51
|
Kozuleva M, Goss T, Twachtmann M, Rudi K, Trapka J, Selinski J, Ivanov B, Garapati P, Steinhoff HJ, Hase T, Scheibe R, Klare JP, Hanke GT. Ferredoxin:NADP(H) Oxidoreductase Abundance and Location Influences Redox Poise and Stress Tolerance. PLANT PHYSIOLOGY 2016; 172:1480-1493. [PMID: 27634426 PMCID: PMC5100767 DOI: 10.1104/pp.16.01084] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/13/2016] [Indexed: 05/20/2023]
Abstract
In linear photosynthetic electron transport, ferredoxin:NADP(H) oxidoreductase (FNR) transfers electrons from ferredoxin (Fd) to NADP+ Both NADPH and reduced Fd (Fdred) are required for reductive assimilation and light/dark activation/deactivation of enzymes. FNR is therefore a hub, connecting photosynthetic electron transport to chloroplast redox metabolism. A correlation between FNR content and tolerance to oxidative stress is well established, although the precise mechanism remains unclear. We investigated the impact of altered FNR content and localization on electron transport and superoxide radical evolution in isolated thylakoids, and probed resulting changes in redox homeostasis, expression of oxidative stress markers, and tolerance to high light in planta. Our data indicate that the ratio of Fdred to FNR is critical, with either too much or too little FNR potentially leading to increased superoxide production, and perception of oxidative stress at the level of gene transcription. In FNR overexpressing plants, which show more NADP(H) and glutathione pools, improved tolerance to high-light stress indicates that disturbance of chloroplast redox poise and increased free radical generation may help "prime" the plant and induce protective mechanisms. In fnr1 knock-outs, the NADP(H) and glutathione pools are more oxidized relative to the wild type, and the photoprotective effect is absent despite perception of oxidative stress at the level of gene transcription.
Collapse
Affiliation(s)
- Marina Kozuleva
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Tatjana Goss
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Manuel Twachtmann
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Katherina Rudi
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Jennifer Trapka
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Jennifer Selinski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Boris Ivanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Prashanth Garapati
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Heinz-Juergen Steinhoff
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Toshiharu Hase
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Renate Scheibe
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Johann P Klare
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Guy T Hanke
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.);
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany;
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| |
Collapse
|
52
|
Diakonova AN, Khrushchev SS, Kovalenko IB, Riznichenko GY, Rubin AB. Influence of pH and ionic strength on electrostatic properties of ferredoxin, FNR, and hydrogenase and the rate constants of their interaction. Phys Biol 2016; 13:056004. [PMID: 27716644 DOI: 10.1088/1478-3975/13/5/056004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ferredoxin (Fd) protein transfers electrons from photosystem I (PSI) to ferredoxin:NADP+-reductase (FNR) in the photosynthetic electron transport chain, as well as other metabolic pathways. In some photosynthetic organisms including cyanobacteria and green unicellular algae under anaerobic conditions Fd transfers electrons not only to FNR but also to hydrogenase-an enzyme which catalyzes reduction of atomic hydrogen to H2. One of the questions posed by this competitive relationship between proteins is which characteristics of thylakoid stroma media allow switching of the electron flow between the linear path PSI-Fd-FNR-NADP+ and the path PSI-Fd-hydrogenase-H2. The study was conducted using direct multiparticle simulation approach. In this method protein molecules are considered as individual objects that experience Brownian motion and electrostatic interaction with the surrounding media and each other. Using the model we studied the effects of pH and ionic strength (I) upon complex formation between ferredoxin and FNR and ferredoxin and hydrogenase. We showed that the rate constant of Fd-FNR complex formation is constant in a wide range of physiologically significant pH values. Therefore it can be argued that regulation of FNR activity doesn't involve pH changes in stroma. On the other hand, in the model rate constant of Fd-hydrogenase interaction dramatically depends upon pH: in the range 7-9 it increases threefold. It may seem that because hydrogenase reduces protons it should be more active when pH is acidic. Apparently, regulation of hydrogenase's affinity to both her reaction partners (H+ and Fd) is carried out by changes in its electrostatic properties. In the dark, the protein is inactive and in the light it is activated and starts to interact with both Fd and H+. Therefore, we can conclude that in chloroplasts the rate of hydrogen production is regulated by pH through the changes in the affinity between hydrogenase and ferredoxin.
Collapse
|
53
|
Hauenstein M, Christ B, Das A, Aubry S, Hörtensteiner S. A Role for TIC55 as a Hydroxylase of Phyllobilins, the Products of Chlorophyll Breakdown during Plant Senescence. THE PLANT CELL 2016; 28:2510-2527. [PMID: 27655840 PMCID: PMC5134989 DOI: 10.1105/tpc.16.00630] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/08/2016] [Accepted: 09/19/2016] [Indexed: 05/04/2023]
Abstract
Chlorophyll degradation is the most obvious hallmark of leaf senescence. Phyllobilins, linear tetrapyrroles that are derived from opening of the chlorin macrocycle by the Rieske-type oxygenase PHEOPHORBIDE a OXYGENASE (PAO), are the end products of chlorophyll degradation. Phyllobilins carry defined modifications at several peripheral positions within the tetrapyrrole backbone. While most of these modifications are species-specific, hydroxylation at the C32 position is commonly found in all species analyzed to date. We demonstrate that this hydroxylation occurs in senescent chloroplasts of Arabidopsis thaliana. Using bell pepper (Capsicum annuum) chromoplasts, we establish that phyllobilin hydroxylation is catalyzed by a membrane-bound, molecular oxygen-dependent, and ferredoxin-dependent activity. As these features resemble the requirements of PAO, we considered membrane-bound Rieske-type oxygenases as potential candidates. Analysis of mutants of the two Arabidopsis Rieske-type oxygenases (besides PAO) uncovered that phyllobilin hydroxylation depends on TRANSLOCON AT THE INNER CHLOROPLAST ENVELOPE55 (TIC55). Our work demonstrates a catalytic activity for TIC55, which in the past has been considered as a redox sensor of protein import into plastids. Given the wide evolutionary distribution of both PAO and TIC55, we consider that chlorophyll degradation likely coevolved with land plants.
Collapse
Affiliation(s)
- Mareike Hauenstein
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Bastien Christ
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Aditi Das
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Sylvain Aubry
- Institute of Plant Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | | |
Collapse
|
54
|
Sukhov V, Surova L, Morozova E, Sherstneva O, Vodeneev V. Changes in H(+)-ATP Synthase Activity, Proton Electrochemical Gradient, and pH in Pea Chloroplast Can Be Connected with Variation Potential. FRONTIERS IN PLANT SCIENCE 2016; 7:1092. [PMID: 27499760 PMCID: PMC4956672 DOI: 10.3389/fpls.2016.01092] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/11/2016] [Indexed: 05/22/2023]
Abstract
Local stimulation induces generation and propagation of electrical signals, including the variation potential (VP) and action potential, in plants. Burning-induced VP changes the physiological state of plants; specifically, it inactivates photosynthesis. However, the mechanisms that decrease photosynthesis are poorly understood. We investigated these mechanisms by measuring VP-connected systemic changes in CO2 assimilation, parameters of light reactions of photosynthesis, electrochromic pigment absorbance shifts, and light scattering. We reveal that inactivation of photosynthesis in the pea, including inactivation of dark and light reactions, was connected with the VP. Inactivation of dark reactions decreased the rate constant of the fast relaxation of the electrochromic pigment absorbance shift, which reflected a decrease in the H(+)-ATP synthase activity. This decrease likely contributed to the acidification of the chloroplast lumen, which developed after VP induction. However, VP-connected decrease of the proton motive force across the thylakoid membrane, possibly, reflected a decreased pH in the stroma. This decrease may be another mechanism of chloroplast lumen acidification. Overall, stroma acidification can decrease electron flow through photosystem I, and lumen acidification induces growth of fluorescence non-photochemical quenching and decreases electron flow through photosystem II, i.e., pH decreases in the stroma and lumen, possibly, contribute to the VP-induced inactivation of light reactions of photosynthesis.
