51
|
Higuchi K, Kanai M, Tsuchiya M, Ishii H, Shibuya N, Fujita N, Nakamura Y, Suzui N, Fujimaki S, Miwa E. Common reed accumulates starch in its stem by metabolic adaptation under Cd stress conditions. FRONTIERS IN PLANT SCIENCE 2015; 6:138. [PMID: 25806040 PMCID: PMC4354308 DOI: 10.3389/fpls.2015.00138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/20/2015] [Indexed: 05/21/2023]
Abstract
In a previous study, we reported that the common reed accumulates water-soluble Cd complexed with an α-glucan-like molecule, and that the synthesis of this molecule is induced in the stem of the common reed under Cd stress. We studied the metabolic background to ensure α-glucan accumulation under the Cd stress conditions that generally inhibit photosynthesis. We found that the common reed maintained an adequate CO2 assimilation rate, tended to allocate more assimilated (11)C to the stem, and accumulated starch granules in its stem under Cd stress conditions. AGPase activity, which is the rate-limiting enzyme for starch synthesis, increased in the stem of common reed grown in the presence of Cd. Starch accumulation in the stem of common reed was not obvious under other excess metal conditions. Common reed may preferentially allocate assimilated carbon as the carbon source for the formation of Cd and α-glucan complexes in its stem followed by prevention of Cd transfer to leaves acting as the photosynthetic organ. These responses may allow the common reed to grow even under severe Cd stress conditions.
Collapse
Affiliation(s)
- Kyoko Higuchi
- Department of Applied Biology and Chemistry, Tokyo University of AgricultureSetagaya-ku, Japan
| | - Masatake Kanai
- Department of Applied Biology and Chemistry, Tokyo University of AgricultureSetagaya-ku, Japan
| | - Masahisa Tsuchiya
- Department of Applied Biology and Chemistry, Tokyo University of AgricultureSetagaya-ku, Japan
| | - Haruka Ishii
- Department of Applied Biology and Chemistry, Tokyo University of AgricultureSetagaya-ku, Japan
| | - Naofumi Shibuya
- Department of Applied Biology and Chemistry, Tokyo University of AgricultureSetagaya-ku, Japan
| | - Naoko Fujita
- Department of Biological Production, Akita Prefectural UniversityAkita City, Japan
| | - Yasunori Nakamura
- Department of Biological Production, Akita Prefectural UniversityAkita City, Japan
| | - Nobuo Suzui
- Medical and Biotechnological Application Division, Quantum Beam Science Center, Japan Atomic Energy AgencyTakasaki City, Japan
| | - Shu Fujimaki
- Medical and Biotechnological Application Division, Quantum Beam Science Center, Japan Atomic Energy AgencyTakasaki City, Japan
| | - Eitaro Miwa
- Department of Applied Biology and Chemistry, Tokyo University of AgricultureSetagaya-ku, Japan
| |
Collapse
|
52
|
Hermans C, Conn SJ, Chen J, Xiao Q, Verbruggen N. An update on magnesium homeostasis mechanisms in plants. Metallomics 2014; 5:1170-83. [PMID: 23420558 DOI: 10.1039/c3mt20223b] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Worldwide, nearly two-thirds of the population do not consume the recommended amount of magnesium (Mg) in their diet. Furthermore, low Mg status (hypomagnesaemia) is known to contribute to a number of human chronic disease conditions. Because the principal dietary Mg source is of plant origin, agronomic and genetic biofortification strategies are aimed at improving nutritional Mg content in food crops to overcome this mineral deficiency in humans. This update incorporates the contributions of annotated permeases involved in Mg uptake, storage and recycling with a schematic model of Mg movement at the organ and cellular levels in the model species Arabidopsis thaliana. Furthermore, approaches using mutagenesis or natural ionomic variation to identify loci involved in Mg homeostasis in roots, leaves and seeds will be summarised. A brief overview will be presented on how Arabidopsis research can help to develop strategies for biofortification of crops.
