51
|
Cools K, Chope GA, Hammond JP, Thompson AJ, Terry LA. Ethylene and 1-methylcyclopropene differentially regulate gene expression during onion sprout suppression. PLANT PHYSIOLOGY 2011; 156:1639-52. [PMID: 21593215 PMCID: PMC3135958 DOI: 10.1104/pp.111.174979] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Onion (Allium cepa) is regarded as a nonclimacteric vegetable. In onions, however, ethylene can suppress sprouting while the ethylene-binding inhibitor 1-methylcyclopropene (1-MCP) can also suppress sprout growth; yet, it is unknown how ethylene and 1-MCP elicit the same response. In this study, onions were treated with 10 μL L(-1) ethylene or 1 μL L(-1) 1-MCP individually or in combination for 24 h at 20°C before or after curing (6 weeks) at 20°C or 28°C and then stored at 1°C. Following curing, a subset of these same onions was stored separately under continuous air or ethylene (10 μL L(-1)) at 1°C. Onions treated with ethylene and 1-MCP in combination after curing for 24 h had reduced sprout growth as compared with the control 25 weeks after harvest. Sprout growth following storage beyond 25 weeks was only reduced through continuous ethylene treatment. This observation was supported by a higher proportion of down-regulated genes characterized as being involved in photosynthesis, measured using a newly developed onion microarray. Physiological and biochemical data suggested that ethylene was being perceived in the presence of 1-MCP, since sprout growth was reduced in onions treated with 1-MCP and ethylene applied in combination but not when applied individually. A cluster of probes representing transcripts up-regulated by 1-MCP alone but down-regulated by ethylene alone or in the presence of 1-MCP support this suggestion. Ethylene and 1-MCP both down-regulated a probe tentatively annotated as an ethylene receptor as well as ethylene-insensitive 3, suggesting that both treatments down-regulate the perception and signaling events of ethylene.
Collapse
|
52
|
Tsukazaki H, Yamashita KI, Yaguchi S, Yamashita K, Hagihara T, Shigyo M, Kojima A, Wako T. Direct determination of the chromosomal location of bunching onion and bulb onion markers using bunching onion-shallot monosomic additions and allotriploid-bunching onion single alien deletions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:501-510. [PMID: 20938763 DOI: 10.1007/s00122-010-1464-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 09/24/2010] [Indexed: 05/30/2023]
Abstract
To determine the chromosomal location of bunching onion (Allium fistulosum L.) simple sequence repeats (SSRs) and bulb onion (A. cepa L.) expressed sequence tags (ESTs), we used a complete set of bunching onion-shallot monosomic addition lines and allotriploid bunching onion single alien deletion lines as testers. Of a total of 2,159 markers (1,198 bunching onion SSRs, 324 bulb onion EST-SSRs and 637 bulb onion EST-derived non-SSRs), chromosomal locations were identified for 406 markers in A. fistulosum and/or A. cepa. Most of the bunching onion SSRs with identified chromosomal locations showed polymorphism in bunching onion (89.5%) as well as bulb onion lines (66.1%). Using these markers, we constructed a bunching onion linkage map (1,261 cM), which consisted of 16 linkage groups with 228 markers, 106 of which were newly located. All linkage groups of this map were assigned to the eight basal Allium chromosomes. In this study, we assigned 513 markers to the eight chromosomes of A. fistulosum and A. cepa. Together with 254 markers previously located on a separate bunching onion map, we have identified chromosomal locations for 766 markers in total. These chromosome-specific markers will be useful for the intensive mapping of desirable genes or QTLs for agricultural traits, and to obtain DNA markers linked to these.
Collapse
Affiliation(s)
- Hikaru Tsukazaki
- National Institute of Vegetable and Tea Science, NARO, 360 Ano-Kusawa, Tsu, Mie, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Taylor A, Massiah AJ, Thomas B. Conservation of Arabidopsis thaliana photoperiodic flowering time genes in onion (Allium cepa L.). PLANT & CELL PHYSIOLOGY 2010; 51:1638-47. [PMID: 20709686 DOI: 10.1093/pcp/pcq120] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The genetics underlying onion development are poorly understood. Here the characterization of onion homologs of Arabidopsis photoperiodic flowering pathway genes is reported with the end goal of accelerating onion breeding programs by understanding the genetic basis of adaptation to different latitudes. The expression of onion GI, FKF1 and ZTL homologs under short day (SD) and long day (LD) conditions was examined using quantitative reverse transcription-PCR (qRT-PCR). The expression of AcGI and AcFKF1 was examined in onion varieties which exhibit different daylength responses. Phylogenetic trees were constructed to confirm the identity of the homologs. AcGI and AcFKF1 showed diurnal expression patterns similar to their Arabidopsis counterparts, while AcZTL was found to be constitutively expressed. AcGI showed similar expression patterns in varieties which exhibit different daylength responses, whereas AcFKF1 showed differences. It is proposed that these differences could contribute to the different daylength responses in these varieties. Phylogenetic analyses showed that all the genes isolated are very closely related to their proposed homologs. The results presented here show that key genes controlling photoperiodic flowering in Arabidopsis are conserved in onion, and a role for these genes in the photoperiodic control of bulb initiation is predicted. This theory is supported by expression and phylogenetic data.
Collapse
Affiliation(s)
- Andrew Taylor
- Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK.
| | | | | |
Collapse
|
54
|
Bhati J, Sonah H, Jhang T, Singh NK, Sharma TR. Comparative Analysis and EST Mining Reveals High Degree of Conservation among Five Brassicaceae Species. Comp Funct Genomics 2010; 2010:520238. [PMID: 20886055 PMCID: PMC2945637 DOI: 10.1155/2010/520238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 05/21/2010] [Accepted: 07/11/2010] [Indexed: 11/23/2022] Open
Abstract
Brassicaceae is an important family of the plant kingdom which includes several plants of major economic importance. The Brassica spp. and Arabidopsis share much-conserved colinearity between their genomes which can be exploited for the genomic research in Brassicaceae crops. In this study, 131,286 ESTs of five Brassicaceae species were assembled into unigene contigs and compared with Arabidopsis gene indices. Almost all the unigenes of Brassicaceae species showed high similarities with Arabidopsis genes except those of B. napus, where 90% of unigenes were found similar. A total of 9,699 SSRs were identified in the unigenes. PCR primers were designed based on this information and amplified across species for validation. Functional annotation of unigenes showed that the majority of the genes are present in metabolism and energy functional classes. It is expected that comparative genome analysis between Arabidopsis and related crop species will expedite research in the more complex Brassica genomes. This would be helpful for genomics as well as evolutionary studies, and DNA markers developed can be used for mapping, tagging, and cloning of important genes in Brassicaceae.
