51
|
Takahashi R, Benitez ER, Oyoo ME, Khan NA, Komatsu S. Nonsense mutation of an MYB transcription factor is associated with purple-blue flower color in soybean. J Hered 2011; 102:458-63. [PMID: 21566002 DOI: 10.1093/jhered/esr028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Previous studies revealed that the recessive allele of the W2 locus generated purple-blue color and high vacuolar pH of flower petals in soybean. The location of W2 gene was reportedly close to simple sequence repeat marker Satt318 in molecular linkage group B2. We used information from the soybean genome to clone a candidate gene for W2. An MYB transcription factor gene belonging to G20 group was found in the vicinity of Satt318. Full-length cDNAs were cloned from purple-flowered cultivar Harosoy (W2 allele) and purple-blue flowered cultivars, Nezumisaya and w2-20 (w2 allele), by reverse transcription-PCR and designated as GmMYB-G20-1. Its open reading frame was 1083 bp long that encoded 361 amino acids in Harosoy. GmMYB-G20-1 had 53.7% similarity in amino acid sequence with the PH4 gene of petunia controlling blueness and vacuolar pH of flower petals. GmMYB-G20-1 of Nezumisaya and w2-20 had 3 base substitutions compared with that of Harosoy. The first substitution generated a stop codon in the MYB domain, resulting in truncated polypeptides. Cleaved amplified polymorphic sequence (CAPS) marker was developed to detect the base substitution. The polymorphic CAPS marker co-segregated with alleles at the W2 locus in the F(2) population. These results suggest that GmMYB-G20-1 might correspond to the W2 gene.
Collapse
Affiliation(s)
- Ryoji Takahashi
- National Institute of Crop Science, Tsukuba, Ibaraki, 305-8518 Japan.
| | | | | | | | | |
Collapse
|
52
|
Hu G, Hawkins JS, Grover CE, Wendel JF. The history and disposition of transposable elements in polyploid Gossypium. Genome 2010; 53:599-607. [PMID: 20725147 DOI: 10.1139/g10-038] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transposable elements (TEs) are a major component of plant genomes. It is of particular interest to explore the potential activation of TE proliferation, especially in hybrids and polyploids, which often are associated with rapid genomic and epigenetic restructuring. Here we explore the consequences of genomic merger and doubling on copia and gypsy-like Gorge3 long terminal repeat (LTR) retrotransposons as well as on non-LTR long interspersed nuclear elements (LINEs) in allotetraploid cotton, Gossypium hirsutum. Using phylogenetic and quantitative methods, we describe the composition and genomic origin of TEs in polyploid Gossypium. In addition, we present information on ancient and recent transposition activities of the three TE types and demonstrate the absence of an impressive proliferation of TEs following polyploidization in Gossypium. Further, we provide evidence for present-day transcription of LINEs, a relatively minor component of Gossypium genomes, whereas the more abundant LTR retrotransposons display limited expression and only under stressed conditions.
Collapse
Affiliation(s)
- Guanjing Hu
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
53
|
Genetically modified myths and realities. N Biotechnol 2010; 27:545-51. [DOI: 10.1016/j.nbt.2010.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Accepted: 05/23/2010] [Indexed: 11/17/2022]
|
54
|
Yang K, Jeong N, Moon JK, Lee YH, Lee SH, Kim HM, Hwang CH, Back K, Palmer RG, Jeong SC. Genetic analysis of genes controlling natural variation of seed coat and flower colors in soybean. J Hered 2010; 101:757-68. [PMID: 20584753 DOI: 10.1093/jhered/esq078] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Soybean exhibits natural variation in flower and seed coat colors via the deposition of various anthocyanin pigments in the respective tissues. Although pigmentation in seeds or flowers has been well dissected at molecular level in several plant species, the genes controlling natural variation in anthocyanin traits in the soybean are not completely understood. To evaluate the genetic correlation between genetic loci and genes, 8 enzyme-encoding gene families and a transcription factor were localized in a soybean genome-wide genetic map. Among the seed coat color-controlling loci, the genetic location of the gene encoding for W1 was substantiated in the context of the current soybean molecular genetic map and O was postulated to correspond to anthocyanidin reductase. Among the genetic loci that regulate flower pigmentation, the genetic locations of the genes encoding for W1, W4, and Wp were identified, W3 was mapped on soybean linkage group B2 (chromosome 14), and W2 was postulated to correspond to an MYB transcription factor. Correlation studies between the developed markers and 3 color-controlling loci provided important empirical data that should prove useful in the design of marker-assisted breeding schemes as well as future association studies involving soybean.
Collapse
Affiliation(s)
- Kiwoung Yang
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon, Chungbuk 363-883, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Xu M, Brar HK, Grosic S, Palmer RG, Bhattacharyya MK. Excision of an active CACTA-like transposable element from DFR2 causes variegated flowers in soybean [Glycine max (L.) Merr.]. Genetics 2010; 184:53-63. [PMID: 19897750 PMCID: PMC2815930 DOI: 10.1534/genetics.109.107904] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 11/01/2009] [Indexed: 11/18/2022] Open
Abstract
Active endogenous transposable elements, useful tools for gene isolation, have not been reported from any legume species. An active transposable element was suggested to reside in the W4 locus that governs flower color in soybean. Through biochemical and molecular analyses of several revertants of the w4-m allele, we have shown that the W4 locus encodes dihydroflavonol-4-reductase 2 (DFR2). w4-m has arisen through insertion of Tgm9, a 20,548-bp CACTA-like transposable element, into the second intron of DFR2. Tgm9 showed high nucleic acid sequence identity to Tgmt*. Its 5' and 3' terminal inverted repeats start with conserved CACTA sequence. The 3' subterminal region is highly repetitive. Tgm9 carries TNP1- and TNP2-like transposase genes that are expressed in the mutable line, T322 (w4-m). The element excises at a high frequency from both somatic and germinal tissues. Following excision, reinsertions of Tgm9 into the DFR2 promoter generated novel stable alleles, w4-dp (dilute purple flowers) and w4-p (pale flowers). We hypothesize that the element is fractured during transposition, and truncated versions of the element in new insertion sites cause stable mutations. The highly active endogenous transposon, Tgm9, should facilitate genomics studies specifically that relate to legume biology.
