51
|
Osuna D, Prieto P, Aguilar M. Control of Seed Germination and Plant Development by Carbon and Nitrogen Availability. FRONTIERS IN PLANT SCIENCE 2015; 6:1023. [PMID: 26635847 PMCID: PMC4649081 DOI: 10.3389/fpls.2015.01023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/05/2015] [Indexed: 05/20/2023]
Abstract
Little is known about the molecular basis of the influence of external carbon/nitrogen (C/N) ratio and other abiotic factors on phytohormones regulation during seed germination and plant developmental processes, and the identification of elements that participate in this response is essential to understand plant nutrient perception and signaling. Sugars (sucrose, glucose) and nitrate not only act as nutrients but also as signaling molecules in plant development. A connection between changes in auxin transport and nitrate signal transduction has been reported in Arabidopsis thaliana through the NRT1.1, a nitrate sensor and transporter that also functions as a repressor of lateral root growth under low concentrations of nitrate by promoting auxin transport. Nitrate inhibits the elongation of lateral roots, but this effect is significantly reduced in abscisic acid (ABA)-insensitive mutants, what suggests that ABA might mediate the inhibition of lateral root elongation by nitrate. Gibberellin (GA) biosynthesis has been also related to nitrate level in seed germination and its requirement is determined by embryonic ABA. These mechanisms connect nutrients and hormones signaling during seed germination and plant development. Thus, the genetic identification of the molecular components involved in nutrients-dependent pathways would help to elucidate the potential crosstalk between nutrients, nitric oxide (NO) and phytohormones (ABA, auxins and GAs) in seed germination and plant development. In this review we focus on changes in C and N levels and how they control seed germination and plant developmental processes through the interaction with other plant growth regulators, such as phytohormones.
Collapse
Affiliation(s)
- Daniel Osuna
- Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas, Córdoba, Spain,
- *Correspondence: Daniel Osuna,
| | - Pilar Prieto
- Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas, Córdoba, Spain,
| | - Miguel Aguilar
- Área de Fisiología Vegetal, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
52
|
Pilkington SM, Encke B, Krohn N, Höhne M, Stitt M, Pyl ET. Relationship between starch degradation and carbon demand for maintenance and growth in Arabidopsis thaliana in different irradiance and temperature regimes. PLANT, CELL & ENVIRONMENT 2015; 38:157-71. [PMID: 24905937 DOI: 10.1111/pce.12381] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 05/12/2023]
Abstract
Experiments were designed to compare the relationship between starch degradation and the use of carbon for maintenance and growth in Arabidopsis in source-limited and sink-limited conditions. It is known that starch degradation is regulated by the clock in source-limited plants, which degrade their starch in a linear manner such that it is almost but not completely exhausted at dawn. We asked whether this response is maintained under an extreme carbon deficit. Arabidopsis was subjected to a sudden combination of a day of low irradiance, to decrease starch at dusk, and a warm night. Starch was degraded in a linear manner through the night, even though the plants became acutely carbon starved. We conclude that starch degradation is not increased to meet demand in carbon-limited plants. This network property will allow stringent control of starch turnover in a fluctuating environment. In contrast, in sink-limited plants, which do not completely mobilize their starch during the night, starch degradation was accelerated in warm nights to meet the increased demand for maintenance and growth. Across all conditions, the rate of growth at night depends on the rate of starch degradation, whereas the rate of maintenance respiration decreases only when starch degradation is very slow.
Collapse
Affiliation(s)
- Sarah M Pilkington
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | | | | | | | | | | |
Collapse
|
53
|
Sotelo-Silveira M, Chauvin AL, Marsch-Martínez N, Winkler R, de Folter S. Metabolic fingerprinting of Arabidopsis thaliana accessions. FRONTIERS IN PLANT SCIENCE 2015; 6:365. [PMID: 26074932 PMCID: PMC4444734 DOI: 10.3389/fpls.2015.00365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/08/2015] [Indexed: 05/02/2023]
Abstract
In the post-genomic era much effort has been put on the discovery of gene function using functional genomics. Despite the advances achieved by these technologies in the understanding of gene function at the genomic and proteomic level, there is still a big genotype-phenotype gap. Metabolic profiling has been used to analyze organisms that have already been characterized genetically. However, there is a small number of studies comparing the metabolic profile of different tissues of distinct accessions. Here, we report the detection of over 14,000 and 17,000 features in inflorescences and leaves, respectively, in two widely used Arabidopsis thaliana accessions. A predictive Random Forest Model was developed, which was able to reliably classify tissue type and accession of samples based on LC-MS profile. Thereby we demonstrate that the morphological differences among A. thaliana accessions are reflected also as distinct metabolic phenotypes within leaves and inflorescences.