Collapse
Affiliation(s)
- Jyotika Bhati
- Genoinformatics Laboratory, National Research Centre on Plant Biotechnology, Pusa Campus (IARI), New Delhi 110012, India
| | - Humira Sonah
- Genoinformatics Laboratory, National Research Centre on Plant Biotechnology, Pusa Campus (IARI), New Delhi 110012, India
| | - Tripta Jhang
- Genoinformatics Laboratory, National Research Centre on Plant Biotechnology, Pusa Campus (IARI), New Delhi 110012, India
| | - Nagender Kumar Singh
- Genoinformatics Laboratory, National Research Centre on Plant Biotechnology, Pusa Campus (IARI), New Delhi 110012, India
| | - Tilak Raj Sharma
- Genoinformatics Laboratory, National Research Centre on Plant Biotechnology, Pusa Campus (IARI), New Delhi 110012, India
| |
Collapse
|
55
|
Peng Z, Lu T, Li L, Liu X, Gao Z, Hu T, Yang X, Feng Q, Guan J, Weng Q, Fan D, Zhu C, Lu Y, Han B, Jiang Z. Genome-wide characterization of the biggest grass, bamboo, based on 10,608 putative full-length cDNA sequences. BMC PLANT BIOLOGY 2010; 10:116. [PMID: 20565830 PMCID: PMC3017805 DOI: 10.1186/1471-2229-10-116] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 06/18/2010] [Indexed: 05/04/2023]
Abstract
BACKGROUND With the availability of rice and sorghum genome sequences and ongoing efforts to sequence genomes of other cereal and energy crops, the grass family (Poaceae) has become a model system for comparative genomics and for better understanding gene and genome evolution that underlies phenotypic and ecological divergence of plants. While the genomic resources have accumulated rapidly for almost all major lineages of grasses, bamboo remains the only large subfamily of Poaceae with little genomic information available in databases, which seriously hampers our ability to take a full advantage of the wealth of grass genomic data for effective comparative studies. RESULTS Here we report the cloning and sequencing of 10,608 putative full length cDNAs (FL-cDNAs) primarily from Moso bamboo, Phyllostachys heterocycla cv. pubescens, a large woody bamboo with the highest ecological and economic values of all bamboos. This represents the third largest FL-cDNA collection to date of all plant species, and provides the first insight into the gene and genome structures of bamboos. We developed a Moso bamboo genomic resource database that so far contained the sequences of 10,608 putative FL-cDNAs and nearly 38,000 expressed sequence tags (ESTs) generated in this study. CONCLUSION Analysis of FL-cDNA sequences show that bamboo diverged from its close relatives such as rice, wheat, and barley through an adaptive radiation. A comparative analysis of the lignin biosynthesis pathway between bamboo and rice suggested that genes encoding caffeoyl-CoA O-methyltransferase may serve as targets for genetic manipulation of lignin content to reduce pollutants generated from bamboo pulping.
Collapse
Affiliation(s)
- Zhenhua Peng
- Chinese Academy of Forestry, Wanshou Shan, Beijing 100091, PR China
- International Network for Bamboo and Rattan, 8 Fu Tong Dong Da Jie, Chaoyang District, Beijing 100102, PR China
| | - Tingting Lu
- National Center for Gene Research & Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, PR China
| | - Lubin Li
- Chinese Academy of Forestry, Wanshou Shan, Beijing 100091, PR China
| | - Xiaohui Liu
- National Center for Gene Research & Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, PR China
| | - Zhimin Gao
- International Network for Bamboo and Rattan, 8 Fu Tong Dong Da Jie, Chaoyang District, Beijing 100102, PR China
| | - Tao Hu
- Chinese Academy of Forestry, Wanshou Shan, Beijing 100091, PR China
| | - Xuewen Yang
- International Network for Bamboo and Rattan, 8 Fu Tong Dong Da Jie, Chaoyang District, Beijing 100102, PR China
| | - Qi Feng
- National Center for Gene Research & Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, PR China
| | - Jianping Guan
- National Center for Gene Research & Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, PR China
| | - Qijun Weng
- National Center for Gene Research & Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, PR China
| | - Danlin Fan
- National Center for Gene Research & Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, PR China
| | - Chuanrang Zhu
- National Center for Gene Research & Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, PR China
| | - Ying Lu
- National Center for Gene Research & Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, PR China
| | - Bin Han
- National Center for Gene Research & Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, PR China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, PR China
| | - Zehui Jiang
- Chinese Academy of Forestry, Wanshou Shan, Beijing 100091, PR China
- International Network for Bamboo and Rattan, 8 Fu Tong Dong Da Jie, Chaoyang District, Beijing 100102, PR China
| |
Collapse
|
56
|
Abstract
Monocot genomic diversity includes striking variation at many levels. This paper compares various genomic characters (e.g., range of chromosome numbers and ploidy levels, occurrence of endopolyploidy, GC content, chromosome packaging and organization, genome size) between monocots and the remaining angiosperms to discern just how distinctive monocot genomes are. One of the most notable features of monocots is their wide range and diversity of genome sizes, including the species with the largest genome so far reported in plants. This genomic character is analysed in greater detail, within a phylogenetic context. By surveying available genome size and chromosome data it is apparent that different monocot orders follow distinctive modes of genome size and chromosome evolution. Further insights into genome size-evolution and dynamics were obtained using statistical modelling approaches to reconstruct the ancestral genome size at key nodes across the monocot phylogenetic tree. Such approaches reveal that while the ancestral genome size of all monocots was small ( pg), there have been several major increases and decreases during monocot evolution. In addition, notable increases in the rates of genome size-evolution were found in Asparagales and Poales compared with other monocot lineages.
Collapse
|
57
|
Yaguchi S, Hang TTM, Tsukazaki H, Hoa VQ, Masuzaki SI, Wako T, Masamura N, Onodera S, Shiomi N, Yamauchi N, Shigyo M. Molecular and biochemical identification of alien chromosome additions in shallot (Allium cepa L. Aggregatum group) carrying extra chromosome(s) of bunching onion (A. fistulosum L.). Genes Genet Syst 2009; 84:43-55. [PMID: 19420800 DOI: 10.1266/ggs.84.43] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To develop the bunching onion (Allium fistulosum L.; genomes, FF) chromosome-specific genetic markers for identifying extra chromosomes, eight shallot (A. cepa L. Aggregatum group; genomes, AA)--A. fistulosum monosomic addition plants (AA+nF) and 62 shallot--A. fistulosum single-alien deletion plants (AAF-nF) were analyzed by 23 different chromosome-specific genetic markers of shallot. The eight monosomic addition plants consisted of one AA+2F, two AA+6F, and five AA+8F. Of the 62 single-alien deletion plants, 60 could be identified as six different single-alien deletion lines (AAF-1F, -3F, -4F, -6F, -7F, and -8F) out of the eight possible types. Several single-alien deletion lines were classified on the basis of leaf and bulb characteristics. AAF-8F had the largest number of expanded leaves of five deletion plants. AAF-7F grew most vigorously, as expressed by its long leaf blade and biggest bulb size. AAF-4F had very small bulbs. AAF-7F and AAF-8F had different bulbs from those of shallot as well as other types of single-alien deletion lines in skin and outer scale color. Regarding the sugar content of the bulb tissues, the single-alien deletion lines showed higher fructan content than shallot. Moreover, shallot could not produce fructan with degree of polymerization (DP) 12 or higher, although the single-alien deletion lines showed DP 20 or higher. The content of S-alk(en)yl-L-cysteine sulfoxide (ACSO) in the single-alien deletion lines was significantly lower than that in shallot. These results indicated that chromosomes from A. fistulosum might carry anonymous factors to increase the highly polymerized fructan production and inhibit the synthesis of ACSO in shallot bulbs. Accordingly, alien chromosomes from A. fistulosum in shallot would contribute to modify the quality of shallot bulbs.