Collapse
Affiliation(s)
- Min Xu
- Department of Agronomy, Iowa State University, Ames, Iowa 50011 and United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research, Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | - Hargeet K. Brar
- Department of Agronomy, Iowa State University, Ames, Iowa 50011 and United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research, Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | - Sehiza Grosic
- Department of Agronomy, Iowa State University, Ames, Iowa 50011 and United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research, Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | - Reid G. Palmer
- Department of Agronomy, Iowa State University, Ames, Iowa 50011 and United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research, Department of Agronomy, Iowa State University, Ames, Iowa 50011
| | - Madan K. Bhattacharyya
- Department of Agronomy, Iowa State University, Ames, Iowa 50011 and United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research, Department of Agronomy, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
56
|
|
57
|
Wei F, Stein JC, Liang C, Zhang J, Fulton RS, Baucom RS, De Paoli E, Zhou S, Yang L, Han Y, Pasternak S, Narechania A, Zhang L, Yeh CT, Ying K, Nagel DH, Collura K, Kudrna D, Currie J, Lin J, Kim H, Angelova A, Scara G, Wissotski M, Golser W, Courtney L, Kruchowski S, Graves TA, Rock SM, Adams S, Fulton LA, Fronick C, Courtney W, Kramer M, Spiegel L, Nascimento L, Kalyanaraman A, Chaparro C, Deragon JM, Miguel PS, Jiang N, Wessler SR, Green PJ, Yu Y, Schwartz DC, Meyers BC, Bennetzen JL, Martienssen RA, McCombie WR, Aluru S, Clifton SW, Schnable PS, Ware D, Wilson RK, Wing RA. Detailed analysis of a contiguous 22-Mb region of the maize genome. PLoS Genet 2009; 5:e1000728. [PMID: 19936048 PMCID: PMC2773423 DOI: 10.1371/journal.pgen.1000728] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 10/16/2009] [Indexed: 12/20/2022] Open
Abstract
Most of our understanding of plant genome structure and evolution has come from the careful annotation of small (e.g., 100 kb) sequenced genomic regions or from automated annotation of complete genome sequences. Here, we sequenced and carefully annotated a contiguous 22 Mb region of maize chromosome 4 using an improved pseudomolecule for annotation. The sequence segment was comprehensively ordered, oriented, and confirmed using the maize optical map. Nearly 84% of the sequence is composed of transposable elements (TEs) that are mostly nested within each other, of which most families are low-copy. We identified 544 gene models using multiple levels of evidence, as well as five miRNA genes. Gene fragments, many captured by TEs, are prevalent within this region. Elimination of gene redundancy from a tetraploid maize ancestor that originated a few million years ago is responsible in this region for most disruptions of synteny with sorghum and rice. Consistent with other sub-genomic analyses in maize, small RNA mapping showed that many small RNAs match TEs and that most TEs match small RNAs. These results, performed on approximately 1% of the maize genome, demonstrate the feasibility of refining the B73 RefGen_v1 genome assembly by incorporating optical map, high-resolution genetic map, and comparative genomic data sets. Such improvements, along with those of gene and repeat annotation, will serve to promote future functional genomic and phylogenomic research in maize and other grasses.
Collapse
Affiliation(s)
- Fusheng Wei
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Joshua C. Stein
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Chengzhi Liang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Jianwei Zhang
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Robert S. Fulton
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Regina S. Baucom
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Emanuele De Paoli
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Shiguo Zhou
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Lixing Yang
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Yujun Han
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Shiran Pasternak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Apurva Narechania
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Lifang Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Cheng-Ting Yeh
- Department of Agronomy and Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Kai Ying
- Department of Agronomy and Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Dawn H. Nagel
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Kristi Collura
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - David Kudrna
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Jennifer Currie
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Jinke Lin
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - HyeRan Kim
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Angelina Angelova
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Gabriel Scara
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Marina Wissotski
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Wolfgang Golser
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Laura Courtney
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Scott Kruchowski
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Tina A. Graves
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Susan M. Rock
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stephanie Adams
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lucinda A. Fulton
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Catrina Fronick
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - William Courtney
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Melissa Kramer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Lori Spiegel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Lydia Nascimento
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Ananth Kalyanaraman
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, United States of America
| | - Cristian Chaparro
- Université de Perpignan Via Domitia, CNRS UMR 5096, Perpignan, France
| | - Jean-Marc Deragon
- Université de Perpignan Via Domitia, CNRS UMR 5096, Perpignan, France
| | - Phillip San Miguel
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
| | - Susan R. Wessler
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Pamela J. Green
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Yeisoo Yu
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - David C. Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Blake C. Meyers
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Jeffrey L. Bennetzen
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Robert A. Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - W. Richard McCombie
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Srinivas Aluru
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Sandra W. Clifton
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Patrick S. Schnable
- Department of Agronomy and Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Richard K. Wilson
- The Genome Center and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Rod A. Wing
- Arizona Genomics Institute, School of Plant Sciences and Department of Ecology and Evolutionary Biology, BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
58
|
Tuteja JH, Zabala G, Varala K, Hudson M, Vodkin LO. Endogenous, tissue-specific short interfering RNAs silence the chalcone synthase gene family in glycine max seed coats. THE PLANT CELL 2009; 21:3063-77. [PMID: 19820189 PMCID: PMC2782299 DOI: 10.1105/tpc.109.069856] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/03/2009] [Accepted: 09/16/2009] [Indexed: 05/18/2023]
Abstract
Two dominant alleles of the I locus in Glycine max silence nine chalcone synthase (CHS) genes to inhibit function of the flavonoid pathway in the seed coat. We describe here the intricacies of this naturally occurring silencing mechanism based on results from small RNA gel blots and high-throughput sequencing of small RNA populations. The two dominant alleles of the I locus encompass a 27-kb region containing two perfectly repeated and inverted clusters of three chalcone synthase genes (CHS1, CHS3, and CHS4). This structure silences the expression of all CHS genes, including CHS7 and CHS8, located on other chromosomes. The CHS short interfering RNAs (siRNAs) sequenced support a mechanism by which RNAs transcribed from the CHS inverted repeat form aberrant double-stranded RNAs that become substrates for dicer-like ribonuclease. The resulting primary siRNAs become guides that target the mRNAs of the nonlinked, highly expressed CHS7 and CHS8 genes, followed by subsequent amplification of CHS7 and CHS8 secondary siRNAs by RNA-dependent RNA polymerase. Most remarkably, this silencing mechanism occurs only in one tissue, the seed coat, as shown by the lack of CHS siRNAs in cotyledons and vegetative tissues. Thus, production of the trigger double-stranded RNA that initiates the process occurs in a specific tissue and represents an example of naturally occurring inhibition of a metabolic pathway by siRNAs in one tissue while allowing expression of the pathway and synthesis of valuable secondary metabolites in all other organs/tissues of the plant.