Collapse
Affiliation(s)
- Vladimir Sukhov
- Department of Biophysics, N. I. Lobachevsky State University of Nizhny NovgorodNizhny Novgorod, Russia
| | | | | | | | | |
Collapse
|
55
|
Yang J, Gao MX, Hu H, Ding XM, Lin HW, Wang L, Xu JM, Mao CZ, Zhao FJ, Wu ZC. OsCLT1, a CRT-like transporter 1, is required for glutathione homeostasis and arsenic tolerance in rice. THE NEW PHYTOLOGIST 2016; 211:658-70. [PMID: 26918637 DOI: 10.1111/nph.13908] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 01/20/2016] [Indexed: 05/18/2023]
Abstract
Arsenic (As) contamination in a paddy environment can cause phytotoxicity and elevated As accumulation in rice (Oryza sativa). The mechanism of As detoxification in rice is still poorly understood. We isolated an arsenate (As(V))-sensitive mutant of rice. Genomic resequencing and complementation identified OsCLT1, encoding a CRT-like transporter, as the causal gene for the mutant phenotype. OsCLT1 is localized to the envelope membrane of plastids. The glutathione and γ-glutamylcysteine contents in roots of Osclt1 and RNA interference lines were decreased markedly compared with the wild-type (WT). The concentrations of phytochelatin PC2 in Osclt1 roots were only 32% and 12% of that in WT after As(V) and As(III) treatments, respectively. OsCLT1 mutation resulted in lower As accumulation in roots but higher As accumulation in shoots when exposed to As(V). Under As(III) treatment, Osclt1 accumulated a lower As concentration in roots but similar As concentration in shoots to WT. Further analysis showed that the reduction of As(V) to As(III) was decreased in Osclt1. Osclt1 was also hypersensitive to cadmium (Cd). These results indicate that OsCLT1 plays an important role in glutathione homeostasis, probably by mediating the export of γ-glutamylcysteine and glutathione from plastids to the cytoplasm, which in turn affects As and Cd detoxification in rice.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Xing Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Han Hu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Meng Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong-Wei Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ji-Ming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuan-Zao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhong-Chang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
56
|
Diakonova AN, Khruschev SS, Kovalenko IB, Riznichenko GY, Rubin AB. The role of electrostatic interactions in the formation of ferredoxin–ferredoxin NADP+ reductase and ferredoxin–hydrogenase complexes. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916040060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
57
|
Vojta L, Fulgosi H. Data supporting the absence of FNR dynamic photosynthetic membrane recruitment in trol mutants. Data Brief 2016; 7:393-6. [PMID: 26977444 PMCID: PMC4781999 DOI: 10.1016/j.dib.2016.02.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/05/2016] [Accepted: 02/18/2016] [Indexed: 11/18/2022] Open
Abstract
In photosynthesis, the flavoenzyme ferredoxin:NADP(+) oxidoreductase (FNR) catalyses the final electron transfer from ferredoxin to NADP(+), which is considered as the main pathway of high-energy electron partitioning in chloroplasts (DOI: 10.1111/j.1365-313X.2009.03999.x[1], DOI: 10.1038/srep10085[2]). Different detergents and pH treatments of photosynthetic membranes isolated from the Arabidopsis wild-type (WT) and the loss-of-function mutants of the thylakoid rhodanase-like protein TROL (trol), pre-acclimated to either dark, growth-light, or high-light conditions, were used to probe the strength of FNR-membrane associations. Detergents β-DM (decyl-β-D-maltopyranoside) or β-DDM (n-dodecyl-β-D-maltopyranoside) were used to test the stability of FNR binding to the thylakoid membranes, and to assess different membrane domains containing FNR. Further, the extraction conditions mimicked pH status of chloroplast stroma during changing light regimes. Plants without TROL are incapable of the dynamic FNR recruitment to the photosynthetic membranes.
Collapse
Affiliation(s)
| | - Hrvoje Fulgosi
- Laboratory for Molecular Plant Biology and Biotechnology, Division of Molecular Biology, Institute Ruđer Bošković, 10 000 Zagreb, Croatia
| |
Collapse
|
58
|
PBR1 selectively controls biogenesis of photosynthetic complexes by modulating translation of the large chloroplast gene Ycf1 in Arabidopsis. Cell Discov 2016; 2:16003. [PMID: 27462450 PMCID: PMC4870678 DOI: 10.1038/celldisc.2016.3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/27/2016] [Indexed: 11/14/2022] Open
Abstract
The biogenesis of photosystem I (PSI), cytochrome b6f (Cytb6f) and NADH dehydrogenase (NDH) complexes relies on the spatially and temporally coordinated expression and translation of both nuclear and chloroplast genes. Here we report the identification of photosystem biogenesis regulator 1 (PBR1), a nuclear-encoded chloroplast RNA-binding protein that regulates the concerted biogenesis of NDH, PSI and Cytb6f complexes. We identified Ycf1, one of the two largest chloroplast genome-encoded open reading frames as the direct downstream target protein of PBR1. Biochemical and molecular analyses reveal that PBR1 regulates Ycf1 translation by directly binding to its mRNA. Surprisingly, we further demonstrate that relocation of the chloroplast gene Ycf1 fused with a plastid-transit sequence to the nucleus bypasses the requirement of PBR1 for Ycf1 translation, which sufficiently complements the defects in biogenesis of NDH, PSI and Cytb6f complexes in PBR1-deficient plants. Remarkably, the nuclear-encoded PBR1 tightly controls the expression of the chloroplast gene Ycf1 at the translational level, which is sufficient to sustain the coordinated biogenesis of NDH, PSI and Cytb6f complexes as a whole. Our findings provide deep insights into better understanding of how a predominant nuclear-encoded factor can act as a migratory mediator and undergoes selective translational regulation of the target plastid gene in controlling biogenesis of photosynthetic complexes.
Collapse
|
59
|
Yang C, Hu H, Ren H, Kong Y, Lin H, Guo J, Wang L, He Y, Ding X, Grabsztunowicz M, Mulo P, Chen T, Liu Y, Wu Z, Wu Y, Mao C, Wu P, Mo X. LIGHT-INDUCED RICE1 Regulates Light-Dependent Attachment of LEAF-TYPE FERREDOXIN-NADP+ OXIDOREDUCTASE to the Thylakoid Membrane in Rice and Arabidopsis. THE PLANT CELL 2016; 28:712-28. [PMID: 26941088 PMCID: PMC4826015 DOI: 10.1105/tpc.15.01027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/04/2016] [Accepted: 03/02/2016] [Indexed: 05/27/2023]
Abstract
LIR1 (LIGHT-INDUCED RICE1) encodes a 13-kD, chloroplast-targeted protein containing two nearly identical motifs of unknown function. LIR1 is present in the genomes of vascular plants, mosses, liverworts, and algae, but not in cyanobacteria. Using coimmunoprecipitation assays, pull-down assays, and yeast two-hybrid analyses, we showed that LIR1 interacts with LEAF-TYPE FERREDOXIN-NADP(+) OXIDOREDUCTASE (LFNR), an essential chloroplast enzyme functioning in the last step of photosynthetic linear electron transfer. LIR1 and LFNR formed high molecular weight thylakoid protein complexes with the TIC62 and TROL proteins, previously shown to anchor LFNR to the membrane. We further showed that LIR1 increases the affinity of LFNRs for TIC62 and that the rapid light-triggered degradation of the LIR1 coincides with the release of the LFNR from the thylakoid membrane. Loss of LIR1 resulted in a marked decrease in the accumulation of LFNR-containing thylakoid protein complexes without a concomitant decrease in total LFNR content. In rice (Oryza sativa), photosynthetic capacity of lir1 plants was slightly impaired, whereas no such effect was observed in Arabidopsis thaliana knockout mutants. The consequences of LIR1 deficiency in different species are discussed.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, P.R. China
| | - Hongtao Hu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, P.R. China National Engineering Technology Research Center for Slow and Controlled Release Fertilizers, Kingenta Ecological Engineering Group Co., Linyi, Shandong 276700, P.R. China
| | - Hongyan Ren
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi Province 710062, P.R. China
| | - Yuzhu Kong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, P.R. China
| | - Hongwei Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jiangfan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, P.R. China
| | - Lingling Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yi He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xiaomeng Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, P.R. China
| | - Magda Grabsztunowicz
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Paula Mulo
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Tao Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhongchang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, P.R. China
| | - Yunrong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, P.R. China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ping Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xiaorong Mo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
60
|
Klasek L, Inoue K. Dual Protein Localization to the Envelope and Thylakoid Membranes Within the Chloroplast. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 323:231-63. [PMID: 26944623 DOI: 10.1016/bs.ircmb.2015.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The chloroplast houses various metabolic processes essential for plant viability. This organelle originated from an ancestral cyanobacterium via endosymbiosis and maintains the three membranes of its progenitor. Among them, the outer envelope membrane functions mainly in communication with cytoplasmic components while the inner envelope membrane houses selective transport of various metabolites and the biosynthesis of several compounds, including membrane lipids. These two envelope membranes also play essential roles in import of nuclear-encoded proteins and in organelle division. The third membrane, the internal membrane system known as the thylakoid, houses photosynthetic electron transport and chemiosmotic phosphorylation. The inner envelope and thylakoid membranes share similar lipid composition. Specific targeting pathways determine their defined proteomes and, thus, their distinct functions. Nonetheless, several proteins have been shown to exist in both the envelope and thylakoid membranes. These proteins include those that play roles in protein transport, tetrapyrrole biosynthesis, membrane dynamics, or transport of nucleotides or inorganic phosphate. In this review, we summarize the current knowledge about proteins localized to both the envelope and thylakoid membranes in the chloroplast, discussing their roles in each membrane and potential mechanisms of their dual localization. Addressing the unanswered questions about these dual-localized proteins should help advance our understanding of chloroplast development, protein transport, and metabolic regulation.
