51
|
Gamas P, Brault M, Jardinaud MF, Frugier F. Cytokinins in Symbiotic Nodulation: When, Where, What For? TRENDS IN PLANT SCIENCE 2017; 22:792-802. [PMID: 28739135 DOI: 10.1016/j.tplants.2017.06.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 05/21/2023]
Abstract
Substantial progress has been made in the understanding of early stages of the symbiotic interaction between legume plants and rhizobium bacteria. Those include the specific recognition of symbiotic partners, the initiation of bacterial infection in root hair cells, and the inception of a specific organ in the root cortex, the nodule. Increasingly complex regulatory networks have been uncovered in which cytokinin (CK) phytohormones play essential roles in different aspects of early symbiotic stages. Intriguingly, these roles can be either positive or negative, cell autonomous or non-cell autonomous, and vary, depending on time, root tissues, and possibly legume species. Recent developments on CK symbiotic functions and interconnections with other signaling pathways during nodule initiation are the focus of this review.
Collapse
Affiliation(s)
- Pascal Gamas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Mathias Brault
- IPS2 (Institute of Plant Sciences - Paris Saclay), CNRS, INRA, Université Paris-Sud, Université Paris-Diderot, Université d'Evry, Université Paris-Saclay, Bâtiment 630, Gif-sur-Yvette, France
| | - Marie-Françoise Jardinaud
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France; INPT-Université de Toulouse, ENSAT, Castanet-Tolosan, France
| | - Florian Frugier
- IPS2 (Institute of Plant Sciences - Paris Saclay), CNRS, INRA, Université Paris-Sud, Université Paris-Diderot, Université d'Evry, Université Paris-Saclay, Bâtiment 630, Gif-sur-Yvette, France.
| |
Collapse
|
52
|
Reid D, Nadzieja M, Novák O, Heckmann AB, Sandal N, Stougaard J. Cytokinin Biosynthesis Promotes Cortical Cell Responses during Nodule Development. PLANT PHYSIOLOGY 2017; 175:361-375. [PMID: 28733389 PMCID: PMC5580777 DOI: 10.1104/pp.17.00832] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/18/2017] [Indexed: 05/22/2023]
Abstract
Legume mutants have shown the requirement for receptor-mediated cytokinin signaling in symbiotic nodule organogenesis. While the receptors are central regulators, cytokinin also is accumulated during early phases of symbiotic interaction, but the pathways involved have not yet been fully resolved. To identify the source, timing, and effect of this accumulation, we followed transcript levels of the cytokinin biosynthetic pathway genes in a sliding developmental zone of Lotus japonicus roots. LjIpt2 and LjLog4 were identified as the major contributors to the first cytokinin burst. The genetic dependence and Nod factor responsiveness of these genes confirm that cytokinin biosynthesis is a key target of the common symbiosis pathway. The accumulation of LjIpt2 and LjLog4 transcripts occurs independent of the LjLhk1 receptor during nodulation. Together with the rapid repression of both genes by cytokinin, this indicates that LjIpt2 and LjLog4 contribute to, rather than respond to, the initial cytokinin buildup. Analysis of the cytokinin response using the synthetic cytokinin sensor, TCSn, showed that this response occurs in cortical cells before spreading to the epidermis in L. japonicus While mutant analysis identified redundancy in several biosynthesis families, we found that mutation of LjIpt4 limits nodule numbers. Overexpression of LjIpt3 or LjLog4 alone was insufficient to produce the robust formation of spontaneous nodules. In contrast, overexpressing a complete cytokinin biosynthesis pathway leads to large, often fused spontaneous nodules. These results show the importance of cytokinin biosynthesis in initiating and balancing the requirement for cortical cell activation without uncontrolled cell proliferation.
