51
|
Xue W, Anderson SN, Wang X, Yang L, Crisp PA, Li Q, Noshay J, Albert PS, Birchler JA, Bilinski P, Stitzer MC, Ross-Ibarra J, Flint-Garcia S, Chen X, Springer NM, Doebley JF. Hybrid Decay: A Transgenerational Epigenetic Decline in Vigor and Viability Triggered in Backcross Populations of Teosinte with Maize. Genetics 2019; 213:143-160. [PMID: 31320409 PMCID: PMC6727801 DOI: 10.1534/genetics.119.302378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/03/2019] [Indexed: 11/18/2022] Open
Abstract
In the course of generating populations of maize with teosinte chromosomal introgressions, an unusual sickly plant phenotype was noted in individuals from crosses with two teosinte accessions collected near Valle de Bravo, Mexico. The plants of these Bravo teosinte accessions appear phenotypically normal themselves and the F1 plants appear similar to typical maize × teosinte F1s. However, upon backcrossing to maize, the BC1 and subsequent generations display a number of detrimental characteristics including shorter stature, reduced seed set, and abnormal floral structures. This phenomenon is observed in all BC individuals and there is no chromosomal segment linked to the sickly plant phenotype in advanced backcross generations. Once the sickly phenotype appears in a lineage, normal plants are never again recovered by continued backcrossing to the normal maize parent. Whole-genome shotgun sequencing reveals a small number of genomic sequences, some with homology to transposable elements, that have increased in copy number in the backcross populations. Transcriptome analysis of seedlings, which do not have striking phenotypic abnormalities, identified segments of 18 maize genes that exhibit increased expression in sickly plants. A de novo assembly of transcripts present in plants exhibiting the sickly phenotype identified a set of 59 upregulated novel transcripts. These transcripts include some examples with sequence similarity to transposable elements and other sequences present in the recurrent maize parent (W22) genome as well as novel sequences not present in the W22 genome. Genome-wide profiles of gene expression, DNA methylation, and small RNAs are similar between sickly plants and normal controls, although a few upregulated transcripts and transposable elements are associated with altered small RNA or methylation profiles. This study documents hybrid incompatibility and genome instability triggered by the backcrossing of Bravo teosinte with maize. We name this phenomenon "hybrid decay" and present ideas on the mechanism that may underlie it.
Collapse
Affiliation(s)
- Wei Xue
- College of Agronomy, Shenyang Agricultural University, 110866 Liaoning Province, China
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Sarah N Anderson
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Xufeng Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, 518060 Guangdong Province, China
| | - Liyan Yang
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
- Life Science College, Shanxi Normal University, 041004 Shanxi Province, China
| | - Peter A Crisp
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Qing Li
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Jaclyn Noshay
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Patrice S Albert
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
| | - Paul Bilinski
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Michelle C Stitzer
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Sherry Flint-Garcia
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211
- Agricultural Research Service, United States Department of Agriculture, Columbia, Missouri 65211
| | - Xuemei Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen University, 518060 Guangdong Province, China
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - John F Doebley
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
52
|
Ortiz JPA, Leblanc O, Rohr C, Grisolia M, Siena LA, Podio M, Colono C, Azzaro C, Pessino SC. Small RNA-seq reveals novel regulatory components for apomixis in Paspalum notatum. BMC Genomics 2019; 20:487. [PMID: 31195966 PMCID: PMC6567921 DOI: 10.1186/s12864-019-5881-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Background Apomixis is considered an evolutionary deviation of the sexual reproductive pathway leading to the generation of clonal maternal progenies by seeds. Recent evidence from model and non-model species suggested that this trait could be modulated by epigenetic mechanisms involving small RNAs (sRNAs). Here we profiled floral sRNAs originated from apomictic and sexual Paspalum notatum genotypes in order to identify molecular pathways under epigenetic control that might be involved in the transition from sexuality to agamospermy. Results The mining of genes participating in sRNA-directed pathways from floral Paspalum transcriptomic resources showed these routes are functional during reproductive development, with several members differentially expressed in apomictic and sexual plants. Triplicate floral sRNA libraries derived from apomictic and a sexual genotypes were characterized by using high-throughput sequencing technology. EdgeR was apply to compare the number of sRNA reads between sexual and apomictic libraries that map over all Paspalum floral transcripts. A total of 1525 transcripts showed differential sRNA representation, including genes related to meiosis, plant hormone signaling, biomolecules transport, transcription control and cell cycle. Survey for miRNA precursors on transcriptome and genome references allowed the discovery of 124 entities, including 40 conserved and 8 novel ones. Fifty-six clusters were differentially represented in apomictic and sexual plants. All differentially expressed miRNAs were up-regulated in apomictic libraries but miR2275, which showed different family members with opposed representation. Examination of predicted miRNAs targets detected 374 potential candidates. Considering sRNA, miRNAs and target surveys together, 14 genes previously described as related with auxin metabolism, transport and signaling were detected, including AMINO ACID/AUXIN PERMEASE 15, IAA-AMIDO SYNTHETASE GH3–8, IAA30, miR160, miR167, miR164, miR319, ARF2, ARF8, ARF10, ARF12, AFB2, PROLIFERATING CELL FACTOR 6 and NITRATE TRANSPORTER 1.1. Conclusions This work provides a comprehensive survey of the sRNA differential representation in flowers of sexual and apomictic Paspalum notatum plants. An integration of the small RNA profiling data presented here and previous transcriptomic information suggests that sRNA-mediated regulation of auxin pathways is pivotal in promoting apomixis. These results will underlie future functional characterization of the molecular components mediating the switch from sexuality to apomixis. Electronic supplementary material The online version of this article (10.1186/s12864-019-5881-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Pablo A Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Olivier Leblanc
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
| | - Cristian Rohr
- Instituto de Agrobiotecnología de Rosario (INDEAR), Rosario, Argentina
| | - Mauricio Grisolia
- Instituto de Agrobiotecnología de Rosario (INDEAR), Rosario, Argentina
| | - Lorena A Siena
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Maricel Podio
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Carolina Colono
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Celeste Azzaro
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Silvina C Pessino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina.
| |
Collapse
|
53
|
Basso A, Barcaccia G, Galla G. Annotation and Expression of IDN2-like and FDM-like Genes in Sexual and Aposporous Hypericum perforatum L. accessions. PLANTS (BASEL, SWITZERLAND) 2019; 8:E158. [PMID: 31181659 PMCID: PMC6631971 DOI: 10.3390/plants8060158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 11/30/2022]
Abstract
The protein IDN2, together with the highly similar interactors FDM1 and FDM2, is required for RNA-directed DNA methylation (RdDM) and siRNA production. Epigenetic regulation of gene expression is required to restrict cell fate determination in A. thaliana ovules. Recently, three transcripts sharing high similarity with the A. thaliana IDN2 and FDM1-2 were found to be differentially expressed in ovules of apomictic Hypericum perforatum L. accessions. To gain further insight into the expression and regulation of these genes in the context of apomixis, we investigated genomic, transcriptional and functional aspects of the gene family in this species. The H. perforatum genome encodes for two IDN2-like and 7 FDM-like genes. Differential and heterochronic expression of FDM4-like genes was found in H. perforatum pistils. The involvement of these genes in reproduction and seed development is consistent with the observed reduction of the seed set and high variability in seed size in A. thaliana IDN2 and FDM-like knockout lines. Differential expression of IDN2-like and FDM-like genes in H. perforatum was predicted to affect the network of potential interactions between these proteins. Furthermore, pistil transcript levels are modulated by cytokinin and auxin but the effect operated by the two hormones depends on the reproductive phenotype.
Collapse
Affiliation(s)
- Andrea Basso
- Laboratory of Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis, Viale dell' Università, 1635020 Legnaro, Italy.
| | - Gianni Barcaccia
- Laboratory of Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis, Viale dell' Università, 1635020 Legnaro, Italy.
| | - Giulio Galla
- Laboratory of Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis, Viale dell' Università, 1635020 Legnaro, Italy.
| |
Collapse
|
54
|
Fei X, Shi J, Liu Y, Niu J, Wei A. The steps from sexual reproduction to apomixis. PLANTA 2019; 249:1715-1730. [PMID: 30963237 DOI: 10.1007/s00425-019-03113-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/18/2019] [Indexed: 05/03/2023]
Abstract
In this paper, an interaction model of apomixis-related genes was constructed to analyze the emergence of apomictic types. It is speculated that apomixis technology will be first implemented in gramineous plants. Apomixis (asexual seed formation) is a phenomenon in which a plant bypasses the most fundamental aspects of sexual reproduction-meiosis and fertilization-to form a viable seed. Plants can form seeds without fertilization, and the seed genotype is consistent with the female parent. The development of apomictic technology would be revolutionary for agriculture and for food production as it would reduce costs and breeding times and also avoid many complications typical of sexual reproduction (e.g. incompatibility barriers) and of vegetative propagation (e.g. viral transfer). The application of apomictic reproductive technology has the potential to revolutionize crop breeding. This article reviews recent advances in apomixis in cytology and molecular biology. The general idea of identifying apomixis was proposed and the process of the emergence of non-fusion types was discussed. To better understand the apomixis mechanism, an apomixis regulatory model was established. At the same time, the realization of apomixis technology is proposed, which provides reference for the research and application of apomixis.
Collapse
Affiliation(s)
- Xitong Fei
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingwei Shi
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yulin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinshuang Niu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
55
|
Albertini E, Barcaccia G, Carman JG, Pupilli F. Did apomixis evolve from sex or was it the other way around? JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2951-2964. [PMID: 30854543 DOI: 10.1093/jxb/erz109] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/25/2019] [Indexed: 05/20/2023]
Abstract
In angiosperms, there are two pathways of reproduction through seeds: sexual, or amphimictic, and asexual, or apomictic. The essential feature of apomixis is that an embryo in an ovule is formed autonomously. It may form from a cell of the nucellus or integuments in an otherwise sexual ovule, a process referred to as adventitious embryony. Alternatively, the embryo may form by parthenogenesis from an unreduced egg that forms in an unreduced embryo sac. The latter may form from an ameiotic megasporocyte, in which case it is referred to as diplospory, or from a cell of the nucellus or integument, in which case it is referred to as apospory. Progeny of apomictic plants are generally identical to the mother plant. Apomixis has been seen over the years as either a gain- or loss-of-function over sexuality, implying that the latter is the default condition. Here, we consider an additional point of view, that apomixis may be anciently polyphenic with sex and that both reproductive phenisms involve anciently canalized components of complex molecular processes. This polyphenism viewpoint suggests that apomixis fails to occur in obligately sexual eukaryotes because genetic or epigenetic modifications have silenced the primitive sex apomixis switch and/or disrupted molecular capacities for apomixis. In eukaryotes where sex and apomixis are clearly polyphenic, apomixis exponentially drives clonal fecundity during reproductively favorable conditions, while stress induces sex for stress-tolerant spore or egg formation. The latter often guarantees species survival during environmentally harsh seasons.
Collapse
Affiliation(s)
- Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Gianni Barcaccia
- Laboratory of Genomics, Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padova Legnaro, PD, Italy
| | - John G Carman
- Department of Plants, Soils and Climate, Utah State University, Logan, Utah, USA
| | - Fulvio Pupilli
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council (CNR), Perugia, Italy
| |
Collapse
|
56
|
Soliman M, Espinoza F, Ortiz JPA, Delgado L. Heterochronic reproductive developmental processes between diploid and tetraploid cytotypes of Paspalum rufum. ANNALS OF BOTANY 2019; 123:901-915. [PMID: 30576402 PMCID: PMC6526369 DOI: 10.1093/aob/mcy228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/28/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Apomixis is an asexual reproductive mode via seeds that generate maternal clonal progenies. Although apomixis in grasses is mainly expressed at the polyploid level, some natural diploid genotypes of Paspalum rufum produce aposporous embryo sacs in relatively high proportions and are even able to complete apomixis under specific conditions. However, despite the potential for apomixis, sexuality prevails in diploids, and apomixis expression is repressed for an as yet undetermind reason. Apomixis is thought to derive from a deregulation of one or a few components of the sexual pathway that could be triggered by polyploidy and/or hybridization. The objectives of this work were to characterize and compare the reproductive development and the timing of apospory initial (AI) emergence between diploid genotypes with potential for apomixis and facultative apomictic tetraploid cytotypes of P. rufum. METHODS Reproductive characterization was performed by cytoembryological observations of cleared ovaries and anthers during all reproductive development steps and by quantitative evaluation of the ovule growth parameters. KEY RESULTS Cytoembryological observations showed that in diploids, both female and male reproductive development is equally synchronized, but in tetraploids, megasporogenesis and early megagametogenesis are delayed with respect to microsporogenesis and early microgametogenesis. This delay was also seen when ovary growth was taken as a reference parameter. The analysis of the onset of AIs revealed that they emerge during different developmental periods depending on the ploidy level. In diploids, the AIs appeared along with the tetrad (or triad) of female meiocytes, but in tetraploids they appeared earlier, at the time of the megaspore mother cell. In both cytotypes, AIs can be seen even during megagametogenesis. CONCLUSIONS Overall observations reveal that female sexual reproductive development is delayed in tetraploids as compared with diploid genotypes, mainly at meiosis. In tetraploids, AIs appear at earlier sexual developmental stages than in diploids, and they accumulate up to the end of megasporogenesis. The longer extension of megasporogenesis in tetraploids could favour AI emergence and also apomixis success.