Collapse
Affiliation(s)
- Laura Klasek
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States of America
| | - Kentaro Inoue
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States of America.
| |
Collapse
|
61
|
Suorsa M, Rantala M, Mamedov F, Lespinasse M, Trotta A, Grieco M, Vuorio E, Tikkanen M, Järvi S, Aro EM. Light acclimation involves dynamic re-organization of the pigment-protein megacomplexes in non-appressed thylakoid domains. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:360-73. [PMID: 26332430 DOI: 10.1111/tpj.13004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 05/24/2023]
Abstract
Thylakoid energy metabolism is crucial for plant growth, development and acclimation. Non-appressed thylakoids harbor several high molecular mass pigment-protein megacomplexes that have flexible compositions depending upon the environmental cues. This composition is important for dynamic energy balancing in photosystems (PS) I and II. We analysed the megacomplexes of Arabidopsis wild type (WT) plants and of several thylakoid regulatory mutants. The stn7 mutant, which is defective in phosphorylation of the light-harvesting complex (LHC) II, possessed a megacomplex composition that was strikingly different from that of the WT. Of the nine megacomplexes in total for the non-appressed thylakoids, the largest megacomplex in particular was less abundant in the stn7 mutant under standard growth conditions. This megacomplex contains both PSI and PSII and was recently shown to allow energy spillover between PSII and PSI (Nat. Commun., 6, 2015, 6675). The dynamics of the megacomplex composition was addressed by exposing plants to different light conditions prior to thylakoid isolation. The megacomplex pattern in the WT was highly dynamic. Under darkness or far red light it showed low levels of LHCII phosphorylation and resembled the stn7 pattern; under low light, which triggers LHCII phosphorylation, it resembled that of the tap38/pph1 phosphatase mutant. In contrast, solubilization of the entire thylakoid network with dodecyl maltoside, which efficiently solubilizes pigment-protein complexes from all thylakoid compartments, revealed that the pigment-protein composition remained stable despite the changing light conditions or mutations that affected LHCII (de)phosphorylation. We conclude that the composition of pigment-protein megacomplexes specifically in non-appressed thylakoids undergoes redox-dependent changes, thus facilitating maintenance of the excitation balance between the two photosystems upon changes in light conditions.
Collapse
Affiliation(s)
- Marjaana Suorsa
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Marjaana Rantala
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Maija Lespinasse
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Andrea Trotta
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Michele Grieco
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Eerika Vuorio
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Mikko Tikkanen
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Sari Järvi
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
62
|
Vojta L, Carić D, Cesar V, Antunović Dunić J, Lepeduš H, Kveder M, Fulgosi H. TROL-FNR interaction reveals alternative pathways of electron partitioning in photosynthesis. Sci Rep 2015; 5:10085. [PMID: 26041075 PMCID: PMC4455228 DOI: 10.1038/srep10085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 03/27/2015] [Indexed: 01/14/2023] Open
Abstract
In photosynthesis, final electron transfer from ferredoxin to NADP(+) is accomplished by the flavo enzyme ferredoxin:NADP(+) oxidoreductase (FNR). FNR is recruited to thylakoid membranes via integral membrane thylakoid rhodanase-like protein TROL. We address the fate of electrons downstream of photosystem I when TROL is absent. We have employed electron paramagnetic resonance (EPR) spectroscopy to study free radical formation and electron partitioning in TROL-depleted chloroplasts. DMPO was used to detect superoxide anion (O2(.-)) formation, while the generation of other free radicals was monitored by Tiron. Chloroplasts from trol plants pre-acclimated to different light conditions consistently exhibited diminished O2(.-) accumulation. Generation of other radical forms was elevated in trol chloroplasts in all tested conditions, except for the plants pre-acclimated to high-light. Remarkably, dark- and growth light-acclimated trol chloroplasts were resilient to O2(.-) generation induced by methyl-viologen. We propose that the dynamic binding and release of FNR from TROL can control the flow of photosynthetic electrons prior to activation of the pseudo-cyclic electron transfer pathway.
Collapse
Affiliation(s)
- Lea Vojta
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Dejana Carić
- Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Vera Cesar
- Department of Biology, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
| | | | | | - Marina Kveder
- Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Hrvoje Fulgosi
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
63
|
The TIC complex uncovered: The alternative view on the molecular mechanism of protein translocation across the inner envelope membrane of chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:957-67. [PMID: 25689609 DOI: 10.1016/j.bbabio.2015.02.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/19/2015] [Accepted: 02/07/2015] [Indexed: 12/29/2022]
Abstract
Chloroplasts must import thousands of nuclear-encoded preproteins synthesized in the cytosol through two successive protein translocons at the outer and inner envelope membranes, termed TOC and TIC, respectively, to fulfill their complex physiological roles. The molecular identity of the TIC translocon had long remained controversial; two proteins, namely Tic20 and Tic110, had been proposed to be central to protein translocation across the inner envelope membrane. Tic40 also had long been considered to be another central player in this process. However, recently, a novel 1-megadalton complex consisting of Tic20, Tic56, Tic100, and Tic214 was identified at the chloroplast inner membrane of Arabidopsis and was demonstrated to constitute a general TIC translocon which functions in concert with the well-characterized TOC translocon. On the other hand, direct interaction between this novel TIC transport system and Tic110 or Tic40 was hardly observed. Consequently, the molecular model for protein translocation across the inner envelope membrane of chloroplasts might need to be extensively revised. In this review article, I intend to propose such alternative view regarding the TIC transport system in contradistinction to the classical view. I also would emphasize importance of reevaluation of previous works in terms of with what methods these classical Tic proteins such as Tic110 or Tic40 were picked up as TIC constituents at the very beginning as well as what actual evidence there were to support their direct and specific involvement in chloroplast protein import. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|
64
|
Bölter B, Soll J, Schwenkert S. Redox meets protein trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:949-56. [PMID: 25626173 DOI: 10.1016/j.bbabio.2015.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 11/15/2022]
Abstract
After the engulfment of two prokaryotic organisms, the thus emerged eukaryotic cell needed to establish means of communication and signaling to properly integrate the acquired organelles into its metabolism. Regulatory mechanisms had to evolve to ensure that chloroplasts and mitochondria smoothly function in accordance with all other cellular processes. One essential process is the post-translational import of nuclear encoded organellar proteins, which needs to be adapted according to the requirements of the plant. The demand for protein import is constantly changing depending on varying environmental conditions, as well as external and internal stimuli or different developmental stages. Apart from long-term regulatory mechanisms such as transcriptional/translation control, possibilities for short-term acclimation are mandatory. To this end, protein import is integrated into the cellular redox network, utilizing the recognition of signals from within the organelles and modifying the efficiency of the translocon complexes. Thereby, cellular requirements can be communicated throughout the whole organism. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstr. 2-4, D-82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstr. 2-4, D-82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany.