Collapse
Affiliation(s)
- Dugald Reid
- Centre for Carbohydrate Recognition and Signaling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark
| | - Marcin Nadzieja
- Centre for Carbohydrate Recognition and Signaling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, CZ-78371 Olomouc, Czech Republic
| | - Anne B Heckmann
- Centre for Carbohydrate Recognition and Signaling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark
| | - Niels Sandal
- Centre for Carbohydrate Recognition and Signaling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signaling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark
| |
Collapse
|
53
|
Cai Z, Wang Y, Zhu L, Tian Y, Chen L, Sun Z, Ullah I, Li X. GmTIR1/GmAFB3-based auxin perception regulated by miR393 modulates soybean nodulation. THE NEW PHYTOLOGIST 2017; 215:672-686. [PMID: 28598036 DOI: 10.1111/nph.14632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/09/2017] [Indexed: 05/08/2023]
Abstract
Auxins play important roles in the nodulation of legumes. However, the mechanism by which auxin signaling regulates root nodulation is largely unknown. In particular, the role of auxin receptors and their regulation in determinate nodule development remains elusive. We checked the expression pattern of the auxin receptor GmTIR1/GmAFB3 genes in soybean. We analyzed the functions of GmTIR1/AFB3 in the regulation of rhizobial infection and nodule number, and also tested the functions of miR393 during nodulation and its relationship with GmTIR1/AFB3. The results showed that GmTIR1 and GmAFB3 genes exhibit diverse expression patterns during nodulation and overexpression of GmTIR1 genes significantly increased inflection foci and eventual nodule number. GmTIR1/AFB3 genes were post-transcriptionally cleaved by miR393 family and knock-down of the miR393 family members significantly increased rhizobial infection and the nodule number. Overexpression of the mutated form of GmTIR1C at the miR393 cleavage site that is resistant to miR393 cleavage led to a further increase in the number of infection foci and nodules, suggesting that miR393s modulate nodulation by directly targeting GmTIR1C. This study demonstrated that GmTIR1- and GmAFB3-mediated auxin signaling, that is spatio-temporally regulated by miR393, plays a crucial role in determinate nodule development in soybean.
Collapse
Affiliation(s)
- Zhaoming Cai
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Yangtze Normal University, Chongqing, 408100, China
| | - Youning Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Zhu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yinping Tian
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei, 050021, China
| | - Liang Chen
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei, 050021, China
| | - Zhengxi Sun
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ihteram Ullah
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei, 050021, China
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
54
|
Use of CRISPR/Cas9 for Symbiotic Nitrogen Fixation Research in Legumes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 149:187-213. [PMID: 28712497 DOI: 10.1016/bs.pmbts.2017.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitrogen-fixing rhizobia have established a symbiotic relationship with the legume family through more than 60 million years of evolution. Hundreds of legume host genes are involved in the SNF (symbiotic nitrogen fixation) process, such as recognition of the bacterial partners, nodulation signaling and nodule development, maintenance of highly efficient nitrogen fixation within nodules, regulation of nodule numbers, and nodule senescence. However, investigations of SNF-related gene functions and dissecting molecular mechanisms of the complicated signaling crosstalk on a genomic scale were significantly restricted by insufficient mutant resources of several representative model legumes. Targeted genome-editing technologies, including ZFNs, TALENs, and CRISPR-Cas systems, have been developed in recent years and rapidly revolutionized biological research in many fields. These technologies were also applied to legume plants, and significant progress has been made in the last several years. Here, we summarize the applications of these genome-editing technologies, especially CRISPR-Cas9, toward the study of SNF in legumes, which should greatly advance our understanding of the basic mechanisms underpinning the legume-rhizobia interactions and guide the engineering of the SNF pathway into nonlegume crops to reduce the dependence on the use of nitrogen fertilizers for sustainable development of modern agriculture.
Collapse
|
55
|
Differential regulation of the Epr3 receptor coordinates membrane-restricted rhizobial colonization of root nodule primordia. Nat Commun 2017; 8:14534. [PMID: 28230048 PMCID: PMC5331223 DOI: 10.1038/ncomms14534] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 01/09/2017] [Indexed: 11/08/2022] Open
Abstract
In Lotus japonicus, a LysM receptor kinase, EPR3, distinguishes compatible and incompatible rhizobial exopolysaccharides at the epidermis. However, the role of this recognition system in bacterial colonization of the root interior is unknown. Here we show that EPR3 advances the intracellular infection mechanism that mediates infection thread invasion of the root cortex and nodule primordia. At the cellular level, Epr3 expression delineates progression of infection threads into nodule primordia and cortical infection thread formation is impaired in epr3 mutants. Genetic dissection of this developmental coordination showed that Epr3 is integrated into the symbiosis signal transduction pathways. Further analysis showed differential expression of Epr3 in the epidermis and cortical primordia and identified key transcription factors controlling this tissue specificity. These results suggest that exopolysaccharide recognition is reiterated during the progressing infection and that EPR3 perception of compatible exopolysaccharide promotes an intracellular cortical infection mechanism maintaining bacteria enclosed in plant membranes.