Collapse
Affiliation(s)
- Mariano Soliman
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario. Campo Experimental Villarino, Zavalla, Provincia de Santa Fe, Argentina
| | - Francisco Espinoza
- Instituto de Botánica del Nordeste (IBONE), CONICET-UNNE, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Casilla de Correo, Corrientes, Argentina
| | - Juan Pablo A Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario. Campo Experimental Villarino, Zavalla, Provincia de Santa Fe, Argentina
| | - Luciana Delgado
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario. Campo Experimental Villarino, Zavalla, Provincia de Santa Fe, Argentina
| |
Collapse
|
57
|
Pinto SC, Mendes MA, Coimbra S, Tucker MR. Revisiting the Female Germline and Its Expanding Toolbox. TRENDS IN PLANT SCIENCE 2019; 24:455-467. [PMID: 30850278 DOI: 10.1016/j.tplants.2019.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 05/27/2023]
Abstract
The Arabidopsis thaliana ovule arises as a female reproductive organ composed solely of somatic diploid cells. Among them, one cell will acquire a unique identity and initiate female germline development. In this review we explore the complex network that facilitates differentiation of this single cell, and consider how it becomes committed to a distinct developmental program. We highlight recent progress towards understanding the role of intercellular communication, cell competency, and cell-cycle regulation in the ovule primordium, and we discuss the possibility that distinct pathways restrict germline development at different stages. Importantly, these recent findings suggest a renaissance in plant ovule research, restoring the female germline as an attractive model to study cell communication and cell fate establishment in multicellular organs.
Collapse
Affiliation(s)
- Sara C Pinto
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal; GreenUPorto, Sustainable AgriFood Production Research Centre, Rua da Agrária 747, 4485-646 Vairão, Portugal
| | - Marta A Mendes
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal; GreenUPorto, Sustainable AgriFood Production Research Centre, Rua da Agrária 747, 4485-646 Vairão, Portugal
| | - Matthew R Tucker
- School of Agriculture, Food, and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
| |
Collapse
|
58
|
Gao P, Xiang D, Quilichini TD, Venglat P, Pandey PK, Wang E, Gillmor CS, Datla R. Gene expression atlas of embryo development in Arabidopsis. PLANT REPRODUCTION 2019; 32:93-104. [PMID: 30762127 DOI: 10.1007/s00497-019-00364-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/01/2019] [Indexed: 05/24/2023]
Abstract
Embryogenesis represents a critical phase in the life cycle of flowering plants. Here, we characterize transcriptome landscapes associated with key stages of embryogenesis by combining an optimized method for the isolation of developing Arabidopsis embryos with high-throughput RNA-seq. The resulting RNA-seq datasets identify distinct overlapping patterns of gene expression, as well as temporal shifts in gene activity across embryogenesis. Network analysis revealed stage-specific and multi-stage gene expression clusters and biological functions associated with key stages of embryo development. Methylation-related gene expression was associated with early- and middle-stage embryos, initiation of photosynthesis components with the late embryogenesis stage, and storage/energy-related protein activation with late and mature embryos. These results provide a comprehensive understanding of transcriptome programming in Arabidopsis embryogenesis and identify modules of gene expression corresponding to key stages of embryo development. This dataset and analysis are a unique resource to advance functional genetic analysis of embryo development in plants.
Collapse
Affiliation(s)
- Peng Gao
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Teagen D Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Prakash Venglat
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, S7N 5A8, Canada
| | - Prashant K Pandey
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Edwin Wang
- Center for Health Genomics and Informatics, University of Calgary Cumming School of Medicine, Calgary, AB, T2N 4N1, Canada
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Irapuato, Guanajuato, México
| | - Raju Datla
- Aquatic and Crop Resource Development, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada.
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada.
| |
Collapse
|
59
|
Galla G, Siena LA, Ortiz JPA, Baumlein H, Barcaccia G, Pessino SC, Bellucci M, Pupilli F. A Portion of the Apomixis Locus of Paspalum Simplex is Microsyntenic with an Unstable Chromosome Segment Highly Conserved Among Poaceae. Sci Rep 2019; 9:3271. [PMID: 30824748 PMCID: PMC6397161 DOI: 10.1038/s41598-019-39649-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 01/16/2019] [Indexed: 01/04/2023] Open
Abstract
The introgression of apomixis in major seed crops, would guarantee self-seeding of superior heterotic seeds over generations. In the grass species Paspalum simplex, apomixis is controlled by a single locus in which recombination is blocked. In the perspective of isolating the genetic determinants of apomixis, we report data on sequencing, in silico mapping and expression analysis of some of the genes contained in two cloned genomic regions of the apomixis locus of P. simplex. In silico mapping allowed us to identify a conserved synteny group homoeologous to the apomixis locus, located on a telomeric position of chromosomes 12, 8, 3 and 4 of rice, Sorghum bicolor, Setaria italica and Brachypodium distachyum, respectively, and on a more centromeric position of maize chromosome 1. Selected genes of the apomixis locus expressed sense and antisense transcripts in reproductively committed cells of sexual and apomictic ovules. Some of the genes considered here expressed apomixis-specific allelic variants which showed partial non-overlapping expression patterns with alleles shared by sexual and apomictic reproductive phenotypes. Our findings open new routes for the isolation of the genetic determinants of apomixis and, in perspective, for its introgression in crop grasses.
Collapse
Affiliation(s)
- Giulio Galla
- Department of Agriculture Food Natural resources Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - Lorena A Siena
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR, Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Juan Pablo A Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR, Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Helmut Baumlein
- The Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Gatersleben, Germany
| | - Gianni Barcaccia
- Department of Agriculture Food Natural resources Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - Silvina C Pessino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR, Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Michele Bellucci
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| | - Fulvio Pupilli
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy.
| |
Collapse
|
60
|
Zappacosta D, Gallardo J, Carballo J, Meier M, Rodrigo JM, Gallo CA, Selva JP, Stein J, Ortiz JPA, Albertini E, Echenique V. A High-Density Linkage Map of the Forage Grass Eragrostis curvula and Localization of the Diplospory Locus. FRONTIERS IN PLANT SCIENCE 2019; 10:918. [PMID: 31354781 PMCID: PMC6640543 DOI: 10.3389/fpls.2019.00918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/28/2019] [Indexed: 05/05/2023]
Abstract
Eragrostis curvula (Schrad.) Nees (weeping lovegrass) is an apomictic species native to Southern Africa that is used as forage grass in semiarid regions of Argentina. Apomixis is a mechanism for clonal propagation through seeds that involves the avoidance of meiosis to generate an unreduced embryo sac (apomeiosis), parthenogenesis, and viable endosperm formation in a fertilization-dependent or -independent manner. Here, we constructed the first saturated linkage map of tetraploid E. curvula using both traditional (AFLP and SSR) and high-throughput molecular markers (GBS-SNP) and identified the locus controlling diplospory. We also identified putative regulatory regions affecting the expressivity of this trait and syntenic relationships with genomes of other grass species. We obtained a tetraploid mapping population from a cross between a full sexual genotype (OTA-S) with a facultative apomictic individual of cv. Don Walter. Phenotypic characterization of F1 hybrids by cytoembryological analysis yielded a 1:1 ratio of apomictic vs. sexual plants (34:27, X 2 = 0.37), which agrees with the model of inheritance of a single dominant genetic factor. The final number of markers was 1,114 for OTA-S and 2,019 for Don Walter. These markers were distributed into 40 linkage groups per parental genotype, which is consistent with the number of E. curvula chromosomes (containing 2 to 123 markers per linkage group). The total length of the OTA-S map was 1,335 cM, with an average marker density of 1.22 cM per marker. The Don Walter map was 1,976.2 cM, with an average marker density of 0.98 cM/marker. The locus responsible for diplospory was mapped on Don Walter linkage group 3, with other 65 markers. QTL analyses of the expressivity of diplospory in the F1 hybrids revealed the presence of two main QTLs, located 3.27 and 15 cM from the diplospory locus. Both QTLs explained 28.6% of phenotypic variation. Syntenic analysis allowed us to establish the groups of homologs/homeologs for each linkage map. The genetic linkage map reported in this study, the first such map for E. curvula, is the most saturated map for the genus Eragrostis and one of the most saturated maps for a polyploid forage grass species.
Collapse
Affiliation(s)
- Diego Zappacosta
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Jimena Gallardo
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - José Carballo
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Mauro Meier
- Laboratorio Biotecnológico, Asociación de Cooperativas Argentinas Coop. Ltd., Pergamino, Argentina
| | - Juan Manuel Rodrigo
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Cristian A. Gallo
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Juan Pablo Selva
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Juliana Stein
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Zavalla, Argentina
| | - Juan Pablo A. Ortiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR, CONICET-UNR), Zavalla, Argentina
| | - Emidio Albertini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
- Emidio Albertini,
| | - Viviana Echenique
- Departamento de Agronomía, Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CONICET, CCT Bahía Blanca), Universidad Nacional del Sur, Bahía Blanca, Argentina
- *Correspondence: Viviana Echenique,
| |
Collapse
|
61
|
León-Martínez G, Vielle-Calzada JP. Apomixis in flowering plants: Developmental and evolutionary considerations. Curr Top Dev Biol 2019; 131:565-604. [DOI: 10.1016/bs.ctdb.2018.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
62
|
Erbasol Serbes I, Palovaara J, Groß-Hardt R. Development and function of the flowering plant female gametophyte. Curr Top Dev Biol 2019; 131:401-434. [DOI: 10.1016/bs.ctdb.2018.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
63
|
Galla G, Basso A, Grisan S, Bellucci M, Pupilli F, Barcaccia G. Ovule Gene Expression Analysis in Sexual and Aposporous Apomictic Hypericum perforatum L. (Hypericaceae) Accessions. FRONTIERS IN PLANT SCIENCE 2019; 10:654. [PMID: 31178879 PMCID: PMC6543059 DOI: 10.3389/fpls.2019.00654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 05/01/2019] [Indexed: 05/09/2023]
Abstract
Hypericum perforatum L. (2n = 4x = 32) is an attractive model system for the study of aposporous apomixis. The earliest phenotypic features of aposporous apomixis in this species are the mitotic formation of unreduced embryo sacs from a somatic cell of the ovule nucellus and the avoidance of meiosis. In this research we addressed gene expression variation in sexual and apomictic plants, by focusing on the ovule nucellus, which is the cellular domain primarily involved into the differentiation of meiocyte precursors and aposporous embryo sacs, at a pre-meiotic developmental stage. Gene expression analyses performed by RNAseq identified 396 differentially expressed genes and 1834 transcripts displaying phenotype-specific expression. Furthermore, the sequencing and assembly of the genome from a diploid sexual accession allowed the annotation of a 50 kb sequence portion located upstream the HAPPY locus and to address the extent to which single transcripts were assembled in multiple variants and their co-expression levels. About one third of identified DEGs and phenotype-specific transcripts were associated to transcript variants with alternative expression patterns. Additionally, considering DEGs and phenotype-specific transcript, the co-expression level was estimated in about two transcripts per locus. Our gene expression study shows massive differences in the expression of several genes encoding for transposable elements. Transcriptional differences in the ovule nucellus and pistil terminal developmental stages were also found for subset of genes encoding for potentially interacting proteins involved in pre-mRNA splicing. Furthermore, the sexual and aposporous ovule transcriptomes were characterized by differential expression in genes operating in RNA silencing, RNA-mediated DNA methylation (RdDM) and histone and chromatin modifications. These findings are consistent with a role of these processes in regulating cell fate determination in the ovule, as indicated by forward genetic studies in sexual model species. The association between aposporous apomixis, pre-mRNA splicing and DNA methylation mediated by sRNAs, which is supported by expression data and by the enrichment in GO terms related to these processes, is consistent with the massive differential expression of multiple transposon-related sequences observed in ovules collected from both sexual and aposporous apomictic accessions. Overall, our data suggest that phenotypic expression of aposporous apomixis is concomitant with the modulation of key genes involved in the two interconnected processes: RNA splicing and RNA-directed DNA methylation.