Collapse
Affiliation(s)
- Christian Hermans
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Campus Plaine CP 242, Bd du Triomphe, 1050 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
53
|
Andriunas FA, Zhang HM, Xia X, Patrick JW, Offler CE. Intersection of transfer cells with phloem biology-broad evolutionary trends, function, and induction. FRONTIERS IN PLANT SCIENCE 2013; 4:221. [PMID: 23847631 PMCID: PMC3696738 DOI: 10.3389/fpls.2013.00221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/07/2013] [Indexed: 05/18/2023]
Abstract
Transfer cells (TCs) are ubiquitous throughout the plant kingdom. Their unique ingrowth wall labyrinths, supporting a plasma membrane enriched in transporter proteins, provides these cells with an enhanced membrane transport capacity for resources. In certain plant species, TCs have been shown to function to facilitate phloem loading and/or unloading at cellular sites of intense resource exchange between symplasmic/apoplasmic compartments. Within the phloem, the key cellular locations of TCs are leaf minor veins of collection phloem and stem nodes of transport phloem. In these locations, companion and phloem parenchyma cells trans-differentiate to a TC morphology consistent with facilitating loading and re-distribution of resources, respectively. At a species level, occurrence of TCs is significantly higher in transport than in collection phloem. TCs are absent from release phloem, but occur within post-sieve element unloading pathways and particularly at interfaces between generations of developing Angiosperm seeds. Experimental accessibility of seed TCs has provided opportunities to investigate their inductive signaling, regulation of ingrowth wall formation and membrane transport function. This review uses this information base to explore current knowledge of phloem transport function and inductive signaling for phloem-associated TCs. The functional role of collection phloem and seed TCs is supported by definitive evidence, but no such information is available for stem node TCs that present an almost intractable experimental challenge. There is an emerging understanding of inductive signals and signaling pathways responsible for initiating trans-differentiation to a TC morphology in developing seeds. However, scant information is available to comment on a potential role for inductive signals (auxin, ethylene and reactive oxygen species) that induce seed TCs, in regulating induction of phloem-associated TCs. Biotic phloem invaders have been used as a model to speculate on involvement of these signals.
Collapse
Affiliation(s)
| | | | | | | | - Christina E. Offler
- Department of Biological Sciences, School of Environmental and Life Sciences, The University of NewcastleCallaghan, NSW, Australia
| |
Collapse
|
54
|
McDowell SC, Akmakjian G, Sladek C, Mendoza-Cozatl D, Morrissey JB, Saini N, Mittler R, Baxter I, Salt DE, Ward JM, Schroeder JI, Guerinot ML, Harper JF. Elemental concentrations in the seed of mutants and natural variants of Arabidopsis thaliana grown under varying soil conditions. PLoS One 2013; 8:e63014. [PMID: 23671651 PMCID: PMC3646034 DOI: 10.1371/journal.pone.0063014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/27/2013] [Indexed: 01/11/2023] Open
Abstract
The concentrations of mineral nutrients in seeds are critical to both the life cycle of plants as well as human nutrition. These concentrations are strongly influenced by soil conditions, as shown here by quantifying the concentration of 14 elements in seeds from Arabidopsis thaliana plants grown under four different soil conditions: standard, or modified with NaCl, heavy metals, or alkali. Each of the modified soils resulted in a unique change to the seed ionome (the mineral nutrient content of the seeds). To help identify the genetic networks regulating the seed ionome, changes in elemental concentrations were evaluated using mutants corresponding to 760 genes as well as 10 naturally occurring accessions. The frequency of ionomic phenotypes supports an estimate that as much as 11% of the A. thaliana genome encodes proteins of functional relevance to ion homeostasis in seeds. A subset of mutants were analyzed with two independent alleles, providing five examples of genes important for regulation of the seed ionome: SOS2, ABH1, CCC, At3g14280 and CNGC2. In a comparison of nine different accessions to a Col-0 reference, eight accessions were observed to have reproducible differences in elemental concentrations, seven of which were dependent on specific soil conditions. These results indicate that the A. thaliana seed ionome is distinct from the vegetative ionome, and that elemental analysis is a sensitive approach to identify genes controlling ion homeostasis, including those that regulate gene expression, phospho-regulation, and ion transport.
Collapse
Affiliation(s)
- Stephen C McDowell
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Danku JMC, Lahner B, Yakubova E, Salt DE. Large-scale plant ionomics. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2013; 953:255-76. [PMID: 23073889 DOI: 10.1007/978-1-62703-152-3_17] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Large-scale phenotyping methods are at the heart of efficiently deciphering the functions of genes and gene networks in the postgenomic era. In order to obtain meaningful results when comparing natural variants, and mutants and wild-types during large-scale quantitative analyses, necessary precautions must be employed throughout the whole process. Here, we describe large-scale elemental profiling in Arabidopsis thaliana and other genetic model organisms using high-throughput analytical methodologies. We also include a description of workflow management and data storage systems.
