51
|
García-Andrade J, Ramírez V, Flors V, Vera P. Arabidopsis ocp3 mutant reveals a mechanism linking ABA and JA to pathogen-induced callose deposition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:783-94. [PMID: 21564353 DOI: 10.1111/j.1365-313x.2011.04633.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In the present study, we evaluated the role of the defense-related gene OCP3 in callose deposition as a response to two necrotrophic fungal pathogens, Botrytis cinerea and Plectosphaerella cucumerina. ocp3 plants exhibited accelerated and intensified callose deposition in response to fungal infection associated with enhanced disease resistance to the two pathogens. A series of double mutant analyses showed potentiation of callose deposition and the heightened disease resistance phenotype in ocp3 plants required the plant hormone abscisic acid (ABA) and the PMR4 gene encoding a callose synthase. This finding was congruent with an observation that ocp3 plants exhibited increased ABA accumulation, and ABA was rapidly synthesized following fungal infection in wild-type plants. Furthermore, we determined that potentiation of callose deposition in ocp3 plants, including enhanced disease resistance, also required jasmonic acid (JA) recognition though a COI1 receptor, however JA was not required for basal callose deposition following fungal infection. In addition, potentiation of callose deposition in ocp3 plants appeared to follow a different mechanism than that proposed for callose β-amino-butyric acid (BABA)-induced resistance and priming, because ocp3 plants responded to BABA-induced priming for callose deposition and induced resistance of a magnitude similar to that observed in wild-type plants. Our results point to a model in which OCP3 represents a specific control point for callose deposition regulated by JA yet ultimately requiring ABA. These results provide new insights into the mechanism of callose deposition regulation in response to pathogen attack; however the complexities of the processes remain poorly understood.
Collapse
Affiliation(s)
- Javier García-Andrade
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Camino de Vera, s/n, 46022 Valencia, Spain
| | | | | | | |
Collapse
|
52
|
Ramírez V, Agorio A, Coego A, García-Andrade J, Hernández MJ, Balaguer B, Ouwerkerk PB, Zarra I, Vera P. MYB46 modulates disease susceptibility to Botrytis cinerea in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1920-35. [PMID: 21282403 PMCID: PMC3091096 DOI: 10.1104/pp.110.171843] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 01/31/2011] [Indexed: 05/18/2023]
Abstract
In this study, we show that the Arabidopsis (Arabidopsis thaliana) transcription factor MYB46, previously described to regulate secondary cell wall biosynthesis in the vascular tissue of the stem, is pivotal for mediating disease susceptibility to the fungal pathogen Botrytis cinerea. We identified MYB46 by its ability to bind to a new cis-element located in the 5' promoter region of the pathogen-induced Ep5C gene, which encodes a type III cell wall-bound peroxidase. We present genetic and molecular evidence indicating that MYB46 modulates the magnitude of Ep5C gene induction following pathogenic insults. Moreover, we demonstrate that different myb46 knockdown mutant plants exhibit increased disease resistance to B. cinerea, a phenotype that is accompanied by selective transcriptional reprogramming of a set of genes encoding cell wall proteins and enzymes, of which extracellular type III peroxidases are conspicuous. In essence, our results substantiate that defense-related signaling pathways and cell wall integrity are interconnected and that MYB46 likely functions as a disease susceptibility modulator to B. cinerea through the integration of cell wall remodeling and downstream activation of secondary lines of defense.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain (V.R., A.A., A.C., J.G.-A., M.J.H., B.B., P.V.); Institute of Biology, Leiden University, 2333 CC Leiden, The Netherlands (P.B.F.O.); Departamento de Fisiología Vegetal, Universidad de Santiago, Campus Sur, 15782 Santiago de Compostela, Spain (I.Z.)
| |
Collapse
|
53
|
Luo H, Laluk K, Lai Z, Veronese P, Song F, Mengiste T. The Arabidopsis Botrytis Susceptible1 Interactor defines a subclass of RING E3 ligases that regulate pathogen and stress responses. PLANT PHYSIOLOGY 2010; 154:1766-82. [PMID: 20921156 PMCID: PMC2996010 DOI: 10.1104/pp.110.163915] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 09/30/2010] [Indexed: 05/18/2023]
Abstract
We studied the function of Arabidopsis (Arabidopsis thaliana) Botrytis Susceptible1 Interactor (BOI) in plant responses to pathogen infection and abiotic stress. BOI physically interacts with and ubiquitinates Arabidopsis BOS1, an R2R3MYB transcription factor previously implicated in stress and pathogen responses. In transgenic plants expressing the BOS1-β-glucuronidase transgene, β-glucuronidase activity could be detected only after inhibition of the proteosome, suggesting that BOS1 is a target of ubiquitin-mediated degradation by the proteosome. Plants with reduced BOI transcript levels generated through RNA interference (BOI RNAi) were more susceptible to the necrotrophic fungus Botrytis cinerea and less tolerant to salt stress. In addition, BOI RNAi plants exhibited increased cell death induced by the phytotoxin α-picolinic acid and by a virulent strain of the bacterial pathogen Pseudomonas syringae, coincident with peak disease symptoms. However, the hypersensitive cell death associated with different race-specific resistance genes was unaffected by changes in the level of BOI transcript. BOI expression was enhanced by B. cinerea and salt stress but repressed by the plant hormone gibberellin, indicating a complex regulation of BOI gene expression. Interestingly, BOI RNAi plants exhibit reduced growth responsiveness to gibberellin. We also present data revealing the function of three Arabidopsis BOI-RELATED GENES (BRGs), which contribute to B. cinerea resistance and the suppression of disease-associated cell death. In sum, BOI and BRGs represent a subclass of RING E3 ligases that contribute to plant disease resistance and abiotic stress tolerance through the suppression of pathogen-induced as well as stress-induced cell death.
Collapse
|
54
|
Hong SY, Kim OK, Kim SG, Yang MS, Park CM. Nuclear import and DNA binding of the ZHD5 transcription factor is modulated by a competitive peptide inhibitor in Arabidopsis. J Biol Chem 2010; 286:1659-68. [PMID: 21059647 PMCID: PMC3020774 DOI: 10.1074/jbc.m110.167692] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Competitive inhibition of transcription factors by small proteins is an intriguing component of gene regulatory networks in both animals and plants. The small interfering proteins possess limited sequence homologies to specific transcription factors but lack one or more protein motifs required for transcription factor activities. They interfere with the activities of transcription factors, such as DNA binding and transcriptional activation, by forming nonfunctional heterodimers. A potential example is the Arabidopsis MIF1 (mini zinc finger 1) protein consisting of 101 residues. It has a zinc finger domain but lacks other protein motifs normally present in transcription factors. In this work, we show that MIF1 and its functional homologues physically interact with a group of zinc finger homeodomain (ZHD) transcription factors, such as ZHD5, that regulate floral architecture and leaf development. Gel mobility shift assays revealed that MIF1 blocks the DNA binding activity of ZHD5 homodimers by competitively forming MIF1-ZHD5 heterodimers. Accordingly, the transcriptional activation activity of ZHD5 was significantly suppressed by MIF1 coexpressed transiently in Arabidopsis protoplasts. Notably, MIF1 also prevents ZHD5 from nuclear localization. Although ZHD5 was localized exclusively in the nucleus, it was scattered throughout the cytoplasm when MIF1 was coexpressed. Transgenic plants overexpressing the ZHD5 gene (35S:ZHD5) exhibited accelerated growth with larger leaves. Consistent with the negative regulation of ZHD5 by MIF1, the 35S:ZHD5 phenotypes were diminished by MIF1 coexpression. These observations indicate that MIF1 regulates the ZHD5 activities in a dual step manner: nuclear import and DNA binding.