Collapse
Affiliation(s)
- Giulio Galla
- Laboratory of Genetics and Genomics, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Padua, Italy
- *Correspondence: Giulio Galla,
| | - Andrea Basso
- Laboratory of Genetics and Genomics, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Padua, Italy
| | - Simone Grisan
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council, Perugia, Italy
| | - Michele Bellucci
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council, Perugia, Italy
| | - Fulvio Pupilli
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council, Perugia, Italy
| | - Gianni Barcaccia
- Laboratory of Genetics and Genomics, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Padua, Italy
| |
Collapse
|
64
|
Vijverberg K, Ozias-Akins P, Schranz ME. Identifying and Engineering Genes for Parthenogenesis in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:128. [PMID: 30838007 PMCID: PMC6389702 DOI: 10.3389/fpls.2019.00128] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/24/2019] [Indexed: 05/16/2023]
Abstract
Parthenogenesis is the spontaneous development of an embryo from an unfertilized egg cell. It naturally occurs in a variety of plant and animal species. In plants, parthenogenesis usually is found in combination with apomeiosis (the omission of meiosis) and pseudogamous or autonomous (with or without central cell fertilization) endosperm formation, together known as apomixis (clonal seed production). The initiation of embryogenesis in vivo and in vitro has high potential in plant breeding methods, particularly for the instant production of homozygous lines from haploid gametes [doubled haploids (DHs)], the maintenance of vigorous F1-hybrids through clonal seed production after combining it with apomeiosis, reverse breeding approaches, and for linking diploid and polyploid gene pools. Because of this large interest, efforts to identify gene(s) for parthenogenesis from natural apomicts have been undertaken by using map-based cloning strategies and comparative gene expression studies. In addition, engineering parthenogenesis in sexual model species has been investigated via mutagenesis and gain-of-function strategies. These efforts have started to pay off, particularly by the isolation of the PsASGR-BabyBoom-Like from apomictic Pennisetum, a gene proven to be transferable to and functional in sexual pearl millet, rice, and maize. This review aims to summarize the current knowledge on parthenogenesis, the possible gene candidates also outside the grasses, and the use of these genes in plant breeding protocols. It shows that parthenogenesis is able to inherit and function independently from apomeiosis and endosperm formation, is expressed and active in the egg cell, and can induce embryogenesis in polyploid, diploid as well as haploid egg cells in plants. It also shows the importance of genes involved in the suppression of transcription and modifications thereof at one hand, and in embryogenesis for which transcription is allowed or artificially overexpressed on the other, in parthenogenetic reproduction. Finally, it emphasizes the importance of functional endosperm to allow for successful embryo growth and viable seed production.
Collapse
Affiliation(s)
- Kitty Vijverberg
- Biosystematics Group, Experimental Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Kitty Vijverberg,
| | - Peggy Ozias-Akins
- Department of Horticulture, Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton Campus, Tifton, GA, United States
| | - M. Eric Schranz
- Biosystematics Group, Experimental Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
65
|
Mancini M, Permingeat H, Colono C, Siena L, Pupilli F, Azzaro C, de Alencar Dusi DM, de Campos Carneiro VT, Podio M, Seijo JG, González AM, Felitti SA, Ortiz JPA, Leblanc O, Pessino SC. The MAP3K-Coding QUI-GON JINN ( QGJ) Gene Is Essential to the Formation of Unreduced Embryo Sacs in Paspalum. FRONTIERS IN PLANT SCIENCE 2018; 9:1547. [PMID: 30405677 PMCID: PMC6207905 DOI: 10.3389/fpls.2018.01547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/03/2018] [Indexed: 05/20/2023]
Abstract
Apomixis is a clonal mode of reproduction via seeds, which results from the failure of meiosis and fertilization in the sexual female reproductive pathway. In previous transcriptomic surveys, we identified a mitogen-activated protein kinase kinase kinase (N46) displaying differential representation in florets of sexual and apomictic Paspalum notatum genotypes. Here, we retrieved and characterized the N46 full cDNA sequence from sexual and apomictic floral transcriptomes. Phylogenetic analyses showed that N46 was a member of the YODA family, which was re-named QUI-GON JINN (QGJ). Differential expression in florets of sexual and apomictic plants was confirmed by qPCR. In situ hybridization experiments revealed expression in the nucellus of aposporous plants' ovules, which was absent in sexual plants. RNAi inhibition of QGJ expression in two apomictic genotypes resulted in significantly reduced rates of aposporous embryo sac formation, with respect to the level detected in wild type aposporous plants and transformation controls. The QGJ locus segregated independently of apospory. However, a probe derived from a related long non-coding RNA sequence (PN_LNC_QGJ) revealed RFLP bands cosegregating with the Paspalum apospory-controlling region (ACR). PN_LNC_QGJ is expressed in florets of apomictic plants only. Our results indicate that the activity of QGJ in the nucellus of apomictic plants is necessary to form non-reduced embryo sacs and that a long non-coding sequence with regulatory potential is similar to sequences located within the ACR.
Collapse
Affiliation(s)
- Micaela Mancini
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-UNR, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Hugo Permingeat
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-UNR, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Carolina Colono
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-UNR, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Lorena Siena
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-UNR, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Fulvio Pupilli
- Istituto di Bioscienze e BioRisorse, Consiglio Nazionale delle Ricerche, Perugia, Italy
| | - Celeste Azzaro
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-UNR, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | | | | | - Maricel Podio
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-UNR, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - José Guillermo Seijo
- Instituto de Botánica del Nordeste, CONICET-UNNE, Corrientes, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Ana María González
- Instituto de Botánica del Nordeste, CONICET-UNNE, Corrientes, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Silvina A. Felitti
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-UNR, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | - Juan Pablo A. Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-UNR, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| | | | - Silvina C. Pessino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario, CONICET-UNR, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
| |
Collapse
|
66
|
Baroux C, Schubert V. Technical Review: Microscopy and Image Processing Tools to Analyze Plant Chromatin: Practical Considerations. Methods Mol Biol 2018; 1675:537-589. [PMID: 29052212 DOI: 10.1007/978-1-4939-7318-7_31] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
In situ nucleus and chromatin analyses rely on microscopy imaging that benefits from versatile, efficient fluorescent probes and proteins for static or live imaging. Yet the broad choice in imaging instruments offered to the user poses orientation problems. Which imaging instrument should be used for which purpose? What are the main caveats and what are the considerations to best exploit each instrument's ability to obtain informative and high-quality images? How to infer quantitative information on chromatin or nuclear organization from microscopy images? In this review, we present an overview of common, fluorescence-based microscopy systems and discuss recently developed super-resolution microscopy systems, which are able to bridge the resolution gap between common fluorescence microscopy and electron microscopy. We briefly present their basic principles and discuss their possible applications in the field, while providing experience-based recommendations to guide the user toward best-possible imaging. In addition to raw data acquisition methods, we discuss commercial and noncommercial processing tools required for optimal image presentation and signal evaluation in two and three dimensions.
Collapse
Affiliation(s)
- Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland.
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| |
Collapse
|
67
|
García-Aguilar M, Autran D. Localization of Chromatin Marks in Arabidopsis Early Embryos. Methods Mol Biol 2018; 1675:419-441. [PMID: 29052205 DOI: 10.1007/978-1-4939-7318-7_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
During early embryo development, profound changes in chromatin structure and regulation take place. It is difficult to study these changes in plant embryos however, largely because of their relative inaccessibility, which impedes the application of current epigenomic and biochemistry protocols. To circumvent this issue and to analyze the epigenetic status of the embryo at both the cellular and subcellular level, we describe here a simple method to immunolocalize chromatin marks in whole mount early Arabidopsis embryos, either within maternal tissues or isolated from seeds. We show that this protocol can be combined with fluorescent protein markers, allowing for the simultaneous detection of several chromatin components and/or cell fate markers. This new protocol will facilitate deciphering the epigenetic circuits controlling early embryogenesis in plants.
Collapse
Affiliation(s)
- Marcelina García-Aguilar
- Laboratory of Genetics and Epigenetics of Seed Development, Laboratorio Nacional de Genómica para la Biodiversidad, Km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, CP 36821, Guanajuato, Mexico
| | - Daphné Autran
- Epigenetic Regulation and Seed Development Group, UMR 232 DIADE, IRD Institut de Recherche Pour le Développement-Université de Montpellier, 911 Avenue Agropolis, 34394, Montpellier, France.
| |
Collapse
|
68
|
Lee J, Yang EC, Graf L, Yang JH, Qiu H, Zelzion U, Chan CX, Stephens TG, Weber APM, Boo GH, Boo SM, Kim KM, Shin Y, Jung M, Lee SJ, Yim HS, Lee JH, Bhattacharya D, Yoon HS. Analysis of the Draft Genome of the Red Seaweed Gracilariopsis chorda Provides Insights into Genome Size Evolution in Rhodophyta. Mol Biol Evol 2018; 35:1869-1886. [DOI: 10.1093/molbev/msy081] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- JunMo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Eun Chan Yang
- Marine Ecosystem Research Center, Korea Institute of Ocean Science and Technology, Busan, Korea
| | - Louis Graf
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Huan Qiu
- Department of Ecology Evolution and Natural Resources, Rutgers University, New Brunswick, NJ
| | - Udi Zelzion
- Department of Ecology Evolution and Natural Resources, Rutgers University, New Brunswick, NJ
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy G Stephens
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Andreas P M Weber
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, Duesseldorf, Germany
| | - Ga Hun Boo
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Sung Min Boo
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Kyeong Mi Kim
- National Marine Biodiversity Institute of Korea, Seocheon, Korea
| | - Younhee Shin
- Bioinformatics Group, R&D Center, Insilicogen, Inc., Suwon, Korea
| | - Myunghee Jung
- Bioinformatics Group, R&D Center, Insilicogen, Inc., Suwon, Korea
| | | | - Hyung-Soon Yim
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, Korea
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, Korea
| | | | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
69
|
Hojsgaard D. Transient Activation of Apomixis in Sexual Neotriploids May Retain Genomically Altered States and Enhance Polyploid Establishment. FRONTIERS IN PLANT SCIENCE 2018; 9:230. [PMID: 29535745 PMCID: PMC5834478 DOI: 10.3389/fpls.2018.00230] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/09/2018] [Indexed: 05/19/2023]
Abstract
Polyploid genomes evolve and follow a series of dynamic transfigurations along with adaptation and speciation. The initial formation of a new polyploid individual within a diploid population usually involves a triploid bridge, a two-step mechanism of cell fusions between ubiquitous (reduced) and rare (unreduced) gametes. The primary fusion event creates an intermediate triploid individual with unbalanced genome sets, a situation of genomic-shock characterized by gene expression dysregulation, high dosage sensitivity, disturbed cell divisions, and physiological and reproductive attributes drastically altered. This near-sterile neotriploid must produce (even) eupolyploids through secondary fusion events to restore genome steadiness, meiotic balance, and fertility required for the demographic establishment of a nascent lineage. Natural conditions locate several difficulties to polyploid establishment, including the production of highly unbalanced and rarely unreduced (euploid) gametes, frequency-dependent disadvantages (minority cytotype exclusion), severe fitness loss, and ecological competition with diploid parents. Persistence and adaptation of neopolyploids depend upon genetic and phenotypic novelty coupled to joint selective forces that preserve shock-induced genomic changes (subgenome homeolog partitioning) and drive meiotic (reproductive) stabilization and ecological diversification. Thus, polyploid establishment through the triploid bridge is a feasible but not ubiquitous process that requires a number of low-probability events and singular circumstances. Yet, frequencies of polyploids suggest that polyploid establishment is a pervasive process. To explain this disparity, and supported in experimental evidence, I propose that situations like hybridization and ploidy-state transitions associated to genomic shock and substantial developmental alterations can transiently activate apomixis as a mechanism to halt genomic instability and cancel factors restraining neopolyploid's sexual fertility, particularly in triploids. Apomixis -as a temporal alternative to sex- skip meiosis and syngamy, and thus can freeze genomic attributes, avoid unbalanced chromosomal segregation and increase the formation of unreduced euploid gametes, elude frequency-dependent reproductive disadvantages by parthenogenetic development of the embryo and permissive development of endosperm during seed formation, and increase the effective population size of the neopolyploid lineage favoring the formation rate of eupolyploids compared to aneuploids. The subsequent action of genome resilience mechanisms that alleviate transcriptomic shock and selection upon gene interactions might restore a stable meiosis and sexual fertility within few generations, as observed in synthetic polyploids. Alternatively, provided that resilience mechanisms fail, the neopolyploid might retain apomixis and hold genomically and transcriptionally altered states for many generations.