Collapse
Affiliation(s)
- Shigenori Yaguchi
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Tang S, Okashah RA, Cordonnier-Pratt MM, Pratt LH, Ed Johnson V, Taylor CA, Arnold ML, Knapp SJ. EST and EST-SSR marker resources for Iris. BMC PLANT BIOLOGY 2009; 9:72. [PMID: 19515254 PMCID: PMC2703627 DOI: 10.1186/1471-2229-9-72] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 06/10/2009] [Indexed: 05/02/2023]
Abstract
BACKGROUND Limited DNA sequence and DNA marker resources have been developed for Iris (Iridaceae), a monocot genus of 200-300 species in the Asparagales, several of which are horticulturally important. We mined an I. brevicaulis-I. fulva EST database for simple sequence repeats (SSRs) and developed ortholog-specific EST-SSR markers for genetic mapping and other genotyping applications in Iris. Here, we describe the abundance and other characteristics of SSRs identified in the transcript assembly (EST database) and the cross-species utility and polymorphisms of I. brevicaulis-I. fulva EST-SSR markers among wild collected ecotypes and horticulturally important cultivars. RESULTS Collectively, 6,530 ESTs were produced from normalized leaf and root cDNA libraries of I. brevicaulis (IB72) and I. fulva (IF174), and assembled into 4,917 unigenes (1,066 contigs and 3,851 singletons). We identified 1,447 SSRs in 1,162 unigenes and developed 526 EST-SSR markers, each tracing a different unigene. Three-fourths of the EST-SSR markers (399/526) amplified alleles from IB72 and IF174 and 84% (335/399) were polymorphic between IB25 and IF174, the parents of I. brevicaulis x I. fulva mapping populations. Forty EST-SSR markers were screened for polymorphisms among 39 ecotypes or cultivars of seven species - 100% amplified alleles from wild collected ecotypes of Louisiana Iris (I.brevicaulis, I.fulva, I. nelsonii, and I. hexagona), whereas 42-52% amplified alleles from cultivars of three horticulturally important species (I. pseudacorus, I. germanica, and I. sibirica). Ecotypes and cultivars were genetically diverse - the number of alleles/locus ranged from two to 18 and mean heterozygosity was 0.76. CONCLUSION Nearly 400 ortholog-specific EST-SSR markers were developed for comparative genetic mapping and other genotyping applications in Iris, were highly polymorphic among ecotypes and cultivars, and have broad utility for genotyping applications within the genus.
Collapse
Affiliation(s)
- Shunxue Tang
- Institute of Plant Breeding, Genetics, and Genomics, The University of Georgia, Athens, GA 30602, USA
| | - Rebecca A Okashah
- Institute of Plant Breeding, Genetics, and Genomics, The University of Georgia, Athens, GA 30602, USA
| | | | - Lee H Pratt
- Laboratory for Genomics and Bioinformatics, The University of Georgia, Athens, GA 30602, USA
| | - Virgil Ed Johnson
- Laboratory for Genomics and Bioinformatics, The University of Georgia, Athens, GA 30602, USA
| | - Christopher A Taylor
- Institute of Plant Breeding, Genetics, and Genomics, The University of Georgia, Athens, GA 30602, USA
| | - Michael L Arnold
- Department of Genetics, The University of Georgia, Athens, GA 30602, USA
| | - Steven J Knapp
- Institute of Plant Breeding, Genetics, and Genomics, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
59
|
Dohm JC, Lange C, Reinhardt R, Himmelbauer H. Haplotype divergence in Beta vulgaris and microsynteny with sequenced plant genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:14-26. [PMID: 18764921 DOI: 10.1111/j.1365-313x.2008.03665.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We characterized two overlapping sugar beet (Beta vulgaris) bacterial artificial chromosome (BAC) clones representing different haplotypes. A total of 254 kbp of the genomic sequence was determined, of which the two BACs share 92 kbp. Eleven of 15 genes discovered in the sequenced interval locate to the overlap region. The haplotypes differ in exons by 1% (nucleotide level) and in non-coding regions by 9% (6% mismatches, 3% gaps; alignable regions only). Large indels or high sequence divergence comprised 11% of either sequence. Of such indels, 68 and 45%, respectively, could be attributed to haplotype-specific integration of transposable elements. We identified novel repeat candidates by comparing the two BAC sequences to a set of genomic sugar beet sequences. Synteny was found with Arabidopsis chromosome 1 (At1), At2 and At4, Medicago chromosome 7, Vitis chromosome 15 and paralogous regions on poplar chromosomes II and XIV.
Collapse
Affiliation(s)
- Juliane C Dohm
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, Berlin, Germany
| | | | | | | |
Collapse
|
60
|
Tsukazaki H, Yamashita KI, Yaguchi S, Masuzaki S, Fukuoka H, Yonemaru J, Kanamori H, Kono I, Hang TTM, Shigyo M, Kojima A, Wako T. Construction of SSR-based chromosome map in bunching onion (Allium fistulosum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:1213-1223. [PMID: 18818898 DOI: 10.1007/s00122-008-0849-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 07/05/2008] [Indexed: 05/26/2023]
Abstract
We have constructed a linkage map of bunching onion (Allium fistulosum L., 2n = 16) using an F(2) population of 225 plants. The map consists of 17 linkage groups with 212 bunching onion SSR markers and 42 bulb onion (A. cepa L.) SSR, InDel, CAPS or dCAPS markers, covering 2,069 cM. This is the first report of a linkage map mainly based on SSR markers in the genus Allium. With the 103 anchor markers [81 bunching onion SSRs, 11 bulb onion SSRs and 11 bulb onion non-SSRs (1 InDel, 9 CAPSs and 1 dCAPS)] whose chromosome assignments were identified in A. cepa and/or A. fistulosum, via the use of several kinds of Allium alien addition lines, 16 of the 17 linkage groups were connected to the 8 basic chromosomes of A. cepa.
Collapse
Affiliation(s)
- Hikaru Tsukazaki
- National Institute of Vegetable and Tea Science (NIVTS), NARO, 360 Ano-Kusawa, Tsu, Mie, 514-2392, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Jakše J, Meyer JDF, Suzuki G, McCallum J, Cheung F, Town CD, Havey MJ. Pilot sequencing of onion genomic DNA reveals fragments of transposable elements, low gene densities, and significant gene enrichment after methyl filtration. Mol Genet Genomics 2008; 280:287-92. [DOI: 10.1007/s00438-008-0364-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 06/22/2008] [Indexed: 10/21/2022]
|
62
|
Morello L, Breviario D. Plant spliceosomal introns: not only cut and paste. Curr Genomics 2008; 9:227-38. [PMID: 19452040 PMCID: PMC2682935 DOI: 10.2174/138920208784533629] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 04/21/2008] [Accepted: 04/29/2008] [Indexed: 01/13/2023] Open
Abstract
Spliceosomal introns in higher eukaryotes are present in a high percentage of protein coding genes and represent a high proportion of transcribed nuclear DNA. In the last fifteen years, a growing mass of data concerning functional roles carried out by such intervening sequences elevated them from a selfish burden carried over by the nucleus to important active regulatory elements. Introns mediate complex gene regulation via alternative splicing; they may act in cis as expression enhancers through IME (intron-mediated enhancement of gene expression) and in trans as negative regulators through the generation of intronic microRNA. Furthermore, some introns also contain promoter sequences for alternative transcripts. Nevertheless, such regulatory roles do not require long conserved sequences, so that introns are relatively free to evolve faster than exons: this feature makes them important tools for evolutionary studies and provides the basis for the development of DNA molecular markers for polymorphisms detection. A survey of introns functions in the plant kingdom is presented.
Collapse
Affiliation(s)
| | - D Breviario
- Istituto Biologia e Biotecnologia Agraria, Via Bassini 15, 20133 Milano, Italy
| |
Collapse
|
63
|
Smarda P, Bures P, Horová L, Foggi B, Rossi G. Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. ANNALS OF BOTANY 2008; 101:421-33. [PMID: 18158307 PMCID: PMC2701825 DOI: 10.1093/aob/mcm307] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 09/10/2007] [Accepted: 11/06/2007] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Plant evolution is well known to be frequently associated with remarkable changes in genome size and composition; however, the knowledge of long-term evolutionary dynamics of these processes still remains very limited. Here a study is made of the fine dynamics of quantitative genome evolution in Festuca (fescue), the largest genus in Poaceae (grasses). METHODS Using flow cytometry (PI, DAPI), measurements were made of DNA content (2C-value), monoploid genome size (Cx-value), average chromosome size (C/n-value) and cytosine + guanine (GC) content of 101 Festuca taxa and 14 of their close relatives. The results were compared with the existing phylogeny based on ITS and trnL-F sequences. KEY RESULTS The divergence of the fescue lineage from related Poeae was predated by about a 2-fold monoploid genome and chromosome size enlargement, and apparent GC content enrichment. The backward reduction of these parameters, running parallel in both main evolutionary lineages of fine-leaved and broad-leaved fescues, appears to diverge among the existing species groups. The most dramatic reductions are associated with the most recently and rapidly evolving groups which, in combination with recent intraspecific genome size variability, indicate that the reduction process is probably ongoing and evolutionarily young. This dynamics may be a consequence of GC-rich retrotransposon proliferation and removal. Polyploids derived from parents with a large genome size and high GC content (mostly allopolyploids) had smaller Cx- and C/n-values and only slightly deviated from parental GC content, whereas polyploids derived from parents with small genome and low GC content (mostly autopolyploids) generally had a markedly increased GC content and slightly higher Cx- and C/n-values. CONCLUSIONS The present study indicates the high potential of general quantitative characters of the genome for understanding the long-term processes of genome evolution, testing evolutionary hypotheses and their usefulness for large-scale genomic projects. Taken together, the results suggest that there is an evolutionary advantage for small genomes in Festuca.
