peroxisome may play more diverse functions but are involved in more specialized processes than other compartments. To support systematic empirical determination of protein subcellular localization using a technology called fluorescent tagging of full-length proteins, we developed a database and Web application to provide preselected green fluorescent protein insertion position and primer sequences for all Arabidopsis proteins to study their subcellular localization and to store experimentally verified protein localization images, videos, and their annotations of proteins generated using the fluorescent tagging of full-length proteins technology. The database can be searched, browsed, and downloaded using a Web browser at http://aztec.stanford.edu/gfp/. The software can also be downloaded from the same Web site for local installation.
Collapse
Affiliation(s)
- Shijun Li
- Department of Plant Biology, Carnegie Institution, Stanford, California 94305, USA
| | | | | |
Collapse
|
88
|
Lalle M, Visconti S, Marra M, Camoni L, Velasco R, Aducci P. ZmMPK6, a novel maize MAP kinase that interacts with 14-3-3 proteins. PLANT MOLECULAR BIOLOGY 2005; 59:713-22. [PMID: 16270225 DOI: 10.1007/s11103-005-0862-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Accepted: 07/12/2005] [Indexed: 05/05/2023]
Abstract
Although an increasing body of evidence indicates that plant MAP kinases are involved in a number of cellular processes, such as cell cycle regulation and cellular response to abiotic stresses, hormones and pathogen attack, very little is known about their biochemical properties and regulation mechanism. In this paper we report on the identification and characterization of a novel member of the MAP kinase family from maize, ZmMPK6. The amino acid sequence reveals a high degree of identity with group D plant MAP kinases. Recombinant ZmMPK6, expressed in Escherichia coli, is an active enzyme able to autophosphorylate. Remarkably, ZmMPK6 interacts in vitro with GF14-6, a maize 14-3-3 protein and the interaction is dependent on autophosphorylation. The interacting domain of ZmMPK6 is on the C-terminus and is comprised between amino acid 337 and amino acid 467. Our results represent the first evidence of an interaction between a plant MAP kinase and a 14-3-3 protein. Possible functional roles of this association in vivo are discussed.
Collapse
Affiliation(s)
- Marco Lalle
- Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica, 100133 Rome, Italy
| | | | | | | | | | | |
Collapse
|
89
|
Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. PLANT MOLECULAR BIOLOGY 2005; 58:585-96. [PMID: 16021341 DOI: 10.1007/s11103-005-7294-5] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Accepted: 05/12/2005] [Indexed: 05/03/2023]
Abstract
ERFs (ethylene-responsive element binding factors) belong to a large family of plant transcription factors that are found exclusively in plants. A small subfamily of ERF proteins can act as transcriptional repressors. The Arabidopsis genome contains eight ERF repressors, namely AtERF3, AtERF4, and AtERF7 to AtERF12. Members of ERF repressors show differential expression, suggesting that they may have different function. Using a transient expression system, we demonstrated that AtERF4, AtERF7, AtERF10, AtERF11 and AtERF12 can function as transcriptional repressors. The expression of AtERF4 can be induced by ethylene, jasmonic acid, and abscisic acid (ABA). By using green fluorescent protein fusion, we demonstrated that AtEFR4 accumulated in the nuclear bodies of Arabidopsis cells. Expression of 35S:AtERF4-GFP in transgenic Arabidopsis plants conferred an ethylene-insensitive phenotype and repressed the expression of Basic Chitinase and beta-1,3-Glucanase, the GCC-box-containing genes. In comparison with wild-type plants, 35S:AtERF4-GFP transgenic plants had decreased sensitivity to ABA and were hypersensitive to sodium chloride. The expression of the ABA responsive genes, ABI2, rd29B and rab18, was decreased in the 35S:AtERF4-GFP transgenic plants. Our study provides evidence that AtERF4 is a negative regulator capable of modulating ethylene and abscisic acid responses.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | | | |
Collapse
|
90
|
Mackintosh C. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem J 2004; 381:329-42. [PMID: 15167810 PMCID: PMC1133837 DOI: 10.1042/bj20031332] [Citation(s) in RCA: 417] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Revised: 04/14/2004] [Accepted: 05/28/2004] [Indexed: 12/17/2022]
Abstract
14-3-3 proteins exert an extraordinarily widespread influence on cellular processes in all eukaryotes. They operate by binding to specific phosphorylated sites on diverse target proteins, thereby forcing conformational changes or influencing interactions between their targets and other molecules. In these ways, 14-3-3s 'finish the job' when phosphorylation alone lacks the power to drive changes in the activities of intracellular proteins. By interacting dynamically with phosphorylated proteins, 14-3-3s often trigger events that promote cell survival--in situations from preventing metabolic imbalances caused by sudden darkness in leaves to mammalian cell-survival responses to growth factors. Recent work linking specific 14-3-3 isoforms to genetic disorders and cancers, and the cellular effects of 14-3-3 agonists and antagonists, indicate that the cellular complement of 14-3-3 proteins may integrate the specificity and strength of signalling through to different cellular responses.