Collapse
Affiliation(s)
- Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, Georg August University of Göttingen, Göttingen, Germany
| |
Collapse
|
70
|
The vesicle trafficking regulator PN_SCD1 is demethylated and overexpressed in florets of apomictic Paspalum notatum genotypes. Sci Rep 2018; 8:3030. [PMID: 29445151 PMCID: PMC5812994 DOI: 10.1038/s41598-018-21220-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/31/2018] [Indexed: 01/01/2023] Open
Abstract
Apomixis (asexual reproduction through seeds) is considered a deviation of the sexual reproductive pathway leading to the development of clonal progenies genetically identical to the mother plant. Here we used the Methylation-Sensitive Amplification Polymorphism (MSAP) technique to characterize cytosine methylation patterns occurring in florets of sexual and aposporous Paspalum notatum genotypes, in order to identify epigenetically-controlled genes putatively involved in apomixis development. From twelve polymorphic MSAP-derived sequences, one (PN_6.6, later renamed PN_SCD1) was selected due to its relevant annotation and differential representation in apomictic and sexual floral transcriptome libraries. PN_SCD1 encodes the DENN domain/WD repeat-containing protein SCD1, which interacts with RAB GTPases- and/or MAPKs to promote specialized cell division, functions in clathrin-mediated membrane transport and acts as potential substrate receptor of CUL4 E3 ubiquitin ligases. Quantitative RT-PCR and comparative RNAseq analyses of laser microdissected nucellar cells confirmed PN_SCD1 upregulation in florets of apomictic plants and revealed that overexpression takes place just before the onset of apospory initials. Moreover, we found that several SCD1 molecular partners are expressed in P. notatum florets and upregulated in apomictic plants. Our results disclosed a specific vesicle trafficking molecular pathway epigenetically modulated during apomixis.
Collapse
|
71
|
Selva JP, Siena L, Rodrigo JM, Garbus I, Zappacosta D, Romero JR, Ortiz JPA, Pessino SC, Leblanc O, Echenique V. Temporal and spatial expression of genes involved in DNA methylation during reproductive development of sexual and apomictic Eragrostis curvula. Sci Rep 2017. [PMID: 29118334 DOI: 10.1038/fs41598-017-14898-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Recent reports in model plant species have highlighted a role for DNA methylation pathways in the regulation of the somatic-to-reproductive transition in the ovule, suggesting that apomixis (asexual reproduction through seeds) likely relies on RdDM downregulation. Our aim was therefore to explore this hypothesis by characterizing genes involved in DNA methylation in the apomictic grass Eragrostis curvula. We explored floral transcriptomes to identify homologs of three candidate genes, for which mutations in Arabidopsis and maize mimic apomixis (AtAGO9/ZmAGO104, AtCMT3/ZmDMT102/ZmDMT105, and AtDDM1/ZmCHR106), and compared both their spatial and temporal expression patterns during reproduction in sexual and apomictic genotypes. Quantitative expression analyses revealed contrasting expression patterns for the three genes in apomictic vs sexual plants. In situ hybridization corroborated these results for two candidates, EcAGO104 and EcDMT102, and revealed an unexpected ectopic pattern for the AGO gene during germ line differentiation in apomicts. Although our data partially support previous results obtained in sexual plant models, they suggest that rather than an RdDM breakdown in the ovule, altered localization of AtAGO9/ZmAGO104 expression is required for achieving diplospory in E. curvula. The differences in the RdDM machinery acquired during plant evolution might have promoted the emergence of the numerous apomictic paths observed in plants.
Collapse
Affiliation(s)
- J P Selva
- CERZOS-CONICET, CCT-Bahía Blanca, 8000, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, 8000, Bahía Blanca, Argentina
| | - L Siena
- IICAR-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Parque Villarino, S2125ZAA, Zavalla, Argentina
| | - J M Rodrigo
- CERZOS-CONICET, CCT-Bahía Blanca, 8000, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, 8000, Bahía Blanca, Argentina
| | - I Garbus
- Departamento de Ciencias de la Salud, Universidad Nacional del Sur, 8000, Bahía Blanca, Argentina
| | - D Zappacosta
- CERZOS-CONICET, CCT-Bahía Blanca, 8000, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, 8000, Bahía Blanca, Argentina
| | - J R Romero
- CERZOS-CONICET, CCT-Bahía Blanca, 8000, Bahía Blanca, Argentina
| | - J P A Ortiz
- IICAR-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Parque Villarino, S2125ZAA, Zavalla, Argentina
| | - S C Pessino
- IICAR-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Parque Villarino, S2125ZAA, Zavalla, Argentina
| | - O Leblanc
- DIADE, IRD, Univ Montpellier, Montpellier, France.
| | - V Echenique
- CERZOS-CONICET, CCT-Bahía Blanca, 8000, Bahía Blanca, Argentina.
- Departamento de Agronomía, Universidad Nacional del Sur, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
72
|
Temporal and spatial expression of genes involved in DNA methylation during reproductive development of sexual and apomictic Eragrostis curvula. Sci Rep 2017; 7:15092. [PMID: 29118334 PMCID: PMC5678148 DOI: 10.1038/s41598-017-14898-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/18/2017] [Indexed: 11/13/2022] Open
Abstract
Recent reports in model plant species have highlighted a role for DNA methylation pathways in the regulation of the somatic-to-reproductive transition in the ovule, suggesting that apomixis (asexual reproduction through seeds) likely relies on RdDM downregulation. Our aim was therefore to explore this hypothesis by characterizing genes involved in DNA methylation in the apomictic grass Eragrostis curvula. We explored floral transcriptomes to identify homologs of three candidate genes, for which mutations in Arabidopsis and maize mimic apomixis (AtAGO9/ZmAGO104, AtCMT3/ZmDMT102/ZmDMT105, and AtDDM1/ZmCHR106), and compared both their spatial and temporal expression patterns during reproduction in sexual and apomictic genotypes. Quantitative expression analyses revealed contrasting expression patterns for the three genes in apomictic vs sexual plants. In situ hybridization corroborated these results for two candidates, EcAGO104 and EcDMT102, and revealed an unexpected ectopic pattern for the AGO gene during germ line differentiation in apomicts. Although our data partially support previous results obtained in sexual plant models, they suggest that rather than an RdDM breakdown in the ovule, altered localization of AtAGO9/ZmAGO104 expression is required for achieving diplospory in E. curvula. The differences in the RdDM machinery acquired during plant evolution might have promoted the emergence of the numerous apomictic paths observed in plants.
Collapse
|
73
|
Yao D, Huo X, Zenda T, Liu S, Liu Y, Dai L, Duan H. Effects of ethephon on DNA methylation and gene expressions associated with shortened internodes in maize. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1386591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Daxuan Yao
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Agricultural University of Hebei, Baoding, China
| | - Xiuai Huo
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Agricultural University of Hebei, Baoding, China
| | - Tinashe Zenda
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Agricultural University of Hebei, Baoding, China
| | - Songtao Liu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Agricultural University of Hebei, Baoding, China
| | - Yunting Liu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Agricultural University of Hebei, Baoding, China
| | - Liang Dai
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Agricultural University of Hebei, Baoding, China
| | - Huijun Duan
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
74
|
|
75
|
Su Z, Zhao L, Zhao Y, Li S, Won S, Cai H, Wang L, Li Z, Chen P, Qin Y, Chen X. The THO Complex Non-Cell-Autonomously Represses Female Germline Specification through the TAS3-ARF3 Module. Curr Biol 2017; 27:1597-1609.e2. [PMID: 28552357 DOI: 10.1016/j.cub.2017.05.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 04/12/2017] [Accepted: 05/05/2017] [Indexed: 12/21/2022]
Abstract
In most sexually reproducing plants, a single somatic, sub-epidermal cell in an ovule is selected to differentiate into a megaspore mother cell, which is committed to giving rise to the female germline. However, it remains unclear how intercellular signaling among somatic cells results in only one cell in the sub-epidermal layer differentiating into the megaspore mother cell. Here we uncovered a role of the THO complex in restricting the megaspore mother cell fate to a single cell. Mutations in TEX1, HPR1, and THO6, components of the THO/TREX complex, led to the formation of multiple megaspore mother cells, which were able to initiate gametogenesis. We demonstrated that TEX1 repressed the megaspore mother cell fate by promoting the biogenesis of TAS3-derived trans-acting small interfering RNA (ta-siRNA), which represses ARF3 expression. The TEX1 protein was present in epidermal cells, but not in the germline, and, through TAS3-derived ta-siRNA, restricted ARF3 expression to the medio domain of ovule primordia. Expansion of ARF3 expression into lateral epidermal cells in a TAS3 ta-siRNA-insensitive mutant led to the formation of supernumerary megaspore mother cells, suggesting that TEX1- and TAS3-mediated restriction of ARF3 expression limits excessive megaspore mother cell formation non-cell-autonomously. Our findings reveal the role of a small-RNA pathway in the regulation of female germline specification in Arabidopsis.
Collapse
Affiliation(s)
- Zhenxia Su
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Lab of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China; Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Lihua Zhao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Lab of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Yuanyuan Zhao
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Shaofang Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - SoYoun Won
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Hanyang Cai
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Lab of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Lulu Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Lab of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Zhenfang Li
- Crop Science College, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Piaojuan Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Lab of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Lab of Genetics, Breeding, and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China.
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, 92521, USA; Howard Hughes Medical Institute, Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
76
|
Ortiz JPA, Revale S, Siena LA, Podio M, Delgado L, Stein J, Leblanc O, Pessino SC. A reference floral transcriptome of sexual and apomictic Paspalum notatum. BMC Genomics 2017; 18:318. [PMID: 28431521 PMCID: PMC5399859 DOI: 10.1186/s12864-017-3700-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/11/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Paspalum notatum Flügge is a subtropical grass native to South America, which includes sexual diploid and apomictic polyploid biotypes. In the past decade, a number of apomixis-associated genes were discovered in this species through genetic mapping and differential expression surveys. However, the scarce information on Paspalum sequences available in public databanks limited annotations and functional predictions for these candidates. RESULTS We used a long-read 454/Roche FLX+ sequencing strategy to produce robust reference transcriptome datasets from florets of sexual and apomictic Paspalum notatum genotypes and delivered a list of transcripts showing differential representation in both reproductive types. Raw data originated from floral samples collected from premeiosis to anthesis was assembled in three libraries: i) sexual (SEX), ii) apomictic (APO) and iii) global (SEX + APO). A group of physically-supported Paspalum mRNA and EST sequences matched with high level of confidence to both sexual and apomictic libraries. A preliminary trial allowed discovery of the whole set of putative alleles/paralogs corresponding to 23 previously identified apomixis-associated candidate genes. Moreover, a list of 3,732 transcripts and several co-expression and protein -protein interaction networks associated with apomixis were identified. CONCLUSIONS The use of the 454/Roche FLX+ transcriptome database will allow the detailed characterization of floral alleles/paralogs of apomixis candidate genes identified in prior and future work. Moreover, it was used to reveal additional candidate genes differentially represented in apomictic and sexual flowers. Gene ontology (GO) analyses of this set of transcripts indicated that the main molecular pathways altered in the apomictic genotype correspond to specific biological processes, like biotic and abiotic stress responses, growth, development, cell death and senescence. This data collection will be of interest to the plant reproduction research community and, particularly, to Paspalum breeding projects.