Collapse
Affiliation(s)
- Petr Smarda
- Masaryk University, Faculty of Science, Institute of Botany and Zoology, Kotlárská 2, CZ-611 37 Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
64
|
Lescot M, Piffanelli P, Ciampi AY, Ruiz M, Blanc G, Leebens-Mack J, da Silva FR, Santos CMR, D'Hont A, Garsmeur O, Vilarinhos AD, Kanamori H, Matsumoto T, Ronning CM, Cheung F, Haas BJ, Althoff R, Arbogast T, Hine E, Pappas GJ, Sasaki T, Souza MT, Miller RNG, Glaszmann JC, Town CD. Insights into the Musa genome: syntenic relationships to rice and between Musa species. BMC Genomics 2008; 9:58. [PMID: 18234080 PMCID: PMC2270835 DOI: 10.1186/1471-2164-9-58] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 01/30/2008] [Indexed: 01/10/2023] Open
Abstract
Background Musa species (Zingiberaceae, Zingiberales) including bananas and plantains are collectively the fourth most important crop in developing countries. Knowledge concerning Musa genome structure and the origin of distinct cultivars has greatly increased over the last few years. Until now, however, no large-scale analyses of Musa genomic sequence have been conducted. This study compares genomic sequence in two Musa species with orthologous regions in the rice genome. Results We produced 1.4 Mb of Musa sequence from 13 BAC clones, annotated and analyzed them along with 4 previously sequenced BACs. The 443 predicted genes revealed that Zingiberales genes share GC content and distribution characteristics with eudicot and Poaceae genomes. Comparison with rice revealed microsynteny regions that have persisted since the divergence of the Commelinid orders Poales and Zingiberales at least 117 Mya. The previously hypothesized large-scale duplication event in the common ancestor of major cereal lineages within the Poaceae was verified. The divergence time distributions for Musa-Zingiber (Zingiberaceae, Zingiberales) orthologs and paralogs provide strong evidence for a large-scale duplication event in the Musa lineage after its divergence from the Zingiberaceae approximately 61 Mya. Comparisons of genomic regions from M. acuminata and M. balbisiana revealed highly conserved genome structure, and indicated that these genomes diverged circa 4.6 Mya. Conclusion These results point to the utility of comparative analyses between distantly-related monocot species such as rice and Musa for improving our understanding of monocot genome evolution. Sequencing the genome of M. acuminata would provide a strong foundation for comparative genomics in the monocots. In addition a genome sequence would aid genomic and genetic analyses of cultivated Musa polyploid genotypes in research aimed at localizing and cloning genes controlling important agronomic traits for breeding purposes.
Collapse
Affiliation(s)
- Magali Lescot
- French Agricultural Research Center for International Development, UMR 1096, Avenue Agropolis, TA40/03, FR-34398, Montpellier, Cedex 5, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Liu X, Lu T, Yu S, Li Y, Huang Y, Huang T, Zhang L, Zhu J, Zhao Q, Fan D, Mu J, Shangguan Y, Feng Q, Guan J, Ying K, Zhang Y, Lin Z, Sun Z, Qian Q, Lu Y, Han B. A collection of 10,096 indica rice full-length cDNAs reveals highly expressed sequence divergence between Oryza sativa indica and japonica subspecies. PLANT MOLECULAR BIOLOGY 2007; 65:403-15. [PMID: 17522955 DOI: 10.1007/s11103-007-9174-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 04/13/2007] [Indexed: 05/05/2023]
Abstract
Relatively few indica rice full-length cDNAs were available to aid in the annotation of rice genes. The data presented here described the sequencing and analysis of 10,096 full-length cDNAs from Oryza sativa subspecies indica Guangluai 4. Of them, 9,029 matched rice genomic sequences in publicly-available databases, and 1,200 were identified as new rice genes. Comparison with the knowledge-based Oryza Molecular Biological Encyclopedia japonica cDNA collection indicated that 3,316 (41.6%) of the 7,965 indica-japonica cDNA pairs showed no distinct variations at protein level (2,117 indica-japonica cDNA pairs showed fully identical and 1,199 indica-japonica cDNA pairs showed no frame shift). Moreover, 3,645 (45.8%) of the indica-japonica pairs showed substantial differences at the protein level due to single nucleotide polymorphisms (SNPs), insertions or deletions, and sequence-segment variations between indica and japonica subspecies. Further experimental verifications using PCR screening and quantitative reverse transcriptional PCR revealed unique transcripts for indica subspecies. Comparative analysis also showed that most of rice genes were evolved under purifying selection. These variations might distinguish the phenotypic changes of the two cultivated rice subspecies indica and japonica. Analysis of these cDNAs extends known rice genes and identifies new ones in rice.
Collapse
Affiliation(s)
- Xiaohui Liu
- National Center for Gene Research & Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai 200233, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Yu J, Wong GKS, Liu S, Wang J, Yang H. A comprehensive crop genome research project: the Superhybrid Rice Genome Project in China. Philos Trans R Soc Lond B Biol Sci 2007; 362:1023-34. [PMID: 17331896 PMCID: PMC2435568 DOI: 10.1098/rstb.2007.2031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In May 2000, the Beijing Institute of Genomics formally announced the launch of a comprehensive crop genome research project on rice genomics, the Chinese Superhybrid Rice Genome Project. SRGP is not simply a sequencing project targeted to a single rice (Oryza sativa L.) genome, but a full-swing research effort with an ultimate goal of providing inclusive basic genomic information and molecular tools not only to understand biology of the rice, both as an important crop species and a model organism of cereals, but also to focus on a popular superhybrid rice landrace, LYP9. We have completed the first phase of SRGP and provide the rice research community with a finished genome sequence of an indica variety, 93-11 (the paternal cultivar of LYP9), together with ample data on subspecific (between subspecies) polymorphisms, transcriptomes and proteomes, useful for within-species comparative studies. In the second phase, we have acquired the genome sequence of the maternal cultivar, PA64S, together with the detailed catalogues of genes uniquely expressed in the parental cultivars and the hybrid as well as allele-specific markers that distinguish parental alleles. Although SRGP in China is not an open-ended research programme, it has been designed to pave a way for future plant genomics research and application, such as to interrogate fundamentals of plant biology, including genome duplication, polyploidy and hybrid vigour, as well as to provide genetic tools for crop breeding and to carry along a social burden-leading a fight against the world's hunger. It began with genomics, the newly developed and industry-scale research field, and from the world's most populous country. In this review, we summarize our scientific goals and noteworthy discoveries that exploit new territories of systematic investigations on basic and applied biology of rice and other major cereal crops.