Collapse
Affiliation(s)
- Shin-Young Hong
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
55
|
Park HC, Kim ML, Kim HS, Park JH, Jung MS, Shen M, Kang CH, Kim MC, Lee SY, Cho MJ, Chung WS, Yun DJ. Specificity of DNA sequences recognized by the zinc-finger homeodomain protein, GmZF-HD1 in soybean. PHYTOCHEMISTRY 2010; 71:1832-8. [PMID: 20804996 DOI: 10.1016/j.phytochem.2010.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 06/01/2010] [Accepted: 07/26/2010] [Indexed: 05/29/2023]
Abstract
Zinc finger-homeodomain proteins (ZF-HDs) have been identified in many plant species. In soybean (Glycine max), GmZF-HD1 functions as a transcription factor that activates the soybean calmodulin isoform-4 (GmCaM-4) gene in response to pathogens. Recently, we reported specific binding of GmZF-HD1 to a 30-nt A/T-rich cis-element which constitutes two repeats of a conserved homeodomain binding site, ATTA, within -1207 to -1128bp of the GmCaM-4 promoter. Herein, homeodomain sequences of the GmZF-HD1 protein were compared to those of other homeodomain proteins and characterized the specificity of DNA sequences in the interaction of the GmCaM-4 promoter with GmZF-HD1 protein. Considering the conservation of homeodomains in plants, the AG sequence within a 30-nt A/T-rich cis-element is required for binding of the GmZF-HD1 protein. Approximately 25-bp of A/T-rich DNA sequences containing an AG sequence is necessary for effective binding to the GmZF-HD1 protein. Taken together, the results support the notion that the GmZF-HD1 protein specifically functions in plant stress signalling by interacting with the promoter of GmCaM-4.
Collapse
Affiliation(s)
- Hyeong Cheol Park
- Division of Applied Life Science (BK21 program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Ramírez V, Van der Ent S, García-Andrade J, Coego A, Pieterse CMJ, Vera P. OCP3 is an important modulator of NPR1-mediated jasmonic acid-dependent induced defenses in Arabidopsis. BMC PLANT BIOLOGY 2010; 10:199. [PMID: 20836879 PMCID: PMC2956548 DOI: 10.1186/1471-2229-10-199] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 09/13/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Upon appropriate stimulation, plants increase their level of resistance against future pathogen attack. This phenomenon, known as induced resistance, presents an adaptive advantage due to its reduced fitness costs and its systemic and broad-spectrum nature. In Arabidopsis, different types of induced resistance have been defined based on the signaling pathways involved, particularly those dependent on salicylic acid (SA) and/or jasmonic acid (JA). RESULTS Here, we have assessed the implication of the transcriptional regulator OCP3 in SA- and JA-dependent induced defenses. Through a series of double mutant analyses, we conclude that SA-dependent defense signaling does not require OCP3. However, we found that ocp3 plants are impaired in a Pseudomonas fluorescens WCS417r-triggered induced systemic resistance (ISR) against both Pseudomonas syrinagae DC3000 and Hyaloperonospora arabidopsidis, and we show that this impairment is not due to a defect in JA-perception. Likewise, exogenous application of JA failed to induce defenses in ocp3 plants. In addition, we provide evidence showing that the over-expression of an engineered cytosolic isoform of the disease resistance regulator NPR1 restores the impaired JA-induced disease resistance in ocp3 plants. CONCLUSIONS Our findings point to a model in which OCP3 may modulate the nucleocytosolic function of NPR1 in the regulation of JA-dependent induced defense responses.
Collapse
Affiliation(s)
- Vicente Ramírez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC). Camino de Vera s/n, Valencia, Spain
| | - Sjoerd Van der Ent
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Javier García-Andrade
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC). Camino de Vera s/n, Valencia, Spain
| | - Alberto Coego
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC). Camino de Vera s/n, Valencia, Spain
| | - Corné MJ Pieterse
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas (CSIC). Camino de Vera s/n, Valencia, Spain
| |
Collapse
|
57
|
Laluk K, Mengiste T. Necrotroph attacks on plants: wanton destruction or covert extortion? THE ARABIDOPSIS BOOK 2010; 8:e0136. [PMID: 22303261 PMCID: PMC3244965 DOI: 10.1199/tab.0136] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Necrotrophic pathogens cause major pre- and post-harvest diseases in numerous agronomic and horticultural crops inflicting significant economic losses. In contrast to biotrophs, obligate plant parasites that infect and feed on living cells, necrotrophs promote the destruction of host cells to feed on their contents. This difference underpins the divergent pathogenesis strategies and plant immune responses to biotrophic and necrotrophic infections. This chapter focuses on Arabidopsis immunity to necrotrophic pathogens. The strategies of infection, virulence and suppression of host defenses recruited by necrotrophs and the variation in host resistance mechanisms are highlighted. The multiplicity of intraspecific virulence factors and species diversity in necrotrophic organisms corresponds to variations in host resistance strategies. Resistance to host-specific necrotophs is monogenic whereas defense against broad host necrotrophs is complex, requiring the involvement of many genes and pathways for full resistance. Mechanisms and components of immunity such as the role of plant hormones, secondary metabolites, and pathogenesis proteins are presented. We will discuss the current state of knowledge of Arabidopsis immune responses to necrotrophic pathogens, the interactions of these responses with other defense pathways, and contemplate on the directions of future research.
Collapse
Affiliation(s)
- Kristin Laluk
- Purdue University, Department of Botany and Plant Pathology, 915 W. State Street, West Lafayette, IN 47907
- Address correspondence to
and
| | - Tesfaye Mengiste
- Purdue University, Department of Botany and Plant Pathology, 915 W. State Street, West Lafayette, IN 47907
- Address correspondence to
and
| |
Collapse
|
58
|
Mukherjee K, Brocchieri L, Bürglin TR. A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol 2009; 26:2775-94. [PMID: 19734295 PMCID: PMC2775110 DOI: 10.1093/molbev/msp201] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The full complement of homeobox transcription factor sequences, including genes and pseudogenes, was determined from the analysis of 10 complete genomes from flowering plants, moss, Selaginella, unicellular green algae, and red algae. Our exhaustive genome-wide searches resulted in the discovery in each class of a greater number of homeobox genes than previously reported. All homeobox genes can be unambiguously classified by sequence evolutionary analysis into 14 distinct classes also characterized by conserved intron–exon structure and by unique codomain architectures. We identified many new genes belonging to previously defined classes (HD-ZIP I to IV, BEL, KNOX, PLINC, WOX). Other newly identified genes allowed us to characterize PHD, DDT, NDX, and LD genes as members of four new evolutionary classes and to define two additional classes, which we named SAWADEE and PINTOX. Our comprehensive analysis allowed us to identify several newly characterized conserved motifs, including novel zinc finger motifs in SAWADEE and DDT. Members of the BEL and KNOX classes were found in Chlorobionta (green plants) and in Rhodophyta. We found representatives of the DDT, WOX, and PINTOX classes only in green plants, including unicellular green algae, moss, and vascular plants. All 14 homeobox gene classes were represented in flowering plants, Selaginella, and moss, suggesting that they had already differentiated in the last common ancestor of moss and vascular plants.