Collapse
Affiliation(s)
| | | | | | | | - Lila O. Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801S
| |
Collapse
|
59
|
Cheung F, Trick M, Drou N, Lim YP, Park JY, Kwon SJ, Kim JA, Scott R, Pires JC, Paterson AH, Town C, Bancroft I. Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. THE PLANT CELL 2009; 21:1912-28. [PMID: 19602626 PMCID: PMC2729604 DOI: 10.1105/tpc.108.060376] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 05/01/2009] [Accepted: 06/26/2009] [Indexed: 05/18/2023]
Abstract
Homoeologous regions of Brassica genomes were analyzed at the sequence level. These represent segments of the Brassica A genome as found in Brassica rapa and Brassica napus and the corresponding segments of the Brassica C genome as found in Brassica oleracea and B. napus. Analysis of synonymous base substitution rates within modeled genes revealed a relatively broad range of times (0.12 to 1.37 million years ago) since the divergence of orthologous genome segments as represented in B. napus and the diploid species. Similar, and consistent, ranges were also identified for single nucleotide polymorphism and insertion-deletion variation. Genes conserved across the Brassica genomes and the homoeologous segments of the genome of Arabidopsis thaliana showed almost perfect collinearity. Numerous examples of apparent transduplication of gene fragments, as previously reported in B. oleracea, were observed in B. rapa and B. napus, indicating that this phenomenon is widespread in Brassica species. In the majority of the regions studied, the C genome segments were expanded in size relative to their A genome counterparts. The considerable variation that we observed, even between the different versions of the same Brassica genome, for gene fragments and annotated putative genes suggest that the concept of the pan-genome might be particularly appropriate when considering Brassica genomes.
Collapse
Affiliation(s)
- Foo Cheung
- The J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Benjak A, Boué S, Forneck A, Casacuberta JM. Recent amplification and impact of MITEs on the genome of grapevine (Vitis vinifera L.). Genome Biol Evol 2009; 1:75-84. [PMID: 20333179 PMCID: PMC2817404 DOI: 10.1093/gbe/evp009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2009] [Indexed: 01/07/2023] Open
Abstract
Miniature inverted-repeat transposable elements (MITEs) are a particular type of defective class II transposons present in genomes as highly homogeneous populations of small elements. Their high copy number and close association to genes make their potential impact on gene evolution particularly relevant. Here, we present a detailed analysis of the MITE families directly related to grapevine "cut-and-paste" transposons. Our results show that grapevine MITEs have transduplicated and amplified genomic sequences, including gene sequences and fragments of other mobile elements. Our results also show that although some of the MITE families were already present in the ancestor of the European and American Vitis wild species, they have been amplified and have been actively transposing accompanying grapevine domestication and breeding. We show that MITEs are abundant in grapevine and some of them are frequently inserted within the untranslated regions of grapevine genes. MITE insertions are highly polymorphic among grapevine cultivars, which frequently generate transcript variability. The data presented here show that MITEs have greatly contributed to the grapevine genetic diversity which has been used for grapevine domestication and breeding.
Collapse
Affiliation(s)
- Andrej Benjak
- Department of Plant Molecular Genetics, Center for Research in Agricultural Genomics (Consejo Superior Investigaciones Científicas-Institut de Recerca I Tecnologia Agrícola-Universitat Autònoma de Barcelona), Barcelona, Spain
| | | | | | | |
Collapse
|
61
|
Li Q, Li L, Dai J, Li J, Yan J. Identification and characterization of CACTA transposable elements capturing gene fragments in maize. CHINESE SCIENCE BULLETIN-CHINESE 2009. [DOI: 10.1007/s11434-009-0061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
62
|
Hanada K, Vallejo V, Nobuta K, Slotkin RK, Lisch D, Meyers BC, Shiu SH, Jiang N. The functional role of pack-MULEs in rice inferred from purifying selection and expression profile. THE PLANT CELL 2009; 21:25-38. [PMID: 19136648 PMCID: PMC2648092 DOI: 10.1105/tpc.108.063206] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Gene duplication is an important mechanism for evolution of new genes. In plants, a special group of transposable elements, called Pack-MULEs or transduplicates, is able to duplicate and amplify genes or gene fragments on a large scale. Despite the abundance of Pack-MULEs, the functionality of these duplicates is not clear. Here, we present a comprehensive analysis of expression and purifying selection on 2809 Pack-MULEs in rice (Oryza sativa), which are derived from 1501 parental genes. At least 22% of the Pack-MULEs are transcribed, and 28 Pack-MULEs have direct evidence of translation. Chimeric Pack-MULEs, which contain gene fragments from multiple genes, are much more frequently expressed than those derived only from a single gene. In addition, Pack-MULEs are frequently associated with small RNAs. The presence of these small RNAs is associated with a reduction in expression of both the Pack-MULEs and their parental genes. Furthermore, an assessment of the selection pressure on the Pack-MULEs using the ratio of nonsynonymous (Ka) and synonymous (Ks) substitution rates indicates that a considerable number of Pack-MULEs likely have been under selective constraint. The Ka/Ks values of Pack-MULE and parental gene pairs are lower among Pack-MULEs that are expressed in sense orientations. Taken together, our analysis suggests that a significant number of Pack-MULEs are expressed and subjected to purifying selection, and some are associated with small RNAs. Therefore, at least a subset of Pack-MULEs are likely functional and have great potential in regulating gene expression as well as providing novel coding capacities.