Collapse
Affiliation(s)
- Juan Pablo A Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina
| | - Santiago Revale
- Instituto de Agrobiotecnología de Rosario (INDEAR), Ocampo 210 bis, Provincia de Santa Fe, Rosario, 2000, Argentina.,Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Lorena A Siena
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina
| | - Maricel Podio
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina
| | - Luciana Delgado
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina
| | - Juliana Stein
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina
| | - Olivier Leblanc
- UMR 232, Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, 34394, France
| | - Silvina C Pessino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina.
| |
Collapse
|
77
|
Tang Q, Zang G, Cheng C, Luan M, Dai Z, Xu Y, Yang Z, Zhao L, Su J. Diplosporous development in Boehmeria tricuspis: Insights from de novo transcriptome assembly and comprehensive expression profiling. Sci Rep 2017; 7:46043. [PMID: 28382950 PMCID: PMC5382578 DOI: 10.1038/srep46043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/07/2017] [Indexed: 01/05/2023] Open
Abstract
Boehmeria tricuspis includes sexually reproducing diploid and apomictic triploid individuals. Previously, we established that triploid B. tricuspis reproduces through obligate diplospory. To understand the molecular basis of apomictic development in B. tricuspis, we sequenced and compared transcriptomic profiles of the flowers of sexual and apomictic plants at four key developmental stages. A total of 283,341 unique transcripts were obtained from 1,463 million high-quality paired-end reads. In total, 18,899 unigenes were differentially expressed between the reproductive types at the four stages. By classifying the transcripts into gene ontology categories of differentially expressed genes, we showed that differential plant hormone signal transduction, cell cycle regulation, and transcription factor regulation are possibly involved in apomictic development and/or a polyploidization response in B. tricuspis. Furthermore, we suggest that specific gene families are possibly related to apomixis and might have important effects on diplosporous floral development. These results make a notable contribution to our understanding of the molecular basis of diplosporous development in B. tricuspis.
Collapse
Affiliation(s)
- Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Gonggu Zang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Chaohua Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Mingbao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Zhigang Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Ying Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Zemao Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Lining Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| | - Jianguang Su
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, 348 West Xianjiahu Road, Changsha, Hunan, China
| |
Collapse
|
78
|
Taşkin KM, Özbilen A, Sezer F, Hürkan K, Güneş Ş. Structure and expression of dna methyltransferase genes from apomictic and sexual Boechera species. Comput Biol Chem 2017; 67:15-21. [PMID: 28038368 DOI: 10.1016/j.compbiolchem.2016.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/30/2016] [Accepted: 12/09/2016] [Indexed: 10/20/2022]
Abstract
In this study, we determined the structure of DNA methyltransferase (DNMT) genes in apomict and sexual Boechera species and investigated the expression levels during seed development. Protein and DNA sequences of diploid sexual Boechera stricta DNMT genes obtained from Phytozome 10.3 were used to identify the homologues in apomicts, Boechera holboellii and Boechera divaricarpa. Geneious R8 software was used to map the short-paired reads library of B. holboellii whole genome or B. divaricarpa transcriptome reads to the reference gene sequences. We determined three DNMT genes; for Boechera spp. METHYLTRANSFERASE1 (MET1), CHROMOMETHYLASE 3 (CMT3) and DOMAINS REARRANGED METHYLTRANSFERASE 1/2 (DRM2). We examined the structure of these genes with bioinformatic tools and compared with other DNMT genes in plants. We also examined the levels of expression in silique tissues after fertilization by semi-quantitative PCR. The structure of DNMT proteins in apomict and sexual Boechera species share common features. However, the expression levels of DNMT genes were different in apomict and sexual Boechera species. We found that DRM2 was upregulated in apomictic Boechera species after fertilization. Phylogenetic trees showed that three genes are conserved among green algae, monocotyledons and dicotyledons. Our results indicated a deregulation of DNA methylation machinery during seed development in apomicts.
Collapse
Affiliation(s)
- Kemal Melik Taşkin
- Çanakkale Onsekiz Mart University, Faculty of Arts and Sciences, Department of Biology, 17100 Çanakkale, Turkey.
| | - Aslıhan Özbilen
- Çanakkale Onsekiz Mart University, Faculty of Arts and Sciences, Department of Biology, 17100 Çanakkale, Turkey
| | - Fatih Sezer
- Çanakkale Onsekiz Mart University, Faculty of Arts and Sciences, Department of Biology, 17100 Çanakkale, Turkey
| | - Kaan Hürkan
- Çanakkale Onsekiz Mart University, Faculty of Arts and Sciences, Department of Biology, 17100 Çanakkale, Turkey
| | - Şebnem Güneş
- Çanakkale Onsekiz Mart University, Faculty of Arts and Sciences, Department of Biology, 17100 Çanakkale, Turkey
| |
Collapse
|
79
|
Li W, Zhang L, Ding Z, Wang G, Zhang Y, Gong H, Chang T, Zhang Y. De novo sequencing and comparative transcriptome analysis of the male and hermaphroditic flowers provide insights into the regulation of flower formation in andromonoecious taihangia rupestris. BMC PLANT BIOLOGY 2017; 17:54. [PMID: 28241786 PMCID: PMC5329940 DOI: 10.1186/s12870-017-0990-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/31/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND Taihangia rupestris, an andromonoecious plant species, bears both male and hermaphroditic flowers within the same individual. However, the establishment and development of male and hermaphroditic flowers in andromonoecious Taihangia remain poorly understood, due to the limited genetic and sequence information. To investigate the potential molecular mechanism in the regulation of Taihangia flower formation, we used de novo RNA sequencing to compare the transcriptome profiles of male and hermaphroditic flowers at early and late developmental stages. RESULTS Four cDNA libraries, including male floral bud, hermaphroditic floral bud, male flower, and hermaphroditic flower, were constructed and sequenced by using the Illumina RNA-Seq method. Totally, 84,596,426 qualified Illumina reads were obtained and then assembled into 59,064 unigenes, of which 24,753 unigenes were annotated in the NCBI non-redundant protein database. In addition, 12,214, 7,153, and 8,115 unigenes were assigned into 53 Gene Ontology (GO) functional groups, 25 Clusters of Orthologous Group (COG) categories, and 126 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. By pairwise comparison of unigene abundance between the samples, we identified 1,668 differential expressed genes (DEGs), including 176 transcription factors (TFs) between the male and hermaphroditic flowers. At the early developmental stage, we found 263 up-regulated genes and 436 down-regulated genes expressed in hermaphroditic floral buds, while 844 up-regulated genes and 314 down-regulated genes were detected in hermaphroditic flowers at the late developmental stage. GO and KEGG enrichment analyses showed that a large number of DEGs were associated with a wide range of functions, including cell cycle, epigenetic processes, flower development, and biosynthesis of unsaturated fatty acid pathway. Finally, real-time quantitative PCR was conducted to validate the DEGs identified in the present study. CONCLUSION In this study, transcriptome data of this rare andromonoecious Taihangia were reported for the first time. Comparative transcriptome analysis revealed the significant differences in gene expression profiles between male and hermaphroditic flowers at early and late developmental stages. The transcriptome data of Taihangia would be helpful to improve the understanding of the underlying molecular mechanisms in regulation of flower formation and unisexual flower establishment in andromonoecious plants.
Collapse
Affiliation(s)
- Weiguo Li
- College of Life Science, Changchun Normal University, Changchun, 130032 Jilin China
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Lihui Zhang
- College of Life Science, Changchun Normal University, Changchun, 130032 Jilin China
| | - Zhan Ding
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Guodong Wang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Yandi Zhang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Hongmei Gong
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Tianjun Chang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000 Henan China
| | - Yanwen Zhang
- College of Life Science, Changchun Normal University, Changchun, 130032 Jilin China
| |
Collapse
|
80
|
Wang G, Köhler C. Epigenetic processes in flowering plant reproduction. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:797-807. [PMID: 28062591 DOI: 10.1093/jxb/erw486] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Seeds provide up to 70% of the energy intake of the human population, emphasizing the relevance of understanding the genetic and epigenetic mechanisms controlling seed formation. In flowering plants, seeds are the product of a double fertilization event, leading to the formation of the embryo and the endosperm surrounded by maternal tissues. Analogous to mammals, plants undergo extensive epigenetic reprogramming during both gamete formation and early seed development, a process that is supposed to be required to enforce silencing of transposable elements and thus to maintain genome stability. Global changes of DNA methylation, histone modifications, and small RNAs are closely associated with epigenome programming during plant reproduction. Here, we review current knowledge on chromatin changes occurring during sporogenesis and gametogenesis, as well as early seed development in major flowering plant models.
Collapse
Affiliation(s)
- Guifeng Wang
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
81
|
Abstract
Apomixis, commonly defined as asexual reproduction through seed, is a reproductive trait that occurs in only a few minor crops, but would be highly valuable in major crops. Apomixis results in seed-derived progenies that are genetically identical to their maternal parent. The advantage of apomixis would lie in seed propagation of elite food, feed, and biofuel crops that are heterozygous such as hybrid corn and switchgrass or self-pollinating crops for which no commercial-scale hybrid production system is available. While hybrid plants often outperform parental lines in growth and higher yields, production of hybrid seed is accomplished through carefully controlled, labor intensive crosses. Both small farmers in developing countries who produce their own seed and commercial companies that market hybrid seed could benefit from the establishment of engineered apomixis in plants. In this chapter, we review what has been learned from studying natural apomicts and mutations in sexual plants leading to apomixis-like development, plus discuss how the components of apomixis could be successfully engineered in plants.
Collapse
Affiliation(s)
- Joann A Conner
- Horticulture Department, NESPAL/University of Georgia-Tifton Campus, 2356 Rainwater Road, Tifton, GA, 31794, USA.
| | - Peggy Ozias-Akins
- Horticulture Department, NESPAL/University of Georgia-Tifton Campus, 2356 Rainwater Road, Tifton, GA, 31794, USA
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia-Tifton Campus, Tifton, GA, USA
| |
Collapse
|
82
|
Gehring M, Satyaki PR. Endosperm and Imprinting, Inextricably Linked. PLANT PHYSIOLOGY 2017; 173:143-154. [PMID: 27895206 PMCID: PMC5210735 DOI: 10.1104/pp.16.01353] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/22/2016] [Indexed: 05/21/2023]
Abstract
Recent developments advance our understanding of imprinted gene expression in plants.
Collapse
Affiliation(s)
- Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142 (M.G., P.R.S.); and
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (M.G.)
| | - P R Satyaki
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142 (M.G., P.R.S.); and
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (M.G.)
| |
Collapse
|
83
|
Galla G, Zenoni S, Avesani L, Altschmied L, Rizzo P, Sharbel TF, Barcaccia G. Pistil Transcriptome Analysis to Disclose Genes and Gene Products Related to Aposporous Apomixis in Hypericum perforatum L. FRONTIERS IN PLANT SCIENCE 2017; 8:79. [PMID: 28203244 PMCID: PMC5285387 DOI: 10.3389/fpls.2017.00079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/13/2017] [Indexed: 05/19/2023]
Abstract
Unlike sexual reproduction, apomixis encompasses a number of reproductive strategies, which permit maternal genome inheritance without genetic recombination and syngamy. The key biological features of apomixis are the circumvention of meiosis (i.e., apomeiosis), the differentiation of unreduced embryo sacs and egg cells, and their autonomous development in functional embryos through parthenogenesis, and the formation of viable endosperm either via fertilization-independent means or following fertilization with a sperm cell. Despite the importance of apomixis for breeding of crop plants and although much research has been conducted to study this process, the genetic control of apomixis is still not well understood. Hypericum perforatum is becoming an attractive model system for the study of aposporous apomixis. Here we report results from a global gene expression analysis of H. perforatum pistils collected from sexual and aposporous plant accessions for the purpose of identifying genes, biological processes and molecular functions associated with the aposporous apomixis pathway. Across two developmental stages corresponding to the expression of aposporous apomeiosis and parthenogenesis in ovules, a total of 224 and 973 unigenes were found to be significantly up- and down-regulated with a fold change ≥ 2 in at least one comparison, respectively. Differentially expressed genes were enriched for multiple gene ontology (GO) terms, including cell cycle, DNA metabolic process, and single-organism cellular process. For molecular functions, the highest scores were recorded for GO terms associated with DNA binding, DNA (cytosine-5-)-methyltransferase activity and heterocyclic compound binding. As deregulation of single components of the sexual developmental pathway is believed to be a trigger of the apomictic reproductive program, all genes involved in sporogenesis, gametogenesis and response to hormonal stimuli were analyzed in great detail. Overall, our data suggest that phenotypic expression of apospory is concomitant with the modulation of key genes involved in the sexual reproductive pathway. Furthermore, based on gene annotation and co-expression, we underline a putative role of hormones and key actors playing in the RNA-directed DNA methylation pathway in regulating the developmental changes occurring during aposporous apomixis in H. perforatum.