Collapse
Affiliation(s)
- Krishanu Mukherjee
- Genetics Institute, Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, USA.
| | | | | |
Collapse
|
59
|
Mang HG, Laluk KA, Parsons EP, Kosma DK, Cooper BR, Park HC, AbuQamar S, Boccongelli C, Miyazaki S, Consiglio F, Chilosi G, Bohnert HJ, Bressan RA, Mengiste T, Jenks MA. The Arabidopsis RESURRECTION1 gene regulates a novel antagonistic interaction in plant defense to biotrophs and necrotrophs. PLANT PHYSIOLOGY 2009; 151:290-305. [PMID: 19625635 PMCID: PMC2735982 DOI: 10.1104/pp.109.142158] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 07/17/2009] [Indexed: 05/18/2023]
Abstract
We report a role for the Arabidopsis (Arabidopsis thaliana) RESURRECTION1 (RST1) gene in plant defense. The rst1 mutant exhibits enhanced susceptibility to the biotrophic fungal pathogen Erysiphe cichoracearum but enhanced resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola. RST1 encodes a novel protein that localizes to the plasma membrane and is predicted to contain 11 transmembrane domains. Disease responses in rst1 correlate with higher levels of jasmonic acid (JA) and increased basal and B. cinerea-induced expression of the plant defensin PDF1.2 gene but reduced E. cichoracearum-inducible salicylic acid levels and expression of pathogenesis-related genes PR1 and PR2. These results are consistent with rst1's varied resistance and susceptibility to pathogens of different life styles. Cuticular lipids, both cutin monomers and cuticular waxes, on rst1 leaves were significantly elevated, indicating a role for RST1 in the suppression of leaf cuticle lipid synthesis. The rst1 cuticle exhibits normal permeability, however, indicating that the disease responses of rst1 are not due to changes in this cuticle property. Double mutant analysis revealed that the coi1 mutation (causing defective JA signaling) is completely epistatic to rst1, whereas the ein2 mutation (causing defective ethylene signaling) is partially epistatic to rst1, for resistance to B. cinerea. The rst1 mutation thus defines a unique combination of disease responses to biotrophic and necrotrophic fungi in that it antagonizes salicylic acid-dependent defense and enhances JA-mediated defense through a mechanism that also controls cuticle synthesis.
Collapse
Affiliation(s)
- Hyung Gon Mang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907-2054, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Ramírez V, Coego A, López A, Agorio A, Flors V, Vera P. Drought tolerance in Arabidopsis is controlled by the OCP3 disease resistance regulator. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:578-91. [PMID: 19175769 DOI: 10.1111/j.1365-313x.2009.03804.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Water scarcity and corresponding abiotic drought stress is one of the most important factors limiting plant performance and yield. In addition, plant productivity is severely compromised worldwide by infection with microbial pathogens. Two of the most prominent pathways responsible for drought tolerance and disease resistance to fungal pathogens in Arabidopsis are those controlled by the phytohormones abscisic acid (ABA) and the oxylipin methyl jasmonate (MeJA), respectively. Here, we report on the functional characterization of OCP3, a transcriptional regulator from the homeodomain (HD) family. The Arabidopsis loss-of-function ocp3 mutant exhibits both drought resistance and enhanced disease resistance to necrotrophic fungal pathogens. Double-mutant analysis revealed that these two resistance phenotypes have different genetic requirements. Whereas drought tolerance in ocp3 is ABA-dependent but MeJA-independent, the opposite holds true for the enhanced disease resistance characteristics. These observations lead us to propose a regulatory role of OCP3 in the adaptive responses to these two stresses, functioning as a modulator of independent and specific aspects of the ABA- and MeJA-mediated signal transduction pathways.
Collapse
Affiliation(s)
- Vicente Ramírez
- Instituto de Biología Molecular y Celular de Plantas, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
61
|
Mukherjee AK, Lev S, Gepstein S, Horwitz BA. A compatible interaction of Alternaria brassicicola with Arabidopsis thaliana ecotype DiG: evidence for a specific transcriptional signature. BMC PLANT BIOLOGY 2009; 9:31. [PMID: 19296849 PMCID: PMC2664814 DOI: 10.1186/1471-2229-9-31] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 03/18/2009] [Indexed: 05/11/2023]
Abstract
BACKGROUND The interaction of Arabidopsis with Alternaria brassicicola provides a model for disease caused by necrotrophs, but a drawback has been the lack of a compatible pathosystem. Infection of most ecotypes, including the widely-studied line Col-0, with this pathogen generally leads to a lesion that does not expand beyond the inoculated area. This study examines an ecotype, Dijon G (DiG), which is considered sensitive to A. brassicicola. RESULTS We show that the interaction has the characteristics of a compatible one, with expanding rather than limited lesions. To ask whether DiG is merely more sensitive to the pathogen or, rather, interacts in distinct manner, we identified genes whose regulation differs between Col-0 and DiG challenged with A. brassicicola. Suppression subtractive hybridization was used to identify differentially expressed genes, and their expression was verified using semi-quantitative PCR. We also tested a set of known defense-related genes for differential regulation in the two plant-pathogen interactions. Several known pathogenesis-related (PR) genes are up-regulated in both interactions. PR1, and a monooxygenase gene identified in this study, MO1, are preferentially up-regulated in the compatible interaction. In contrast, GLIP1, which encodes a secreted lipase, and DIOX1, a pathogen-response related dioxygenase, are preferentially up-regulated in the incompatible interaction. CONCLUSION The results show that DiG is not only more susceptible, but demonstrate that its interaction with A. brassicicola has a specific transcriptional signature.
