51
|
Zhang J, Ku LX, Han ZP, Guo SL, Liu HJ, Zhang ZZ, Cao LR, Cui XJ, Chen YH. The ZmCLA4 gene in the qLA4-1 QTL controls leaf angle in maize (Zea mays L.). JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5063-76. [PMID: 24987012 DOI: 10.1093/jxb/eru271] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Maize architecture is a major contributing factor to their high level of productivity. Maize varieties with an erect-leaf-angle (LA) phenotype, which increases light harvesting for photosynthesis and grain-filling, have elevated grain yields. Although a large body of information is available on the map positions of quantitative trait loci (QTL) for LA, little is known about the molecular mechanism of these QTL. In this study, the ZmCLA4 gene, which is responsible for the qLA4-1 QTL associated with LA, was identified and isolated by fine mapping and positional cloning. The ZmCLA4 gene is an orthologue of LAZY1 in rice and Arabidopsis. Sequence analysis revealed two SNPs and two indel sites in ZmCLA4 between the D132 and D132-NIL inbred maize lines. Association analysis showed that C/T/mutation667 and CA/indel965 were strongly associated with LA. Subcellular localization verified the functions of a predicted transmembrane domain and a nuclear localization signal in ZmCLA4. Transgenic maize plants with a down-regulated ZmCLA4 RNAi construct and transgenic rice plants over-expressing ZmCLA4 confirmed that the ZmCLA4 gene located in the qLA4 QTL regulated LA. The allelic variants of ZmCLA4 in the D132 and D132-NIL lines exhibited significant differences in leaf angle. ZmCLA4 transcript accumulation was higher in D132-NIL than in D132 during all the developmental stages and was negatively correlated with LA. The gravitropic response was increased and cell shape and number at the leaf and stem junctions were altered in D132-NIL relative to D132. These findings suggest that ZmCLA4 plays a negative role in the control of maize LA through the alteration of mRNA accumulation, leading to altered shoot gravitropism and cell development. The cloning of the gene responsible for the qLA4-1 QTL provides information on the molecular mechanisms of LA in maize and an opportunity for the improvement of plant architecture with regard to LA through maize breeding.
Collapse
Affiliation(s)
- J Zhang
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95, Wenhua Road, Zhengzhou 450002, China
| | - L X Ku
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95, Wenhua Road, Zhengzhou 450002, China
| | - Z P Han
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95, Wenhua Road, Zhengzhou 450002, China College of Agronomy, Henan University of Science and Technology, Luoyang 471003, China
| | - S L Guo
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95, Wenhua Road, Zhengzhou 450002, China
| | - H J Liu
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95, Wenhua Road, Zhengzhou 450002, China
| | - Z Z Zhang
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95, Wenhua Road, Zhengzhou 450002, China
| | - L R Cao
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95, Wenhua Road, Zhengzhou 450002, China
| | - X J Cui
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95, Wenhua Road, Zhengzhou 450002, China
| | - Y H Chen
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95, Wenhua Road, Zhengzhou 450002, China
| |
Collapse
|
52
|
Chandler JW, Werr W. Arabidopsis floral phytomer development: auxin response relative to biphasic modes of organ initiation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3097-110. [PMID: 24744428 PMCID: PMC4071828 DOI: 10.1093/jxb/eru153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In the Arabidopsis inflorescence meristem (IM), auxin is considered a prepatterning signal for floral primordia, whereas a centripetal mode of positional information for floral organ identity is inherent to the ABCE model. However, spatio-temporal patterns of organ initiation in each whorl at the earliest initiation stages are largely unknown. Evidence suggests that initial flower development occurs along an abaxial/adaxial axis and conforms to phytomer theory. Use of the founder cell marker DORNRÖSCHEN-LIKE (DRNL) as a tool in leafy, puchi, and apetala 1 cauliflower mutant backgrounds suggests that bract founder cells are marked at the IM periphery. The DRNL transcription domain in the wild-type IM is spatially discrete from DR5 expression, suggesting that bract initiation is independent of canonical auxin response. When bracts develop in lfy and puchi mutant floral primordia the initiation of lateral sepals precedes the specification of medial sepals compared with wild type, showing an interplay between bract and abaxial sepal founder cell recruitment. In the perianthia (pan) mutant background, DRNL expression indicates that a radial outer whorl arrangement derives from splitting of sepal founder cell populations at abaxial and adaxial positions. This splitting of incipient sepal primordia is partially dependent on PRESSED FLOWER (PRS) activity and implies that sepal specification is independent of WUSCHEL and CLAVATA3 expression, as both marker genes only regain activity in stage-2 flowers, when patterning of inner floral organs switches to a centripetal mode. The transition from an initially abaxial/adaxial into a centripetal patterning programme, and its timing represent an adaptive trait that possibly contributes to variation in floral morphology, especially unidirectional organ initiation.