Collapse
Affiliation(s)
- Giulio Galla
- Laboratory of Genomics, Department of Agronomy, Food, Natural Resources, Animals and Environment, University of PadovaPadova, Italy
- *Correspondence: Giulio Galla
| | - Sara Zenoni
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Linda Avesani
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Lothar Altschmied
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Paride Rizzo
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Timothy F. Sharbel
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Gianni Barcaccia
- Laboratory of Genomics, Department of Agronomy, Food, Natural Resources, Animals and Environment, University of PadovaPadova, Italy
| |
Collapse
|
84
|
Lebedeva MA, Tvorogova VE, Tikhodeyev ON. Epigenetic mechanisms and their role in plant development. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795417090083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
85
|
Yang L, Wu Y, Yu M, Mao B, Zhao B, Wang J. Genome-wide transcriptome analysis of female-sterile rice ovule shed light on its abortive mechanism. PLANTA 2016; 244:1011-1028. [PMID: 27357232 DOI: 10.1007/s00425-016-2563-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/23/2016] [Indexed: 05/03/2023]
Abstract
The comprehensive transcriptome analysis of rice female-sterile line and wild-type line ovule provides an important clue for exploring the regulatory network of the formation of rice fertile female gametophyte. Ovules are the female reproductive tissues of rice (Oryza sativa L.) and play a major role in sexual reproduction. To investigate the potential mechanism of rice female gametophyte fertility, we used RNA sequencing, combined with genetic subtraction, to compare the transcriptome of the ovules of a high-frequency female-sterile line (fsv1) and a rice wild-type line (Gui 99) during ovule development. Ovules were harvested at three developmental stages: ovule containing megaspore mother cell in meiosis process (stage 1), ovule containing functional megaspore in mitosis process (stage 2), and ovule containing mature female gametophyte (stage 3). Six cDNA libraries generated a total of 42.2 million high-quality clean reads that aligned with 30,204 genes. The comparison between the fsv1 and Gui 99 ovules identified a large number of differentially expressed genes (DEGs), i.e., 45, 495, and 932 DEGs at the three ovule developmental stages, respectively. From the comparison of the two rice lines, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and MapMan analyses indicated that a large number of DEGs associated with starch and sucrose metabolism, plant hormone signal transduction, protein modification and degradation, oxidative phosphorylation, and receptor kinase. These DEGs might play roles in ovule development and fertile female gametophyte formation. Many transcription factor genes and epigenetic-related genes also exhibit different expression patterns and significantly different expression levels in two rice lines during ovule development, which might provide important information regarding the abortive mechanism of the female gametophyte in rice.
Collapse
Affiliation(s)
- Liyu Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ya Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Meiling Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bigang Mao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Bingran Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
86
|
Rabiger DS, Taylor JM, Spriggs A, Hand ML, Henderson ST, Johnson SD, Oelkers K, Hrmova M, Saito K, Suzuki G, Mukai Y, Carroll BJ, Koltunow AMG. Generation of an integrated Hieracium genomic and transcriptomic resource enables exploration of small RNA pathways during apomixis initiation. BMC Biol 2016; 14:86. [PMID: 27716180 PMCID: PMC5054587 DOI: 10.1186/s12915-016-0311-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/21/2016] [Indexed: 11/23/2022] Open
Abstract
Background Application of apomixis, or asexual seed formation, in crop breeding would allow rapid fixation of complex traits, economizing improved crop delivery. Identification of apomixis genes is confounded by the polyploid nature, high genome complexity and lack of genomic sequence integration with reproductive tissue transcriptomes in most apomicts. Results A genomic and transcriptomic resource was developed for Hieracium subgenus Pilosella (Asteraceae) which incorporates characterized sexual, apomictic and mutant apomict plants exhibiting reversion to sexual reproduction. Apomicts develop additional female gametogenic cells that suppress the sexual pathway in ovules. Disrupting small RNA pathways in sexual Arabidopsis also induces extra female gametogenic cells; therefore, the resource was used to examine if changes in small RNA pathways correlate with apomixis initiation. An initial characterization of small RNA pathway genes within Hieracium was undertaken, and ovary-expressed ARGONAUTE genes were identified and cloned. Comparisons of whole ovary transcriptomes from mutant apomicts, relative to the parental apomict, revealed that differentially expressed genes were enriched for processes involved in small RNA biogenesis and chromatin silencing. Small RNA profiles within mutant ovaries did not reveal large-scale alterations in composition or length distributions; however, a small number of differentially expressed, putative small RNA targets were identified. Conclusions The established Hieracium resource represents a substantial contribution towards the investigation of early sexual and apomictic female gamete development, and the generation of new candidate genes and markers. Observed changes in small RNA targets and biogenesis pathways within sexual and apomictic ovaries will underlie future functional research into apomixis initiation in Hieracium. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0311-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David S Rabiger
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Private Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Jennifer M Taylor
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Bellenden Street, Crace, Australian Capital Territory, 2911, Australia
| | - Andrew Spriggs
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Bellenden Street, Crace, Australian Capital Territory, 2911, Australia
| | - Melanie L Hand
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Private Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Steven T Henderson
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Private Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Susan D Johnson
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Private Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Karsten Oelkers
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Private Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Maria Hrmova
- Australian Centre for Plant Functional Genomics, University of Adelaide PMB 1, Glen Osmond, South Australia, 5064, Australia
| | - Keisuke Saito
- Division of Natural Science, Osaka Kyoiku University, Osaka, 582-8582, Japan
| | - Go Suzuki
- Division of Natural Science, Osaka Kyoiku University, Osaka, 582-8582, Japan
| | - Yasuhiko Mukai
- Division of Natural Science, Osaka Kyoiku University, Osaka, 582-8582, Japan
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Anna M G Koltunow
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Private Bag 2, Glen Osmond, South Australia, 5064, Australia.
| |
Collapse
|
87
|
Mirzaghaderi G, Hörandl E. The evolution of meiotic sex and its alternatives. Proc Biol Sci 2016; 283:20161221. [PMID: 27605505 PMCID: PMC5031655 DOI: 10.1098/rspb.2016.1221] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/16/2016] [Indexed: 12/23/2022] Open
Abstract
Meiosis is an ancestral, highly conserved process in eukaryotic life cycles, and for all eukaryotes the shared component of sexual reproduction. The benefits and functions of meiosis, however, are still under discussion, especially considering the costs of meiotic sex. To get a novel view on this old problem, we filter out the most conserved elements of meiosis itself by reviewing the various modifications and alterations of modes of reproduction. Our rationale is that the indispensable steps of meiosis for viability of offspring would be maintained by strong selection, while dispensable steps would be variable. We review evolutionary origin and processes in normal meiosis, restitutional meiosis, polyploidization and the alterations of meiosis in forms of uniparental reproduction (apomixis, apomictic parthenogenesis, automixis, selfing) with a focus on plants and animals. This overview suggests that homologue pairing, double-strand break formation and homologous recombinational repair at prophase I are the least dispensable elements, and they are more likely optimized for repair of oxidative DNA damage rather than for recombination. Segregation, ploidy reduction and also a biparental genome contribution can be skipped for many generations. The evidence supports the theory that the primary function of meiosis is DNA restoration rather than recombination.
Collapse
Affiliation(s)
- Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, Georg-August-University of Göttingen, Göttingen, Germany
| |
Collapse
|
88
|
Accurate Chromosome Segregation at First Meiotic Division Requires AGO4, a Protein Involved in RNA-Dependent DNA Methylation in Arabidopsis thaliana. Genetics 2016; 204:543-553. [PMID: 27466226 DOI: 10.1534/genetics.116.189217] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/25/2016] [Indexed: 11/18/2022] Open
Abstract
The RNA-directed DNA methylation (RdDM) pathway is important for the transcriptional repression of transposable elements and for heterochromatin formation. Small RNAs are key players in this process by regulating both DNA and histone methylation. Taking into account that methylation underlies gene silencing and that there are genes with meiosis-specific expression profiles, we have wondered whether genes involved in RdDM could play a role during this specialized cell division. To address this issue, we have characterized meiosis progression in pollen mother cells from Arabidopsis thaliana mutant plants defective for several proteins related to RdDM. The most relevant results were obtained for ago4-1 In this mutant, meiocytes display a slight reduction in chiasma frequency, alterations in chromatin conformation around centromeric regions, lagging chromosomes at anaphase I, and defects in spindle organization. These abnormalities lead to the formation of polyads instead of tetrads at the end of meiosis, and might be responsible for the fertility defects observed in this mutant. Findings reported here highlight an involvement of AGO4 during meiosis by ensuring accurate chromosome segregation at anaphase I.
Collapse
|
89
|
Xu W, Yang T, Dong X, Li DZ, Liu A. Genomic DNA Methylation Analyses Reveal the Distinct Profiles in Castor Bean Seeds with Persistent Endosperms. PLANT PHYSIOLOGY 2016; 171:1242-58. [PMID: 27208275 PMCID: PMC4902593 DOI: 10.1104/pp.16.00056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/27/2016] [Indexed: 05/21/2023]
Abstract
Investigations of genomic DNA methylation in seeds have been restricted to a few model plants. The endosperm genomic DNA hypomethylation has been identified in angiosperm, but it is difficult to dissect the mechanism of how this hypomethylation is established and maintained because endosperm is ephemeral and disappears with seed development in most dicots. Castor bean (Ricinus communis), unlike Arabidopsis (Arabidopsis thaliana), endosperm is persistent throughout seed development, providing an excellent model in which to dissect the mechanism of endosperm genomic hypomethylation in dicots. We characterized the DNA methylation-related genes encoding DNA methyltransferases and demethylases and analyzed their expression profiles in different tissues. We examined genomic methylation including CG, CHG, and CHH contexts in endosperm and embryo tissues using bisulfite sequencing and revealed that the CHH methylation extent in endosperm and embryo was, unexpectedly, substantially higher than in previously studied plants, irrespective of the CHH percentage in their genomes. In particular, we found that the endosperm exhibited a global reduction in CG and CHG methylation extents relative to the embryo, markedly switching global gene expression. However, CHH methylation occurring in endosperm did not exhibit a significant reduction. Combining with the expression of 24-nucleotide small interfering RNAs (siRNAs) mapped within transposable element (TE) regions and genes involved in the RNA-directed DNA methylation pathway, we demonstrate that the 24-nucleotide siRNAs played a critical role in maintaining CHH methylation and repressing the activation of TEs in persistent endosperm development. This study discovered a novel genomic DNA methylation pattern and proposes the potential mechanism occurring in dicot seeds with persistent endosperm.
Collapse
Affiliation(s)
- Wei Xu
- Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources (W.X., X.D., A.L.), the Germplasm Bank of Wild Species (D.-Z.L.), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China;University of the Chinese Academy of Sciences, Beijing 100049, China (W.X., T.Y.);College of Life Sciences, Yunnan University, 650091 Kunming, China (W.X.); andKey Laboratory of Tropical Plant Resource Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China (T.Y.)
| | - Tianquan Yang
- Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources (W.X., X.D., A.L.), the Germplasm Bank of Wild Species (D.-Z.L.), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China;University of the Chinese Academy of Sciences, Beijing 100049, China (W.X., T.Y.);College of Life Sciences, Yunnan University, 650091 Kunming, China (W.X.); andKey Laboratory of Tropical Plant Resource Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China (T.Y.)
| | - Xue Dong
- Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources (W.X., X.D., A.L.), the Germplasm Bank of Wild Species (D.-Z.L.), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China;University of the Chinese Academy of Sciences, Beijing 100049, China (W.X., T.Y.);College of Life Sciences, Yunnan University, 650091 Kunming, China (W.X.); andKey Laboratory of Tropical Plant Resource Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China (T.Y.)
| | - De-Zhu Li
- Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources (W.X., X.D., A.L.), the Germplasm Bank of Wild Species (D.-Z.L.), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China;University of the Chinese Academy of Sciences, Beijing 100049, China (W.X., T.Y.);College of Life Sciences, Yunnan University, 650091 Kunming, China (W.X.); andKey Laboratory of Tropical Plant Resource Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China (T.Y.)
| | - Aizhong Liu
- Department of Economic Plants and Biotechnology, and Yunnan Key Laboratory for Wild Plant Resources (W.X., X.D., A.L.), the Germplasm Bank of Wild Species (D.-Z.L.), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China;University of the Chinese Academy of Sciences, Beijing 100049, China (W.X., T.Y.);College of Life Sciences, Yunnan University, 650091 Kunming, China (W.X.); andKey Laboratory of Tropical Plant Resource Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China (T.Y.)
| |
Collapse
|
90
|
Sezer F, Yüzbaşioğlu G, Özbilen A, Taşkin KM. Genome-wide identification and expression analysis of SWI1 genes in Boechera species. Comput Biol Chem 2016; 62:75-81. [PMID: 27107180 DOI: 10.1016/j.compbiolchem.2016.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/24/2016] [Accepted: 04/08/2016] [Indexed: 11/15/2022]
Abstract
As a mode of reproduction in plants, apomixis leads to the generation of clones via seeds. Apomictic plants form viable diploid female gametes without meiosis (apomeiosis) and produce embryos without fertilization (parthenogenesis). Apomeiosis, as a major component of apomixis, has recently been reported in some Arabidopsis thaliana mutants; dyad mutants of SWI1 showed developmental processes common to apomeiosis, such as producing functional diploid gametes. However, the orthologs of SWI1 genes in natural apomicts has not been previously reported. To identify the relationship between the SWI1 gene and the apomeiosis process, we isolated and sequenced SWI1 orthologs from Boechera species, including apomictic and sexual species. Boechera species are close relatives of A. thaliana and thus are advantageous model species for apomixis research. The SWI1 cDNAs were obtained by RT-PCR from apomictic and sexual Boechera young flower buds. We sequenced partial SWI1 transcripts that were 650bp for B. holboellii and 684bp for B. stricta. These SWI1-like sequences showed 86% similarity for B. holboellii and 92% for B. stricta to the A. thaliana SWI1 transcript. We also used available genome data and amplified genomic sequences for SWI1 orthologs in B. holboellii and B. stricta. The predicted proteins contain a phospholipase C domain and a nuclear localization signal. Sequence analysis did not show significant mutations related to apomixis, and phylogenetic analysis showed that SWI1-like sequences were common across plant families, regardless of the presence of a sexual or apomictic reproduction system. We also investigated the expression levels of SWI1 mRNA in the B. holboellii and B. stricta young unopened flower buds and found that relatively high levels of expression occurred in apomicts.