Collapse
Affiliation(s)
- Arup K Mukherjee
- Division of Plant Biotechnology, Regional Plant Resource Centre, IRC Village, Bhubaneswar 751015, Orissa, India
| | - Sophie Lev
- Department of Biology, Israel Institute of Technology, Technion, Haifa 32000, Israel
| | - Shimon Gepstein
- Department of Biology, Israel Institute of Technology, Technion, Haifa 32000, Israel
| | - Benjamin A Horwitz
- Department of Biology, Israel Institute of Technology, Technion, Haifa 32000, Israel
| |
Collapse
|
62
|
Shin H, Lee H, Woo KS, Noh EW, Koo YB, Lee KJ. Identification of genes upregulated by pinewood nematode inoculation in Japanese red pine. TREE PHYSIOLOGY 2009; 29:411-21. [PMID: 19203959 DOI: 10.1093/treephys/tpn034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pine wilt disease caused by the pinewood nematode (PWN), Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle, has destroyed huge areas of pine forest in East Asia, including Japan, China and Korea. No protection against PWN has been developed, and the responses of pine trees at the molecular level are unrecorded. We isolated and analyzed upregulated or newly induced genes from PWN-inoculated Japanese red pine (Pinus densiflora Sieb. et Zucc.) by using an annealing control primer system and suppression subtractive hybridization. Significant changes occurred in the transcript abundance of genes with functions related to defense, secondary metabolism and transcription, as the disease progressed. Other gene transcripts encoding pathogenesis-related proteins, pinosylvin synthases and metallothioneins were also more abundant in PWN-inoculated trees than in non-inoculated trees. Our report provides fundamental information on the molecular mechanisms controlling the biochemical and physiological responses of Japanese red pine trees to PWN invasion.
Collapse
Affiliation(s)
- Hanna Shin
- Department of Forest Genetic Resources, Korea Forest Research Institute, Suwon 441-350, Korea.
| | | | | | | | | | | |
Collapse
|
63
|
Kumar M, Busch W, Birke H, Kemmerling B, Nürnberger T, Schöffl F. Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis. MOLECULAR PLANT 2009; 2:152-65. [PMID: 19529832 PMCID: PMC2639743 DOI: 10.1093/mp/ssn095] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 11/26/2008] [Indexed: 05/18/2023]
Abstract
In order to assess the functional roles of heat stress-induced class B-heat shock factors in Arabidopsis, we investigated T-DNA knockout mutants of AtHsfB1 and AtHsfB2b. Micorarray analysis of double knockout hsfB1/hsfB2b plants revealed as strong an up-regulation of the basal mRNA-levels of the defensin genes Pdf1.2a/b in mutant plants. The Pdf expression was further enhanced by jasmonic acid treatment or infection with the necrotrophic fungus Alternaria brassicicola. The single mutant hsfB2b and the double mutant hsfB1/B2b were significantly improved in disease resistance after A. brassicicola infection. There was no indication for a direct interaction of Hsf with the promoter of Pdf1.2, which is devoid of perfect HSE consensus Hsf-binding sequences. However, changes in the formation of late HsfA2-dependent HSE binding were detected in hsfB1/B2b plants. This suggests that HsfB1/B2b may interact with class A-Hsf in regulating the shut-off of the heat shock response. The identification of Pdf genes as targets of Hsf-dependent negative regulation is the first evidence for an interconnection of Hsf in the regulation of biotic and abiotic responses.
Collapse
Affiliation(s)
- Mukesh Kumar
- Present address: Heinrich-Pette-Institut, Martinistrabe 52, D-20251 Hamburg, Germany
| | - Wolfgang Busch
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Molekularbiologie, Speemannstrabe 37–39, D-72076 Tübingen, Germany
| | - Hannah Birke
- Universität Tübingen, Zentrum für Molekularbiologie der Pflanzen (ZMBP)—Allgemeine Genetik, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Birgit Kemmerling
- Universität Tübingen, Zentrum für Molekularbiologie der Pflanzen (ZMBP)—Biochemie der Pflanzen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Thorsten Nürnberger
- Universität Tübingen, Zentrum für Molekularbiologie der Pflanzen (ZMBP)—Biochemie der Pflanzen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Friedrich Schöffl
- Universität Tübingen, Zentrum für Molekularbiologie der Pflanzen (ZMBP)—Allgemeine Genetik, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
- To whom correspondence should be addressed. E-mail , fax +49-7071-295042, tel. +49-7071-2978831
| |
Collapse
|
64
|
Liu D, Xia XC, He ZH, Xu SC. A novel homeobox-like gene associated with reaction to stripe rust and powdery mildew in common wheat. PHYTOPATHOLOGY 2008; 98:1291-6. [PMID: 19000003 DOI: 10.1094/phyto-98-12-1291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Stripe rust and powdery mildew, caused by Puccinia striiformis f. sp. tritici and Blumeria graminis f. sp. tritici, respectively, are severe diseases in wheat (Triticum aestivum) worldwide. In our study, differential amplification of a 201-bp cDNA fragment was obtained in a cDNA-amplified fragment length polymorphism (AFLP) analysis between near-isogenic lines Yr10NIL and Avocet S, inoculated with P. striiformis f. sp. tritici race CYR29. A full-length cDNA (1,357 bp) of a homeobox-like gene, TaHLRG (GenBank accession no. EU385606), was obtained in common wheat based on the sequence of GenBank accession AW448633 with high similarity to the above fragment. The genomic DNA sequence (2,396 bp) of TaHLRG contains three exons and two introns. TaHLRG appeared to be a novel homeobox-like gene, encoding a protein with a predicted 66-amino-acid homeobox domain. It was involved in race-specific responses to stripe rust in real-time quantitative polymerase chain reaction (PCR) analyses with Yr9NIL, Yr10NIL, and Avocet S. It was also associated with adult-plant resistance to stripe rust and powdery mildew based on the field trials of doubled haploid lines derived from the cross Bainong 64/Jingshuang 16 and two F(2:3) populations from the crosses Lumai 21/Jingshuang 16 and Strampelli/Huixianhong. A functional marker, THR1 was developed based on the sequence of TaHLRG and located on chromosome 6A using a set of Chinese Spring nulli-tetrasomic lines.
Collapse
Affiliation(s)
- D Liu
- Institute of Crop Science, National Wheat Improvement Center/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | |
Collapse
|
65
|
Lee SC, Hwang IS, Choi HW, Hwang BK. Involvement of the pepper antimicrobial protein CaAMP1 gene in broad spectrum disease resistance. PLANT PHYSIOLOGY 2008; 148:1004-20. [PMID: 18676663 PMCID: PMC2556820 DOI: 10.1104/pp.108.123836] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Accepted: 07/27/2008] [Indexed: 05/18/2023]
Abstract
Pathogen-inducible antimicrobial defense-related proteins have emerged as key antibiotic peptides and enzymes involved in disease resistance in plants. A novel antimicrobial protein gene, CaAMP1 (for Capsicum annuum ANTIMICROBIAL PROTEIN1), was isolated from pepper (C. annuum) leaves infected with Xanthomonas campestris pv vesicatoria. Expression of the CaAMP1 gene was strongly induced in pepper leaves not only during pathogen infection but also after exposure to abiotic elicitors. The purified recombinant CaAMP1 protein possessed broad-spectrum antimicrobial activity against phytopathogenic bacteria and fungi. CaAMP1:smGFP fusion protein was localized mainly in the external and intercellular regions of onion (Allium cepa) epidermal cells. The virus-induced gene silencing technique and gain-of-function transgenic plants were used to determine the CaAMP1 gene function in plant defense. Silencing of CaAMP1 led to enhanced susceptibility to X. campestris pv vesicatoria and Colletotrichum coccodes infection, accompanied by reduced PATHOGENESIS-RELATED (PR) gene expression. In contrast, overexpression of CaAMP1 in Arabidopsis (Arabidopsis thaliana) conferred broad-spectrum resistance to the hemibiotrophic bacterial pathogen Pseudomonas syringae pv tomato, the biotrophic oomycete Hyaloperonospora parasitica, and the fungal necrotrophic pathogens Fusarium oxysporum f. sp. matthiolae and Alternaria brassicicola. CaAMP1 overexpression induced the salicylic acid pathway-dependent genes PR1 and PR5 but not the jasmonic acid-dependent defense gene PDF1.2 during P. syringae pv tomato infection. Together, these results suggest that the antimicrobial CaAMP1 protein is involved in broad-spectrum resistance to bacterial and fungal pathogen infection.