Collapse
Affiliation(s)
- Jun Yu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, People's Republic of China.
| | | | | | | | | |
Collapse
|
67
|
Lohithaswa HC, Feltus FA, Singh HP, Bacon CD, Bailey CD, Paterson AH. Leveraging the rice genome sequence for monocot comparative and translational genomics. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:237-43. [PMID: 17522835 DOI: 10.1007/s00122-007-0559-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 04/14/2007] [Indexed: 05/15/2023]
Abstract
Common genome anchor points across many taxa greatly facilitate translational and comparative genomics and will improve our understanding of the Tree of Life. To add to the repertoire of genomic tools applicable to the study of monocotyledonous plants in general, we aligned Allium and Musa ESTs to Oryza BAC sequences and identified candidate Allium-Oryza and Musa-Oryza conserved intron-scanning primers (CISPs). A random sampling of 96 CISP primer pairs, representing loci from 11 of the 12 chromosomes in rice, were tested on seven members of the order Poales and on representatives of the Arecales, Asparagales, and Zingiberales monocot orders. The single-copy amplification success rates of Allium (31.3%), Cynodon (31.4%), Hordeum (30.2%), Musa (37.5%), Oryza (61.5%), Pennisetum (33.3%), Sorghum (47.9%), Zea (33.3%), Triticum (30.2%), and representatives of the palm family (32.3%) suggest that subsets of these primers will provide DNA markers suitable for comparative and translational genomics in orphan crops, as well as for applications in conservation biology, ecology, invasion biology, population biology, systematic biology, and related fields.
Collapse
Affiliation(s)
- H C Lohithaswa
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
68
|
Cheung F, Town CD. A BAC end view of the Musa acuminata genome. BMC PLANT BIOLOGY 2007; 7:29. [PMID: 17562019 PMCID: PMC1904220 DOI: 10.1186/1471-2229-7-29] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 06/11/2007] [Indexed: 05/04/2023]
Abstract
BACKGROUND Musa species contain the fourth most important crop in developing countries. Here, we report the analysis of 6,252 BAC end-sequences, in order to view the sequence composition of the Musa acuminata genome in a cost effective and efficient manner. RESULTS BAC end sequencing generated 6,252 reads representing 4,420,944 bp, including 2,979 clone pairs with an average read length after cleaning and filtering of 707 bp. All sequences have been submitted to GenBank, with the accession numbers DX451975-DX458350. The BAC end-sequences, were searched against several databases and significant homology was found to mitochondria and chloroplast (2.6%), transposons and repetitive sequences (36%) and proteins (11%). Functional interpretation of the protein matches was carried out by Gene Ontology assignments from matches to Arabidopsis and was shown to cover a broad range of categories. From protein matching regions of Musa BAC end-sequences, it was determined that the GC content of coding regions was 47%. Where protein matches encompassed a start codon, GC content as a function of position (5' to 3') across 129 bp sliding windows generates a "rice-like" gradient. A total of 352 potential SSR markers were discovered. The most abundant simple sequence repeats in four size categories were AT-rich. After filtering mitochondria and chloroplast matches, thousands of BAC end-sequences had a significant BLASTN match to the Oryza sativa and Arabidopsis genome sequence. Of these, a small number of BAC end-sequence pairs were shown to map to neighboring regions of the Oryza sativa genome representing regions of potential microsynteny. CONCLUSION Database searches with the BAC end-sequences and ab initio analysis identified those reads likely to contain transposons, repeat sequences, proteins and simple sequence repeats. Approximately 600 BAC end-sequences contained protein sequences that were not found in the existing available Musa expressed sequence tags, repeat or transposon databases. In addition, gene statistics, GC content and profile could also be estimated based on the region matching the top protein hit. A small number of BAC end pair sequences can be mapped to neighboring regions of the Oryza sativa representing regions of potential microsynteny. These results suggest that a large-scale BAC end sequencing strategy has the potential to anchor a small proportion of the genome of Musa acuminata to the genomes of Oryza sativa and possibly Arabidopsis.
Collapse
Affiliation(s)
- Foo Cheung
- J Craig Venter Institute, 9712 Medical Center Drive, Rockville, MD 20850 USA
| | - Christopher D Town
- J Craig Venter Institute, 9712 Medical Center Drive, Rockville, MD 20850 USA
| |
Collapse
|
69
|
Kuhl JC, Havey MJ, Martin WJ, Cheung F, Yuan Q, Landherr L, Hu Y, Leebens-Mack J, Town CD, Sink KC. Comparative genomic analyses in Asparagus. Genome 2007; 48:1052-60. [PMID: 16391674 DOI: 10.1139/g05-073] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Garden asparagus (Asparagus officinalis L.) belongs to the monocot family Asparagaceae in the order Asparagales. Onion (Allium cepa L.) and Asparagus officinalis are 2 of the most economically important plants of the core Asparagales, a well supported monophyletic group within the Asparagales. Coding regions in onion have lower GC contents than the grasses. We compared the GC content of 3374 unique expressed sequence tags (ESTs) from A. officinalis with Lycoris longituba and onion (both members of the core Asparagales), Acorus americanus (sister to all other monocots), the grasses, and Arabidopsis. Although ESTs in A. officinalis and Acorus had a higher average GC content than Arabidopsis, Lycoris, and onion, all were clearly lower than the grasses. The Asparagaceae have the smallest nuclear genomes among all plants in the core Asparagales, which typically have huge genomes. Within the Asparagaceae, European Asparagus species have approximately twice the nuclear DNA of that of southern African Asparagus species. We cloned and sequenced 20 genomic amplicons from European A. officinalis and the southern African species Asparagus plumosus and observed no clear evidence for a recent genome doubling in A. officinalis relative to A. plumosus. These results indicate that members of the genus Asparagus with smaller genomes may be useful genomic models for plants in the core Asparagales.
Collapse
Affiliation(s)
- Joseph C Kuhl
- Department of Horticulture, Michigan State University, East Lansing 48824, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
McCallum J, Pither-Joyce M, Shaw M, Kenel F, Davis S, Butler R, Scheffer J, Jakse J, Havey MJ. Genetic mapping of sulfur assimilation genes reveals a QTL for onion bulb pungency. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:815-22. [PMID: 17180376 DOI: 10.1007/s00122-006-0479-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 11/24/2006] [Indexed: 05/13/2023]
Abstract
Onion exhibits wide genetic and environmental variation in bioactive organosulfur compounds that impart pungency and health benefits. A PCR-based molecular marker map that included candidate genes for sulfur assimilation was used to identify genomic regions affecting pungency in the cross 'W202A' x 'Texas Grano 438'. Linkage mapping revealed that genes encoding plastidic ferredoxin-sulfite reductase (SiR) and plastidic ATP sulfurylase (ATPS) are closely linked (1-2 cM) on chromosome 3. Inbred F(3) families derived from the F(2 )population used to construct the genetic map were grown in replicated trials in two environments and bulb pungency was evaluated as pyruvic acid or lachrymatory factor. Broad-sense heritability of pungency was estimated to be 0.78-0.80. QTL analysis revealed significant associations of both pungency and bulb soluble solids content with marker intervals on chromosomes 3 and 5, which have previously been reported to condition pleiotropic effects on bulb carbohydrate composition. Highly significant associations (LOD 3.7-8.7) were observed between ATPS and SiR Loci and bulb pungency but not with bulb solids content. This association was confirmed in two larger, independently derived F(2) families from the same cross. Single-locus models suggested that the partially dominant locus associated with these candidate genes controls 30-50% of genetic variation in pungency in these pedigrees. These markers may provide a practical means to select for lower pungency without correlated selection for lowered solids.