Collapse
Affiliation(s)
- Carol Mackintosh
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| |
Collapse
|
91
|
Ishida S, Fukazawa J, Yuasa T, Takahashi Y. Involvement of 14-3-3 signaling protein binding in the functional regulation of the transcriptional activator REPRESSION OF SHOOT GROWTH by gibberellins. THE PLANT CELL 2004; 16:2641-51. [PMID: 15377759 PMCID: PMC520961 DOI: 10.1105/tpc.104.024604] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Accepted: 07/16/2004] [Indexed: 05/18/2023]
Abstract
REPRESSION OF SHOOT GROWTH (RSG) is a tobacco (Nicotiana tabacum) transcriptional activator with a basic Leu zipper domain that regulates endogenous amounts of gibberellins (GAs) by the control of a GA biosynthetic enzyme. The 14-3-3 signaling proteins have been suggested to suppress RSG by sequestering it in the cytoplasm. Here, we show that RSG phosphorylation on Ser-114 is important for 14-3-3 binding. We found that GA levels regulate the intracellular localization of RSG. RSG translocated into the nucleus in response to a reduction in GA levels. GA treatment could reverse this nuclear accumulation. The GA-induced disappearance of RSG-green fluorescent protein from the nucleus did not depend on protein degradation. By contrast, the mutant RSG (S114A) that could not bind to 14-3-3 continued to be localized predominantly in the nucleus after GA application. Analysis of the mRNA levels of GA biosynthetic genes showed that the feedback regulation of the GA 20-oxidase gene was inhibited in transgenic plants expressing a dominant negative form of RSG. Our results suggest that RSG is negatively modulated by GAs by 14-3-3 binding and might be involved in GA homeostasis.
Collapse
Affiliation(s)
- Sarahmi Ishida
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
92
|
Zhang ZL, Xie Z, Zou X, Casaretto J, Ho THD, Shen QJ. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. PLANT PHYSIOLOGY 2004; 134:1500-13. [PMID: 15047897 PMCID: PMC419826 DOI: 10.1104/pp.103.034967] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2003] [Revised: 11/21/2003] [Accepted: 01/13/2004] [Indexed: 05/18/2023]
Abstract
The molecular mechanism by which GA regulates plant growth and development has been a subject of active research. Analyses of the rice (Oryza sativa) genomic sequences identified 77 WRKY genes, among which OsWRKY71 is highly expressed in aleurone cells. Transient expression of OsWRKY71 by particle bombardment specifically represses GA-induced Amy32b alpha-amylase promoter but not abscisic acid-induced HVA22 or HVA1 promoter activity in aleurone cells. Moreover, OsWRKY71 blocks the activation of the Amy32b promoter by the GA-inducible transcriptional activator OsGAMYB. Consistent with its role as a transcriptional repressor, OsWRKY71 is localized to nuclei of aleurone cells and binds specifically to functionally defined TGAC-containing W boxes of the Amy32b promoter in vitro. Mutation of the two W boxes prevents the binding of OsWRKY71 to the mutated promoter, and releases the suppression of the OsGAMYB-activated Amy32b expression by OsWRKY71, suggesting that OsWRKY71 blocks GA signaling by functionally interfering with OsGAMYB. Exogenous GA treatment decreases the steady-state mRNA level of OsWRKY71 and destabilizes the GFP:OsWRKY71 fusion protein. These findings suggest that OsWRKY71 encodes a transcriptional repressor of GA signaling in aleurone cells.