| | - Serena Schwenkert
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstr. 2-4, D-82152 Planegg-Martinsried, Germany; Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| |
Collapse
|
65
|
Sukhov V, Surova L, Sherstneva O, Katicheva L, Vodeneev V. Variation potential influence on photosynthetic cyclic electron flow in pea. FRONTIERS IN PLANT SCIENCE 2015; 5:766. [PMID: 25610447 PMCID: PMC4285888 DOI: 10.3389/fpls.2014.00766] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/11/2014] [Indexed: 05/22/2023]
Abstract
Cyclic electron flow is an important component of the total photosynthetic electron flow and participates in adaptation to the action of stressors. Local leaf stimulation induces electrical signals, including variation potential (VP), which inactivate photosynthesis; however, their influence on cyclic electron flow has not been investigated. The aim of this study was to investigate VP's influence on cyclic electron flow in pea (Pisum sativum L.). VP was induced in pea seedling leaves by local heating and measured in an adjacent, undamaged leaf by extracellular electrodes. CO2 assimilation was measured using a portable gas exchange measuring system. Photosystem I and II parameters were investigated using a measuring system for simultaneous assessment of P700 oxidation and chlorophyll fluorescence. Heating-induced VP reduced CO2 assimilation and electron flow through photosystem II. In response, cyclic electron flow rapidly decreased and subsequently slowly increased. Slow increases in cyclic flow were caused by decreased electron flow through photosystem II, which was mainly connected with VP-induced photosynthetic dark stage inactivation. However, direct influence by VP on photosystem I also participated in activation of cyclic electron flow. Thus, VP, induced by local leaf-heating, activated cyclic electron flow in undamaged leaves. This response was similar to photosynthetic changes observed under the direct action of stressors. Possible mechanisms of VP's influence on cyclic flow were discussed.
Collapse
Affiliation(s)
- Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny NovgorodNizhny Novgorod, Russia
| | | | | | | | | |
Collapse
|
66
|
Lehtimäki N, Koskela MM, Dahlström KM, Pakula E, Lintala M, Scholz M, Hippler M, Hanke GT, Rokka A, Battchikova N, Salminen TA, Mulo P. Posttranslational modifications of FERREDOXIN-NADP+ OXIDOREDUCTASE in Arabidopsis chloroplasts. PLANT PHYSIOLOGY 2014; 166:1764-76. [PMID: 25301888 PMCID: PMC4256869 DOI: 10.1104/pp.114.249094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Rapid responses of chloroplast metabolism and adjustments to photosynthetic machinery are of utmost importance for plants' survival in a fluctuating environment. These changes may be achieved through posttranslational modifications of proteins, which are known to affect the activity, interactions, and localization of proteins. Recent studies have accumulated evidence about the crucial role of a multitude of modifications, including acetylation, methylation, and glycosylation, in the regulation of chloroplast proteins. Both of the Arabidopsis (Arabidopsis thaliana) leaf-type FERREDOXIN-NADP(+) OXIDOREDUCTASE (FNR) isoforms, the key enzymes linking the light reactions of photosynthesis to carbon assimilation, exist as two distinct forms with different isoelectric points. We show that both AtFNR isoforms contain multiple alternative amino termini and undergo light-responsive addition of an acetyl group to the α-amino group of the amino-terminal amino acid of proteins, which causes the change in isoelectric point. Both isoforms were also found to contain acetylation of a conserved lysine residue near the active site, while no evidence for in vivo phosphorylation or glycosylation was detected. The dynamic, multilayer regulation of AtFNR exemplifies the complex regulatory network systems controlling chloroplast proteins by a range of posttranslational modifications, which continues to emerge as a novel area within photosynthesis research.
Collapse
Affiliation(s)
- Nina Lehtimäki
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| | - Minna M Koskela
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| | - Käthe M Dahlström
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| | - Eveliina Pakula
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| | - Minna Lintala
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| | - Martin Scholz
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| | - Michael Hippler
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| | - Guy T Hanke
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| | - Anne Rokka
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| | - Natalia Battchikova
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| | - Tiina A Salminen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| | - Paula Mulo
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland (N.L., M.M.K., E.P., M.L., N.B., P.M.);Structural Bioinformatics Laboratory, Department of Biosciences, Åbo Akademi University, FI-20520 Turku, Finland (K.M.D., T.A.S.);Institute of Plant Biology and Biotechnology, Faculty of Biology, Westfälische Wilhelms-Universität Münster, DE-48143 Muenster, Germany (M.S., M.H.);Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076 Osnabruck, Germany (G.T.H.); andTurku Centre for Biotechnology, FI-20520 Turku, Finland (A.R.)
| |
Collapse
|
67
|
Sukhov V, Sherstneva O, Surova L, Katicheva L, Vodeneev V. Proton cellular influx as a probable mechanism of variation potential influence on photosynthesis in pea. PLANT, CELL & ENVIRONMENT 2014; 37:2532-41. [PMID: 24635649 DOI: 10.1111/pce.12321] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 05/25/2023]
Abstract
Electrical signals (action potential and variation potential, VP) caused by environmental stimuli are known to induce various physiological responses in plants, including changes in photosynthesis; however, their functional mechanisms remain unclear. In this study, the influence of VP on photosynthesis in pea (Pisum sativum L.) was investigated and the proton participation in this process analysed. VP, induced by local heating, inactivated photosynthesis and activated respiration, with the initiation of the photosynthetic response connected with inactivation of the photosynthetic dark stage; however, direct VP influence on the light stage was also probable. VP generation was accompanied with pH increases in apoplasts (0.17-0.30 pH unit) and decreases in cytoplasm (0.18-0.60 pH unit), which probably reflected H(+) -ATPase inactivation and H(+) influx during this electrical event. Imitation of H(+) influx using the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) induced a photosynthetic response that was similar with a VP-induced response. Experiments on chloroplast suspensions showed that decreased external pH also induced an analogous response and that its magnitude depended on the magnitude of pH change. Thus, the present results showed that proton cellular influx was the probable mechanism of VP's influence on photosynthesis in pea. Potential means of action for this influence are discussed.
Collapse
Affiliation(s)
- Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, 603950, Nizhny Novgorod, Russia
| | | | | | | | | |
Collapse
|
68
|
Geigenberger P, Fernie AR. Metabolic control of redox and redox control of metabolism in plants. Antioxid Redox Signal 2014; 21:1389-421. [PMID: 24960279 PMCID: PMC4158967 DOI: 10.1089/ars.2014.6018] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Reduction-oxidation (Redox) status operates as a major integrator of subcellular and extracellular metabolism and is simultaneously itself regulated by metabolic processes. Redox status not only dominates cellular metabolism due to the prominence of NAD(H) and NADP(H) couples in myriad metabolic reactions but also acts as an effective signal that informs the cell of the prevailing environmental conditions. After relay of this information, the cell is able to appropriately respond via a range of mechanisms, including directly affecting cellular functioning and reprogramming nuclear gene expression. RECENT ADVANCES The facile accession of Arabidopsis knockout mutants alongside the adoption of broad-scale post-genomic approaches, which are able to provide transcriptomic-, proteomic-, and metabolomic-level information alongside traditional biochemical and emerging cell biological techniques, has dramatically advanced our understanding of redox status control. This review summarizes redox status control of metabolism and the metabolic control of redox status at both cellular and subcellular levels. CRITICAL ISSUES It is becoming apparent that plastid, mitochondria, and peroxisome functions influence a wide range of processes outside of the organelles themselves. While knowledge of the network of metabolic pathways and their intraorganellar redox status regulation has increased in the last years, little is known about the interorganellar redox signals coordinating these networks. A current challenge is, therefore, synthesizing our knowledge and planning experiments that tackle redox status regulation at both inter- and intracellular levels. FUTURE DIRECTIONS Emerging tools are enabling ever-increasing spatiotemporal resolution of metabolism and imaging of redox status components. Broader application of these tools will likely greatly enhance our understanding of the interplay of redox status and metabolism as well as elucidating and characterizing signaling features thereof. We propose that such information will enable us to dissect the regulatory hierarchies that mediate the strict coupling of metabolism and redox status which, ultimately, determine plant growth and development.