Collapse
Affiliation(s)
- John McCallum
- New Zealand Institute for Crop & Food Research Limited, Private Bag 4704, Christchurch, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Jakse J, Telgmann A, Jung C, Khar A, Melgar S, Cheung F, Town CD, Havey MJ. Comparative sequence and genetic analyses of asparagus BACs reveal no microsynteny with onion or rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 114:31-9. [PMID: 17016688 DOI: 10.1007/s00122-006-0407-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 08/31/2006] [Indexed: 05/10/2023]
Abstract
The Poales (includes the grasses) and Asparagales [includes onion (Allium cepa L.) and asparagus (Asparagus officinalis L.)] are the two most economically important monocot orders. The Poales are a member of the commelinoid monocots, a group of orders sister to the Asparagales. Comparative genomic analyses have revealed a high degree of synteny among the grasses; however, it is not known if this synteny extends to other major monocot groups such as the Asparagales. Although we previously reported no evidence for synteny at the recombinational level between onion and rice, microsynteny may exist across shorter genomic regions in the grasses and Asparagales. We sequenced nine asparagus BACs to reveal physically linked genic-like sequences and determined their most similar positions in the onion and rice genomes. Four of the asparagus BACs were selected using molecular markers tightly linked to the sex-determining M locus on chromosome 5 of asparagus. These BACs possessed only two putative coding regions and had long tracts of degenerated retroviral elements and transposons. Five asparagus BACs were selected after hybridization of three onion cDNAs that mapped to three different onion chromosomes. Genic-like sequences that were physically linked on the cDNA-selected BACs or genetically linked on the M-linked BACs showed significant similarities (e < -20) to expressed sequences on different rice chromosomes, revealing no evidence for microsynteny between asparagus and rice across these regions. Genic-like sequences that were linked in asparagus were used to identify highly similar (e < -20) expressed sequence tags (ESTs) of onion. These onion ESTs mapped to different onion chromosomes and no relationship was observed between physical or genetic linkages in asparagus and genetic linkages in onion. These results further indicate that synteny among grass genomes does not extend to a sister order in the monocots and that asparagus may not be an appropriate smaller genome model for plants in the Asparagales with enormous nuclear genomes.
Collapse
Affiliation(s)
- Jernej Jakse
- Department of Horticulture, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Yang SS, Cheung F, Lee JJ, Ha M, Wei NE, Sze SH, Stelly DM, Thaxton P, Triplett B, Town CD, Chen ZJ. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:761-75. [PMID: 16889650 PMCID: PMC4367961 DOI: 10.1111/j.1365-313x.2006.02829.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Gene expression during the early stages of fiber cell development and in allopolyploid crops is poorly understood. Here we report computational and expression analyses of 32 789 high-quality ESTs derived from Gossypium hirsutum L. Texas Marker-1 (TM-1) immature ovules (GH_TMO). The ESTs were assembled into 8540 unique sequences including 4036 tentative consensus sequences (TCs) and 4504 singletons, representing approximately 15% of the unique sequences in the cotton EST collection. Compared with approximately 178 000 existing ESTs derived from elongating fibers and non-fiber tissues, GH_TMO ESTs showed a significant increase in the percentage of genes encoding putative transcription factors such as MYB and WRKY and genes encoding predicted proteins involved in auxin, brassinosteroid (BR), gibberellic acid (GA), abscisic acid (ABA) and ethylene signaling pathways. Cotton homologs related to MIXTA, MYB5, GL2 and eight genes in the auxin, BR, GA and ethylene pathways were induced during fiber cell initiation but repressed in the naked seed mutant (N1N1) that is impaired in fiber formation. The data agree with the known roles of MYB and WRKY transcription factors in Arabidopsis leaf trichome development and the well-documented phytohormonal effects on fiber cell development in immature cotton ovules cultured in vitro. Moreover, the phytohormonal pathway-related genes were induced prior to the activation of MYB-like genes, suggesting an important role of phytohormones in cell fate determination. Significantly, AA sub-genome ESTs of all functional classifications including cell-cycle control and transcription factor activity were selectively enriched in G. hirsutum L., an allotetraploid derived from polyploidization between AA and DD genome species, a result consistent with the production of long lint fibers in AA genome species. These results suggest general roles for genome-specific, phytohormonal and transcriptional gene regulation during the early stages of fiber cell development in cotton allopolyploids.
Collapse
Affiliation(s)
- S. Samuel Yang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Foo Cheung
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Jinsuk J. Lee
- Section of Molecular Cell and Developmental Biology, The University of Texas, Austin, Texas 78712, USA
| | - Misook Ha
- Section of Molecular Cell and Developmental Biology, The University of Texas, Austin, Texas 78712, USA
| | - Ning E. Wei
- Department of Computer Science, Texas A&M University, College Station, Texas 77843, USA
| | - Sing-Hoi Sze
- Department of Computer Science, Texas A&M University, College Station, Texas 77843, USA
| | - David M. Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Peggy Thaxton
- Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi 38776, USA
| | - Barbara Triplett
- USDA-ARS Southern Regional Research Center, New Orleans, Louisiana 70179, USA
| | | | - Z. Jeffrey Chen
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, USA
- Section of Molecular Cell and Developmental Biology, The University of Texas, Austin, Texas 78712, USA
- Author for correspondence: Institute for Cellular and Molecular Biology, The University of Texas, Austin, Texas 78712-0159, USA, Phone: 512-475-9327; Fax: 512-232-3432;
| |
Collapse
|
73
|
Li HM, Rotter D, Hartman TG, Pak FE, Havkin-Frenkel D, Belanger FC. Evolution of novel O-methyltransferases from the Vanilla planifolia caffeic acid O-methyltransferase. PLANT MOLECULAR BIOLOGY 2006; 61:537-52. [PMID: 16830185 DOI: 10.1007/s11103-006-0029-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2005] [Accepted: 02/16/2006] [Indexed: 05/10/2023]
Abstract
The biosynthesis of many plant secondary compounds involves the methylation of one or more hydroxyl groups, catalyzed by O-methyltransferases (OMTs). Here, we report the characterization of two OMTs, Van OMT-2 and Van OMT-3, from the orchid Vanilla planifolia Andrews. These enzymes catalyze the methylation of a single outer hydroxyl group in substrates possessing a 1,2,3-trihydroxybenzene moiety, such as methyl gallate and myricetin. This is a substrate requirement not previously reported for any OMTs. Based on sequence analysis these enzymes are most similar to caffeic acid O-methyltransferases (COMTs), but they have negligible activity with typical COMT substrates. Seven of 12 conserved substrate-binding residues in COMTs are altered in Van OMT-2 and Van OMT-3. Phylogenetic analysis of the sequences suggests that Van OMT-2 and Van OMT-3 evolved from the V. planifolia COMT. These V. planifolia OMTs are new instances of COMT-like enzymes with novel substrate preferences.
Collapse
Affiliation(s)
- Huaijun Michael Li
- Department of Plant Biology and Pathology and The Biotechnology Center for Agriculture & the Environment, Cook College, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | | | | | | | | | | |
Collapse
|
74
|
McCallum J, Clarke A, Pither-Joyce M, Shaw M, Butler R, Brash D, Scheffer J, Sims I, van Heusden S, Shigyo M, Havey MJ. Genetic mapping of a major gene affecting onion bulb fructan content. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:958-67. [PMID: 16404585 DOI: 10.1007/s00122-005-0199-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 12/14/2005] [Indexed: 05/06/2023]
Abstract
The non-structural dry matter content of onion bulbs consists principally of fructose, glucose, sucrose and fructans. The objective of this study was to understand the genetic basis for the wide variation observed in the relative amounts of these carbohydrates. Bulb carbohydrate composition was evaluated in progeny from crosses between high dry matter storage onion varieties and sweet, low dry matter varieties. When samples were analysed on a dry weight basis, reducing sugar and fructan content exhibited high negative correlations and bimodal segregation suggestive of the action of a major gene. A polymorphic SSR marker, ACM235, was identified which exhibited strong disequilibrium with bulb fructan content in F(2:3) families from the 'W202A' x 'Texas Grano 438' mapping population evaluated in two environments. This marker was mapped to chromosome 8 in the interspecific population 'Allium cepa x A. roylei'. Mapping in the 'Colossal Grano PVP' x 'Early Longkeeper P12' F2 population showed that a dominant major gene conditioning high-fructan content lay in the same genomic region. QTL analysis of total bulb fructan content in the intraspecific mapping population 'BYG15-23' x 'AC43' using a complete molecular marker map revealed only one significant QTL in the same chromosomal region. This locus, provisionally named Frc, may account for the major phenotypic differences in bulb carbohydrate content between storage and sweet onion varieties.