Collapse
|
56
|
Hossain MS, Shrestha A, Zhong S, Miri M, Austin RS, Sato S, Ross L, Huebert T, Tromas A, Torres-Jerez I, Tang Y, Udvardi M, Murray JD, Szczyglowski K. Lotus japonicus NF-YA1 Plays an Essential Role During Nodule Differentiation and Targets Members of the SHI/STY Gene Family. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:950-964. [PMID: 27929718 DOI: 10.1094/mpmi-10-16-0206-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Legume plants engage in intimate relationships with rhizobial bacteria to form nitrogen-fixing nodules, root-derived organs that accommodate the microsymbiont. Members of the Nuclear Factor Y (NF-Y) gene family, which have undergone significant expansion and functional diversification during plant evolution, are essential for this symbiotic liaison. Acting in a partially redundant manner, NF-Y proteins were shown, previously, to regulate bacterial infection, including selection of a superior rhizobial strain, and to mediate nodule structure formation. However, the exact mechanism by which these transcriptional factors exert their symbiotic functions has remained elusive. By carrying out detailed functional analyses of Lotus japonicus mutants, we demonstrate that LjNF-YA1 becomes indispensable downstream from the initial cortical cell divisions but prior to nodule differentiation, including cell enlargement and vascular bundle formation. Three affiliates of the SHORT INTERNODES/STYLISH transcription factor gene family, called STY1, STY2, and STY3, are demonstrated to be among likely direct targets of LjNF-YA1, and our results point to their involvement in nodule formation.
Collapse
Affiliation(s)
- Md Shakhawat Hossain
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
| | - Arina Shrestha
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
- 2 Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Sihui Zhong
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
| | - Mandana Miri
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
- 2 Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Ryan S Austin
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
- 2 Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Shusei Sato
- 3 Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan; and
| | - Loretta Ross
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
| | - Terry Huebert
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
| | - Alexandre Tromas
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
| | - Ivone Torres-Jerez
- 4 Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, U.S.A
| | - Yuhong Tang
- 4 Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, U.S.A
| | - Michael Udvardi
- 4 Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, U.S.A
| | - Jeremy D Murray
- 4 Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, U.S.A
| | - Krzysztof Szczyglowski
- 1 Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, N5V 4T3 Canada
- 2 Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 Canada
| |
Collapse
|
57
|
Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proc Natl Acad Sci U S A 2016; 113:E7996-E8005. [PMID: 27864511 DOI: 10.1073/pnas.1616564113] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lotus japonicus has been used for decades as a model legume to study the establishment of binary symbiotic relationships with nitrogen-fixing rhizobia that trigger root nodule organogenesis for bacterial accommodation. Using community profiling of 16S rRNA gene amplicons, we reveal that in Lotus, distinctive nodule- and root-inhabiting communities are established by parallel, rather than consecutive, selection of bacteria from the rhizosphere and root compartments. Comparative analyses of wild-type (WT) and symbiotic mutants in Nod factor receptor5 (nfr5), Nodule inception (nin) and Lotus histidine kinase1 (lhk1) genes identified a previously unsuspected role of the nodulation pathway in the establishment of different bacterial assemblages in the root and rhizosphere. We found that the loss of nitrogen-fixing symbiosis dramatically alters community structure in the latter two compartments, affecting at least 14 bacterial orders. The differential plant growth phenotypes seen between WT and the symbiotic mutants in nonsupplemented soil were retained under nitrogen-supplemented conditions that blocked the formation of functional nodules in WT, whereas the symbiosis-impaired mutants maintain an altered community structure in the nitrogen-supplemented soil. This finding provides strong evidence that the root-associated community shift in the symbiotic mutants is a direct consequence of the disabled symbiosis pathway rather than an indirect effect resulting from abolished symbiotic nitrogen fixation. Our findings imply a role of the legume host in selecting a broad taxonomic range of root-associated bacteria that, in addition to rhizobia, likely contribute to plant growth and ecological performance.
Collapse
|
58
|
Deinum EE, Kohlen W, Geurts R. Quantitative modelling of legume root nodule primordium induction by a diffusive signal of epidermal origin that inhibits auxin efflux. BMC PLANT BIOLOGY 2016; 16:254. [PMID: 27846795 PMCID: PMC5109694 DOI: 10.1186/s12870-016-0935-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/27/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Rhizobium nitrogen fixation in legumes takes place in specialized organs called root nodules. The initiation of these symbiotic organs has two important components. First, symbiotic rhizobium bacteria are recognized at the epidermis through specific bacterially secreted lipo-chitooligosaccharides (LCOs). Second, signaling processes culminate in the formation of a local auxin maximum marking the site of cell divisions. Both processes are spatially separated. This separation is most pronounced in legumes forming indeterminate nodules, such as model organism Medicago truncatula, in which the nodule primordium is formed from pericycle to most inner cortical cell layers. RESULTS We used computer simulations of a simplified root of a legume that can form indeterminate nodules. A diffusive signal that inhibits auxin transport is produced in the epidermis, the site of rhizobium contact. In our model, all cells have the same response characteristics to the diffusive signal. Nevertheless, we observed the fastest and strongest auxin accumulation in the pericycle and inner cortex. The location of these auxin maxima correlates with the first dividing cells of future nodule primordia in M. truncatula. The model also predicts a transient reduction of the vascular auxin concentration rootward of the induction site as is experimentally observed. We use our model to investigate how competition for the vascular auxin source could contribute to the regulation of nodule number and spacing. CONCLUSION Our simulations show that the diffusive signal may invoke the strongest auxin accumulation response in the inner root layers, although the signal itself is strongest close to its production site.