Collapse
Affiliation(s)
- Kousuke Hanada
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Zabala G, Vodkin L. A putative autonomous 20.5 kb-CACTA transposon insertion in an F3'H allele identifies a new CACTA transposon subfamily in Glycine max. BMC PLANT BIOLOGY 2008; 8:124. [PMID: 19055742 PMCID: PMC2613891 DOI: 10.1186/1471-2229-8-124] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 12/02/2008] [Indexed: 05/27/2023]
Abstract
BACKGROUND The molecular organization of very few genetically defined CACTA transposon systems have been characterized thoroughly as those of Spm/En in maize, Tam1 of Antirrhinum majus Candystripe1 (Cs1) from Sorghum bicolor and CAC1 from Arabidopsis thaliana, for example. To date, only defective deletion derivatives of CACTA elements have been described for soybean, an economically important plant species whose genome sequence will be completed in 2008. RESULTS We identified a 20.5 kb insertion in a soybean flavonoid 3'-hydroxylase (F3'H) gene representing the t* allele (stable gray trichome color) whose origin traces to a single mutable chimeric plant displaying both tawny and gray trichomes. This 20.5 kb insertion has the molecular structure of a putative autonomous transposon of the CACTA family, designated Tgmt*. It encodes a large gene that was expressed in two sister isolines (T* and tm) of the stable gray line (t*) from which Tgmt* was isolated. RT-PCR derived cDNAs uncovered the structure of a large precursor mRNA as well as alternatively spliced transcripts reminiscent of the TNPA-mRNA generated by the En-1 element of maize but without sequence similarity to the maize TNPA. The larger mRNA encodes a transposase with a tnp2 and TNP1-transposase family domains. Because the two soybean lines expressing Tgmt* were derived from the same mutable chimeric plant that created the stable gray trichome t* allele line from which the element was isolated, Tgmt* has the potential to be an autonomous element that was rapidly inactivated in the stable gray trichome t* line. Comparison of Tgmt* to previously described Tgm elements demonstrated that two subtypes of CACTA transposon families exist in soybean based on divergence of their characteristic subterminal repeated motifs and their transposases. In addition, we report the sequence and annotation of a BAC clone containing the F3'H gene (T locus) which was interrupted by the novel Tgmt* element in the gray trichome allele t*. CONCLUSION The molecular characterization of a 20.5 kb insertion in the flavonoid 3'-hydroxylase (F3'H) gene of a soybean gray pubescence allele (t*) identified the structure of a CACTA transposon designated Tgmt*. Besides the terminal inverted repeats and subterminal repeated motifs,Tgmt* encoded a large gene with two putative functions that are required for excision and transposition of a CACTA element, a transposase and the DNA binding protein known to associate to the subterminal repeated motifs. The degree of dissimilarity between Tgmt* transposase and subterminal repeated motifs with those of previously characterized defective CACTA elements (Tgm1-7) were evidence of the existence of two subfamilies of CACTA transposons in soybean, an observation not previously reported in other plants. In addition, our analyses of a genetically active and potentially autonomous element sheds light on the complete structure of a soybean element that is useful for annotation of the repetitive fraction of the soybean genome sequence and may prove useful for transposon tagging or transposon display experiments in different genetic lines.
Collapse
Affiliation(s)
- Gracia Zabala
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | - Lila Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
64
|
Wawrzynski A, Ashfield T, Chen NWG, Mammadov J, Nguyen A, Podicheti R, Cannon SB, Thareau V, Ameline-Torregrosa C, Cannon E, Chacko B, Couloux A, Dalwani A, Denny R, Deshpande S, Egan AN, Glover N, Howell S, Ilut D, Lai H, Del Campo SM, Metcalf M, O'Bleness M, Pfeil BE, Ratnaparkhe MB, Samain S, Sanders I, Ségurens B, Sévignac M, Sherman-Broyles S, Tucker DM, Yi J, Doyle JJ, Geffroy V, Roe BA, Maroof MAS, Young ND, Innes RW. Replication of nonautonomous retroelements in soybean appears to be both recent and common. PLANT PHYSIOLOGY 2008; 148:1760-71. [PMID: 18952860 PMCID: PMC2593652 DOI: 10.1104/pp.108.127910] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Accepted: 10/22/2008] [Indexed: 05/19/2023]
Abstract
Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean (Glycine max). Analysis of approximately 3.7 megabases (Mb) of genomic sequence, including 0.87 Mb of pericentromeric sequence, uncovered 45 intact long terminal repeat (LTR)-retrotransposons. The ratio of intact elements to solo LTRs was 8:1, one of the highest reported to date in plants, suggesting that removal of retrotransposons by homologous recombination between LTRs is occurring more slowly in soybean than in previously characterized plant species. Analysis of paired LTR sequences uncovered a low frequency of deletions relative to base substitutions, indicating that removal of retrotransposon sequences by illegitimate recombination is also operating more slowly. Significantly, we identified three subfamilies of nonautonomous elements that have replicated in the recent past, suggesting that retrotransposition can be catalyzed in trans by autonomous elements elsewhere in the genome. Analysis of 1.6 Mb of sequence from Glycine tomentella, a wild perennial relative of soybean, uncovered 23 intact retroelements, two of which had accumulated no mutations in their LTRs, indicating very recent insertion. A similar pattern was found in 0.94 Mb of sequence from Phaseolus vulgaris (common bean). Thus, autonomous and nonautonomous retrotransposons appear to be both abundant and active in Glycine and Phaseolus. The impact of nonautonomous retrotransposon replication on genome size appears to be much greater than previously appreciated.
Collapse
Affiliation(s)
- Adam Wawrzynski
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Alix K, Joets J, Ryder CD, Moore J, Barker GC, Bailey JP, King GJ, Pat Heslop-Harrison JS. The CACTA transposon Bot1 played a major role in Brassica genome divergence and gene proliferation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:1030-44. [PMID: 18764926 DOI: 10.1111/j.1365-313x.2008.03660.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We isolated and characterized a Brassica C genome-specific CACTA element, which was designated Bot1 (Brassica oleracea transposon 1). After analysing phylogenetic relationships, copy numbers and sequence similarity of Bot1 and Bot1 analogues in B. oleracea (C genome) versus Brassica rapa (A genome), we concluded that Bot1 has encountered several rounds of amplification in the oleracea genome only, and has played a major role in the recent rapa and oleracea genome divergence. We performed in silico analyses of the genomic organization and internal structure of Bot1, and established which segment of Bot1 is C-genome specific. Our work reports a fully characterized Brassica repetitive sequence that can distinguish the Brassica A and C chromosomes in the allotetraploid Brassica napus, by fluorescent in situ hybridization. We demonstrated that Bot1 carries a host S locus-associated SLL3 gene copy. We speculate that Bot1 was involved in the proliferation of SLL3 around the Brassica genome. The present study reinforces the assumption that transposons are a major driver of genome and gene evolution in higher plants.