Collapse
Affiliation(s)
- Peter Geigenberger
- 1 Department of Biology I, Ludwig Maximilian University Munich , Planegg-Martinsried, Germany
| | | |
Collapse
|
69
|
Dutta S, Teresinski HJ, Smith MD. A split-ubiquitin yeast two-hybrid screen to examine the substrate specificity of atToc159 and atToc132, two Arabidopsis chloroplast preprotein import receptors. PLoS One 2014; 9:e95026. [PMID: 24736607 PMCID: PMC3988174 DOI: 10.1371/journal.pone.0095026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/22/2014] [Indexed: 11/18/2022] Open
Abstract
Post-translational import of nucleus-encoded chloroplast pre-proteins is critical for chloroplast biogenesis, and the Toc159 family of proteins serve as receptors for the process. Toc159 shares with other members of the family (e.g. Toc132), homologous GTPase (G−) and Membrane (M−) domains, but a highly dissimilar N-terminal acidic (A−) domain. Although there is good evidence that atToc159 and atToc132 from Arabidopsis mediate the initial sorting step, preferentially recognizing photosynthetic and non-photosynthetic preproteins, respectively, relatively few chloroplast preproteins have been assigned as substrates for particular members of the Toc159 family, which has limited the proof for the hypothesis. The current study expands the number of known preprotein substrates for members of the Arabidopsis Toc159 receptor family using a split-ubiquitin membrane-based yeast two-hybrid system using the atToc159 G-domain (Toc159G), atToc132 G-domain (Toc132G) and atToc132 A- plus G-domains (Toc132AG) as baits. cDNA library screening with all three baits followed by pairwise interaction assays involving the 81 chloroplast preproteins identified show that although G-domains of the Toc159 family are sufficient for preprotein recognition, they alone do not confer specificity for preprotein subclasses. The presence of the A-domain fused to atToc132G (Toc132AG) not only positively influences its specificity for non-photosynthetic preproteins, but also negatively regulates the ability of this receptor to interact with a subset of photosynthetic preproteins. Our study not only substantiates the fact that atToc132 can serve as a receptor by directly binding to chloroplast preproteins but also proposes the existence of subsets of preproteins with different but overlapping affinities for more than one member of the Toc159 receptor family.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Howard J Teresinski
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Matthew D Smith
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
70
|
Lintala M, Schuck N, Thormählen I, Jungfer A, Weber KL, Weber APM, Geigenberger P, Soll J, Bölter B, Mulo P. Arabidopsis tic62 trol mutant lacking thylakoid-bound ferredoxin-NADP+ oxidoreductase shows distinct metabolic phenotype. MOLECULAR PLANT 2014; 7:45-57. [PMID: 24043709 DOI: 10.1093/mp/sst129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ferredoxin-NADP+ oxidoreductase (FNR), functioning in the last step of the photosynthetic electron transfer chain, exists both as a soluble protein in the chloroplast stroma and tightly attached to chloroplast membranes. Surface plasmon resonance assays showed that the two FNR isoforms, LFNR1 and LFNR2, are bound to the thylakoid membrane via the C-terminal domains of Tic62 and TROL proteins in a pH-dependent manner. The tic62 trol double mutants contained a reduced level of FNR, exclusively found in the soluble stroma. Although the mutant plants showed no visual phenotype or defects in the function of photosystems under any conditions studied, a low ratio of NADPH/NADP+ was detected. Since the CO₂ fixation capacity did not differ between the tic62 trol plants and wild-type, it seems that the plants are able to funnel reducing power to most crucial reactions to ensure survival and fitness of the plants. However, the activity of malate dehydrogenase was down-regulated in the mutant plants. Apparently, the plastid metabolism is able to cope with substantial changes in directing the electrons from the light reactions to stromal metabolism and thus only few differences are visible in steady-state metabolite pool sizes of the tic62 trol plants.
Collapse
Affiliation(s)
- Minna Lintala
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Goss T, Hanke G. The end of the line: can ferredoxin and ferredoxin NADP(H) oxidoreductase determine the fate of photosynthetic electrons? Curr Protein Pept Sci 2014; 15:385-93. [PMID: 24678667 PMCID: PMC4030315 DOI: 10.2174/1389203715666140327113733] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/22/2013] [Accepted: 03/16/2014] [Indexed: 12/30/2022]
Abstract
At the end of the linear photosynthetic electron transfer (PET) chain, the small soluble protein ferredoxin (Fd) transfers electrons to Fd:NADP(H) oxidoreductase (FNR), which can then reduce NADP+ to support C assimilation. In addition to this linear electron flow (LEF), Fd is also thought to mediate electron flow back to the membrane complexes by different cyclic electron flow (CEF) pathways: either antimycin A sensitive, NAD(P)H complex dependent, or through FNR located at the cytochrome b6f complex. Both Fd and FNR are present in higher plant genomes as multiple gene copies, and it is now known that specific Fd iso-proteins can promote CEF. In addition, FNR iso-proteins vary in their ability to dynamically interact with thylakoid membrane complexes, and it has been suggested that this may also play a role in CEF. We will highlight work on the different Fd-isoproteins and FNR-membrane association found in the bundle sheath (BSC) and mesophyll (MC) cell chloroplasts of the C4 plant maize. These two cell types perform predominantly CEF and LEF, and the properties and activities of Fd and FNR in the BSC and MC are therefore specialized for CEF and LEF respectively. A diversity of Fd isoproteins and dynamic FNR location has also been recorded in C3 plants, algae and cyanobacteria. This indicates that the principles learned from the extreme electron transport situations in the BSC and MC of maize might be usefully applied to understanding the dynamic transition between these states in other systems.
Collapse
Affiliation(s)
| | - Guy Hanke
- Department of Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück,11 Barbara Strasse, Osnabrueck, DE-49076, Germany.
| |
Collapse
|
72
|
Hanke G, Mulo P. Plant type ferredoxins and ferredoxin-dependent metabolism. PLANT, CELL & ENVIRONMENT 2013; 36:1071-1084. [PMID: 23190083 DOI: 10.1111/pce.12046] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 05/24/2023]
Abstract
Ferredoxin (Fd) is a small [2Fe-2S] cluster-containing protein found in all organisms performing oxygenic photosynthesis. Fd is the first soluble acceptor of electrons on the stromal side of the chloroplast electron transport chain, and as such is pivotal to determining the distribution of these electrons to different metabolic reactions. In chloroplasts, the principle sink for electrons is in the production of NADPH, which is mostly consumed during the assimilation of CO2 . In addition to this primary function in photosynthesis, Fds are also involved in a number of other essential metabolic reactions, including biosynthesis of chlorophyll, phytochrome and fatty acids, several steps in the assimilation of sulphur and nitrogen, as well as redox signalling and maintenance of redox balance via the thioredoxin system and Halliwell-Asada cycle. This makes Fds crucial determinants of the electron transfer between the thylakoid membrane and a variety of soluble enzymes dependent on these electrons. In this article, we will first describe the current knowledge on the structure and function of the various Fd isoforms present in chloroplasts of higher plants and then discuss the processes involved in oxidation of Fd, introducing the corresponding enzymes and discussing what is known about their relative interaction with Fd.