Collapse
Affiliation(s)
- J W Chandler
- Institute of Developmental Biology, Cologne Biocenter, University of Cologne, Cologne, Germany.
| | - W Werr
- Institute of Developmental Biology, Cologne Biocenter, University of Cologne, Cologne, Germany
| |
Collapse
|
53
|
Dong Z, Jiang C, Chen X, Zhang T, Ding L, Song W, Luo H, Lai J, Chen H, Liu R, Zhang X, Jin W. Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response. PLANT PHYSIOLOGY 2013; 163:1306-22. [PMID: 24089437 PMCID: PMC3813652 DOI: 10.1104/pp.113.227314] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Auxin is a plant hormone that plays key roles in both shoot gravitropism and inflorescence development. However, these two processes appear to be parallel and to be regulated by distinct players. Here, we report that the maize (Zea mays) prostrate stem1 mutant, which is allelic to the classic mutant lazy plant1 (la1), displays prostrate growth with reduced shoot gravitropism and defective inflorescence development. Map-based cloning identified maize ZmLA1 as the functional ortholog of LAZY1 in rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana). It has a unique role in inflorescence development and displays enriched expression in reproductive organs such as tassels and ears. Transcription of ZmLA1 responds to auxin and is repressed by light. Furthermore, ZmLA1 physically interacts with a putative auxin transport regulator in the plasma membrane and a putative auxin signaling protein in the nucleus. RNA-SEQ data showed that dozens of auxin transport, auxin response, and light signaling genes were differentially expressed in la1 mutant stems. Therefore, ZmLA1 might mediate the cross talk between shoot gravitropism and inflorescence development by regulating auxin transport, auxin signaling, and probably light response in maize.
Collapse
|
54
|
Gallavotti A. The role of auxin in shaping shoot architecture. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2593-608. [PMID: 23709672 DOI: 10.1093/jxb/ert141] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The variety of plant architectures observed in nature is predominantly determined by vegetative and reproductive branching patterns, the positioning of lateral organs, and differential stem elongation. Branches, lateral organs, and stems are the final products of the activity of meristems, groups of stem cells whose function is genetically determined and environmentally influenced. Several decades of studies in different plant species have shed light on the essential role of the hormone auxin in plant growth and development. Auxin influences stem elongation and regulates the formation, activity, and fate of meristems, and has therefore been recognized as a major hormone shaping plant architecture. Increasing our knowledge of the molecular mechanisms that regulate auxin function is necessary to understand how different plant species integrate a genetically determined developmental programme, the establishment of a body plan, with constant inputs from the surrounding environment. This information will allow us to develop the molecular tools needed to modify plant architecture in several crop species and in rapidly changing environments.
Collapse
Affiliation(s)
- Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA.
| |
Collapse
|
55
|
Pautler M, Tanaka W, Hirano HY, Jackson D. Grass meristems I: shoot apical meristem maintenance, axillary meristem determinacy and the floral transition. PLANT & CELL PHYSIOLOGY 2013; 54:302-12. [PMID: 23411664 DOI: 10.1093/pcp/pct025] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The vegetative and reproductive shoot architectures displayed by members of the grass family are critical to reproductive success, and thus agronomic yield. Variation in shoot architecture is explained by the maintenance, activity and determinacy of meristems, pools of pluripotent stem cells responsible for post-embryonic plant growth. This review summarizes recent progress in understanding the major properties of grass shoot meristems, focusing on vegetative phase meristems and the floral transition, primarily in rice and maize. Major areas of interest include: the control of meristem homeostasis by the CLAVATA-WUSCHEL pathway and by hormones such as cytokinin; the initiation of axillary meristems and the control of axillary meristem dormancy; and the environmental and endogenous cues that regulate flowering time. In an accompanying paper, Tanaka et al. review subsequent stages of shoot development, including current knowledge of reproductive meristem determinacy and the fate transitions associated with these meristems.