Collapse
Affiliation(s)
- Karine Alix
- UMR de Génétique Végétale INRA/Univ Paris-Sud/CNRS/AgroParisTech, Ferme du Moulon, F-91190 Gif-sur-Yvette, France.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Takahashi R, Matsumura H, Oyoo ME, Khan NA. Genetic and linkage analysis of purple-blue flower in soybean. J Hered 2008; 99:593-7. [PMID: 18502733 DOI: 10.1093/jhered/esn041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Flower color of soybean is primarily controlled by genes W1, W3, W4, Wm, and Wp. In addition, the soybean gene symbol W2, w2 produces purple-blue flower in combination with W1. This study was conducted to determine the genetic control of purple-blue flower of cultivar (cv). Nezumisaya. F(1) plants derived from a cross between Nezumisaya and purple flower cv. Harosoy had purple flowers. Segregation of the F(2) plants fitted a ratio of 3 purple:1 purple-blue. F(3) lines derived from F(2) plants with purple-blue flowers were fixed for purple-blue flowers, whereas those from F(2) plants with purple flowers fitted a ratio of 1 fixed for purple flower:2 segregating for flower color. These results indicated that the flower color of Nezumisaya is controlled by a single gene whose recessive allele is responsible for purple-blue flower. Complementation analysis revealed that flower color of Nezumisaya is controlled by W2. Linkage mapping revealed that W2 is located in molecular linkage group B2. Sap obtained from banner petals of cvs. with purple flower had a pH value of 5.73-5.77, whereas that of cvs. with purple-blue flower had a value of 6.07-6.10. Our results suggested that W2 is responsible for vacuolar acidification of flower petals.
Collapse
Affiliation(s)
- Ryoji Takahashi
- National Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki, 305-8518 Japan.
| | | | | | | |
Collapse
|
67
|
Owens DK, Crosby KC, Runac J, Howard BA, Winkel BSJ. Biochemical and genetic characterization of Arabidopsis flavanone 3beta-hydroxylase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:833-43. [PMID: 18657430 DOI: 10.1016/j.plaphy.2008.06.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 05/28/2008] [Accepted: 06/01/2008] [Indexed: 05/04/2023]
Abstract
Flavanone 3beta-hydroxylase (F3H; EC 1.14.11.9) is a 2-oxoglutarate dependent dioxygenase that catalyzes the synthesis of dihydrokaempferol, the common precursor for three major classes of 3-hydroxy flavonoids, the flavonols, anthocyanins, and proanthocyanidins. This enzyme also competes for flux into the 3-deoxy flavonoid branch pathway in some species. F3H genes are increasingly being used, often together with genes encoding other enzymes, to engineer flavonoid synthesis in microbes and plants. Although putative F3H genes have been cloned in a large number of plant species, only a handful have been functionally characterized. Here we describe the biochemical properties of the Arabidopsis thaliana F3H (AtF3H) enzyme and confirm the activities of gene products from four other plant species previously identified as having high homology to F3H. We have also investigated the surprising "leaky" phenotype of AtF3H mutant alleles, uncovering evidence that two related flavonoid enzymes, flavonol synthase (EC 1.14.11.23) and anthocyanidin synthase (EC 1.14.11.19), can partially compensate for F3H in vivo. These experiments further indicate that the absence of F3H in these lines enables the synthesis of uncommon 3-deoxy flavonoids in the Arabidopsis seed coat.
Collapse
Affiliation(s)
- Daniel K Owens
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
68
|
Benjak A, Forneck A, Casacuberta JM. Genome-wide analysis of the "cut-and-paste" transposons of grapevine. PLoS One 2008; 3:e3107. [PMID: 18769592 PMCID: PMC2528002 DOI: 10.1371/journal.pone.0003107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 08/10/2008] [Indexed: 01/30/2023] Open
Abstract
Background The grapevine is a widely cultivated crop and a high number of different varieties have been selected since its domestication in the Neolithic period. Although sexual crossing has been a major driver of grapevine evolution, its vegetative propagation enhanced the impact of somatic mutations and has been important for grapevine diversity. Transposable elements are known to be major contributors to genome variability and, in particular, to somatic mutations. Thus, transposable elements have probably played a major role in grapevine domestication and evolution. The recent publication of the complete grapevine genome opens the possibility for an in deep analysis of its transposon content. Principal Findings We present here a detailed analysis of the “cut-and-paste” class II transposons present in the genome of grapevine. We characterized 1160 potentially complete grapevine transposons as well as 2086 defective copies. We report on the structure of each element, their potentiality to encode a functional transposase, and the existence of matching ESTs that could suggest their transcription. Conclusions Our results show that these elements have transduplicated and amplified cellular sequences and some of them have been domesticated and probably fulfill cellular functions. In addition, we provide evidences that the mobility of these elements has contributed to the genomic variability of this species.
Collapse
Affiliation(s)
- Andrej Benjak
- Departament de Genètica Molecular Vegetal, Centre de Recerca en Agrigenòmica (CRAG), Barcelona, Spain
- Institute of Horticulture and Viticulture, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Astrid Forneck
- Institute of Horticulture and Viticulture, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Josep M. Casacuberta
- Departament de Genètica Molecular Vegetal, Centre de Recerca en Agrigenòmica (CRAG), Barcelona, Spain
- * E-mail:
| |
Collapse
|
69
|
Iwashina T, Oyoo ME, Khan NA, Matsumura H, Takahashi R. Analysis of Flavonoids in Flower Petals of Soybean Flower Color Variants. CROP SCIENCE 2008; 48:1918-1924. [PMID: 0 DOI: 10.2135/cropsci2008.01.0031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- Tsukasa Iwashina
- Dep. of Botany; National Museum of Nature and Science; Tsukuba Ibaraki 305-0005 Japan
| | - Maurice E. Oyoo
- Univ. of Tsukuba; 2-1-18 Kannondai Tsukuba Ibaraki 305-8518 Japan
| | - Nisar A. Khan
- Univ. of Tsukuba; 2-1-18 Kannondai Tsukuba Ibaraki 305-8518 Japan
| | | | - Ryoji Takahashi
- Univ. of Tsukuba; 2-1-18 Kannondai Tsukuba Ibaraki 305-8518 Japan
- National Institute of Crop Science; 2-1-18 Kannondai Tsukuba Ibaraki 305-8518 Japan
| |
Collapse
|
70
|
Abstract
Transposable elements are mobile genetic units that exhibit broad diversity in their structure and transposition mechanisms. Transposable elements occupy a large fraction of many eukaryotic genomes and their movement and accumulation represent a major force shaping the genes and genomes of almost all organisms. This review focuses on DNA-mediated or class 2 transposons and emphasizes how this class of elements is distinguished from other types of mobile elements in terms of their structure, amplification dynamics, and genomic effect. We provide an up-to-date outlook on the diversity and taxonomic distribution of all major types of DNA transposons in eukaryotes, including Helitrons and Mavericks. We discuss some of the evolutionary forces that influence their maintenance and diversification in various genomic environments. Finally, we highlight how the distinctive biological features of DNA transposons have contributed to shape genome architecture and led to the emergence of genetic innovations in different eukaryotic lineages.