Collapse
Affiliation(s)
- Eva E. Deinum
- Mathematical and Statistical methods group, Wageningen University, Droevendaalsesteeg 1PB, Wageningen, 6708 the Netherlands
- FOM institute AMOLF, Science Park 104XG, Amsterdam, 1098 the Netherlands
| | - Wouter Kohlen
- Laboratory for Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB the Netherlands
| | - René Geurts
- Laboratory for Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen, 6708 PB the Netherlands
| |
Collapse
|
59
|
Boivin S, Kazmierczak T, Brault M, Wen J, Gamas P, Mysore KS, Frugier F. Different cytokinin histidine kinase receptors regulate nodule initiation as well as later nodule developmental stages in Medicago truncatula. PLANT, CELL & ENVIRONMENT 2016; 39:2198-209. [PMID: 27341695 DOI: 10.1111/pce.12779] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 06/11/2016] [Indexed: 05/08/2023]
Abstract
Legume plants adapt to low nitrogen by developing an endosymbiosis with nitrogen-fixing soil bacteria to form a new specific organ: the nitrogen-fixing nodule. In the Medicago truncatula model legume, the MtCRE1 cytokinin receptor is essential for this symbiotic interaction. As three other putative CHASE-domain containing histidine kinase (CHK) cytokinin receptors exist in M. truncatula, we determined their potential contribution to this symbiotic interaction. The four CHKs have extensive redundant expression patterns at early nodulation stages but diverge in differentiated nodules, even though MtCHK1/MtCRE1 has the strongest expression at all stages. Mutant and knock-down analyses revealed that other CHKs than MtCHK1/CRE1 are positively involved in nodule initiation, which explains the delayed nodulation phenotype of the chk1/cre1 mutant. In addition, cre1 nodules exhibit an increased growth, whereas other chk mutants have no detectable phenotype, and the maintained nitrogen fixation capacity in cre1 requires other CHK genes. Interestingly, an AHK4/CRE1 genomic locus from the aposymbiotic Arabidopsis plant rescues nodule initiation but not the nitrogen fixation capacity. This indicates that different CHK cytokinin signalling pathways regulate not only nodule initiation but also later developmental stages, and that legume-specific determinants encoded by the MtCRE1 gene are required for later nodulation stages than initiation.
Collapse
Affiliation(s)
- Stéphane Boivin
- Institute of Plant Sciences-Paris Saclay (IPS2), CNRS, INRA, Univ Paris-Sud, Univ Paris-Diderot, Univ d'Evry, Université Paris-Saclay, Bâtiment 630, 91190, Gif-sur-Yvette, France
| | - Théophile Kazmierczak
- Institute of Plant Sciences-Paris Saclay (IPS2), CNRS, INRA, Univ Paris-Sud, Univ Paris-Diderot, Univ d'Evry, Université Paris-Saclay, Bâtiment 630, 91190, Gif-sur-Yvette, France
| | - Mathias Brault
- Institute of Plant Sciences-Paris Saclay (IPS2), CNRS, INRA, Univ Paris-Sud, Univ Paris-Diderot, Univ d'Evry, Université Paris-Saclay, Bâtiment 630, 91190, Gif-sur-Yvette, France
| | - Jiangqi Wen
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, USA
| | - Pascal Gamas
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK, USA
| | - Florian Frugier
- Institute of Plant Sciences-Paris Saclay (IPS2), CNRS, INRA, Univ Paris-Sud, Univ Paris-Diderot, Univ d'Evry, Université Paris-Saclay, Bâtiment 630, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
60
|
Boivin S, Fonouni-Farde C, Frugier F. How Auxin and Cytokinin Phytohormones Modulate Root Microbe Interactions. FRONTIERS IN PLANT SCIENCE 2016; 7:1240. [PMID: 27588025 PMCID: PMC4988986 DOI: 10.3389/fpls.2016.01240] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/04/2016] [Indexed: 05/08/2023]
Abstract
A large range of microorganisms can associate with plants, resulting in neutral, friendly or hostile interactions. The ability of plants to recognize compatible and incompatible microorganisms and to limit or promote their colonization is therefore crucial for their survival. Elaborated communication networks determine the degree of association between the host plant and the invading microorganism. Central to these regulations of plant microbe interactions, phytohormones modulate microorganism plant associations and coordinate cellular and metabolic responses associated to the progression of microorganisms across different plant tissues. We review here hormonal regulations, focusing on auxin and cytokinin phytohormones, involved in the interactions between plant roots and soil microorganisms, including bacterial and fungi associations, either beneficial (symbiotic) or detrimental (pathogenic). The aim is to highlight similarities and differences in cytokinin/auxin functions amongst various compatible versus incompatible associations.