Collapse
Affiliation(s)
- Guy Hanke
- Plant Physiology, Faculty of Biology and Chemistry, University of Osnabrück, DE-49076, Osnabrück, Germany
| | | |
Collapse
|
73
|
Shi LX, Theg SM. The chloroplast protein import system: from algae to trees. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:314-31. [PMID: 23063942 DOI: 10.1016/j.bbamcr.2012.10.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/07/2012] [Accepted: 10/01/2012] [Indexed: 01/15/2023]
Abstract
Chloroplasts are essential organelles in the cells of plants and algae. The functions of these specialized plastids are largely dependent on the ~3000 proteins residing in the organelle. Although chloroplasts are capable of a limited amount of semiautonomous protein synthesis - their genomes encode ~100 proteins - they must import more than 95% of their proteins after synthesis in the cytosol. Imported proteins generally possess an N-terminal extension termed a transit peptide. The importing translocons are made up of two complexes in the outer and inner envelope membranes, the so-called Toc and Tic machineries, respectively. The Toc complex contains two precursor receptors, Toc159 and Toc34, a protein channel, Toc75, and a peripheral component, Toc64/OEP64. The Tic complex consists of as many as eight components, namely Tic22, Tic110, Tic40, Tic20, Tic21 Tic62, Tic55 and Tic32. This general Toc/Tic import pathway, worked out largely in pea chloroplasts, appears to operate in chloroplasts in all green plants, albeit with significant modifications. Sub-complexes of the Toc and Tic machineries are proposed to exist to satisfy different substrate-, tissue-, cell- and developmental requirements. In this review, we summarize our understanding of the functions of Toc and Tic components, comparing these components of the import machinery in green algae through trees. We emphasize recent findings that point to growing complexities of chloroplast protein import process, and use the evolutionary relationships between proteins of different species in an attempt to define the essential core translocon components and those more likely to be responsible for regulation. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Lan-Xin Shi
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
74
|
Twachtmann M, Altmann B, Muraki N, Voss I, Okutani S, Kurisu G, Hase T, Hanke GT. N-terminal structure of maize ferredoxin:NADP+ reductase determines recruitment into different thylakoid membrane complexes. THE PLANT CELL 2012; 24:2979-91. [PMID: 22805436 PMCID: PMC3426127 DOI: 10.1105/tpc.111.094532] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 05/15/2012] [Accepted: 06/27/2012] [Indexed: 05/24/2023]
Abstract
To adapt to different light intensities, photosynthetic organisms manipulate the flow of electrons through several alternative pathways at the thylakoid membrane. The enzyme ferredoxin:NADP(+) reductase (FNR) has the potential to regulate this electron partitioning because it is integral to most of these electron cascades and can associate with several different membrane complexes. However, the factors controlling relative localization of FNR to different membrane complexes have not yet been established. Maize (Zea mays) contains three chloroplast FNR proteins with totally different membrane association, and we found that these proteins have variable distribution between cells conducting predominantly cyclic electron transport (bundle sheath) and linear electron transport (mesophyll). Here, the crystal structures of all three enzymes were solved, revealing major structural differences at the N-terminal domain and dimer interface. Expression in Arabidopsis thaliana of maize FNRs as chimeras and truncated proteins showed the N-terminal determines recruitment of FNR to different membrane complexes. In addition, the different maize FNR proteins localized to different thylakoid membrane complexes on expression in Arabidopsis, and analysis of chlorophyll fluorescence and photosystem I absorbance demonstrates the impact of FNR location on photosynthetic electron flow.
Collapse
Affiliation(s)
- Manuel Twachtmann
- Department of Plant Physiology, University of Osnabrück, Osnabruck 49076, Germany
| | - Bianca Altmann
- Department of Plant Physiology, University of Osnabrück, Osnabruck 49076, Germany
| | - Norifumi Muraki
- Laboratory of Protein Crystalography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ingo Voss
- Department of Plant Physiology, University of Osnabrück, Osnabruck 49076, Germany
| | - Satoshi Okutani
- Laboratory for the Regulation of Biological Reactions, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Genji Kurisu
- Laboratory of Protein Crystalography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshiharu Hase
- Laboratory for the Regulation of Biological Reactions, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Guy T. Hanke
- Department of Plant Physiology, University of Osnabrück, Osnabruck 49076, Germany
- Laboratory for the Regulation of Biological Reactions, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
75
|
Lintala M, Lehtimäki N, Benz JP, Jungfer A, Soll J, Aro EM, Bölter B, Mulo P. Depletion of leaf-type ferredoxin-NADP(+) oxidoreductase results in the permanent induction of photoprotective mechanisms in Arabidopsis chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:809-17. [PMID: 22300243 DOI: 10.1111/j.1365-313x.2012.04930.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Arabidopsis thaliana contains two photosynthetically competent chloroplast-targeted ferredoxin-NADP(+) oxidoreductase (FNR) isoforms that are largely redundant in their function. Nevertheless, the FNR isoforms also display distinct molecular phenotypes, as only the FNR1 is able to directly bind to the thylakoid membrane. We report the consequences of depletion of FNR in the F(1) (fnr1 × fnr2) and F(2) (fnr1 fnr2) generation plants of the fnr1 and fnr2 single mutant crossings. The fnr1 × fnr2 plants, with a decreased total content of FNR, showed a small and pale green phenotype, accompanied with a marked downregulation of photosynthetic pigment-protein complexes. Specifically, when compared with the wild type (WT), the quantum yield of photosystem II (PSII) electron transport was lower, non-photochemical quenching (NPQ) was higher and the rate of P700(+) re-reduction was faster in the mutant plants. The slight over-reduction of the plastoquinone pool detected in the mutants resulted in the adjustment of the reactive oxygen species (ROS) scavenging systems, as both the content and de-epoxidation state of xanthophylls, as well as the content of α-tocopherol, were higher in the leaves of the mutant plants when compared with the WT. The fnr1 fnr2 double mutant plants, which had no detectable FNR and possessed an extremely downregulated photosynthetic machinery, survived only when grown heterotrophically in the presence of sucrose. Intriguingly, the fnr1 fnr2 plants were still capable of sustaining the biogenesis of a few malformed chloroplasts.
Collapse
Affiliation(s)
- Minna Lintala
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of Turku, FI-20014 Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Chen KM, Piippo M, Holmström M, Nurmi M, Pakula E, Suorsa M, Aro EM. A chloroplast-targeted DnaJ protein AtJ8 is negatively regulated by light and has rapid turnover in darkness. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1780-3. [PMID: 21592617 DOI: 10.1016/j.jplph.2011.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/12/2011] [Accepted: 04/12/2011] [Indexed: 05/20/2023]
Abstract
The DnaJ proteins (also called as J proteins, J domain proteins or HSP40 proteins) function as molecular co-chaperones for the HSP70 proteins. We assessed the expression of the small chloroplast-targeted DnaJ protein, the AtJ8 protein, by subjecting the wild type Arabidopsis plants to different illumination conditions. It is shown that the expression of the transcripts and proteins of the ATJ8 gene is primarily regulated at the level of transcription. When plants were incubated under high light for 3h, both the transcripts and proteins were completely abolished. Upon transfer of plants to darkness, the transcripts started rapidly accumulating, and subsequently, the AtJ8 protein became visible after 2h in darkness. Conversely, incubation of plants in darkness or under low light intensities induced expression of the ATJ8 transcripts and proteins. Feeding plants with sugars clearly decreased the transcript and protein levels, and incubation with cycloheximide revealed a rapid turnover for AtJ8 in darkness. Moreover, the AtJ8 protein was found to be nearly missing from the var1 mutant, which lacks the FTSH5 protease. It is concluded that AtJ8 is expressed mainly in darkness, is prone to a rapid turnover but is partially stabilized by the FTSH proteases.
Collapse
Affiliation(s)
- Kun-Ming Chen
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
77
|
Kovács-Bogdán E, Benz JP, Soll J, Bölter B. Tic20 forms a channel independent of Tic110 in chloroplasts. BMC PLANT BIOLOGY 2011; 11:133. [PMID: 21961525 PMCID: PMC3203047 DOI: 10.1186/1471-2229-11-133] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 09/30/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND The Tic complex (Translocon at the inner envelope membrane of chloroplasts) mediates the translocation of nuclear encoded chloroplast proteins across the inner envelope membrane. Tic110 forms one prominent protein translocation channel. Additionally, Tic20, another subunit of the complex, was proposed to form a protein import channel - either together with or independent of Tic110. However, no experimental evidence for Tic20 channel activity has been provided so far. RESULTS We performed a comprehensive biochemical and electrophysiological study to characterize Tic20 in more detail and to gain a deeper insight into its potential role in protein import into chloroplasts. Firstly, we compared transcript and protein levels of Tic20 and Tic110 in both Pisum sativum and Arabidopsis thaliana. We found the Tic20 protein to be generally less abundant, which was particularly pronounced in Arabidopsis. Secondly, we demonstrated that Tic20 forms a complex larger than 700 kilodalton in the inner envelope membrane, which is clearly separate from Tic110, migrating as a dimer at about 250 kilodalton. Thirdly, we defined the topology of Tic20 in the inner envelope, and found its N- and C-termini to be oriented towards the stromal side. Finally, we successfully reconstituted overexpressed and purified full-length Tic20 into liposomes. Using these Tic20-proteoliposomes, we could demonstrate for the first time that Tic20 can independently form a cation selective channel in vitro. CONCLUSIONS The presented data provide first biochemical evidence to the notion that Tic20 can act as a channel protein within the chloroplast import translocon complex. However, the very low abundance of Tic20 in the inner envelope membranes indicates that it cannot form a major protein translocation channel. Furthermore, the independent complex formation of Tic20 and Tic110 argues against a joint channel formation. Thus, based on the observed channel activity of Tic20 in proteoliposomes, we speculate that the chloroplast inner envelope contains multiple (at least two) translocation channels: Tic110 as the general translocation pore, whereas Tic20 could be responsible for translocation of a special subset of proteins.