Collapse
Affiliation(s)
- Cédric Feschotte
- Department of Biology, University of Texas, Arlington, TX 76019, USA.
| | | |
Collapse
|
71
|
Cadle-Davidson MM, Owens CL. Genomic amplification of the Gret1 retroelement in white-fruited accessions of wild vitis and interspecific hybrids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:1079-1094. [PMID: 18335200 DOI: 10.1007/s00122-008-0737-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 02/18/2008] [Indexed: 05/26/2023]
Abstract
Retrotransposons are retrovirus-related mobile sequences that have the potential to replicate via RNA intermediates and increase the genome size by insertion into new sites. The retroelement, Gret1, has been identified as playing a key role in generating fruit color variation in cultivated grape (Vitis vinifera L.) due to its insertion into the promoter of VvMybA1. Fruit color variation is an important distinguishing feature of cultivated grapes and virtually no fruit color variation is observed in wild grape species. The presence and relative copy number of Gret1 was assessed using quantitative PCR on 22 different Vitis species, only four of which (plus interspecific hybrids) are known to contain white accessions. Gret1 copy number was observed to vary by species as well as by color within species and was significantly higher in white-fruited accessions across all taxa tested. Additionally, genomic regions surrounding Gret1 insertion were sequenced in white V. vinifera, hybrid, V. labrusca, V. aestivalis, and V. riparia accessions.
Collapse
Affiliation(s)
- Molly M Cadle-Davidson
- Grape Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, 630 W. North St, Geneva, NY 14456, USA.
| | | |
Collapse
|
72
|
Hawkins JS, Hu G, Rapp RA, Grafenberg JL, Wendel JF. Phylogenetic determination of the pace of transposable element proliferation in plants: copia and LINE-like elements in Gossypium. Genome 2008; 51:11-8. [PMID: 18356935 DOI: 10.1139/g07-099] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transposable elements contribute significantly to plant genome evolution in myriad ways, ranging from local insertional mutations to global effects exerted on genome size through accumulation. Differential accumulation and deletion of transposable elements may profoundly affect genome size, even among members of the same genus. One example is that of Gossypium (cotton), where much of the 3-fold genome size variation is due to differential accumulation of one gypsy-like LTR retrotransposon, Gorge3. Copia and non-LTR LINE retrotransposons are also major components of the Gossypium genome, but unlike Gorge3, their extant copy numbers do not correlate with genome size. In the present study, we describe the nature and timing of transposition for copia and LINE retrotransposons in Gossypium. Our findings indicate that copia retrotransposons have been active in each lineage since divergence from a common ancestor, and that they have proliferated in a punctuated manner. However, the evolutionary history of LINEs contrasts markedly with that of the copia retrotransposons. Although LINEs have also been active in each lineage, they have accumulated in a stochastically regular manner, and phylogenetic analysis suggests that extant LINE populations in Gossypium are dominated by ancient insertions. Interestingly, the magnitude of transpositional bursts in each lineage corresponds directly with extant estimated copy number.
Collapse
Affiliation(s)
- Jennifer S Hawkins
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
73
|
Gonzalez DO, Vodkin LO. Specific elements of the glyoxylate pathway play a significant role in the functional transition of the soybean cotyledon during seedling development. BMC Genomics 2007; 8:468. [PMID: 18093333 PMCID: PMC2234262 DOI: 10.1186/1471-2164-8-468] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 12/19/2007] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The soybean (Glycine max) cotyledon is a specialized tissue whose main function is to serve as a nutrient reserve that supplies the needs of the young plant throughout seedling development. During this process the cotyledons experience a functional transition to a mainly photosynthetic tissue. To identify at the genetic level the specific active elements that participate in the natural transition of the cotyledon from storage to photosynthetic activity, we studied the transcript abundance profile at different time points using a new soybean oligonucleotide chip containing 19,200 probes (70-mer long). RESULTS After normalization and statistical analysis we determined that 3,594 genes presented a statistically significant altered expression in relation to the imbibed seed in at least one of the time points defined for the study. Detailed analysis of this data identified individual, specific elements of the glyoxylate pathway that play a fundamental role during the functional transition of the cotyledon from nutrient storage to photosynthesis. The dynamics between glyoxysomes and peroxisomes is evident during these series of events. We also identified several other genes whose products could participate co-ordinately throughout the functional transition and the associated mechanisms of control and regulation and we described multiple unknown genetic elements that by association have the potential to make a major contribution to this biological process. CONCLUSION We demonstrate that the global transcript profile of the soybean cotyledon during seedling development is extremely active, highly regulated and dynamic. We defined the expression profiles of individual gene family members, enzymatic isoforms and protein subunits and classified them accordingly to their involvement in different functional activities relevant to seedling development and the cotyledonary functional transition in soybean, especially the ones associated with the glyoxylate cycle. Our data suggests that in the soybean cotyledon a very complex and synchronized system of control and regulation of several metabolic pathways is essential to carry out the necessary functions during this developmental process.
Collapse
Affiliation(s)
- Delkin O Gonzalez
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Lila O Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
74
|
Dooner HK, Weil CF. Give-and-take: interactions between DNA transposons and their host plant genomes. Curr Opin Genet Dev 2007; 17:486-92. [PMID: 17919898 DOI: 10.1016/j.gde.2007.08.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 07/31/2007] [Accepted: 08/27/2007] [Indexed: 12/18/2022]
Abstract
Recent genome sequencing efforts have revealed how extensively transposable elements (TEs) have contributed to the shaping of present day plant genomes. DNA transposons associate preferentially with the euchromatic or genic component of plant genomes and have had the opportunity to interact intimately with the genes of the plant host. These interactions have resulted in TEs acquiring host sequences, forming chimeric genes through exon shuffling, replacing regulatory sequences, mobilizing genes around the genome, and contributing genes to the host. The close interaction of transposons with genes has also led to the evolution of intricate cellular mechanisms for silencing transposon activity. Transposons have thus become important subjects of study in understanding epigenetic regulation and, in cases where transposons have amplified to high numbers, how to escape that regulation.