Collapse
Affiliation(s)
- Michael Pautler
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | | | | | | |
Collapse
|
56
|
Developmental genetics of the perianthless flowers and bracts of a paleoherb species, Saururus chinensis. PLoS One 2013; 8:e53019. [PMID: 23382831 PMCID: PMC3559744 DOI: 10.1371/journal.pone.0053019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/22/2012] [Indexed: 11/19/2022] Open
Abstract
Saururus chinensis is a core member of Saururaceae, a perianthless (lacking petals or sepals) family. Due to its basal phylogenetic position and unusual floral composition, study of this plant family is important for understanding the origin and evolution of perianthless flowers and petaloid bracts among angiosperm species. To isolate genes involved in S. chinensis flower development, subtracted floral cDNA libraries were constructed by using suppression subtractive hybridization (SSH) on transcripts isolated from developing inflorescences and seedling leaves. The subtracted cDNA libraries contained a total of 1,141 ESTs and were used to create cDNA microarrays to analyze transcript profiles of developing inflorescence tissues. Subsequently, qRT-PCR analyses of eight MADS-box transcription factors and in situ hybridizations of two B-class MADS-box transcription factors were performed to verify and extend the cDNA microarray results. Finally, putative phylogenetic relationships within the B-class MADS-box gene family were determined using the discovered S. chinensis B-class genes to compare K-domain sequences with B genes from other basal angiosperms. Two hundred seventy-seven of the 1,141 genes were found to be expressed differentially between S. chinensis inflorescence tissues and seedling leaves, 176 of which were grouped into at least one functional category, including transcription (14.75%), energy (12.59%), metabolism (9.12%), protein-related function (8.99%), and cellular transport (5.76%). qRT-PCR and in situ hybridization of selected MADS-box genes supported our microarray data. Phylogenetic analysis indicated that a total of six B-class MADS-box genes were isolated from S. chinensis. The differential regulation of S. chinensis B-class MADS-box transcription factors likely plays a role during the development of subtending bracts and perianthless flowers. This study contributes to our understanding of inflorescence development in Saururus, and represents an initial step toward understanding the formation of petaloid bracts in this species.
Collapse
|
57
|
Curaba J, Talbot M, Li Z, Helliwell C. Over-expression of microRNA171 affects phase transitions and floral meristem determinancy in barley. BMC PLANT BIOLOGY 2013; 13:6. [PMID: 23294862 PMCID: PMC3547705 DOI: 10.1186/1471-2229-13-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/02/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND The transitions from juvenile to adult and adult to reproductive phases of growth are important stages in the life cycle of plants. The regulators of these transitions include miRNAs, in particular miR156 and miR172 which are part of a regulatory module conserved across the angiosperms. In Arabidopsis miR171 represses differentiation of axillary meristems by repressing expression of SCARECROW-LIKE(SCL) transcription factors, however the role of miR171 has not been examined in other plants. RESULTS To investigate the roles of mir171 and its target genes in a monocot, the Hvu pri-miR171a was over-expressed in barley (Hordeum vulgare L. cv. Golden promise) leading to reduced expression of at least one HvSCL gene. The resulting transgenic plants displayed a pleiotropic phenotype which included branching defects, an increased number of short vegetative phytomers and late flowering. These phenotypes appear to be the consequence of changes in the organisation of the shoot meristem. In addition, the data show that miR171 over-expression alters the vegetative to reproductive phase transition by activating the miR156 pathway and repressing the expression of the TRD (THIRD OUTER GLUME) and HvPLA1 (Plastochron1) genes. CONCLUSIONS Our data suggest that some of the roles of miR171 and its target genes that have been determined in Arabidopsis are conserved in barley and that they have additional functions in barley including activation of the miR156 pathway.
Collapse
Affiliation(s)
- Julien Curaba
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Mark Talbot
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Zhongyi Li
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Chris Helliwell
- Current address: School of Agriculture and Food Systems, University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
58
|
Kellogg EA, Camara PEAS, Rudall PJ, Ladd P, Malcomber ST, Whipple CJ, Doust AN. Early inflorescence development in the grasses (Poaceae). FRONTIERS IN PLANT SCIENCE 2013; 4:250. [PMID: 23898335 PMCID: PMC3721031 DOI: 10.3389/fpls.2013.00250] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/20/2013] [Indexed: 05/17/2023]
Abstract
The shoot apical meristem of grasses produces the primary branches of the inflorescence, controlling inflorescence architecture and hence seed production. Whereas leaves are produced in a distichous pattern, with the primordia separated from each other by an angle of 180°, inflorescence branches are produced in a spiral in most species. The morphology and developmental genetics of the shift in phyllotaxis have been studied extensively in maize and rice. However, in wheat, Brachypodium, and oats, all in the grass subfamily Pooideae, the change in phyllotaxis does not occur; primary inflorescence branches are produced distichously. It is unknown whether the distichous inflorescence originated at the base of Pooideae, or whether it appeared several times independently. In this study, we show that Brachyelytrum, the genus sister to all other Pooideae has spiral phyllotaxis in the inflorescence, but that in the remaining 3000+ species of Pooideae, the phyllotaxis is two-ranked. These two-ranked inflorescences are not perfectly symmetrical, and have a clear "front" and "back;" this developmental axis has never been described in the literature and it is unclear what establishes its polarity. Strictly distichous inflorescences appear somewhat later in the evolution of the subfamily. Two-ranked inflorescences also appear in a few grass outgroups and sporadically elsewhere in the family, but unlike in Pooideae do not generally correlate with a major radiation of species. After production of branches, the inflorescence meristem may be converted to a spikelet meristem or may simply abort; this developmental decision appears to be independent of the branching pattern.