Collapse
Affiliation(s)
- Erika Kovács-Bogdán
- Ludwig-Maximilians-Universität München, Department Biologie I, Plant Biochemistry, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPS, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | - J Philipp Benz
- Ludwig-Maximilians-Universität München, Department Biologie I, Plant Biochemistry, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPS, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
- Energy Biosciences Institute, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jürgen Soll
- Ludwig-Maximilians-Universität München, Department Biologie I, Plant Biochemistry, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPS, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | - Bettina Bölter
- Ludwig-Maximilians-Universität München, Department Biologie I, Plant Biochemistry, Grosshaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPS, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| |
Collapse
|
78
|
Higuchi-Takeuchi M, Ichikawa T, Kondou Y, Matsui K, Hasegawa Y, Kawashima M, Sonoike K, Mori M, Hirochika H, Matsui M. Functional analysis of two isoforms of leaf-type ferredoxin-NADP(+)-oxidoreductase in rice using the heterologous expression system of Arabidopsis. PLANT PHYSIOLOGY 2011; 157:96-108. [PMID: 21734114 PMCID: PMC3165901 DOI: 10.1104/pp.111.181248] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ferredoxin-NADP(+)-oxidoreductase (FNR) mediates electron transfer between ferredoxin (Fd) and NADP(+); therefore, it is a key enzyme that provides the reducing power used in the Calvin cycle. Other than FNR, nitrite reductase, sulfite reductase, glutamate synthase, and Fd-thioredoxin reductase also accept electrons from Fd, an electron carrier protein in the stroma. Therefore, the regulation of electron partitioning in the chloroplast is important for photosynthesis and other metabolic pathways. The regulatory mechanism of electron partitioning, however, remains to be elucidated. We found, by taking advantage of a gain-of-function approach, that expression of two rice (Oryza sativa) full-length cDNAs of leaf-type FNRs (OsLFNR1 and OsLFNR2) led to altered chlorophyll fluorescence and growth in Arabidopsis (Arabidopsis thaliana) and rice. We revealed that overexpression of the OsLFNR1 and OsLFNR2 full-length cDNAs resulted in distinct phenotypes despite the high sequence similarity between them. Expression of OsLFNR1 affected the nitrogen assimilation pathway without inhibition of photosynthesis under normal conditions. On the other hand, OsLFNR2 expression led to the impairment of photosynthetic linear electron transport as well as Fd-dependent cyclic electron flow around photosystem I. The endogenous protein level of OsLFNR was found to be suppressed in both OsLFNR1- and OsLFNR2-overexpressing rice plants, leading to changes in the stoichiometry of the two LFNR isoforms within the thylakoid and soluble fractions. Thus, we propose that the stoichiometry of two LFNR isoforms plays an important role in electron partitioning between carbon fixation and nitrogen assimilation.
Collapse
|
79
|
Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP+-oxidoreductase (FNR) enzymes in vitro. Proc Natl Acad Sci U S A 2011; 108:9396-401. [PMID: 21606330 DOI: 10.1073/pnas.1103659108] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic water splitting, coupled to hydrogenase-catalyzed hydrogen production, is considered a promising clean, renewable source of energy. It is widely accepted that the oxygen sensitivity of hydrogen production, combined with competition between hydrogenases and NADPH-dependent carbon dioxide fixation are the main limitations for its commercialization. Here we provide evidence that, under the anaerobic conditions that support hydrogen production, there is a significant loss of photosynthetic electrons toward NADPH production in vitro. To elucidate the basis for competition, we bioengineered a ferredoxin-hydrogenase fusion and characterized hydrogen production kinetics in the presence of Fd, ferredoxin:NADP(+)-oxidoreductase (FNR), and NADP(+). Replacing the hydrogenase with a ferredoxin-hydrogenase fusion switched the bias of electron transfer from FNR to hydrogenase and resulted in an increased rate of hydrogen photoproduction. These results suggest a new direction for improvement of biohydrogen production and a means to further resolve the mechanisms that control partitioning of photosynthetic electron transport.
Collapse
|
80
|
LTD is a protein required for sorting light-harvesting chlorophyll-binding proteins to the chloroplast SRP pathway. Nat Commun 2011; 2:277. [DOI: 10.1038/ncomms1278] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 03/16/2011] [Indexed: 11/08/2022] Open
|
81
|
Alte F, Stengel A, Benz JP, Petersen E, Soll J, Groll M, Bölter B. Ferredoxin:NADPH oxidoreductase is recruited to thylakoids by binding to a polyproline type II helix in a pH-dependent manner. Proc Natl Acad Sci U S A 2010; 107:19260-5. [PMID: 20974920 PMCID: PMC2984204 DOI: 10.1073/pnas.1009124107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ferredoxin:NADPH oxidoreductase (FNR) is a key enzyme of photosynthetic electron transport required for generation of reduction equivalents. Recently, two proteins were found to be involved in membrane-anchoring of FNR by specific interaction via a conserved Ser/Pro-rich motif: Tic62 and Trol. Our crystallographic study reveals that the FNR-binding motif, which forms a polyproline type II helix, induces self-assembly of two FNR monomers into a back-to-back dimer. Because binding occurs opposite to the FNR active sites, its activity is not affected by the interaction. Surface plasmon resonance analyses disclose a high affinity of FNR to the binding motif, which is strongly increased under acidic conditions. The pH of the chloroplast stroma changes dependent on the light conditions from neutral to slightly acidic in complete darkness or to alkaline at saturating light conditions. Recruiting of FNR to the thylakoids could therefore represent a regulatory mechanism to adapt FNR availability/activity to photosynthetic electron flow.
Collapse
Affiliation(s)
- Ferdinand Alte
- Munich Center for Integrated Protein Science, Ludwig-Maximilians-Universität, 81377 Munich, Germany
- Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, 85747 Garching, Germany; and
| | - Anna Stengel
- Munich Center for Integrated Protein Science, Ludwig-Maximilians-Universität, 81377 Munich, Germany
- Department für Biologie I, Pflanzenbiochemie, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - J. Philipp Benz
- Munich Center for Integrated Protein Science, Ludwig-Maximilians-Universität, 81377 Munich, Germany
- Department für Biologie I, Pflanzenbiochemie, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Eike Petersen
- Munich Center for Integrated Protein Science, Ludwig-Maximilians-Universität, 81377 Munich, Germany
- Department für Biologie I, Pflanzenbiochemie, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Jürgen Soll
- Munich Center for Integrated Protein Science, Ludwig-Maximilians-Universität, 81377 Munich, Germany
- Department für Biologie I, Pflanzenbiochemie, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Michael Groll
- Munich Center for Integrated Protein Science, Ludwig-Maximilians-Universität, 81377 Munich, Germany
- Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, 85747 Garching, Germany; and
| | - Bettina Bölter
- Munich Center for Integrated Protein Science, Ludwig-Maximilians-Universität, 81377 Munich, Germany
- Department für Biologie I, Pflanzenbiochemie, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
82
|
Benz JP, Lintala M, Soll J, Mulo P, Bölter B. A new concept for ferredoxin-NADP(H) oxidoreductase binding to plant thylakoids. TRENDS IN PLANT SCIENCE 2010; 15:608-13. [PMID: 20851663 DOI: 10.1016/j.tplants.2010.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 08/18/2010] [Accepted: 08/23/2010] [Indexed: 05/25/2023]
Abstract
During the evolution of photosynthesis, regulatory circuits were established that allow the precise coupling of light-driven electron transfer chains with downstream processes such as carbon fixation. The ferredoxin (Fd):ferredoxin-NADP(+) oxidoreductase (FNR) couple is an important mediator for these processes because it provides the transition from exclusively membrane-bound light reactions to the mostly stromal metabolic pathways. Recent progress has allowed us to revisit how FNR is bound to thylakoids and to revaluate the current view that only membrane-bound FNR is active in photosynthetic reactions. We argue that the vast majority of thylakoid-bound FNR of higher plants is not necessary for photosynthesis. We furthermore propose that the correct distribution of FNR between stroma and thylakoids is used to efficiently regulate Fd-dependent electron partitioning in the chloroplast.