Collapse
Affiliation(s)
- Hugo K Dooner
- Waksman Institute, Rutgers University, Piscataway, NJ 08854-8020, USA.
| | | |
Collapse
|
75
|
Jiao Y, Deng XW. A genome-wide transcriptional activity survey of rice transposable element-related genes. Genome Biol 2007; 8:R28. [PMID: 17326825 PMCID: PMC1852403 DOI: 10.1186/gb-2007-8-2-r28] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 12/18/2006] [Accepted: 02/27/2007] [Indexed: 12/20/2022] Open
Abstract
A genome-wide survey of the transcriptional activity of TE-related genes that were associated with fifteen developmental stages and stress conditions revealed clear, albeit low, general transcription of TE-related genes. Background Transposable element (TE)-related genes comprise a significant portion of the gene catalog of grasses, although their functions are insufficiently characterized. The recent availability of TE-related gene annotation from the complete genome sequence of rice (Oryza sativa) has created an opportunity to conduct a comprehensive evaluation of the transcriptional activities of these potentially mobile elements and their related genes. Results We conducted a genome-wide survey of the transcriptional activity of TE-related genes associated with 15 developmental stages and stress conditions. This dataset was obtained using a microarray encompassing 2,191 unique TE-related rice genes, which were represented by oligonucleotide probes that were free from cross-hybridization. We found that TE-related genes exhibit much lower transcriptional activities than do non-TE-related genes, although representative transcripts were detected from all superfamilies of both type I and II TE-related genes. The strongest transcriptional activities were detected in TE-related genes from among the MULE and CACTA superfamilies. Phylogenetic analyses suggest that domesticated TE-related genes tend to form clades with active transcription. In addition, chromatin-level regulations through histone and DNA modifications, as well as enrichment of certain cis elements in the promoters, appear to contribute to the transcriptional activation of representative TE-related genes. Conclusion Our findings reveal clear, albeit low, general transcription of TE-related genes. In combination with phylogenetic analysis, transcriptional analysis has the potential to lead to the identification of domesticated TEs with adapted host functions.
Collapse
Affiliation(s)
- Yuling Jiao
- Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 06520, USA
| | - Xing Wang Deng
- Department of Molecular, Cellular and Developmental Biology, Yale University, 165 Prospect Street, New Haven, CT 06520, USA
| |
Collapse
|
76
|
Zabala G, Vodkin L. Novel exon combinations generated by alternative splicing of gene fragments mobilized by a CACTA transposon in Glycine max. BMC PLANT BIOLOGY 2007; 7:38. [PMID: 17629935 PMCID: PMC1947982 DOI: 10.1186/1471-2229-7-38] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 07/14/2007] [Indexed: 05/08/2023]
Abstract
BACKGROUND The recent discoveries of transposable elements carrying host gene fragments such as the Pack-MULEs (Mutator-like transposable elements) of maize (Zea mays), rice (Oryza sativa) and Arabidopsis thaliana, the Helitrons of maize and the Tgm-Express of soybeans, revealed a widespread genetic mechanism with the potential to rearrange genomes and create novel chimeric genes affecting genomic and proteomic diversity. Not much is known with regard to the mechanisms of gene fragment capture by those transposon elements or the expression of the captured host gene fragments. There is some evidence that chimeric transcripts can be assembled and exist in EST collections. RESULTS We report results obtained from analysis of RT-PCR derived cDNAs of the Glycine max mutant flower color gene, wp, that contains a 5.7-kb transposon (Tgm-Express1) in Intron 2 of the flavanone 3-hydroxylase gene (F3H) and is composed of five unrelated host gene fragments. The collection of cDNAs derived from the wp allele represents a multiplicity of processed RNAs varying in length and sequence that includes some identical to the correctly processed mature F3H transcript with three properly spliced exons. Surprisingly, the five gene fragments carried by the Tgm-Express1 were processed through complex alternative splicing as additional exons of the wp transcript. CONCLUSION The gene fragments carried by the Tgm inverted repeat ends appear to be retained as functional exons/introns within the element. The spliceosomes then select indiscriminately the canonical intron splice sites from a pre-mRNA to assemble diverse chimeric transcripts from the exons contained in the wp allele. The multiplicity and randomness of these events provide some insights into the origin and mechanism of alternatively spliced genes.
Collapse
Affiliation(s)
- Gracia Zabala
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | - Lila Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
77
|
Takahashi R, Githiri SM, Hatayama K, Dubouzet EG, Shimada N, Aoki T, Ayabe SI, Iwashina T, Toda K, Matsumura H. A single-base deletion in soybean flavonol synthase gene is associated with magenta flower color. PLANT MOLECULAR BIOLOGY 2007; 63:125-35. [PMID: 17006592 DOI: 10.1007/s11103-006-9077-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 08/12/2006] [Indexed: 05/12/2023]
Abstract
The Wm locus of soybean [Glycine max (L.) Merr.] controls flower color. Dominant Wm and recessive wm allele of the locus produce purple and magenta flower, respectively. A putative full-length cDNA of flavonol synthase (FLS), gmfls1 was isolated by 5' RACE and end-to-end PCR from a cultivar Harosoy with purple flower (WmWm). Sequence analysis revealed that gmfls1 consisted of 1,208 nucleotides encoding 334 amino acids. It had 59-72% homology with FLS proteins of other plant species. Conserved dioxygenase domains A and B were found in the deduced polypeptide. Sequence comparison between Harosoy and Harosoy-wm (magenta flower mutant of Harosoy; wmwm) revealed that they differed by a single G deletion in the coding region of Harosoy-wm. The deletion changed the subsequent reading frame resulting in a truncated polypeptide consisting of 37 amino acids that lacked the dioxygenase domains A and B. Extracts of E. coli cells expressing gmfls1 of Harosoy catalyzed the formation of quercetin from dihydroquercetin, whereas cell extracts expressing gmfls1 of Harosoy-wm had no FLS activity. Genomic Southern analysis suggested the existence of three to four copies of the FLS gene in the soybean genome. CAPS analysis was performed to detect the single-base deletion. Harosoy and Clark (WmWm) exhibited longer fragments, while Harosoy-wm had shorter fragments due to the single-base deletion. The CAPS marker co-segregated with genotypes at Wm locus in a F(2) population segregating for the locus. Linkage mapping using SSR markers revealed that the Wm and gmfls1 were mapped at similar position in the molecular linkage group F. The above results strongly suggest that gmfls1 represents the Wm gene and that the single-base deletion may be responsible for magenta flower color.