Collapse
Affiliation(s)
- Elizabeth A. Kellogg
- Department of Biology, University of Missouri-St. LouisSt. Louis, MO, USA
- *Correspondence: Elizabeth A. Kellogg, Department of Biology, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121, USA e-mail:
| | | | | | - Philip Ladd
- School of Veterinary and Life Sciences, Murdoch UniversityPerth, WA, Australia
| | - Simon T. Malcomber
- Department of Biology, California State University-Long BeachLong Beach, CA, USA
| | | | - Andrew N. Doust
- Department of Botany, Oklahoma State UniversityStillwater, OK, USA
| |
Collapse
|
59
|
Zhang X, Zhou Y, Ding L, Wu Z, Liu R, Meyerowitz EM. Transcription repressor HANABA TARANU controls flower development by integrating the actions of multiple hormones, floral organ specification genes, and GATA3 family genes in Arabidopsis. THE PLANT CELL 2013; 25:83-101. [PMID: 23335616 PMCID: PMC3584552 DOI: 10.1105/tpc.112.107854] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 11/29/2012] [Accepted: 12/28/2012] [Indexed: 05/19/2023]
Abstract
Plant inflorescence meristems and floral meristems possess specific boundary domains that result in proper floral organ separation and specification. HANABA TARANU (HAN) encodes a boundary-expressed GATA3-type transcription factor that regulates shoot meristem organization and flower development in Arabidopsis thaliana, but the underlying mechanism remains unclear. Through time-course microarray analyses following transient overexpression of HAN, we found that HAN represses hundreds of genes, especially genes involved in hormone responses and floral organ specification. Transient overexpression of HAN also represses the expression of HAN and three other GATA3 family genes, HANL2 (HAN-LIKE 2), GNC (GATA, NITRATE-INDUCIBLE, CARBON-METABOLISM-INVOLVED), and GNL (GNC-LIKE), forming a negative regulatory feedback loop. Genetic analysis indicates that HAN and the three GATA3 family genes coordinately regulate floral development, and their expression patterns are partially overlapping. HAN can homodimerize and heterodimerize with the three proteins encoded by these genes, and HAN directly binds to its own promoter and the GNC promoter in vivo. These findings, along with the fact that constitutive overexpression of HAN produces an even stronger phenotype than the loss-of-function mutation, support the hypothesis that HAN functions as a key repressor that regulates floral development via regulatory networks involving genes in the GATA3 family, along with genes involved in hormone action and floral organ specification.
Collapse
Affiliation(s)
- Xiaolan Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
60
|
Chandler JW. Floral meristem initiation and emergence in plants. Cell Mol Life Sci 2012; 69:3807-18. [PMID: 22573183 PMCID: PMC11115123 DOI: 10.1007/s00018-012-0999-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/05/2012] [Accepted: 04/16/2012] [Indexed: 12/19/2022]
Abstract
Plant development and architecture is regulated by meristems that initiate lateral organs on their flanks. The gene regulatory networks that govern the transition of a vegetative shoot apical meristem into an inflorescence meristem (IM), together with those necessary to specify floral meristem (FM) identity have been elucidated in Arabidopsis thaliana and are highly complex and redundant. FMs are initiated in the axils of cryptic bracts and evidence suggests that FMs emerge and differentiate along an abaxial/adaxial axis, in contrast to existing models of centroradial positional information within FMs. Real-time imaging has revealed dynamic cell division and gene expression patterns associated with incipient primordia in the IM. This review, however, outlines how little is known concerning the identity of these primordia, the timing of FM specification and commitment in relation to the establishment of FM identity, and the interplay between bract and FM founder cell recruitment and development.
Collapse
Affiliation(s)
- J W Chandler
- Institute of Developmental Biology, Cologne Biocenter, Cologne University, Cologne, Germany.
| |
Collapse
|
61
|
Han JJ, Jackson D, Martienssen R. Pod corn is caused by rearrangement at the Tunicate1 locus. THE PLANT CELL 2012; 24:2733-44. [PMID: 22829149 PMCID: PMC3426111 DOI: 10.1105/tpc.112.100537] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pod corn (Zea mays var tunicata) was once regarded as ancestral to cultivated maize, and was prized by pre-Columbian cultures for its magical properties. Tunicate1 (Tu1) is a dominant pod corn mutation in which kernels are completely enclosed in leaflike glumes. Here we show that Tu1 encodes a MADS box transcription factor expressed in leaves whose 5' regulatory region is fused by a 1.8-Mb chromosomal inversion to the 3' region of a gene expressed in the inflorescence. Both genes are further duplicated, accounting for classical derivative alleles isolated by recombination, and Tu1 transgenes interact with these derivative alleles in a dose-dependent manner. In young ear primordia, TU1 proteins are nuclearly localized in specific cells at the base of spikelet pair meristems. Tu1 branch determination defects resemble those in ramosa mutants, which encode regulatory proteins expressed in these same cells, accounting for synergism in double mutants discovered almost 100 years ago. The Tu1 rearrangement is not found in ancestral teosinte and arose after domestication of maize.