Collapse
Affiliation(s)
- Zhong-Lin Zhang
- Department of Biological Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Nevada 89154, USA
| | | | | | | | | | | |
Collapse
|
93
|
Dai S, Zhang Z, Chen S, Beachy RN. RF2b, a rice bZIP transcription activator, interacts with RF2a and is involved in symptom development of rice tungro disease. Proc Natl Acad Sci U S A 2004; 101:687-92. [PMID: 14704272 PMCID: PMC327209 DOI: 10.1073/pnas.0307687100] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The phloem-specific promoter of rice tungro bacilliform virus (RTBV) is regulated in part by sequence-specific DNA-binding proteins that bind to Box II, an essential cis element. Previous studies demonstrated that the bZIP protein RF2a is involved in transcriptional regulation of the RTBV promoter. Here we report the identification and functional characterization of a second bZIP protein, RF2b. RF2b, identified by its interaction with RF2a, binds to Box II in in vitro assays as a homodimer and as RF2a/RF2b heterodimers. Like RF2a, RF2b activates the RTBV promoter in transient assays and in transgenic tobacco plants. Both RF2a and RF2b are predominantly expressed in vascular tissues. However, RF2a and RF2b have different DNA-binding affinities to Box II, show distinctive expression patterns in different rice organs, and exhibit different patterns of subcellular localization. Furthermore, transgenic rice plants with reduced levels of RF2b exhibit a disease-like phenotype. We propose that the regulation of phloem-specific expression of the RTBV promoter and potentially the control of RTBV replication are mainly achieved via interactions of the Box II cis element with multiple host factors, including RF2a and RF2b. We also propose that quenching/titration of these and perhaps other transcription factors by RTBV is involved in the development of the symptoms of rice tungro disease.
Collapse
Affiliation(s)
- Shunhong Dai
- The Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | | | | | | |
Collapse
|
94
|
Hare PD, Moller SG, Huang LF, Chua NH. LAF3, a novel factor required for normal phytochrome A signaling. PLANT PHYSIOLOGY 2003; 133:1592-604. [PMID: 14645728 PMCID: PMC300716 DOI: 10.1104/pp.103.028480] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Revised: 07/02/2003] [Accepted: 08/28/2003] [Indexed: 05/18/2023]
Abstract
Phytochrome A (phyA) is the photolabile plant light receptor that mediates broad spectrum very low-fluence responses and high irradiance responses to continuous far-red light (FRc). An Arabidopsis mutant laf3-1 (long after far-red 3) was recovered from a screen for transposon-tagged mutants that exhibit reduced inhibition of hypocotyl elongation in FRc. The laf phenotype correlated well with a strongly attenuated disappearance of XTR7 transcript in FRc. The effects of laf3-1 on phyA-controlled CAB, CHS, and PET H expression were more subtle, and the mutation had no clear effects on PET E and ASN1 transcript levels in FRc. The use of two alternative transcription initiation sites in the LAF3 gene generates two isoforms that differ only at their N termini. Transcripts encoding both isoforms were induced during germination and were present at slightly higher levels in de-etiolated seedlings than in those grown in darkness. No significant differential regulation of the two isoforms was observed upon exposure to either FRc or continuous red light. Transcripts encoding the shorter isoform (LAF3ISF2) always appear to be more abundant than those encoding the longer isoform (LAF3ISF1). However, both isoforms were capable of full complementation of the laf3-1 hypocotyl phenotype in FRc. When fused to a yellow fluorescent protein, both isoforms localize to the perinuclear region, suggesting that LAF3 encodes a product that might regulate nucleo-cytoplasmic trafficking of an intermediate(s) involved in phyA signal transduction.
Collapse
Affiliation(s)
- Peter D Hare
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York 10021, USA
| | | | | | | |
Collapse
|
95
|
Merkle T. Nucleo-cytoplasmic partitioning of proteins in plants: implications for the regulation of environmental and developmental signalling. Curr Genet 2003; 44:231-60. [PMID: 14523572 DOI: 10.1007/s00294-003-0444-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Revised: 08/21/2003] [Accepted: 09/01/2003] [Indexed: 12/21/2022]
Abstract
Considerable progress has been made in the past few years in characterising Arabidopsis nuclear transport receptors and in elucidating plant signal transduction pathways that employ nucleo-cytoplasmic partitioning of a member of the signal transduction chain. This review briefly introduces the major principles of nuclear transport of macromolecules across the nuclear envelope and the proteins involved, as they have been described in vertebrates and yeast. Proteins of the plant nuclear transport machinery that have been identified to date are discussed, the focus being on Importin beta-like nuclear transport receptors. Finally, the importance of nucleo-cytoplasmic partitioning as a regulatory tool for signalling is highlighted, and different plant signal transduction pathways that make use of this regulatory potential are presented.
Collapse
Affiliation(s)
- Thomas Merkle
- Institute of Biology II, Cell Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| |
Collapse
|
96
|
Cooper B, Clarke JD, Budworth P, Kreps J, Hutchison D, Park S, Guimil S, Dunn M, Luginbühl P, Ellero C, Goff SA, Glazebrook J. A network of rice genes associated with stress response and seed development. Proc Natl Acad Sci U S A 2003; 100:4945-50. [PMID: 12684538 PMCID: PMC153660 DOI: 10.1073/pnas.0737574100] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We used a systematic approach to build a network of genes associated with developmental and stress responses in rice by identifying interaction domains for 200 proteins from stressed and developing tissues, by measuring the associated gene expression changes in different tissues exposed to a variety of environmental, biological, and chemical stress treatments, and by localizing the cognate genes to regions of stress-tolerance trait genetic loci. The integrated data set suggests that similar genes respond to environmental cues and stresses, and some may also regulate development. We demonstrate that the data can be used to correctly predict gene function in monocots and dicots. As a result, we have identified five genes that contribute to disease resistance in Arabidopsis.