Collapse
Affiliation(s)
- Sung Chul Lee
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
66
|
Chassot C, Buchala A, Schoonbeek HJ, Métraux JP, Lamotte O. Wounding of Arabidopsis leaves causes a powerful but transient protection against Botrytis infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:555-67. [PMID: 18452590 DOI: 10.1111/j.1365-313x.2008.03540.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Physical injury inflicted on living tissue makes it vulnerable to invasion by pathogens. Wounding of Arabidopsis thaliana leaves, however, does not conform to this concept and leads to immunity to Botrytis cinerea, the causal agent of grey mould. In wounded leaves, hyphal growth was strongly inhibited compared to unwounded controls. Wound-induced resistance was not associated with salicylic acid-, jasmonic acid- or ethylene-dependent defence responses. The phytoalexin camalexin was found to be involved in this defence response as camalexin-deficient mutants were not protected after wounding and the B. cinerea strains used here were sensitive to this compound. Wounding alone did not lead to camalexin production but primed its accumulation after inoculation with B. cinerea, further supporting the role of camalexin in wound-induced resistance. In parallel with increased camalexin production, genes involved in the biosynthesis of camalexin were induced faster in wounded and infected plants in comparison with unwounded and infected plants. Glutathione was also found to be required for resistance, as mutants deficient in gamma-glutamylcysteine synthetase showed susceptibility to B. cinerea after wounding, indicating that wild-type basal levels of glutathione are required for the wound-induced resistance. Furthermore, expression of the gene encoding glutathione-S-transferase 1 was primed by wounding in leaves inoculated with B. cinerea. In addition, the priming of MAP kinase activity was observed after inoculation of wounded leaves with B. cinerea compared to unwounded inoculated controls. Our results demonstrate how abiotic stress can induce immunity to virulent strains of B. cinerea, a process that involves camalexin and glutathione.
Collapse
Affiliation(s)
- Céline Chassot
- Department of Biology, University of Fribourg, 10 Chemin du Musée, CH-1700 Fribourg, Switzerland
| | | | | | | | | |
Collapse
|
67
|
Abuqamar S, Chai MF, Luo H, Song F, Mengiste T. Tomato protein kinase 1b mediates signaling of plant responses to necrotrophic fungi and insect herbivory. THE PLANT CELL 2008; 20:1964-83. [PMID: 18599583 PMCID: PMC2518242 DOI: 10.1105/tpc.108.059477] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 06/11/2008] [Accepted: 06/16/2008] [Indexed: 05/18/2023]
Abstract
The tomato protein kinase 1 (TPK1b) gene encodes a receptor-like cytoplasmic kinase localized to the plasma membrane. Pathogen infection, mechanical wounding, and oxidative stress induce expression of TPK1b, and reducing TPK1b gene expression through RNA interference (RNAi) increases tomato susceptibility to the necrotrophic fungus Botrytis cinerea and to feeding by larvae of tobacco hornworm (Manduca sexta) but not to the bacterial pathogen Pseudomonas syringae. TPK1b RNAi seedlings are also impaired in ethylene (ET) responses. Notably, susceptibility to Botrytis and insect feeding is correlated with reduced expression of the proteinase inhibitor II gene in response to Botrytis and 1-aminocyclopropane-1-carboxylic acid, the natural precursor of ET, but wild-type expression in response to mechanical wounding and methyl-jasmonate. TPK1b functions independent of JA biosynthesis and response genes required for resistance to Botrytis. TPK1b is a functional kinase with autophosphorylation and Myelin Basis Protein phosphorylation activities. Three residues in the activation segment play a critical role in the kinase activity and in vivo signaling function of TPK1b. In sum, our findings establish a signaling role for TPK1b in an ET-mediated shared defense mechanism for resistance to necrotrophic fungi and herbivorous insects.
Collapse
Affiliation(s)
- Synan Abuqamar
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907-2054, USA
| | | | | | | | | |
Collapse
|
68
|
Nurmberg PL, Knox KA, Yun BW, Morris PC, Shafiei R, Hudson A, Loake GJ. The developmental selector AS1 is an evolutionarily conserved regulator of the plant immune response. Proc Natl Acad Sci U S A 2007; 104:18795-800. [PMID: 18003921 PMCID: PMC2141856 DOI: 10.1073/pnas.0705586104] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Indexed: 11/18/2022] Open
Abstract
The MYB-related gene ASYMMETRIC LEAVES 1 (AS1) and its orthologs have an evolutionarily conserved role in specification of leaf cell identity. AS1 is expressed in leaf founder cells, where it functions as a heterodimer with the structurally unrelated AS2 proteins to repress activity of KNOTTED 1-like homeobox (KNOX) genes. AS1 therefore confines KNOX activity to the shoot apical meristem, where it promotes stem cell function through the regulation of phytohormone activities. Here, we show that loss-of-function mutations in AS1 unexpectedly convey heightened protection against necrotrophic fungi. AS1 operates as a negative regulator of inducible resistance against these pathogens by selectively binding to the promoters of genes controlled by the immune activator, jasmonic acid (JA), damping the defense response. In contrast, AS1 is a positive regulator of salicylic acid (SA)-independent extracellular defenses against bacterial pathogens. Neither the absence of AS2 nor ERECTA function, which enhances the morphological phenotype of as1, nor the conditional or constitutive expression of KNOX genes impacted disease resistance. Thus, the function of AS1 in responses to phytopathogens is independent of its AS2-associated role in development. Loss of function in the AS1 orthologs PHAN in Antirrhinum majus and NSPHAN in Nicotiana sylvestris produced pathogen-response phenotypes similar to as1 plants, and therefore the defense function of AS1 is evolutionarily conserved in plant species with a divergence time of approximately 125 million years.