Collapse
Affiliation(s)
- Jong-Jin Han
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, New York 11794
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Robert Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
- Howard Hughes Medical Institute–Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
- Address correspondence to
| |
Collapse
|
62
|
Houston K, Druka A, Bonar N, Macaulay M, Lundqvist U, Franckowiak J, Morgante M, Stein N, Waugh R. Analysis of the barley bract suppression gene Trd1. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:33-45. [PMID: 22395962 DOI: 10.1007/s00122-012-1814-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 01/31/2012] [Indexed: 05/26/2023]
Abstract
A typical barley (Hordeum vulgare) floret consists of reproductive organs three stamens and a pistil, and non-reproductive organs-lodicules and two floral bracts, abaxial called 'lemma' and adaxial 'palea'. The floret is subtended by two additional bracts called outer or empty glumes. Together these organs form the basic structural unit of the grass inflorescence, a spikelet. There are commonly three spikelets at each rachis (floral stem of the barley spike) node, one central and two lateral spikelets. Rare naturally occurring or induced phenotypic variants that contain a third bract subtending the central spikelets have been described in barley. The gene responsible for this phenotype was called the THIRD OUTER GLUME1 (Trd1). The Trd1 mutants fail to suppress bract growth and as a result produce leaf-like structures that subtend each rachis node in the basal portion of the spike. Also, floral development at the collar is not always suppressed. In rice and maize, recessive mutations in NECK LEAF1 (Nl1) and TASSEL SHEATH1 (Tsh1) genes, respectively, have been shown to be responsible for orthologous phenotypes. Fine mapping of the trd1 phenotype in an F(3) recombinant population enabled us to position Trd1 on the long arm of chromosome 1H to a 10 cM region. We anchored this to a conserved syntenic region on rice chromosome Os05 and selected a set of candidate genes for validation by resequencing PCR amplicons from a series of independent mutant alleles. This analysis revealed that a GATA transcription factor, recently proposed to be Trd1, contained mutations in 10 out of 14 independent trd1 mutant alleles that would generate non-functional TRD1 proteins. Together with genetic linkage data, we confirm the identity of Trd1 as the GATA transcription factor ortholog of rice Nl1 and maize Tsh1 genes.
Collapse
Affiliation(s)
- Kelly Houston
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Cutri L, Nave N, Ami MB, Chayut N, Samach A, Dornelas MC. Evolutionary, genetic, environmental and hormonal-induced plasticity in the fate of organs arising from axillary meristems in Passiflora spp. Mech Dev 2012; 130:61-9. [PMID: 22659398 DOI: 10.1016/j.mod.2012.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 11/30/2022]
Abstract
Tendrils can be found in different plant species. In legumes such as pea, tendrils are modified leaves produced by the vegetative meristem but in the grape vine, a same meristem is used to either form a tendril or an inflorescence. Passiflora species originated in ecosystems in which there is dense vegetation and competition for light. Thus climbing on other plants in order to reach regions with higher light using tendrils is an adaptive advantage. In Passiflora species, after a juvenile phase, every leaf has a subtending vegetative meristem, and a separate meristem that forms both flowers and a tendril. Thus, flowers are formed once a tendril is formed yet whether or not this flower will reach bloom depends on the environment. For example, in Passiflora edulis flowers do not develop under shaded conditions, so that tendrils are needed to bring the plant to positions were flowers can develop. This separate meristem generally forms a single tendril in different Passiflora species yet the number and position of flowers formed from the same meristem diverges among species. Here we display the variation among species as well as variation within a single species, P. edulis. We also show that the number of flowers within a specific genotype can be modulated by applying Cytokinins. Finally, this separate meristem is capable of transforming into a leaf-producing meristem under specific environmental conditions. Thus, behind what appears to be a species-specific rigid program regarding the fate of this meristem, our study helps to reveal a plasticity normally restrained by genetic, hormonal and environmental constraints.