Collapse
Affiliation(s)
- John McCallum
- New Zealand Institute for Crop and Food Research Limited, Private Bag 4704, Christchurch, New Zealand.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Ujino-Ihara T, Kanamori H, Yamane H, Taguchi Y, Namiki N, Mukai Y, Yoshimura K, Tsumura Y. Comparative analysis of expressed sequence tags of conifers and angiosperms reveals sequences specifically conserved in conifers. PLANT MOLECULAR BIOLOGY 2005; 59:895-907. [PMID: 16307365 DOI: 10.1007/s11103-005-2080-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 08/12/2005] [Indexed: 05/05/2023]
Abstract
To identify and characterize lineage-specific genes of conifers, two sets of ESTs (with 12791 and 5902 ESTs, representing 5373 and 3018 gene transcripts, respectively) were generated from the Cupressaceae species Cryptomeria japonica and Chamaecyparis obtusa. These transcripts were compared with non-redundant sets of genes generated from Pinaceae species, other gymnosperms and angiosperms. About 6% of tentative unique genes (Unigenes) of C. japonica and C. obtusa had homologs in other conifers but not angiosperms, and about 70% had apparent homologs in angiosperms. The calculated GC contents of orthologous genes showed that GC contents of coniferous genes are likely to be lower than those of angiosperms. Comparisons of the numbers of homologous genes in each species suggest that copy numbers of genes may be correlated between diverse seed plants. This correlation suggests that the multiplicity of such genes may have arisen before the divergence of gymnosperms and angiosperms.
Collapse
Affiliation(s)
- Tokuko Ujino-Ihara
- Genome Analysis Laboratory, Department of Forest Genetics, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, 305-8687, Ibaraki, Japan. udino@ affrc.go.jp
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Martin WJ, McCallum J, Shigyo M, Jakse J, Kuhl JC, Yamane N, Pither-Joyce M, Gokce AF, Sink KC, Town CD, Havey MJ. Genetic mapping of expressed sequences in onion and in silico comparisons with rice show scant colinearity. Mol Genet Genomics 2005; 274:197-204. [PMID: 16025250 DOI: 10.1007/s00438-005-0007-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Accepted: 05/12/2005] [Indexed: 11/30/2022]
Abstract
The Poales (which include the grasses) and Asparagales [which include onion (Allium cepa L.) and other Allium species] are the two most economically important monocot orders. Enormous genomic resources have been developed for the grasses; however, their applicability to other major monocot groups, such as the Asparagales, is unclear. Expressed sequence tags (ESTs) from onion that showed significant similarities (80% similarity over at least 70% of the sequence) to single positions in the rice genome were selected. One hundred new genetic markers developed from these ESTs were added to the intraspecific map derived from the BYG15-23xAC43 segregating family, producing 14 linkage groups encompassing 1,907 cM at LOD 4. Onion linkage groups were assigned to chromosomes using alien addition lines of Allium fistulosum L. carrying single onion chromosomes. Visual comparisons of genetic linkage in onion with physical linkage in rice revealed scant colinearity; however, short regions of colinearity could be identified. Our results demonstrate that the grasses may not be appropriate genomic models for other major monocot groups such as the Asparagales; this will make it necessary to develop genomic resources for these important plants.
Collapse
Affiliation(s)
- William J Martin
- Agricultural Research Service, USDA, Department of Horticulture, University of Wisconsin, Madison, 53706, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Castillo R, Fernández JA, Gómez-Gómez L. Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. PLANT PHYSIOLOGY 2005; 139:674-89. [PMID: 16183835 PMCID: PMC1255987 DOI: 10.1104/pp.105.067827] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/02/2005] [Accepted: 08/16/2005] [Indexed: 05/04/2023]
Abstract
Crocus sativus is a triploid sterile plant characterized by its long red stigmas, which produce and store significant quantities of the apocarotenoids crocetin and crocin, formed from the oxidative cleavage of zeaxanthin. Here, we investigate the accumulation and the molecular mechanisms that regulate the synthesis of these apocarotenoids during stigma development in C. sativus. We cloned the cDNAs for phytoene synthase, lycopene-beta-cyclase, and beta-ring hydroxylase from C. sativus. With the transition of yellow undeveloped to red fully developed stigmas, an accumulation of zeaxanthin was observed, accompanying the expression of CsPSY, phytoene desaturase, and CsLYCb, and the massive accumulation of CsBCH and CsZCD transcripts. We analyzed the expression of these two transcripts in relation to zeaxanthin and apocarotenoid accumulation in other Crocus species. We observed that only the relative levels of zeaxanthin in the stigma of each cultivar were correlated with the level of CsBCH transcripts. By contrast, the expression levels of CsZCD were not mirrored by changes in the apocarotenoid content, suggesting that the reaction catalyzed by the CsBCH enzyme could be the limiting step in the formation of saffron apocarotenoids in the stigma tissue. Phylogenetic analysis of the CsBCH intron sequences allowed us to determine the relationships among 19 Crocus species and to identify the closely related diploids of C. sativus. In addition, we examined the levels of the carotenoid and apocarotenoid biosynthetic genes in the triploid C. sativus and its closer relatives to determine whether the quantities of these specific mRNAs were additive or not in C. sativus. Transcript levels in saffron were clearly higher and nonadditive, suggesting that, in the triploid gene, regulatory interactions that produce novel effects on carotenoid biosynthesis genes are involved.
Collapse
Affiliation(s)
- Raquel Castillo
- Sección de Biotecnología, Instituto de Desarrollo Regional, Escuela Técnica Superior Ingenieros Agrónomos, Universidad de Castilla-La Mancha, Campus Universitario, Albacete, Spain
| | | | | |
Collapse
|
78
|
Bradford KJ, Gutterson N, Parrott W, Van Deynze A, Strauss SH. Reply to Regulatory regimes for transgenic crops. Nat Biotechnol 2005. [DOI: 10.1038/nbt0705-787] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
79
|
Jouannic S, Argout X, Lechauve F, Fizames C, Borgel A, Morcillo F, Aberlenc-Bertossi F, Duval Y, Tregear J. Analysis of expressed sequence tags from oil palm (Elaeis guineensis). FEBS Lett 2005; 579:2709-14. [PMID: 15862313 DOI: 10.1016/j.febslet.2005.03.093] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 03/07/2005] [Accepted: 03/08/2005] [Indexed: 11/28/2022]
Abstract
This is the first report of a systematic study of genes expressed by means of expressed sequence tag (EST) analysis in oil palm, a species of the Arecales order, a phylogenetically key clade of monocotyledons that is not widely represented in the sequence databases. Five different cDNA libraries were generated from male and female inflorescences, shoot apices and zygotic embryos and unidirectional systematic sequencing was performed. A total of 2411 valid EST sequences were thus obtained. Cluster analysis enabled the identification of 209 groups of related sequences and 1874 singletons. Putative functions were assigned to 1252 of the set of 2083 non-redundant ESTs obtained. The EST database described here is a first step towards gene discovery and cDNA array-based expression analysis in oil palm.
Collapse
Affiliation(s)
- Stefan Jouannic
- IRD/CIRAD Oil Palm Laboratory, Centre IRD Montpellier, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Cui Y, Zhang X, Zhou Y, Yu H, Tao L, Zhang L, Zhou J, Zhuge Q, Cai Y, Huang M. Identification and expression analysis of EST-based genes in the bud of Lycoris longituba. GENOMICS PROTEOMICS & BIOINFORMATICS 2005; 2:43-6. [PMID: 15629042 PMCID: PMC5172430 DOI: 10.1016/s1672-0229(04)02006-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To obtain a primary overview of gene diversity and expression pattern in Lycoris longituba, 4,992 ESTs (Expressed Sequence Tags) from L. longituba bud were sequenced and 4,687 cleaned ESTs were used for gene expression analysis. Clustered by the PHRAP program, 967 contigs and 1,343 singlets were obtained. Blast search showed that 179 contigs and 227 singlets (totally 1,066 ESTs) had homologues in GenBank and 3,621 ESTs were novel.