Collapse
Affiliation(s)
- Mariana Sotelo-Silveira
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN)Irapuato, México
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la RepúblicaMontevideo, Uruguay
| | - Anne-Laure Chauvin
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN)Irapuato, México
| | | | - Robert Winkler
- Department of Biotechnology and Biochemistry, CINVESTAV Unidad IrapuatoIrapuato, Mexico
- *Correspondence: Robert Winkler, Department of Biotechnology and Biochemistry, CINVESTAV Unidad Irapuato, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36821 Irapuato, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN)Irapuato, México
- Stefan de Folter, Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36821 Irapuato, Guanajuato, Mexico
| |
Collapse
|
54
|
Putarjunan A, Rodermel S. gigantea suppresses immutans variegation by interactions with cytokinin and gibberellin signaling pathways. PLANT PHYSIOLOGY 2014; 166:2115-32. [PMID: 25349324 PMCID: PMC4256849 DOI: 10.1104/pp.114.250647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/15/2014] [Indexed: 05/08/2023]
Abstract
The immutans (im) variegation mutant of Arabidopsis (Arabidopsis thaliana) is an ideal model to gain insight into factors that control chloroplast biogenesis. im defines the gene for PTOX, a plastoquinol terminal oxidase that participates in the control of thylakoid redox. Here, we report that the im defect can be suppressed during the late stages of plant development by gigantea (gi2), which defines the gene for GI, a central component of the circadian clock that plays a poorly understood role in diverse plant developmental processes. imgi2 mutants are late flowering and display other well-known phenotypes associated with gi2, such as starch accumulation and resistance to oxidative stress. We show that the restoration of chloroplast biogenesis in imgi2 is caused by a development-specific derepression of cytokinin signaling that involves cross talk with signaling pathways mediated by gibberellin (GA) and SPINDLY (SPY), a GA response inhibitor. Suppression of the plastid defect in imgi2 is likely caused by a relaxation of excitation pressures in developing plastids by factors contributed by gi2, including enhanced rates of photosynthesis and increased resistance to oxidative stress. Interestingly, the suppression phenotype of imgi can be mimicked by crossing im with the starch accumulation mutant, starch excess1 (sex1), perhaps because sex1 utilizes pathways similar to gi. We conclude that our studies provide a direct genetic linkage between GI and chloroplast biogenesis, and we construct a model of interactions between signaling pathways mediated by gi, GA, SPY, cytokinins, and sex1 that are required for chloroplast biogenesis.
Collapse
Affiliation(s)
- Aarthi Putarjunan
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Steve Rodermel
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
55
|
Dornbusch T, Michaud O, Xenarios I, Fankhauser C. Differentially phased leaf growth and movements in Arabidopsis depend on coordinated circadian and light regulation. THE PLANT CELL 2014; 26:3911-21. [PMID: 25281688 PMCID: PMC4247567 DOI: 10.1105/tpc.114.129031] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/04/2014] [Accepted: 09/19/2014] [Indexed: 05/18/2023]
Abstract
In contrast to vastly studied hypocotyl growth, little is known about diel regulation of leaf growth and its coordination with movements such as changes in leaf elevation angle (hyponasty). We developed a 3D live-leaf growth analysis system enabling simultaneous monitoring of growth and movements. Leaf growth is maximal several hours after dawn, requires light, and is regulated by daylength, suggesting coupling between growth and metabolism. We identify both blade and petiole positioning as important components of leaf movements in Arabidopsis thaliana and reveal a temporal delay between growth and movements. In hypocotyls, the combination of circadian expression of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 and their light-regulated protein stability drives rhythmic hypocotyl elongation with peak growth at dawn. We find that PIF4 and PIF5 are not essential to sustain rhythmic leaf growth but influence their amplitude. Furthermore, EARLY FLOWERING3, a member of the evening complex (EC), is required to maintain the correct phase between growth and movement. Our study shows that the mechanisms underlying rhythmic hypocotyl and leaf growth differ. Moreover, we reveal the temporal relationship between leaf elongation and movements and demonstrate the importance of the EC for the coordination of these phenotypic traits.
Collapse
Affiliation(s)
- Tino Dornbusch
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Olivier Michaud
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ioannis Xenarios
- SIB-Swiss Institute of Bioinformatics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
56
|
Matsoukas IG. Interplay between sugar and hormone signaling pathways modulate floral signal transduction. Front Genet 2014; 5:218. [PMID: 25165468 PMCID: PMC4131243 DOI: 10.3389/fgene.2014.00218] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/24/2014] [Indexed: 11/13/2022] Open
Abstract
NOMENCLATURE The following nomenclature will be used in this article: Names of genes are written in italicized upper-case letters, e.g., ABI4.Names of proteins are written in non-italicized upper-case letters, e.g., ABI4.Names of mutants are written in italicized lower-case letters, e.g., abi4. The juvenile-to-adult and vegetative-to-reproductive phase transitions are major determinants of plant reproductive success and adaptation to the local environment. Understanding the intricate molecular genetic and physiological machinery by which environment regulates juvenility and floral signal transduction has significant scientific and economic implications. Sugars are recognized as important regulatory molecules that regulate cellular activity at multiple levels, from transcription and translation to protein stability and activity. Molecular genetic and physiological approaches have demonstrated different aspects of carbohydrate involvement and its interactions with other signal transduction pathways in regulation of the juvenile-to-adult and vegetative-to-reproductive phase transitions. Sugars regulate juvenility and floral signal transduction through their function as energy sources, osmotic regulators and signaling molecules. Interestingly, sugar signaling has been shown to involve extensive connections with phytohormone signaling. This includes interactions with phytohormones that are also important for the orchestration of developmental phase transitions, including gibberellins, abscisic acid, ethylene, and brassinosteroids. This article highlights the potential roles of sugar-hormone interactions in regulation of floral signal transduction, with particular emphasis on Arabidopsis thaliana mutant phenotypes, and suggests possible directions for future research.