Collapse
Affiliation(s)
- Bret Cooper
- Torrey Mesa Research Institute, 3115 Merryfield Row, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Fulgosi H, Soll J, de Faria Maraschin S, Korthout HAAJ, Wang M, Testerink C. 14-3-3 proteins and plant development. PLANT MOLECULAR BIOLOGY 2002; 50:1019-1029. [PMID: 12516869 DOI: 10.1023/a:1021295604109] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The 14-3-3 proteins are a family of ubiquitous regulatory molecules which have been found in virtually every eukaryotic organism and tissue. Discovered 34 years ago, 14-3-3 proteins have first been studied in mammalian nervous tissues, but in the past decade their indispensable role in various plant regulatory and metabolic pathways has been increasingly established. We now know that 14-3-3 members regulate fundamental processes of nitrogen assimilation and carbon assimilation, play an auxiliary role in regulation of starch synthesis, ATP production, peroxide detoxification, and participate in modulation of several other important biochemical pathways. Plant development and seed germination appear also to be under control of factors whose interaction with 14-3-3 molecules is crucial for their activation. Located within the nucleus, 14-3-3 isoforms are constituents of transcription factor complexes and interact with components of abscisic acid (ABA)-induced gene expression machinery. In addition, in animal cells they participate in nucleo-cytoplasmic trafficking and molecular sequestration. Cytoplasmic 14-3-3 members form a guidance complex with chloroplast destined preproteins and facilitate their import into these photosynthetic organelles. Recently, several 14-3-3s have been identified within chloroplasts where they could be involved in targeting and insertion of thylakoid proteins. The identification of 14-3-3 isoform specificity, and in particular the elucidation of the signal transduction mechanisms connecting 14-3-3 members with physiological responses, are central and developing topics of current research in this field.
Collapse
Affiliation(s)
- Hrvoje Fulgosi
- Botanisches Institut der Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, 24105 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
98
|
Prymakowska-Bosak M, Hock R, Catez F, Lim JH, Birger Y, Shirakawa H, Lee K, Bustin M. Mitotic phosphorylation of chromosomal protein HMGN1 inhibits nuclear import and promotes interaction with 14.3.3 proteins. Mol Cell Biol 2002; 22:6809-19. [PMID: 12215538 PMCID: PMC134047 DOI: 10.1128/mcb.22.19.6809-6819.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Progression through mitosis is associated with reversible phosphorylation of many nuclear proteins including that of the high-mobility group N (HMGN) nucleosomal binding protein family. Here we use immunofluorescence and in vitro nuclear import studies to demonstrate that mitotic phosphorylation of the nucleosomal binding domain (NBD) of the HMGN1 protein prevents its reentry into the newly formed nucleus in late telophase. By microinjecting wild-type and mutant proteins into the cytoplasm of HeLa cells and expressing these proteins in HmgN1(-/-) cells, we demonstrate that the inability to enter the nucleus is a consequence of phosphorylation and is not due to the presence of negative charges. Using affinity chromatography with recombinant proteins and nuclear extracts prepared from logarithmically growing or mitotically arrested cells, we demonstrate that phosphorylation of the NBD of HMGN1 promotes interaction with specific 14.3.3 isotypes. We conclude that mitotic phosphorylation of HMGN1 protein promotes interaction with 14.3.3 proteins and suggest that this interaction impedes the reentry of the proteins into the nucleus during telophase. Taken together with the results of previous studies, our results suggest a dual role for mitotic phosphorylation of HMGN1: abolishment of chromatin binding and inhibition of nuclear import.
Collapse
Affiliation(s)
- Marta Prymakowska-Bosak
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Sehnke PC, DeLille JM, Ferl RJ. Consummating signal transduction: the role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity. THE PLANT CELL 2002; 14 Suppl:S339-54. [PMID: 12045287 PMCID: PMC151265 DOI: 10.1105/tpc.010430] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2001] [Accepted: 01/18/2002] [Indexed: 05/18/2023]
Affiliation(s)
| | | | - Robert J. Ferl
- To whom correspondence should be addressed. E-mail ; fax 352-392-4072
| |
Collapse
|
100
|
|