Collapse
Affiliation(s)
- Fatih Sezer
- Canakkale Onsekiz Mart University, Department of Biology, 17100 Canakkale, Turkey.
| | - Gözde Yüzbaşioğlu
- Canakkale Onsekiz Mart University, Department of Biology, 17100 Canakkale, Turkey.
| | - Aslıhan Özbilen
- Canakkale Onsekiz Mart University, Department of Biology, 17100 Canakkale, Turkey.
| | - Kemal M Taşkin
- Canakkale Onsekiz Mart University, Department of Biology, 17100 Canakkale, Turkey.
| |
Collapse
|
91
|
Shah JN, Kirioukhova O, Pawar P, Tayyab M, Mateo JL, Johnston AJ. Depletion of Key Meiotic Genes and Transcriptome-Wide Abiotic Stress Reprogramming Mark Early Preparatory Events Ahead of Apomeiotic Transition. FRONTIERS IN PLANT SCIENCE 2016; 7:1539. [PMID: 27833618 PMCID: PMC5080521 DOI: 10.3389/fpls.2016.01539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/30/2016] [Indexed: 05/19/2023]
Abstract
Molecular dissection of apomixis - an asexual reproductive mode - is anticipated to solve the enigma of loss of meiotic sex, and to help fixing elite agronomic traits. The Brassicaceae genus Boechera comprises of both sexual and apomictic species, permitting comparative analyses of meiotic circumvention (apomeiosis) and parthenogenesis. Whereas previous studies reported local transcriptome changes during these events, it remained unclear whether global changes associated with hybridization, polyploidy and environmental adaptation that arose during evolution of Boechera might serve as (epi)genetic regulators of early development prior apomictic initiation. To identify these signatures during vegetative stages, we compared seedling RNA-seq transcriptomes of an obligate triploid apomict and a diploid sexual, both isolated from a drought-prone habitat. Uncovered were several genes differentially expressed between sexual and apomictic seedlings, including homologs of meiotic genes ASYNAPTIC 1 (ASY1) and MULTIPOLAR SPINDLE 1 (MPS1) that were down-regulated in apomicts. An intriguing class of apomict-specific deregulated genes included several NAC transcription factors, homologs of which are known to be transcriptionally reprogrammed during abiotic stress in other plants. Deregulation of both meiotic and stress-response genes during seedling stages might possibly be important in preparation for meiotic circumvention, as similar transcriptional alteration was discernible in apomeiotic floral buds too. Furthermore, we noted that the apomict showed better tolerance to osmotic stress in vitro than the sexual, in conjunction with significant upregulation of a subset of NAC genes. In support of the current model that DNA methylation epigenetically regulates stress, ploidy, hybridization and apomixis, we noted that ASY1, MPS1 and NAC019 homologs were deregulated in Boechera seedlings upon DNA demethylation, and ASY1 in particular seems to be repressed by global DNA methylation exclusively in the apomicts. Variability in stress and transcriptional response in a diploid apomict, which is geographically distinct from the triploid apomict, pinpoints both common and independent features of apomixis evolution. Our study provides a molecular frame-work to investigate how the adaptive traits associated with the evolutionary history of apomicts co-adapted with meiotic gene deregulation at early developmental stage, in order to predate meiotic recombination, which otherwise is thought to be favorable in stress and low-fitness conditions.
Collapse
Affiliation(s)
- Jubin N. Shah
- Laboratory of Germline Genetics & Evo-Devo, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Olga Kirioukhova
- Laboratory of Germline Genetics & Evo-Devo, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Pallavi Pawar
- Laboratory of Germline Genetics & Evo-Devo, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Muhammad Tayyab
- Laboratory of Germline Genetics & Evo-Devo, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
| | - Juan L. Mateo
- Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
- *Correspondence: Amal J. Johnston, ; Juan L. Mateo,
| | - Amal J. Johnston
- Laboratory of Germline Genetics & Evo-Devo, Centre for Organismal Studies, University of HeidelbergHeidelberg, Germany
- Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
- *Correspondence: Amal J. Johnston, ; Juan L. Mateo,
| |
Collapse
|
92
|
Abstract
Apomixis (asexual seed formation) is the result of a plant gaining the ability to bypass the most fundamental aspects of sexual reproduction: meiosis and fertilization. Without the need for male fertilization, the resulting seed germinates a plant that develops as a maternal clone. This dramatic shift in reproductive process has been documented in many flowering plant species, although no major seed crops have been shown to be capable of apomixis. The ability to generate maternal clones and therefore rapidly fix desirable genotypes in crop species could accelerate agricultural breeding strategies. The potential of apomixis as a next-generation breeding technology has contributed to increasing interest in the mechanisms controlling apomixis. In this review, we discuss the progress made toward understanding the genetic and molecular control of apomixis. Research is currently focused on two fronts. One aims to identify and characterize genes causing apomixis in apomictic species that have been developed as model species. The other aims to engineer or switch the sexual seed formation pathway in non-apomictic species, to one that mimics apomixis. Here we describe the major apomictic mechanisms and update knowledge concerning the loci that control them, in addition to presenting candidate genes that may be used as tools for switching the sexual pathway to an apomictic mode of reproduction in crops.
Collapse
|
93
|
Baroux C, Autran D. Chromatin dynamics during cellular differentiation in the female reproductive lineage of flowering plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:160-76. [PMID: 26031902 PMCID: PMC4502977 DOI: 10.1111/tpj.12890] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/12/2015] [Accepted: 05/22/2015] [Indexed: 05/05/2023]
Abstract
Sexual reproduction in flowering plants offers a number of remarkable aspects to developmental biologists. First, the spore mother cells - precursors of the plant reproductive lineage - are specified late in development, as opposed to precocious germline isolation during embryogenesis in most animals. Second, unlike in most animals where meiosis directly produces gametes, plant meiosis entails the differentiation of a multicellular, haploid gametophyte, within which gametic as well as non-gametic accessory cells are formed. These observations raise the question of the factors inducing and modus operandi of cell fate transitions that originate in floral tissues and gametophytes, respectively. Cell fate transitions in the reproductive lineage imply cellular reprogramming operating at the physiological, cytological and transcriptome level, but also at the chromatin level. A number of observations point to large-scale chromatin reorganization events associated with cellular differentiation of the female spore mother cells and of the female gametes. These include a reorganization of the heterochromatin compartment, the genome-wide alteration of the histone modification landscape, and the remodeling of nucleosome composition. The dynamic expression of DNA methyltransferases and actors of small RNA pathways also suggest additional, global epigenetic alterations that remain to be characterized. Are these events a cause or a consequence of cellular differentiation, and how do they contribute to cell fate transition? Does chromatin dynamics induce competence for immediate cellular functions (meiosis, fertilization), or does it also contribute long-term effects in cellular identity and developmental competence of the reproductive lineage? This review attempts to review these fascinating questions.
Collapse
Affiliation(s)
- Célia Baroux
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of ZürichZollikerstrasse 107, 8008, Zürich, Switzerland
- *For correspondence (e-mail )
| | - Daphné Autran
- Institut de Recherche pour le Développement (UMR DIADE 232), Centre National de la Recherche Scientifique (URL 5300), Université de Montpellier911 avenue Agropolis, 34000, Montpellier, France
| |
Collapse
|
94
|
Rodríguez-Leal D, León-Martínez G, Abad-Vivero U, Vielle-Calzada JP. Natural variation in epigenetic pathways affects the specification of female gamete precursors in Arabidopsis. THE PLANT CELL 2015; 27:1034-45. [PMID: 25829442 PMCID: PMC4558685 DOI: 10.1105/tpc.114.133009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/23/2015] [Accepted: 03/01/2015] [Indexed: 05/03/2023]
Abstract
In angiosperms, the transition to the female gametophytic phase relies on the specification of premeiotic gamete precursors from sporophytic cells in the ovule. In Arabidopsis thaliana, a single diploid cell is specified as the premeiotic female gamete precursor. Here, we show that ecotypes of Arabidopsis exhibit differences in megasporogenesis leading to phenotypes reminiscent of defects in dominant mutations that epigenetically affect the specification of female gamete precursors. Intraspecific hybridization and polyploidy exacerbate these defects, which segregate quantitatively in F2 populations derived from ecotypic hybrids, suggesting that multiple loci control cell specification at the onset of female meiosis. This variation in cell differentiation is influenced by the activity of ARGONAUTE9 (AGO9) and RNA-DEPENDENT RNA POLYMERASE6 (RDR6), two genes involved in epigenetic silencing that control the specification of female gamete precursors. The pattern of transcriptional regulation and localization of AGO9 varies among ecotypes, and abnormal gamete precursors in ovules defective for RDR6 share identity with ectopic gamete precursors found in selected ecotypes. Our results indicate that differences in the epigenetic control of cell specification lead to natural phenotypic variation during megasporogenesis. We propose that this mechanism could be implicated in the emergence and evolution of the reproductive alternatives that prevail in flowering plants.
Collapse
Affiliation(s)
- Daniel Rodríguez-Leal
- Grupo de Desarrollo Reproductivo y Apomixis, Laboratorio Nacional de Genómica para la Biodiversidad y Departamento de Ingeniería Genética de Plantas, Cinvestav Irapuato CP36821 Guanajuato, Mexico
| | - Gloria León-Martínez
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional del Instituto Politécnico Nacional, Unidad Michoacán, CP 59510 Jiquilpan, Mexico
| | - Ursula Abad-Vivero
- Grupo de Desarrollo Reproductivo y Apomixis, Laboratorio Nacional de Genómica para la Biodiversidad y Departamento de Ingeniería Genética de Plantas, Cinvestav Irapuato CP36821 Guanajuato, Mexico
| | - Jean-Philippe Vielle-Calzada
- Grupo de Desarrollo Reproductivo y Apomixis, Laboratorio Nacional de Genómica para la Biodiversidad y Departamento de Ingeniería Genética de Plantas, Cinvestav Irapuato CP36821 Guanajuato, Mexico
| |
Collapse
|
95
|
De novo sequencing of the Hypericum perforatum L. flower transcriptome to identify potential genes that are related to plant reproduction sensu lato. BMC Genomics 2015; 16:254. [PMID: 25887758 PMCID: PMC4451943 DOI: 10.1186/s12864-015-1439-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/06/2015] [Indexed: 02/07/2023] Open
Abstract
Background St. John’s wort (Hypericum perforatum L.) is a medicinal plant that produces important metabolites with antidepressant and anticancer activities. Recently gained biological information has shown that this species is also an attractive model system for the study of a naturally occurring form of asexual reproduction called apomixis, which allows cloning plants through seeds. In aposporic gametogenesis, one or multiple somatic cells belonging to the ovule nucellus change their fate by dividing mitotically and developing functionally unreduced embryo sacs by mimicking sexual gametogenesis. Although the introduction of apomixis into agronomically important crops could have revolutionary implications for plant breeding, the genetic control of this mechanism of seed formation is still not well understood for most of the model species investigated so far. We used Roche 454 technology to sequence the entire H. perforatum flower transcriptome of whole flower buds and single flower verticils collected from obligately sexual and unrelated highly or facultatively apomictic genotypes, which enabled us to identify RNAs that are likely exclusive to flower organs (i.e., sepals, petals, stamens and carpels) or reproductive strategies (i.e., sexual vs. apomictic). Results Here we sequenced and annotated the flower transcriptome of H. perforatum with particular reference to reproductive organs and processes. In particular, in our study we characterized approximately 37,000 transcripts found expressed in male and/or female reproductive organs, including tissues or cells of sexual and apomictic flower buds. Ontological annotation was applied to identify major biological processes and molecular functions involved in flower development and plant reproduction. Starting from this dataset, we were able to recover and annotate a large number of transcripts related to meiosis, gametophyte/gamete formation, and embryogenesis, as well as genes that are exclusively or preferentially expressed in sexual or apomictic libraries. Real-Time RT-qPCR assays on pistils and anthers collected at different developmental stages from accessions showing alternative modes of reproduction were used to identify potential genes that are related to plant reproduction sensu lato in H. perforatum. Conclusions Our approach of sequencing flowers from two fully obligate sexual genotypes and two unrelated highly apomictic genotypes, in addition to different flower parts dissected from a facultatively apomictic accession, enabled us to analyze the complexity of the flower transcriptome according to its main reproductive organs as well as for alternative reproductive behaviors. Both annotation and expression data provided original results supporting the hypothesis that apomixis in H. perforatum relies upon spatial or temporal mis-expression of genes acting during female sexual reproduction. The present analyses aim to pave the way toward a better understanding of the molecular basis of flower development and plant reproduction, by identifying genes or RNAs that may differentiate or regulate the sexual and apomictic reproductive pathways in H. perforatum. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1439-y) contains supplementary material, which is available to authorized users.