Collapse
Affiliation(s)
- John M C Danku
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | |
Collapse
|
56
|
Liu X, Barkawi L, Gardner G, Cohen JD. Transport of indole-3-butyric acid and indole-3-acetic acid in Arabidopsis hypocotyls using stable isotope labeling. PLANT PHYSIOLOGY 2012; 158:1988-2000. [PMID: 22323783 PMCID: PMC3320201 DOI: 10.1104/pp.111.191288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The polar transport of the natural auxins indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA) has been described in Arabidopsis (Arabidopsis thaliana) hypocotyls using radioactive tracers. Because radioactive assays alone cannot distinguish IBA from its metabolites, the detected transport from applied [3H]IBA may have resulted from the transport of IBA metabolites, including IAA. To test this hypothesis, we used a mass spectrometry-based method to quantify the transport of IBA in Arabidopsis hypocotyls by following the movement of [13C1]IBA and the [13C1]IAA derived from [13C1]IBA. We also assayed [13C6]IAA transport in a parallel control experiment. We found that the amount of transported [13C1]IBA was dramatically lower than [13C6]IAA, and the IBA transport was not reduced by the auxin transport inhibitor N-1-naphthylphthalamic acid. Significant amounts of the applied [13C1]IBA were converted to [13C1]IAA during transport, but [13C1]IBA transport was independent of IBA-to-IAA conversion. We also found that most of the [13C1]IBA was converted to ester-linked [13C1]IBA at the apical end of hypocotyls, and ester-linked [13C1]IBA was also found in the basal end at a level higher than free [13C1]IBA. In contrast, most of the [13C6]IAA was converted to amide-linked [13C6]IAA at the apical end of hypocotyls, but very little conjugated [13C6]IAA was found in the basal end. Our results demonstrate that the polar transport of IBA is much lower than IAA in Arabidopsis hypocotyls, and the transport mechanism is distinct from IAA transport. These experiments also establish a method for quantifying the movement of small molecules in plants using stable isotope labeling.
Collapse
Affiliation(s)
- Xing Liu
- Plant Biological Sciences Graduate Program, Department of Horticultural Science and Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108, USA.
| | | | | | | |
Collapse
|
57
|
Lowry DB, Sheng CC, Zhu Z, Juenger TE, Lahner B, Salt DE, Willis JH. Mapping of ionomic traits in Mimulus guttatus reveals Mo and Cd QTLs that colocalize with MOT1 homologues. PLoS One 2012; 7:e30730. [PMID: 22292026 PMCID: PMC3265502 DOI: 10.1371/journal.pone.0030730] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 12/27/2011] [Indexed: 12/18/2022] Open
Abstract
Natural variation in the regulation of the accumulation of mineral nutrients and trace elements in plant tissues is crucial to plant metabolism, development, and survival across different habitats. Studies of the genetic basis of natural variation in nutrient metabolism have been facilitated by the development of ionomics. Ionomics is a functional genomic approach for the identification of the genes and gene networks that regulate the elemental composition, or ionome, of an organism. In this study, we evaluated the genetic basis of divergence in elemental composition between an inland annual and a coastal perennial accession of Mimulus guttatus using a recombinant inbred line (RIL) mapping population. Out of 20 elements evaluated, Mo and Cd were the most divergent in accumulation between the two accessions and were highly genetically correlated in the RILs across two replicated experiments. We discovered two major quantitative trait loci (QTL) for Mo accumulation, the largest of which consistently colocalized with a QTL for Cd accumulation. Interestingly, both Mo QTLs also colocalized with the two M. guttatus homologues of MOT1, the only known plant transporter to be involved in natural variation in molybdate uptake.
Collapse
Affiliation(s)
- David B Lowry
- University Program in Genetics and Genomics, Duke University Medical Center, Durham, North Carolina, United States of America.
| | | | | | | | | | | | | |
Collapse
|
58
|
Shimo H, Ishimaru Y, An G, Yamakawa T, Nakanishi H, Nishizawa NK. Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5727-34. [PMID: 21908474 PMCID: PMC3223062 DOI: 10.1093/jxb/err300] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The contamination of food crops by cadmium (Cd) is a major concern in food production because it can reduce crop yields and threaten human health. In this study, knockout rice plants (Oryza sativa) tagged with the gene trap vector pGA2707 were screened for Cd tolerance, and the tolerant line lcd was obtained. The lcd mutant showed tolerance to Cd on agar plates and in hydroponic culture during early plant development. Metal concentration measurements in hydroponically grown plants revealed significantly less Cd in the shoots of lcd plants compared with wild-type (WT) shoots. When cultured in the field in soil artificially contaminated with low levels of Cd, lcd showed no significant difference in the Cd content of its leaf blades; however, the Cd concentration in the grains was 55% lower in 2009 and 43% lower in 2010. There were no significant differences in plant dry weight or seed yield between lcd and wild-type plants. LCD, a novel gene, is not homologous to any other known gene. LCD localized to the cytoplasm and nucleus, and was expressed mainly in the vascular tissues in the roots and phloem companion cells in the leaves. These data indicate that lcd may be useful for understanding Cd transport mechanisms and is a promising candidate rice line for use in combating the threat of Cd to human health.