Collapse
Affiliation(s)
- Yonglan Cui
- Key Laboratory of Tree Genetic Engineering of Nanjing Forestry University, Nanjing 210037, China
| | - Xinye Zhang
- Key Laboratory of Tree Genetic Engineering of Nanjing Forestry University, Nanjing 210037, China
| | - Yan Zhou
- Hangzhou Genomics Institute/James D. Watson Institute of Genome Sciences, Zhejiang University/Key Laboratory of Bioinformatics of Zhejiang Province, Hangzhou 310008, China
| | - Hong Yu
- Hangzhou Genomics Institute/James D. Watson Institute of Genome Sciences, Zhejiang University/Key Laboratory of Bioinformatics of Zhejiang Province, Hangzhou 310008, China
| | - Lin Tao
- Hangzhou Genomics Institute/James D. Watson Institute of Genome Sciences, Zhejiang University/Key Laboratory of Bioinformatics of Zhejiang Province, Hangzhou 310008, China
| | - Lu Zhang
- Key Laboratory of Tree Genetic Engineering of Nanjing Forestry University, Nanjing 210037, China
- Department of Forestry, Jiangxi Agriculture University, Nanchang 330045, China
| | - Jian Zhou
- Key Laboratory of Tree Genetic Engineering of Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Zhuge
- Key Laboratory of Tree Genetic Engineering of Nanjing Forestry University, Nanjing 210037, China
| | - Youming Cai
- Shanghai Municipal Agricultural Commission, Shanghai 200003, China
| | - Minren Huang
- Key Laboratory of Tree Genetic Engineering of Nanjing Forestry University, Nanjing 210037, China
- Corresponding author.
| |
Collapse
|
81
|
Khrustaleva LI, de Melo PE, van Heusden AW, Kik C. The integration of recombination and physical maps in a large-genome monocot using haploid genome analysis in a trihybrid allium population. Genetics 2005; 169:1673-85. [PMID: 15654085 PMCID: PMC1449564 DOI: 10.1534/genetics.104.038687] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Integrated mapping in large-genome monocots has been carried out on a limited number of species. Furthermore, integrated maps are difficult to construct for these species due to, among other reasons, the specific plant populations needed. To fill these gaps, Alliums were chosen as target species and a new strategy for constructing suitable populations was developed. This strategy involves the use of trihybrid genotypes in which only one homeolog of a chromosome pair is recombinant due to interspecific recombination. We used genotypes from a trihybrid Allium cepa x (A. roylei x A. fistulosum) population. Recombinant chromosomes 5 and 8 from the interspecific parent were analyzed using genomic in situ hybridization visualization of recombination points and the physical positions of recombination were integrated into AFLP linkage maps of both chromosomes. The integrated maps showed that in Alliums recombination predominantly occurs in the proximal half of chromosome arms and that 57.9% of PstI/MseI markers are located in close proximity to the centromeric region, suggesting the presence of genes in this region. These findings are different from data obtained on cereals, where recombination rate and gene density tends to be higher in distal regions.
Collapse
Affiliation(s)
- L I Khrustaleva
- Plant Research International, Wageningen University and Research Center, The Netherlands
| | | | | | | |
Collapse
|
82
|
Lopez C, Jorge V, Piégu B, Mba C, Cortes D, Restrepo S, Soto M, Laudié M, Berger C, Cooke R, Delseny M, Tohme J, Verdier V. A unigene catalogue of 5700 expressed genes in cassava. PLANT MOLECULAR BIOLOGY 2004; 56:541-54. [PMID: 15630618 DOI: 10.1007/s11103-004-0123-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 04/07/2004] [Indexed: 05/23/2023]
Abstract
Two economically important characters, starch content and cassava bacterial blight resistance, were targeted to generate a large collection of cassava ESTs. Two libraries were constructed from cassava root tissues of varieties with high and low starch contents. Other libraries were constructed from plant tissues challenged by the pathogen Xanthomonas axonopodis pv.manihotis. We report here the single pass sequencing of 11,954 cDNA clones from the 5' ends, including 111 from the 3' ends. Cluster analysis permitted the identification of a unigene set of 5,700 sequences. Sequence analyses permitted the assignment of a putative functional category for 37% of sequences whereas approximately 16% sequences did not show any significant similarity with other proteins present in the database and therefore can be considered as cassava specific genes. A group of genes belonging to a large multigene family was identified. We characterize a set of genes detected only in infected libraries putatively involved in the defense response to pathogen infection. By comparing two libraries obtained from cultivars contrasting in their starch content a group of genes associated to starch biosynthesis and differentially expressed was identified. This is the first large cassava EST resource developed today and publicly available thus making a significant contribution to genomic knowledge of cassava.
Collapse
Affiliation(s)
- Camilo Lopez
- Laboratoire Génome et Développement des Plantes, UMR5096, CNRS-Université de Perpignan--Institut de Recherche pour le Développement, 52 Av Paul Alduy, 66860, Perpignan Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Kellogg EA, Bennetzen JL. The evolution of nuclear genome structure in seed plants. AMERICAN JOURNAL OF BOTANY 2004; 91:1709-25. [PMID: 21652319 DOI: 10.3732/ajb.91.10.1709] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant nuclear genomes exhibit extensive structural variation in size, chromosome number, number and arrangement of genes, and number of genome copies per nucleus. This variation is the outcome of a set of highly active processes, including gene duplication and deletion, chromosomal duplication followed by gene loss, amplification of retrotransposons separating genes, and genome rearrangement, the latter often following hybridization and/or polyploidy. While these changes occur continuously, it is not surprising that some of them should be fixed evolutionarily and come to mark major clades. Large-scale duplications pre-date the radiation of Brassicaceae and Poaceae and correlate with the origin of many smaller clades as well. Nuclear genomes are largely colinear among closely related species, but more rearrangements are observed with increasing phylogenetic distance; however, the correlation between amount of rearrangement and time since divergence is not perfect. By changing patterns of gene expression and triggering genome rearrangements, novel combinations of genomes (hybrids) may be a driving force in evolution.
Collapse
Affiliation(s)
- Elizabeth A Kellogg
- Department of Biology, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri 63121 USA
| | | |
Collapse
|
84
|
Pak FE, Gropper S, Dai WD, Havkin-Frenkel D, Belanger FC. Characterization of a multifunctional methyltransferase from the orchid Vanilla planifolia. PLANT CELL REPORTS 2004; 22:959-966. [PMID: 15118832 DOI: 10.1007/s00299-004-0795-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2003] [Revised: 03/10/2004] [Accepted: 03/11/2004] [Indexed: 05/24/2023]
Abstract
The final enzymatic step in the synthesis of the flavor compound vanillin (4-hydroxy-3-methoxybenzaldehyde) is believed to be methylation of 3,4-dihydroxybenzaldehyde. We have isolated and functionally characterized a cDNA that encodes a multifunctional methyltransferase from Vanilla planifolia tissue cultures that can catalyze the conversion of 3,4-dihydroxybenzaldehyde to vanillin, although 3,4-dihydroxybenzaldehyde is not the preferred substrate. The higher catalytic efficiency of the purified recombinant enzyme with the substrates caffeoyl aldehyde and 5-OH-coniferaldehyde, and its tissue distribution, suggest this methyltransferase may primarily function in lignin biosynthesis. However, since the enzyme characterized here does have 3,4-dihydroxybenzaldehyde-O-methyltransferase activity, it may be useful in engineering strategies for the synthesis of natural vanillin from alternate sources.
Collapse
Affiliation(s)
- F E Pak
- Department of Plant Biology and Pathology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | | | | | | | | |
Collapse
|