Collapse
Affiliation(s)
- Pedro L. Nurmberg
- *Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, United Kingdom; and
| | - Kirsten A. Knox
- *Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, United Kingdom; and
| | - Byung-Wook Yun
- *Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, United Kingdom; and
| | - Peter C. Morris
- School of Life Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
| | - Reza Shafiei
- *Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, United Kingdom; and
| | - Andrew Hudson
- *Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, United Kingdom; and
| | - Gary J. Loake
- *Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, United Kingdom; and
| |
Collapse
|
69
|
Agorio A, Vera P. ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis. THE PLANT CELL 2007; 19:3778-90. [PMID: 17993621 PMCID: PMC2174867 DOI: 10.1105/tpc.107.054494] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/10/2007] [Accepted: 10/23/2007] [Indexed: 05/20/2023]
Abstract
Here, we report the characterization of the Arabidopsis thaliana ocp11 (for overexpressor of cationic peroxidase11) mutant, in which a beta-glucuronidase reporter gene under the control of the H(2)O(2)-responsive Ep5C promoter is constitutively expressed. ocp11 plants show enhanced disease susceptibility to the virulent bacterium Pseudomonas syringae pv tomato DC3000 (P.s.t. DC3000) and also to the avirulent P.s.t. DC3000 carrying the effector avrRpm1 gene. In addition, ocp11 plants are also compromised in resistance to the nonhost pathogen P. syringae pv tabaci. Genetic and molecular analyses reveal that ocp11 plants are not affected in salicylic acid perception. We cloned OCP11 and show that it encodes ARGONAUTE4 (AGO4), a component of the pathway that mediates the transcriptional gene silencing associated with small interfering RNAs that direct DNA methylation at specific loci, a phenomenon known as RNA-directed DNA methylation (RdDM). Thus, we renamed our ocp11 mutant ago4-2, as it represents a different allele to the previously characterized recessive ago4-1. Both mutants decrease the extent of DNA cytosine methylation at CpNpG and CpHpH (asymmetric) positions present at different DNA loci and show commonalities in all of the molecular and phenotypic aspects that we have considered. Interestingly, we show that AGO4 works independently of other components of the RdDM pathway in mediating resistance to P.s.t. DC3000, and loss of function in other components of the pathway operating upstream of AGO4, such as RDR2 and DCL3, or operating downstream, such as DRD1, CMT3, DRM1, and DRM2, does not compromise resistance to this pathogen.
Collapse
Affiliation(s)
- Astrid Agorio
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | | |
Collapse
|
70
|
Huffaker A, Ryan CA. Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proc Natl Acad Sci U S A 2007; 104:10732-6. [PMID: 17566109 PMCID: PMC1965581 DOI: 10.1073/pnas.0703343104] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AtPep1, a 23-aa peptide encoded by Arabidopsis PROPEP1, a member of a small, six-member gene family, activates expression of the defense gene PDF1.2 (encoding defensin) and its own precursor gene, PROPEP1, through the jasmonate/ethylene signaling pathway, mediated by a cell-surface receptor, PEPR1. Overexpression of two family members, PROPEP1 and PROPEP2, enhances resistance of Arabidopsis plants against the pathogen Pythium irregulare, and PROPEP2 and PROPEP3 are expressed at highly elevated levels in Arabidopsis in response to pathogen infections and to several pathogen-associated molecules (general elicitors). Here, we report that PDF1.2, PR-1 (pathogenesis protein), and PROPEP genes were differentially expressed in the leaves of intact plants sprayed with methyl jasmonate and methyl salicylate and in excised leaves supplied through cut petioles with peptides derived from the C terminus of each of the encoded proteins. The expression of PDF1.2 and PR-1 elicited by the peptides was blocked in mutant plants deficient in the jasmonate/ethylene and salicylate pathways, and in wild-type plants by treatment with diphenylene iodonium chloride, an inhibitor of hydrogen peroxide production. PROPEP1, PROPEP 2, and PROPEP3 genes appear to have roles in a feedback loop that amplifies defense signaling pathways initiated by pathogens.
Collapse
Affiliation(s)
- Alisa Huffaker
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340
| | - Clarence A. Ryan
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
71
|
Mandal MK, Pandey D, Purwar S, Singh US, Kumar A. Influence of jasmonic acid as potential activator of induced resistance against Karnal bunt in developing spikes of wheat. J Biosci 2007; 31:607-16. [PMID: 17301499 DOI: 10.1007/bf02708413] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Induction of defense response against Karnal bunt (KB)by suppressing the pathogenesis was observed upon exogenous application of jasmonic acid (JA)as evident from decrease in the coefficient of infection and overall response value in both susceptible and resistant varieties of wheat. The ultra-structural changes during disease progression showed the signs of programmed cell death (PCD). However, JA strengthened the defense barrier by enhancing the lignifications of cell walls as observed in spikes of both varieties by histochemical analysis. Compared to the plants inoculated with pathogen alone, plants of resistant line (RJP) first treated with JA followed by inoculation with pathogen showed more lignifications and extracellular deposition of other metabolites on cells, which is supposed to prevent mycelial invasions. Contrary to this, susceptible (SJP)lines also showed lignifications but the invasion was more compared to resistant line. Induction of protease activity was higher in resistant variety than its corresponding susceptible variety. The protease activity induced during the colonization of the pathogen and its proliferation inside the host system gets inhibited by JA treatment as demonstrated by the quantitative and in-gel protease assay. The results indicate the role of JA signalling in inhibiting the proteases due to expression of certain protease inhibitor genes. SDS-PAGE analysis shows differential gene expression through induction and/or suppression of different proteins in wheat spikes of resistant and susceptible varieties under the influence of JA. Thus, exogenously applied JA provides the conditioning effect prior to the challenge of infection and induces defense against KB probably by maintaining a critical balance between proteases and protease inhibitors and/or coordinating induction of different families of new proteins.
Collapse
Affiliation(s)
- Mihir K Mandal
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, Pantnagar 263 145, India
| | | | | | | | | |
Collapse
|
72
|
Adie BAT, Pérez-Pérez J, Pérez-Pérez MM, Godoy M, Sánchez-Serrano JJ, Schmelz EA, Solano R. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. THE PLANT CELL 2007; 19:1665-81. [PMID: 17513501 PMCID: PMC1913739 DOI: 10.1105/tpc.106.048041] [Citation(s) in RCA: 545] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 03/14/2007] [Accepted: 04/30/2007] [Indexed: 05/15/2023]
Abstract
Analyses of Arabidopsis thaliana defense response to the damping-off oomycete pathogen Pythium irregulare show that resistance to P. irregulare requires a multicomponent defense strategy. Penetration represents a first layer, as indicated by the susceptibility of pen2 mutants, followed by recognition, likely mediated by ERECTA receptor-like kinases. Subsequent signaling of inducible defenses is predominantly mediated by jasmonic acid (JA), with insensitive coi1 mutants showing extreme susceptibility. In contrast with the generally accepted roles of ethylene and salicylic acid cooperating with or antagonizing, respectively, JA in the activation of defenses against necrotrophs, both are required to prevent disease progression, although much less so than JA. Meta-analysis of transcriptome profiles confirmed the predominant role of JA in activation of P. irregulare-induced defenses and uncovered abscisic acid (ABA) as an important regulator of defense gene expression. Analysis of cis-regulatory sequences also revealed an unexpected overrepresentation of ABA response elements in promoters of P. irregulare-responsive genes. Subsequent infections of ABA-related and callose-deficient mutants confirmed the importance of ABA in defense, acting partly through an undescribed mechanism. The results support a model for ABA affecting JA biosynthesis in the activation of defenses against this oomycete.