Collapse
Affiliation(s)
- Ianis G Matsoukas
- Institute for Renewable Energy and Environmental Technologies, University of Bolton Bolton, UK ; Systems and Synthetic Biology, Institute for Materials Research and Innovation, University of Bolton Bolton, UK
| |
Collapse
|
57
|
Kunz S, Pesquet E, Kleczkowski LA. Functional dissection of sugar signals affecting gene expression in Arabidopsis thaliana. PLoS One 2014; 9:e100312. [PMID: 24950222 PMCID: PMC4065033 DOI: 10.1371/journal.pone.0100312] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/26/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sugars modulate expression of hundreds of genes in plants. Previous studies on sugar signaling, using intact plants or plant tissues, were hampered by tissue heterogeneity, uneven sugar transport and/or inter-conversions of the applied sugars. This, in turn, could obscure the identity of a specific sugar that acts as a signal affecting expression of given gene in a given tissue or cell-type. METHODOLOGY/PRINCIPAL FINDINGS To bypass those biases, we have developed a novel biological system, based on stem-cell-like Arabidopsis suspension culture. The cells were grown in a hormone-free medium and were sustained on xylose as the only carbon source. Using functional genomics we have identified 290 sugar responsive genes, responding rapidly (within 1 h) and specifically to low concentration (1 mM) of glucose, fructose and/or sucrose. For selected genes, the true nature of the signaling sugar molecules and sites of sugar perception were further clarified using non-metabolizable sugar analogues. Using both transgenic and wild-type A. thaliana seedlings, it was shown that the expression of selected sugar-responsive genes was not restricted to a specific tissue or cell type and responded to photoperiod-related changes in sugar availability. This suggested that sugar-responsiveness of genes identified in the cell culture system was not biased toward heterotrophic background and resembled that in whole plants. CONCLUSIONS Altogether, our research strategy, using a combination of cell culture and whole plants, has provided an unequivocal evidence for the identity of sugar-responsive genes and the identity of the sugar signaling molecules, independently from their inter-conversions or use for energy metabolism.
Collapse
Affiliation(s)
- Sabine Kunz
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Edouard Pesquet
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Leszek A. Kleczkowski
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
58
|
Beeler S, Liu HC, Stadler M, Schreier T, Eicke S, Lue WL, Truernit E, Zeeman SC, Chen J, Kötting O. Plastidial NAD-dependent malate dehydrogenase is critical for embryo development and heterotrophic metabolism in Arabidopsis. PLANT PHYSIOLOGY 2014; 164:1175-90. [PMID: 24453164 PMCID: PMC3938612 DOI: 10.1104/pp.113.233866] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 01/17/2014] [Indexed: 05/18/2023]
Abstract
In illuminated chloroplasts, one mechanism involved in reduction-oxidation (redox) homeostasis is the malate-oxaloacetate (OAA) shuttle. Excess electrons from photosynthetic electron transport in the form of nicotinamide adenine dinucleotide phosphate, reduced are used by NADP-dependent malate dehydrogenase (MDH) to reduce OAA to malate, thus regenerating the electron acceptor NADP. NADP-MDH is a strictly redox-regulated, light-activated enzyme that is inactive in the dark. In the dark or in nonphotosynthetic tissues, the malate-OAA shuttle was proposed to be mediated by the constitutively active plastidial NAD-specific MDH isoform (pdNAD-MDH), but evidence is scarce. Here, we reveal the critical role of pdNAD-MDH in Arabidopsis (Arabidopsis thaliana) plants. A pdnad-mdh null mutation is embryo lethal. Plants with reduced pdNAD-MDH levels by means of artificial microRNA (miR-mdh-1) are viable, but dark metabolism is altered as reflected by increased nighttime malate, starch, and glutathione levels and a reduced respiration rate. In addition, miR-mdh-1 plants exhibit strong pleiotropic effects, including dwarfism, reductions in chlorophyll levels, photosynthetic rate, and daytime carbohydrate levels, and disordered chloroplast ultrastructure, particularly in developing leaves, compared with the wild type. pdNAD-MDH deficiency in miR-mdh-1 can be functionally complemented by expression of a microRNA-insensitive pdNAD-MDH but not NADP-MDH, confirming distinct roles for NAD- and NADP-linked redox homeostasis.
Collapse
|