Collapse
Affiliation(s)
- J Philipp Benz
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
83
|
Chloroplast-targeted ferredoxin-NADP(+) oxidoreductase (FNR): structure, function and location. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:927-34. [PMID: 20934402 DOI: 10.1016/j.bbabio.2010.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/01/2010] [Accepted: 10/02/2010] [Indexed: 11/20/2022]
Abstract
Ferredoxin-NADP(+) oxidoreductase (FNR) is a ubiquitous flavin adenine dinucleotide (FAD)-binding enzyme encoded by a small nuclear gene family in higher plants. The chloroplast targeted FNR isoforms are known to be responsible for the final step of linear electron flow transferring electrons from ferredoxin to NADP(+), while the putative role of FNR in cyclic electron transfer has been under discussion for decades. FNR has been found from three distinct chloroplast compartments (i) at the thylakoid membrane, (ii) in the soluble stroma, and (iii) at chloroplast inner envelope. Recent in vivo studies have indicated that besides the membrane-bound FNR, also the soluble FNR is photosynthetically active. Two chloroplast proteins, Tic62 and TROL, were recently identified and shown to form high molecular weight protein complexes with FNR at the thylakoid membrane, and thus seem to act as the long-sought molecular anchors of FNR to the thylakoid membrane. Tic62-FNR complexes are not directly involved in photosynthetic reactions, but Tic62 protects FNR from inactivation during the dark periods. TROL-FNR complexes, however, have an impact on the photosynthetic performance of the plants. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
|
84
|
Andriotis VME, Pike MJ, Bunnewell S, Hills MJ, Smith AM. The plastidial glucose-6-phosphate/phosphate antiporter GPT1 is essential for morphogenesis in Arabidopsis embryos. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:128-39. [PMID: 20659277 DOI: 10.1111/j.1365-313x.2010.04313.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The glucose-6-phosphate/phosphate antiporter GPT1 is a major route of entry of carbon into non-photosynthetic plastids. To discover its importance in oilseeds, we used a seed-specific promoter to generate lines of Arabidopsis thaliana with reduced levels of GPT1 in developing embryos. Strong reductions resulted in seed abortion at the end of the globular stage of embryo development, when proplastids in normal embryos differentiate and acquire chlorophyll. Seed abortion was partly dependent on the light level during silique development. Embryos in seeds destined for abortion failed to undergo normal morphogenesis and were 'raspberry-like' in appearance. They had ultrastructural and biochemical defects including proliferation of peroxisomes and starch granules, and altered expression of genes involved in starch turnover and the oxidative pentose phosphate pathway. We propose that GPT1 is necessary for early embryo development because it catalyses import into plastids of glucose-6-phosphate as the substrate for NADPH generation via the oxidative pentose phosphate pathway. We suggest that low NADPH levels during plastid differentiation and chlorophyll synthesis may result in generation of reactive oxygen species and triggering of embryo cell death.
Collapse
Affiliation(s)
- Vasilios M E Andriotis
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK
| | | | | | | | | |
Collapse
|
85
|
Lehtimäki N, Lintala M, Allahverdiyeva Y, Aro EM, Mulo P. Drought stress-induced upregulation of components involved in ferredoxin-dependent cyclic electron transfer. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1018-22. [PMID: 20392519 DOI: 10.1016/j.jplph.2010.02.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 05/02/2023]
Abstract
Linear photosynthetic electron transfer, consisting of both Photosystem (PS) II and PSI, converts light energy into the chemical forms ATP and NADPH, whereas PSI cyclic electron transfer (CET) is exclusively involved in ATP synthesis. In the chloroplasts of higher plants, there are two partially redundant CET routes. The ferredoxin (FD) or ferredoxin-plastoquinone reductase (FQR)-dependent route cycles electrons from PSI to plastoquinone via ferredoxin (FD), while in the NDH-dependent route, NADPH donates electrons to the NDH-complex for reduction of the plastoquinone pool. In the present study, we show that drought stress induces transcriptional and translational upregulation of the PGR5 and PGRL1 genes, which are the only characterized components of the FQR-dependent CET thus far. In contrast, the expression of the NDH-H gene, a representative of the NDH-complex, did not differ between the drought-stressed and the control plants. The overall expression level of the ferredoxin-NADP(+)-oxidoreductase (FNR) genes increased upon drought stress, with a concomitant release of FNR from the thylakoid membrane. Moreover, drought stress accelerated the rate of P700(+) re-reduction, which may indicate induction of CET. Responses of the PSAE, FD and PSAD gene families upon drought stress are also described.
Collapse
Affiliation(s)
- Nina Lehtimäki
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | | | | | | | | |
Collapse
|
86
|
Schwenkert S, Soll J, Bölter B. Protein import into chloroplasts--how chaperones feature into the game. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:901-11. [PMID: 20682282 DOI: 10.1016/j.bbamem.2010.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 11/15/2022]
Abstract
Chloroplasts originated from an endosymbiotic event, in which an ancestral photosynthetic cyanobacterium was engulfed by a mitochondriate eukaryotic host cell. During evolution, the endosymbiont lost its autonomy by means of a massive transfer of genetic information from the prokaryotic genome to the host nucleus. Consequently, the development of protein import machineries became necessary for the relocation of proteins that are now nuclear-encoded and synthesized in the cytosol but destined for the chloroplast. Organelle biogenesis and maintenance requires a tight coordination of transcription, translation and protein import between the host cell and the organelle. This review focuses on the translocation complexes in the outer and inner envelope membrane with a special emphasis on the role of molecular chaperones. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Serena Schwenkert
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstr 2-4, D-82152 Planegg-Martinsried, Germany
| | | | | |
Collapse
|
87
|
Moolna A, Bowsher CG. The physiological importance of photosynthetic ferredoxin NADP+ oxidoreductase (FNR) isoforms in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2669-81. [PMID: 20410318 PMCID: PMC2882262 DOI: 10.1093/jxb/erq101] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ferredoxin NADP(+) oxidoreductase (FNR) enzymes catalyse electron transfer between ferredoxin and NADPH. In plants, a photosynthetic FNR (pFNR) transfers electrons from reduced ferredoxin to NADPH for the final step of linear electron flow, providing reductant for carbon fixation. pFNR is also thought to play important roles in two different mechanisms of cyclic electron flow around photosystem I; and photosynthetic reductant is itself partitioned between competing linear, cyclic, and alternative electron flow pathways. Four pFNR protein isoforms in wheat that display distinct reaction kinetics with leaf-type ferredoxin have previously been identified. It has been suggested that these isoforms may be crucial to the regulation of reductant partition between carbon fixation and other metabolic pathways. Here the 12 cm primary wheat leaf has been used to show that the alternative N-terminal pFNRI and pFNRII protein isoforms have statistically significant differences in response to the physiological parameters of chloroplast maturity, nitrogen regime, and oxidative stress. More specifically, the results obtained suggest that the alternative N-terminal forms of pFNRI have distinct roles in the partitioning of photosynthetic reductant. The role of alternative N-terminal processing of pFNRI is also discussed in terms of its importance for thylakoid targeting. The results suggest that the four pFNR protein isoforms are each present in the chloroplast in phosphorylated and non-phosphorylated states. pFNR isoforms vary in putative phosphorylation responses to physiological parameters, but the physiological significance requires further investigation.
Collapse
|