Collapse
Affiliation(s)
- Lucas Cutri
- Universidade Estadual de Campinas, UNICAMP, Instituto de Biologia, Departamento de Biologia Vegetal, Cidade Universitaria Zeferino Vaz, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
64
|
Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, Holland JB, Flint-Garcia S, McMullen MD, Buckler ES, Rocheford TR. Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet 2011; 7:e1002383. [PMID: 22125498 PMCID: PMC3219606 DOI: 10.1371/journal.pgen.1002383] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/29/2011] [Indexed: 11/20/2022] Open
Abstract
We compared the genetic architecture of thirteen maize morphological traits in a large population of recombinant inbred lines. Four traits from the male inflorescence (tassel) and three traits from the female inflorescence (ear) were measured and studied using linkage and genome-wide association analyses and compared to three flowering and three leaf traits previously studied in the same population. Inflorescence loci have larger effects than flowering and leaf loci, and ear effects are larger than tassel effects. Ear trait models also have lower predictive ability than tassel, flowering, or leaf trait models. Pleiotropic loci were identified that control elongation of ear and tassel, consistent with their common developmental origin. For these pleiotropic loci, the ear effects are larger than tassel effects even though the same causal polymorphisms are likely involved. This implies that the observed differences in genetic architecture are not due to distinct features of the underlying polymorphisms. Our results support the hypothesis that genetic architecture is a function of trait stability over evolutionary time, since the traits that changed most during the relatively recent domestication of maize have the largest effects. Genetic architecture is of broad interest in evolutionary biology, plant and animal breeding, and medicine, because it influences both the response to selection and the success of trait mapping. Results from the most rigorously studied genetic systems suggest a similar genetic architecture across all species and traits studied, with many loci of small effect. A few strongly selected traits in domesticated organisms show unusual genetic architecture, for reasons that are unclear. We compare maize inflorescence, flowering, and leaf traits and show that inflorescence traits have distinct genetic architectures characterized by larger effects. Female inflorescences (ears) have larger effects than male inflorescences (tassels) even though the two structures have similar developmental origins. Analysis of pleiotropic loci shows that these larger effects are not inherent features of the underlying polymorphisms. Rather, maize inflorescences appear to be exceptionally labile, with female inflorescences more labile than male inflorescences. These results support the canalization hypothesis, which predicts that rapidly changing traits will have larger effects. We suggest that maize inflorescence traits, and ear traits in particular, have larger effects than flowering or leaf traits as a result of strong directional selection during maize domestication.
Collapse
Affiliation(s)
- Patrick J. Brown
- Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
- * E-mail: (PJ Brown); (TR Rocheford)
| | - Narasimham Upadyayula
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Gregory S. Mahone
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Feng Tian
- Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
| | - Peter J. Bradbury
- United States Department of Agriculture – Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| | - Sean Myles
- Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
| | - James B. Holland
- United States Department of Agriculture – Agricultural Research Service and Department of Crop Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Sherry Flint-Garcia
- United States Department of Agriculture – Agricultural Research Service and Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Michael D. McMullen
- United States Department of Agriculture – Agricultural Research Service and Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Edward S. Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
- United States Department of Agriculture – Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Torbert R. Rocheford
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
- Department of Agronomy, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (PJ Brown); (TR Rocheford)
| |
Collapse
|
65
|
An AT-hook gene is required for palea formation and floral organ number control in rice. Dev Biol 2011; 359:277-88. [DOI: 10.1016/j.ydbio.2011.08.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 11/17/2022]
|
66
|
Bybee SM, Bracken-Grissom H, Haynes BD, Hermansen RA, Byers RL, Clement MJ, Udall JA, Wilcox ER, Crandall KA. Targeted amplicon sequencing (TAS): a scalable next-gen approach to multilocus, multitaxa phylogenetics. Genome Biol Evol 2011; 3:1312-23. [PMID: 22002916 PMCID: PMC3236605 DOI: 10.1093/gbe/evr106] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2011] [Indexed: 12/03/2022] Open
Abstract
Next-gen sequencing technologies have revolutionized data collection in genetic studies and advanced genome biology to novel frontiers. However, to date, next-gen technologies have been used principally for whole genome sequencing and transcriptome sequencing. Yet many questions in population genetics and systematics rely on sequencing specific genes of known function or diversity levels. Here, we describe a targeted amplicon sequencing (TAS) approach capitalizing on next-gen capacity to sequence large numbers of targeted gene regions from a large number of samples. Our TAS approach is easily scalable, simple in execution, neither time-nor labor-intensive, relatively inexpensive, and can be applied to a broad diversity of organisms and/or genes. Our TAS approach includes a bioinformatic application, BarcodeCrucher, to take raw next-gen sequence reads and perform quality control checks and convert the data into FASTA format organized by gene and sample, ready for phylogenetic analyses. We demonstrate our approach by sequencing targeted genes of known phylogenetic utility to estimate a phylogeny for the Pancrustacea. We generated data from 44 taxa using 68 different 10-bp multiplexing identifiers. The overall quality of data produced was robust and was informative for phylogeny estimation. The potential for this method to produce copious amounts of data from a single 454 plate (e.g., 325 taxa for 24 loci) significantly reduces sequencing expenses incurred from traditional Sanger sequencing. We further discuss the advantages and disadvantages of this method, while offering suggestions to enhance the approach.