Collapse
Affiliation(s)
- Hugo Shimo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Yasuhiro Ishimaru
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Gynheung An
- POSTECH, Pohang University of Science and Technology, Korea
| | - Takashi Yamakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Hiromi Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Naoko K. Nishizawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
59
|
Mendoza-Cózatl DG, Jobe TO, Hauser F, Schroeder JI. Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:554-62. [PMID: 21820943 PMCID: PMC3191310 DOI: 10.1016/j.pbi.2011.07.004] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/07/2011] [Accepted: 07/11/2011] [Indexed: 05/18/2023]
Abstract
Iron, zinc, copper and manganese are essential metals for cellular enzyme functions while cadmium, mercury and the metalloid arsenic lack any biological function. Both, essential metals, at high concentrations, and non-essential metals and metalloids are extremely reactive and toxic. Therefore, plants have acquired specialized mechanisms to sense, transport and maintain essential metals within physiological concentrations and to detoxify non-essential metals and metalloids. This review focuses on the recent identification of transporters that sequester cadmium and arsenic in vacuoles and the mechanisms mediating the partitioning of these metal(loid)s between roots and shoots. We further discuss recent models of phloem-mediated long-distance transport, seed accumulation of Cd and As and recent data demonstrating that plants posses a defined transcriptional response that allow plants to preserve metal homeostasis. This research is instrumental for future engineering of reduced toxic metal(loid) accumulation in edible crop tissues as well as for improved phytoremediation technologies.
Collapse
Affiliation(s)
| | | | | | - Julian I. Schroeder
- Corresponding author, Julian I. Schroeder, Ph D, University of California, San Diego, Division of Biological Sciences, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA., +1 858 534-7759 (phone), +1 858 534-7108 (fax),
| |
Collapse
|
60
|
Chao DY, Gable K, Chen M, Baxter I, Dietrich CR, Cahoon EB, Guerinot ML, Lahner B, Lü S, Markham JE, Morrissey J, Han G, Gupta SD, Harmon JM, Jaworski JG, Dunn TM, Salt DE. Sphingolipids in the root play an important role in regulating the leaf ionome in Arabidopsis thaliana. THE PLANT CELL 2011; 23:1061-81. [PMID: 21421810 PMCID: PMC3082254 DOI: 10.1105/tpc.110.079095] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 01/19/2011] [Accepted: 02/14/2011] [Indexed: 05/18/2023]
Abstract
Sphingolipid synthesis is initiated by condensation of Ser with palmitoyl-CoA producing 3-ketodihydrosphinganine (3-KDS), which is reduced by a 3-KDS reductase to dihydrosphinganine. Ser palmitoyltransferase is essential for plant viability. Arabidopsis thaliana contains two genes (At3g06060/TSC10A and At5g19200/TSC10B) encoding proteins with significant similarity to the yeast 3-KDS reductase, Tsc10p. Heterologous expression in yeast of either Arabidopsis gene restored 3-KDS reductase activity to the yeast tsc10Δ mutant, confirming both as bona fide 3-KDS reductase genes. Consistent with sphingolipids having essential functions in plants, double mutant progeny lacking both genes were not recovered from crosses of single tsc10A and tsc10B mutants. Although the 3-KDS reductase genes are functionally redundant and ubiquitously expressed in Arabidopsis, 3-KDS reductase activity was reduced to 10% of wild-type levels in the loss-of-function tsc10a mutant, leading to an altered sphingolipid profile. This perturbation of sphingolipid biosynthesis in the Arabidopsis tsc10a mutant leads an altered leaf ionome, including increases in Na, K, and Rb and decreases in Mg, Ca, Fe, and Mo. Reciprocal grafting revealed that these changes in the leaf ionome are driven by the root and are associated with increases in root suberin and alterations in Fe homeostasis.
Collapse
Affiliation(s)
- Dai-Yin Chao
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47906, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|