Collapse
Affiliation(s)
- Ryoji Takahashi
- National Institute of Crop Science and University of Tsukuba, Tsukuba, Ibaraki, 305-8518, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Zabala G, Zou J, Tuteja J, Gonzalez DO, Clough SJ, Vodkin LO. Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection. BMC PLANT BIOLOGY 2006; 6:26. [PMID: 17083738 PMCID: PMC1636052 DOI: 10.1186/1471-2229-6-26] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 11/03/2006] [Indexed: 05/12/2023]
Abstract
BACKGROUND Reports of plant molecular responses to pathogenic infections have pinpointed increases in activity of several genes of the phenylpropanoid pathway leading to the synthesis of lignin and flavonoids. The majority of those findings were derived from single gene studies and more recently from several global gene expression analyses. We undertook a global transcriptional analysis focused on the response of genes of the multiple branches of the phenylpropanoid pathway to infection by the Pseudomonas syringae pv. glycinea with or without the avirulence gene avrB to characterize more broadly the contribution of the multiple branches of the pathway to the resistance response in soybean. Transcript abundance in leaves was determined from analysis of soybean cDNA microarray data and hybridizations to RNA blots with specific gene probes. RESULTS The majority of the genes surveyed presented patterns of increased transcript accumulation. Some increased rapidly, 2 and 4 hours after inoculation, while others started to accumulate slowly by 8-12 hours. In contrast, transcripts of a few genes decreased in abundance 2 hours post inoculation. Most interestingly was the opposite temporal fluctuation in transcript abundance between early responsive genes in defense (CHS and IFS1) and F3H, the gene encoding a pivotal enzyme in the synthesis of anthocyanins, proanthocyanidins and flavonols. F3H transcripts decreased rapidly 2 hours post inoculation and increased during periods when CHS and IFS transcripts decreased. It was also determined that all but one (CHS4) family member genes (CHS1, CHS2, CHS3, CHS5, CHS6 and CHS7/8) accumulated higher transcript levels during the defense response provoked by the avirulent pathogen challenge. CONCLUSION Based on the mRNA profiles, these results show the strong bias that soybean has towards increasing the synthesis of isoflavonoid phytoalexins concomitant with the down regulation of genes required for the synthesis of anthocyanins and proanthocyanins. Although proanthocyanins are known to be toxic compounds, the cells in the soybean leaves seem to be programmed to prioritize the synthesis and accumulation of isoflavonoid and pterocarpan phytoalexins during the resistance response. It was known that CHS transcripts accumulate in great abundance rapidly after inoculation of the soybean plants but our results have demonstrated that all but one (CHS4) member of the gene family member genes accumulated higher transcript levels during the defense response.
Collapse
Affiliation(s)
- Gracia Zabala
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | - Jijun Zou
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | - Jigyasa Tuteja
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | - Delkin O Gonzalez
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | - Steven J Clough
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801, USA
- USDA-ARS, Urbana, Il 61801, USA
| | - Lila O Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
79
|
Morgante M. Plant genome organisation and diversity: the year of the junk! Curr Opin Biotechnol 2006; 17:168-73. [PMID: 16530402 DOI: 10.1016/j.copbio.2006.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2006] [Revised: 02/28/2006] [Accepted: 03/02/2006] [Indexed: 01/21/2023]
Abstract
Having gained a thorough understanding of the structure and organization of model plant genomes, such as those of Arabidopsis thaliana and rice, we have now started to investigate the most interesting aspect of genome structure - its variations. Variation in DNA sequence is responsible for the genetic component of phenotypic variation (i.e. the component upon which both natural and artificial selection act). Recent studies have started to shed light on sequence variation outside of the genic regions, owing mainly to large insertion/deletion (indel) polymorphisms caused by the presence or absence of transposable elements of different classes. In addition to long terminal repeat retrotransposons, DNA transposons have been shown to be responsible for these polymorphisms. These comprise Helitrons, CACTA and Mu-like elements that are capable of acquiring and piecing together fragments of plant genes and are often expressed. Future analyses of the functional roles of intergenic sequence variation will tell us if we will need to pay more attention not only to genes, but also to the 'junk' DNA surrounding them.
Collapse
Affiliation(s)
- Michele Morgante
- Dipartimento di Scienze Agrarie ed Ambientali, Universita' di Udine, Via delle Scienze 208, I-33100 Udine, Italy.
| |
Collapse
|
80
|
Hoen DR, Park KC, Elrouby N, Yu Z, Mohabir N, Cowan RK, Bureau TE. Transposon-mediated expansion and diversification of a family of ULP-like genes. Mol Biol Evol 2006; 23:1254-68. [PMID: 16581939 DOI: 10.1093/molbev/msk015] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transposons comprise a major component of eukaryotic genomes, yet it remains controversial whether they are merely genetic parasites or instead significant contributors to organismal function and evolution. In plants, thousands of DNA transposons were recently shown to contain duplicated cellular gene fragments, a process termed transduplication. Although transduplication is a potentially rich source of novel coding sequences, virtually all appear to be pseudogenes in rice. Here we report the results of a genome-wide survey of transduplication in Mutator-like elements (MULEs) in Arabidopsis thaliana, which shows that the phenomenon is generally similar to rice transduplication, with one important exception: KAONASHI (KI). A family of more than 97 potentially functional genes and apparent pseudogenes, evidently derived at least 15 MYA from a cellular small ubiquitin-like modifier-specific protease gene, KI is predominantly located in potentially autonomous non-terminal inverted repeat MULEs and has evolved under purifying selection to maintain a conserved peptidase domain. Similar to the associated transposase gene but unlike cellular genes, KI is targeted by small RNAs and silenced in most tissues but has elevated expression in pollen. In an Arabidopsis double mutant deficient in histone and DNA methylation with elevated KI expression compared to wild type, at least one KI-MULE is mobile. The existence of KI demonstrates that transduplicated genes can retain protein-coding capacity and evolve novel functions. However, in this case, our evidence suggests that the function of KI may be selfish rather than cellular.
Collapse
Affiliation(s)
- Douglas R Hoen
- Department of Biology, McGill University, Montreal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|