Collapse
Affiliation(s)
- Bruce A T Adie
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
73
|
Adie BAT, Pérez-Pérez J, Pérez-Pérez MM, Godoy M, Sánchez-Serrano JJ, Schmelz EA, Solano R. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. THE PLANT CELL 2007; 19:1665-1681. [PMID: 17513501 DOI: 10.2307/20077047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Analyses of Arabidopsis thaliana defense response to the damping-off oomycete pathogen Pythium irregulare show that resistance to P. irregulare requires a multicomponent defense strategy. Penetration represents a first layer, as indicated by the susceptibility of pen2 mutants, followed by recognition, likely mediated by ERECTA receptor-like kinases. Subsequent signaling of inducible defenses is predominantly mediated by jasmonic acid (JA), with insensitive coi1 mutants showing extreme susceptibility. In contrast with the generally accepted roles of ethylene and salicylic acid cooperating with or antagonizing, respectively, JA in the activation of defenses against necrotrophs, both are required to prevent disease progression, although much less so than JA. Meta-analysis of transcriptome profiles confirmed the predominant role of JA in activation of P. irregulare-induced defenses and uncovered abscisic acid (ABA) as an important regulator of defense gene expression. Analysis of cis-regulatory sequences also revealed an unexpected overrepresentation of ABA response elements in promoters of P. irregulare-responsive genes. Subsequent infections of ABA-related and callose-deficient mutants confirmed the importance of ABA in defense, acting partly through an undescribed mechanism. The results support a model for ABA affecting JA biosynthesis in the activation of defenses against this oomycete.
Collapse
Affiliation(s)
- Bruce A T Adie
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
74
|
Bessire M, Chassot C, Jacquat AC, Humphry M, Borel S, Petétot JMC, Métraux JP, Nawrath C. A permeable cuticle in Arabidopsis leads to a strong resistance to Botrytis cinerea. EMBO J 2007; 26:2158-68. [PMID: 17396154 PMCID: PMC1852784 DOI: 10.1038/sj.emboj.7601658] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 02/23/2007] [Indexed: 11/09/2022] Open
Abstract
The plant cuticle composed of cutin, a lipid-derived polyester, and cuticular waxes covers the aerial portions of plants and constitutes a hydrophobic extracellular matrix layer that protects plants against environmental stresses. The botrytis-resistant 1 (bre1) mutant of Arabidopsis reveals that a permeable cuticle does not facilitate the entry of fungal pathogens in general, but surprisingly causes an arrest of invasion by Botrytis. BRE1 was identified to be long-chain acyl-CoA synthetase2 (LACS2) that has previously been shown to be involved in cuticle development and was here found to be essential for cutin biosynthesis. bre1/lacs2 has a five-fold reduction in dicarboxylic acids, the typical monomers of Arabidopsis cutin. Comparison of bre1/lacs2 with the mutants lacerata and hothead revealed that an increased permeability of the cuticle facilitates perception of putative elicitors in potato dextrose broth, leading to the presence of antifungal compound(s) at the surface of Arabidopsis plants that confer resistance to Botrytis and Sclerotinia. Arabidopsis plants with a permeable cuticle have thus an altered perception of their environment and change their physiology accordingly.
Collapse
Affiliation(s)
- Michael Bessire
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Céline Chassot
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Matt Humphry
- Department of Plant–Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Sandra Borel
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | | | | | - Christiane Nawrath
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Quarter UNIL/Sorge, CH-1015 Lausanne, Switzerland, Tel.: +41 21 692 4256; Fax: +41 21 692 4195. E-mail:
| |
Collapse
|
75
|
Quecini V, Torres GA, Rosa Jr VED, Gimenes MA, Machado JBDM, Figueira AVDO, Benedito V, Targon MLP, Cristofani-Yaly M. In silico analysis of phytohormone metabolism and communication pathways in citrus transcriptome. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000500002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | - Marcos A. Gimenes
- Empresa Brasileira de Pesquisa Agropecuária, Recursos Genéticos e Biotecnologia, Brazil
| | | | | | | | | | | |
Collapse
|
76
|
Tran LSP, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson SD, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:46-63. [PMID: 17233795 DOI: 10.1111/j.1365-313x.2006.02932.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ZFHD recognition sequence (ZFHDRS) and NAC recognition sequence (NACRS) play an important role in the dehydration-inducible expression of the Arabidopsisthaliana EARLY RESPONSIVETO DEHYDRATION STRESS 1 (ERD1) gene. Using the yeast one-hybrid system, we isolated a cDNA encoding the ZFHD1 transcriptional activator that specifically binds to the 62 bp promoter region of ERD1, which contains the ZFHDRS. Both in vitro and in vivo analyses confirmed specific binding of the ZFHD1 to ZFHDRS, and the expression of ZFHD1 was induced by drought, high salinity and abscisic acid. The DNA-binding and activation domains of ZFHD1 were localized on the C-terminal homeodomain and N-terminal zinc finger domain, respectively. Microarray analysis of transgenic plants over-expressing ZFHD1 revealed that several stress-inducible genes were upregulated in the transgenic plants. Transgenic plants exhibited a smaller morphological phenotype and had a significant improvement of drought stress tolerance. Using the yeast two-hybrid system, we detected an interaction between ZFHD1 and NACRS-binding NAC proteins. Moreover, co-over-expression of the ZFHD1 and NAC genes restored the morphological phenotype of the transgenic plants to a near wild-type state and enhanced expression of ERD1 in both Arabidopsis T87 protoplasts and transgenic Arabidopsis plants.
Collapse
Affiliation(s)
- Lam-Son Phan Tran
- Biological Resources Division, Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
AbuQamar S, Chen X, Dhawan R, Bluhm B, Salmeron J, Lam S, Dietrich RA, Mengiste T. Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:28-44. [PMID: 16925600 DOI: 10.1111/j.1365-313x.2006.02849.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The expression profiles of Botrytis-inoculated Arabidopsis plants were studied to determine the nature of the defense transcriptome and to identify genes involved in host responses to the pathogen. Normally resistant Arabidopsis wild-type plants were compared with coi1, ein2, and nahG plants that are defective in various defense responses and/or show increased susceptibility to Botrytis. In wild-type plants, the expression of 621 genes representing approximately 0.48% of the Arabidopsis transcriptome was induced greater than or equal to twofold after infection. Of these 621 Botrytis-induced genes (BIGs), 462 were induced at or before 36 h post-inoculation, and may be involved in resistance to the pathogen. The expression of 181 BIGs was dependent on a functional COI1 gene required for jasmonate signaling, whereas the expression of 63 and 80 BIGs were dependent on ethylene (ET) signaling or salicylic acid accumulation, respectively, based on results from ein2 and nahG plants. BIGs encode diverse regulatory and structural proteins implicated in pathogen defense and abiotic and oxidative-stress responses. Thirty BIGs encode putative DNA-binding proteins that belong to ET response, zinc-finger, MYB, WRKY, and HD-ZIP family transcription-factor proteins. Fourteen BIGs were studied in detail to determine their role in resistance to Botrytis. T-DNA insertion alleles of ZFAR1 (At2G40140), the gene encoding a putative zinc-finger protein with ankyrin-repeat domains, showed increased local susceptibility to Botrytis and sensitivity to germination in the presence of abscisic acid (ABA), supporting the role of ABA in mediating responses to Botrytis infection. In addition, two independent T-DNA insertion alleles in the WRKY70 gene showed increased susceptibility to Botrytis. The transcriptional activation of genes involved in plant hormone signaling and synthesis, removal of reactive oxygen species, and defense and abiotic-stress responses, coupled with the susceptibility of the wrky70 and zfar1 mutants, highlights the complex genetic network underlying defense responses to Botrytis in Arabidopsis.