Collapse
Affiliation(s)
- Seth M Bybee
- Department of Biology, Brigham Young University, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
grassy tillers1 promotes apical dominance in maize and responds to shade signals in the grasses. Proc Natl Acad Sci U S A 2011; 108:E506-12. [PMID: 21808030 DOI: 10.1073/pnas.1102819108] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The shape of a plant is largely determined by regulation of lateral branching. Branching architecture can vary widely in response to both genotype and environment, suggesting regulation by a complex interaction of autonomous genetic factors and external signals. Tillers, branches initiated at the base of grass plants, are suppressed in response to shade conditions. This suppression of tiller and lateral branch growth is an important trait selected by early agriculturalists during maize domestication and crop improvement. To understand how plants integrate external environmental cues with endogenous signals to control their architecture, we have begun a functional characterization of the maize mutant grassy tillers1 (gt1). We isolated the gt1 gene using positional cloning and found that it encodes a class I homeodomain leucine zipper gene that promotes lateral bud dormancy and suppresses elongation of lateral ear branches. The gt1 expression is induced by shading and is dependent on the activity of teosinte branched1 (tb1), a major domestication locus controlling tillering and lateral branching. Interestingly, like tb1, gt1 maps to a quantitative trait locus that regulates tillering and lateral branching in maize and shows evidence of selection during maize domestication. Branching and shade avoidance are both of critical agronomic importance, but little is known about how these processes are integrated. Our results indicate that gt1 mediates the reduced branching associated with the shade avoidance response in the grasses. Furthermore, selection at the gt1 locus suggests that it was involved in improving plant architecture during the domestication of maize.
Collapse
|
68
|
Gallavotti A, Malcomber S, Gaines C, Stanfield S, Whipple C, Kellogg E, Schmidt RJ. BARREN STALK FASTIGIATE1 is an AT-hook protein required for the formation of maize ears. THE PLANT CELL 2011; 23:1756-71. [PMID: 21540434 PMCID: PMC3123940 DOI: 10.1105/tpc.111.084590] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Ears are the seed-bearing inflorescences of maize (Zea mays) plants and represent a crucial component of maize yield. The first step in the formation of ears is the initiation of axillary meristems in the axils of developing leaves. In the classic maize mutant barren stalk fastigiate1 (baf1), first discovered in the 1950s, ears either do not form or, if they do, are partially fused to the main stalk. We positionally cloned Baf1 and found that it encodes a transcriptional regulator containing an AT-hook DNA binding motif. Single coorthologs of Baf1 are found in syntenic regions of brachypodium (Brachypodium distachyon), rice (Oryza sativa), and sorghum (Sorghum bicolor), suggesting that the gene is likely present in all cereal species. Protein-protein interaction assays suggest that BAF1 is capable of forming homodimers and heterodimers with other members of the AT-hook family. Another transcriptional regulator required for ear initiation is the basic helix-loop-helix protein BARREN STALK1 (BA1). Genetic and expression analyses suggest that Baf1 is required to reach a threshold level of Ba1 expression for the initiation of maize ears. We propose that Baf1 functions in the demarcation of a boundary region essential for the specification of a stem cell niche.
Collapse
Affiliation(s)
- Andrea Gallavotti
- Section of Cell and Developmental Biology, University of California-San Diego, La Jolla, CA 92093-0116, USA.
| | | | | | | | | | | | | |
Collapse
|
69
|
Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, Radovic S, Shahinnia F, Vendramin V, Morgante M, Stein N, Waugh R. Genetic dissection of barley morphology and development. PLANT PHYSIOLOGY 2011; 155:617-27. [PMID: 21088227 PMCID: PMC3032454 DOI: 10.1104/pp.110.166249] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 11/14/2010] [Indexed: 05/18/2023]
Abstract
Since the early 20th century, barley (Hordeum vulgare) has been a model for investigating the effects of physical and chemical mutagens and for exploring the potential of mutation breeding in crop improvement. As a consequence, extensive and well-characterized collections of morphological and developmental mutants have been assembled that represent a valuable resource for exploring a wide range of complex and fundamental biological processes. We constructed a collection of 881 backcrossed lines containing mutant alleles that induce a majority of the morphological and developmental variation described in this species. After genotyping these lines with up to 3,072 single nucleotide polymorphisms, comparison to their recurrent parent defined the genetic location of 426 mutant alleles to chromosomal segments, each representing on average <3% of the barley genetic map. We show how the gene content in these segments can be predicted through conservation of synteny with model cereal genomes, providing a route to rapid gene identification.