Collapse
|
96
|
Schmidt A, Schmid MW, Grossniklaus U. Plant germline formation: common concepts and developmental flexibility in sexual and asexual reproduction. Development 2015; 142:229-41. [PMID: 25564620 DOI: 10.1242/dev.102103] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The life cycle of flowering plants alternates between two heteromorphic generations: a diploid sporophytic generation and a haploid gametophytic generation. During the development of the plant reproductive lineages - the germlines - typically, single sporophytic (somatic) cells in the flower become committed to undergo meiosis. The resulting spores subsequently develop into highly polarized and differentiated haploid gametophytes that harbour the gametes. Recent studies have provided insights into the genetic basis and regulatory programs underlying cell specification and the acquisition of reproductive fate during both sexual reproduction and asexual (apomictic) reproduction. As we review here, these recent advances emphasize the importance of transcriptional, translational and post-transcriptional regulation, and the role of epigenetic regulatory pathways and hormonal activity.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zürich, Zollikerstrasse 107, Zürich CH-8008, Switzerland
| | - Marc W Schmid
- Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zürich, Zollikerstrasse 107, Zürich CH-8008, Switzerland
| | - Ueli Grossniklaus
- Institute of Plant Biology and Zürich-Basel Plant Science Centre, University of Zürich, Zollikerstrasse 107, Zürich CH-8008, Switzerland
| |
Collapse
|
97
|
Vašut RJ, Vijverberg K, van Dijk PJ, de Jong H. Fluorescent in situ hybridization shows DIPLOSPOROUS located on one of the NOR chromosomes in apomictic dandelions (Taraxacum) in the absence of a large hemizygous chromosomal region. Genome 2015; 57:609-20. [PMID: 25760668 DOI: 10.1139/gen-2014-0143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apomixis in dandelions (Taraxacum: Asteraceae) is encoded by two unlinked dominant loci and a third yet undefined genetic factor: diplosporous omission of meiosis (DIPLOSPOROUS, DIP), parthenogenetic embryo development (PARTHENOGENESIS, PAR), and autonomous endosperm formation, respectively. In this study, we determined the chromosomal position of the DIP locus in Taraxacum by using fluorescent in situ hybridization (FISH) with bacterial artificial chromosomes (BACs) that genetically map within 1.2-0.2 cM of DIP. The BACs showed dispersed fluorescent signals, except for S4-BAC 83 that displayed strong unique signals as well. Under stringent blocking of repeats by C0t-DNA fragments, only a few fluorescent foci restricted to defined chromosome regions remained, including one on the nucleolus organizer region (NOR) chromosomes that contains the 45S rDNAs. FISH with S4-BAC 83 alone and optimal blocking showed discrete foci in the middle of the long arm of one of the NOR chromosomes only in triploid and tetraploid diplosporous dandelions, while signals in sexual diploids were lacking. This agrees with the genetic model of a single dose, dominant DIP allele, absent in sexuals. The length of the DIP region is estimated to cover a region of 1-10 Mb. FISH in various accessions of Taraxacum and the apomictic sister species Chondrilla juncea, confirmed the chromosomal position of DIP within Taraxacum but not outside the genus. Our results endorse that, compared to other model apomictic species, expressing either diplospory or apospory, the genome of Taraxacum shows a more similar and less diverged chromosome structure at the DIP locus. The different levels of allele sequence divergence at apomeiosis loci may reflect different terms of asexual reproduction. The association of apomeiosis loci with repetitiveness, dispersed repeats, and retrotransposons commonly observed in apomictic species may imply a functional role of these shared features in apomictic reproduction, as is discussed.
Collapse
Affiliation(s)
- Radim J Vašut
- Laboratory of Genetics, Wageningen University and Research Centre, P.O. Box 309, NL-6700 AH Wageningen, the Netherlands
| | | | | | | |
Collapse
|
98
|
Li Q, Eichten SR, Hermanson PJ, Zaunbrecher VM, Song J, Wendt J, Rosenbaum H, Madzima TF, Sloan AE, Huang J, Burgess DL, Richmond TA, McGinnis KM, Meeley RB, Danilevskaya ON, Vaughn MW, Kaeppler SM, Jeddeloh JA, Springer NM. Genetic perturbation of the maize methylome. THE PLANT CELL 2014; 26:4602-16. [PMID: 25527708 PMCID: PMC4311211 DOI: 10.1105/tpc.114.133140] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/17/2014] [Accepted: 12/02/2014] [Indexed: 05/18/2023]
Abstract
DNA methylation can play important roles in the regulation of transposable elements and genes. A collection of mutant alleles for 11 maize (Zea mays) genes predicted to play roles in controlling DNA methylation were isolated through forward- or reverse-genetic approaches. Low-coverage whole-genome bisulfite sequencing and high-coverage sequence-capture bisulfite sequencing were applied to mutant lines to determine context- and locus-specific effects of these mutations on DNA methylation profiles. Plants containing mutant alleles for components of the RNA-directed DNA methylation pathway exhibit loss of CHH methylation at many loci as well as CG and CHG methylation at a small number of loci. Plants containing loss-of-function alleles for chromomethylase (CMT) genes exhibit strong genome-wide reductions in CHG methylation and some locus-specific loss of CHH methylation. In an attempt to identify stocks with stronger reductions in DNA methylation levels than provided by single gene mutations, we performed crosses to create double mutants for the maize CMT3 orthologs, Zmet2 and Zmet5, and for the maize DDM1 orthologs, Chr101 and Chr106. While loss-of-function alleles are viable as single gene mutants, the double mutants were not recovered, suggesting that severe perturbations of the maize methylome may have stronger deleterious phenotypic effects than in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Qing Li
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108
| | - Steven R Eichten
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108
| | - Peter J Hermanson
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108
| | | | - Jawon Song
- Texas Advanced Computing Center, University of Texas, Austin, Texas 78758
| | | | | | - Thelma F Madzima
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - Amy E Sloan
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - Ji Huang
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | | | | | - Karen M McGinnis
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | | | | | - Matthew W Vaughn
- Texas Advanced Computing Center, University of Texas, Austin, Texas 78758
| | - Shawn M Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Nathan M Springer
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108
| |
Collapse
|
99
|
Gent JI, Madzima TF, Bader R, Kent MR, Zhang X, Stam M, McGinnis KM, Dawe RK. Accessible DNA and relative depletion of H3K9me2 at maize loci undergoing RNA-directed DNA methylation. THE PLANT CELL 2014; 26:4903-17. [PMID: 25465407 PMCID: PMC4311197 DOI: 10.1105/tpc.114.130427] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 11/03/2014] [Accepted: 11/18/2014] [Indexed: 05/18/2023]
Abstract
RNA-directed DNA methylation (RdDM) in plants is a well-characterized example of RNA interference-related transcriptional gene silencing. To determine the relationships between RdDM and heterochromatin in the repeat-rich maize (Zea mays) genome, we performed whole-genome analyses of several heterochromatic features: dimethylation of lysine 9 and lysine 27 (H3K9me2 and H3K27me2), chromatin accessibility, DNA methylation, and small RNAs; we also analyzed two mutants that affect these processes, mediator of paramutation1 and zea methyltransferase2. The data revealed that the majority of the genome exists in a heterochromatic state defined by inaccessible chromatin that is marked by H3K9me2 and H3K27me2 but that lacks RdDM. The minority of the genome marked by RdDM was predominantly near genes, and its overall chromatin structure appeared more similar to euchromatin than to heterochromatin. These and other data indicate that the densely staining chromatin defined as heterochromatin differs fundamentally from RdDM-targeted chromatin. We propose that small interfering RNAs perform a specialized role in repressing transposons in accessible chromatin environments and that the bulk of heterochromatin is incompatible with small RNA production.
Collapse
Affiliation(s)
- Jonathan I. Gent
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Thelma F. Madzima
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - Rechien Bader
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Matthew R. Kent
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Xiaoyu Zhang
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Maike Stam
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Karen M. McGinnis
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - R. Kelly Dawe
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
- Department of Genetics, University of Georgia, Athens, Georgia 30602
- Address correspondence to
| |
Collapse
|
100
|
Podio M, Cáceres ME, Samoluk SS, Seijo JG, Pessino SC, Ortiz JPA, Pupilli F. A methylation status analysis of the apomixis-specific region in Paspalum spp. suggests an epigenetic control of parthenogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6411-24. [PMID: 25180110 DOI: 10.1093/jxb/eru354] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Apomixis, a clonal plant reproduction by seeds, is controlled in Paspalum spp. by a single locus which is blocked in terms of recombination. Partial sequence analysis of the apomixis locus revealed structural features of heterochromatin, namely the presence of repetitive elements, gene degeneration, and de-regulation. To test the epigenetic control of apomixis, a study on the distribution of cytosine methylation at the apomixis locus and the effect of artificial DNA demethylation on the mode of reproduction was undertaken in two apomictic Paspalum species. The 5-methylcytosine distribution in the apomixis-controlling genomic region was studied in P. simplex by methylation-sensitive restriction fragment length polymorphism (RFLP) analysis and in P. notatum by fluorescene in situ hybridization (FISH). The effect of DNA demethylation was studied on the mode of reproduction of P. simplex by progeny test analysis of apomictic plants treated with the demethylating agent 5'-azacytidine. A high level of cytosine methylation was detected at the apomixis-controlling genomic region in both species. By analysing a total of 374 open pollination progeny, it was found that artificial demethylation had little or no effect on apospory, whereas it induced a significant depression of parthenogenesis. The results suggested that factors controlling repression of parthenogenesis might be inactivated in apomictic Paspalum by DNA methylation.
Collapse
Affiliation(s)
- Maricel Podio
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino s/n CC 14 (S2125 ZAA), Zavalla, Santa Fe, Argentina Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sargento Cabral 2131, 3400 Corrientes, Argentina
| | - Maria E Cáceres
- CNR-Istituto di Bioscienze e Biorisorse, Research Division: Perugia, Via della Madonna alta 130, I-06128 Perugia, Italy
| | - Sergio S Samoluk
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sargento Cabral 2131, 3400 Corrientes, Argentina
| | - José G Seijo
- Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sargento Cabral 2131, 3400 Corrientes, Argentina
| | - Silvina C Pessino
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino s/n CC 14 (S2125 ZAA), Zavalla, Santa Fe, Argentina
| | - Juan Pablo A Ortiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino s/n CC 14 (S2125 ZAA), Zavalla, Santa Fe, Argentina Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sargento Cabral 2131, 3400 Corrientes, Argentina
| | - Fulvio Pupilli
- CNR-Istituto di Bioscienze e Biorisorse, Research Division: Perugia, Via della Madonna alta 130, I-06128 Perugia, Italy
| |
Collapse
|