Collapse
Affiliation(s)
- Synan AbuQamar
- Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054, USA
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Carrasco JL, Castelló MJ, Vera P. 14-3-3 mediates transcriptional regulation by modulating nucleocytoplasmic shuttling of tobacco DNA-binding protein phosphatase-1. J Biol Chem 2006; 281:22875-81. [PMID: 16762921 DOI: 10.1074/jbc.m512611200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tobacco DBP1 is the founding member of a novel class of plant transcription factors featuring sequence-specific DNA binding and protein phosphatase activity. To understand the mechanisms underlying the function of this family of transcriptional regulators, we have identified the tobacco 14-3-3 isoform G as the first protein interacting with a DBP factor. 14-3-3 recognition involves the N-terminal region of DBP1, which also supports the DNA binding activity attributed to DBP1. The relevance of this interaction is reinforced by its conservation in Arabidopsis plants, where the closest relative of DBP1 in this species also interacts with a homologous 14-3-3 protein through its N-terminal region. Furthermore, we show that in planta 14-3-3 G is directly involved in regulating DBP1 function by promoting nuclear export and subsequent cytoplasmic retention of DBP1 under conditions that in turn alleviate DBP1-mediated repression of target gene expression.
Collapse
Affiliation(s)
- José L Carrasco
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | | | | |
Collapse
|
79
|
Huffaker A, Pearce G, Ryan CA. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci U S A 2006; 103:10098-103. [PMID: 16785434 PMCID: PMC1502512 DOI: 10.1073/pnas.0603727103] [Citation(s) in RCA: 410] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Innate immunity is initiated in animals and plants through the recognition of a variety of pathogen-associated molecules that in animals are called pathogen-associated molecular patterns and in plants are called elicitors. Some plant pathogen-derived elicitors have been identified as peptides, but peptide elicitors derived from the plant itself that activate defensive genes against pathogens have not been previously identified. Here, we report the isolation and characterization of a 23-aa peptide from Arabidopsis, called AtPep1, which activates transcription of the defensive gene defensin (PDF1.2) and activates the synthesis of H(2)O(2), both being components of the innate immune response. The peptide is derived from a 92-aa precursor encoded within a small gene that is inducible by wounding, methyl jasmonate, and ethylene. Constitutive expression of the AtPep1 precursor gene PROPEP1 in transgenic Arabidopsis plants causes a constitutive transcription of PDF1.2. When grown in soil, the transgenic plants exhibited an increased root development compared with WT plants and an enhanced resistance toward the root pathogen Pythium irregulare. Six paralogs of PROPEP1 are present in Arabidopsis, and orthologs have been identified in species of several agriculturally important plant families, where they are of interest for their possible use in crop improvement.
Collapse
Affiliation(s)
- Alisa Huffaker
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340
| | - Gregory Pearce
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340
| | - Clarence A. Ryan
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340
| |
Collapse
|
80
|
Trusov Y, Rookes JE, Chakravorty D, Armour D, Schenk PM, Botella JR. Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling. PLANT PHYSIOLOGY 2006; 140:210-20. [PMID: 16339801 PMCID: PMC1326045 DOI: 10.1104/pp.105.069625] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 10/04/2005] [Accepted: 10/06/2005] [Indexed: 05/05/2023]
Abstract
Heterotrimeric G proteins have been previously linked to plant defense; however a role for the Gbetagamma dimer in defense signaling has not been described to date. Using available Arabidopsis (Arabidopsis thaliana) mutants lacking functional Galpha or Gbeta subunits, we show that defense against the necrotrophic pathogens Alternaria brassicicola and Fusarium oxysporum is impaired in Gbeta-deficient mutants while Galpha-deficient mutants show slightly increased resistance compared to wild-type Columbia ecotype plants. In contrast, responses to virulent (DC3000) and avirulent (JL1065) strains of Pseudomonas syringae appear to be independent of heterotrimeric G proteins. The induction of a number of defense-related genes in Gbeta-deficient mutants were severely reduced in response to A. brassicicola infection. In addition, Gbeta-deficient mutants exhibit decreased sensitivity to a number of methyl jasmonate-induced responses such as induction of the plant defensin gene PDF1.2, inhibition of root elongation, seed germination, and growth of plants in sublethal concentrations of methyl jasmonate. In all cases, the behavior of the Galpha-deficient mutants is coherent with the classic heterotrimeric mechanism of action, indicating that jasmonic acid signaling is influenced by the Gbetagamma functional subunit but not by Galpha. We hypothesize that Gbetagamma acts as a direct or indirect enhancer of the jasmonate signaling pathway in plants.
Collapse
Affiliation(s)
- Yuri Trusov
- Plant Genetic Engineering Laboratory, Department of Botany, School of Integrative Biology, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
81
|
Gil MJ, Coego A, Mauch-Mani B, Jordá L, Vera P. The Arabidopsis csb3 mutant reveals a regulatory link between salicylic acid-mediated disease resistance and the methyl-erythritol 4-phosphate pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:155-66. [PMID: 16167903 DOI: 10.1111/j.1365-313x.2005.02517.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report on constitutive subtilisin3 (csb3), an Arabidopsis mutant showing strikingly enhanced resistance to biotrophic pathogens. Epistasis analyses with pad4, sid2, eds5, NahG, npr1, dth9 and cpr1 mutants revealed that the enhanced resistance of csb3 plants requires intact salicylic acid (SA) synthesis and perception. CSB3 encodes a 1-hydroxy-2-methyl-2-butenyl 4-diphosphate synthase, the enzyme controlling the penultimate step of the biosynthesis of isopentenyl diphosphate via the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway in the chloroplast. CSB3 is expressed constitutively in healthy plants, and shows repression in response to bacterial infection. We also show the pharmacological complementation of the enhanced-resistance phenotype of csb3 plants with fosmidomycin, an inhibitor of the MEP pathway, and propose that CSB3 represents a point of metabolic convergence modulating the magnitude of SA-mediated disease resistance to biotrophic pathogens.
Collapse
Affiliation(s)
- M José Gil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), UPV-CSIC, Camino de Vera, s/n, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
82
|
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. TRENDS IN PLANT SCIENCE 2004; 9:490-498. [PMID: 15465684 DOI: 10.1007/978-90-481-3112-9_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Ron Mittler
- Department of Biochemistry, Mail Stop 200, University of Nevada, Reno, NV 89557, USA.
| | | | | | | |
Collapse
|