Collapse
Affiliation(s)
- Arnis Druka
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Bybee SM, Bracken-Grissom H, Haynes BD, Hermansen RA, Byers RL, Clement MJ, Udall JA, Wilcox ER, Crandall KA. Targeted Amplicon Sequencing (TAS): A Scalable Next-Gen Approach to Multilocus, Multitaxa Phylogenetics. Genome Biol Evol 2011. [DOI: 10.evr106[pii]10.1093/gbe/evr106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
| | | | | | - Russell A. Hermansen
- Department of Biology, Brigham Young University
- Department of Molecular Biology, University of Wyoming
| | - Robert L. Byers
- Department of Plant and Wildlife Sciences, Brigham Young University
| | | | - Joshua A. Udall
- Department of Plant and Wildlife Sciences, Brigham Young University
| | - Edward R. Wilcox
- Department of Biology, Brigham Young University
- DNA Sequencing Center, Brigham Young University
| | - Keith A. Crandall
- Department of Biology, Brigham Young University
- Monte L. Bean Life Science Museum, Brigham Young University
| |
Collapse
|
71
|
Narsai R, Castleden I, Whelan J. Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana. BMC PLANT BIOLOGY 2010; 10:262. [PMID: 21106056 PMCID: PMC3095337 DOI: 10.1186/1471-2229-10-262] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 11/24/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Arabidopsis thaliana is clearly established as the model plant species. Given the ever-growing demand for food, there is a need to translate the knowledge learned in Arabidopsis to agronomically important species, such as rice (Oryza sativa). To gain a comparative insight into the similarities and differences into how organs are built and how plants respond to stress, the transcriptomes of Arabidopsis and rice were compared at the level of gene orthology and functional categorisation. RESULTS Organ specific transcripts in rice and Arabidopsis display less overlap in terms of gene orthology compared to the orthology observed between both genomes. Although greater overlap in terms of functional classification was observed between root specific transcripts in rice and Arabidopsis, this did not extend to flower, leaf or seed specific transcripts. In contrast, the overall abiotic stress response transcriptome displayed a significantly greater overlap in terms of gene orthology compared to the orthology observed between both genomes. However, ~50% or less of these orthologues responded in a similar manner in both species. In fact, under cold and heat treatments as many or more orthologous genes responded in an opposite manner or were unchanged in one species compared to the other. Examples of transcripts that responded oppositely include several genes encoding proteins involved in stress and redox responses and non-symbiotic hemoglobins that play central roles in stress signalling pathways. The differences observed in the abiotic transcriptomes were mirrored in the presence of cis-acting regulatory elements in the promoter regions of stress responsive genes and the transcription factors that potentially bind these regulatory elements. Thus, both the abiotic transcriptome and its regulation differ between rice and Arabidopsis. CONCLUSIONS These results reveal significant divergence between Arabidopsis and rice, in terms of the abiotic stress response and its regulation. Both plants are shown to employ unique combinations of genes to achieve growth and stress responses. Comparison of these networks provides a more rational approach to translational studies that is based on the response observed in these two diverse plant models.
Collapse
Affiliation(s)
- Reena Narsai
- ARC Centre of Excellence in Plant Energy Biology, MCS Building M316 University of Western Australia
- Centre for Computational Systems Biology, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| | - Ian Castleden
- ARC Centre of Excellence in Plant Energy Biology, MCS Building M316 University of Western Australia
- Centre for Computational Systems Biology, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, MCS Building M316 University of Western Australia
- Centre for Computational Systems Biology, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| |
Collapse
|
72
|
Chuck G, Bortiri E. The unique relationship between tsh4 and ra2 in patterning floral phytomers. PLANT SIGNALING & BEHAVIOR 2010; 5:979-981. [PMID: 20622509 PMCID: PMC3115173 DOI: 10.4161/psb.5.8.12220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 04/27/2010] [Indexed: 05/26/2023]
Abstract
Phytomers are developmental compartments that display stereotypical patterns dependent on whether they are initiated during the vegetative phase or the floral phases. Differences in appearance result from differential partitioning mechanisms responsible for allocation of cells to different components of the phytomer. The tasselsheath loci of maize control cell partitioning within the phytomer, indirectly influencing growth and development of its individual components. The tasselsheath4 (tsh4) gene accomplishes this through regulation of the ramosa2 (ra2) meristem determinacy gene, whereas tasselsheath1 (tsh1) appears to function differently.
Collapse
Affiliation(s)
- George Chuck
- Plant Gene Expression Center, United States Department of Agriculture/Agricultural Research Service, Department of Plant and Microbial Biology, University of California at Berkeley, Albany, California, USA.
| | | |
Collapse
|
73
|
Mach J. Different words, same message: how grasses and Arabidopsis say "hold the bract". THE PLANT CELL 2010; 22:538. [PMID: 20305119 PMCID: PMC2861447 DOI: 10.1105/tpc.110.220311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|