Collapse
Affiliation(s)
| | | | - Florian Frugier
- Institute of Plant Sciences – Paris Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Paris Diderot, Université d’Evry, Université Paris-SaclayGif-sur-Yvette, France
| |
Collapse
|
61
|
Jardinaud MF, Boivin S, Rodde N, Catrice O, Kisiala A, Lepage A, Moreau S, Roux B, Cottret L, Sallet E, Brault M, Emery RJN, Gouzy J, Frugier F, Gamas P. A Laser Dissection-RNAseq Analysis Highlights the Activation of Cytokinin Pathways by Nod Factors in the Medicago truncatula Root Epidermis. PLANT PHYSIOLOGY 2016; 171:2256-76. [PMID: 27217496 PMCID: PMC4936592 DOI: 10.1104/pp.16.00711] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/18/2016] [Indexed: 05/19/2023]
Abstract
Nod factors (NFs) are lipochitooligosaccharidic signal molecules produced by rhizobia, which play a key role in the rhizobium-legume symbiotic interaction. In this study, we analyzed the gene expression reprogramming induced by purified NF (4 and 24 h of treatment) in the root epidermis of the model legume Medicago truncatula Tissue-specific transcriptome analysis was achieved by laser-capture microdissection coupled to high-depth RNA sequencing. The expression of 17,191 genes was detected in the epidermis, among which 1,070 were found to be regulated by NF addition, including previously characterized NF-induced marker genes. Many genes exhibited strong levels of transcriptional activation, sometimes only transiently at 4 h, indicating highly dynamic regulation. Expression reprogramming affected a variety of cellular processes, including perception, signaling, regulation of gene expression, as well as cell wall, cytoskeleton, transport, metabolism, and defense, with numerous NF-induced genes never identified before. Strikingly, early epidermal activation of cytokinin (CK) pathways was indicated, based on the induction of CK metabolic and signaling genes, including the CRE1 receptor essential to promote nodulation. These transcriptional activations were independently validated using promoter:β-glucuronidase fusions with the MtCRE1 CK receptor gene and a CK response reporter (TWO COMPONENT SIGNALING SENSOR NEW). A CK pretreatment reduced the NF induction of the EARLY NODULIN11 (ENOD11) symbiotic marker, while a CK-degrading enzyme (CYTOKININ OXIDASE/DEHYDROGENASE3) ectopically expressed in the root epidermis led to increased NF induction of ENOD11 and nodulation. Therefore, CK may play both positive and negative roles in M. truncatula nodulation.
Collapse
Affiliation(s)
- Marie-Françoise Jardinaud
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Stéphane Boivin
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Nathalie Rodde
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Olivier Catrice
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Anna Kisiala
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Agnes Lepage
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Sandra Moreau
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Brice Roux
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Ludovic Cottret
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Erika Sallet
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Mathias Brault
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - R J Neil Emery
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Jérôme Gouzy
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Florian Frugier
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Pascal Gamas
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| |
Collapse
|
62
|
Miri M, Janakirama P, Held M, Ross L, Szczyglowski K. Into the Root: How Cytokinin Controls Rhizobial Infection. TRENDS IN PLANT SCIENCE 2016; 21:178-186. [PMID: 26459665 DOI: 10.1016/j.tplants.2015.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/26/2015] [Accepted: 09/08/2015] [Indexed: 05/13/2023]
Abstract
Leguminous plants selectively initiate primary responses to rhizobial nodulation factors (NF) that ultimately lead to symbiotic root nodule formation. Functioning downstream, cytokinin has emerged as the key endogenous plant signal for nodule differentiation, but its role in mediating rhizobial entry into the root remains obscure. Nonetheless, such a role is suggested by aberrant infection phenotypes of plant mutants with defects in cytokinin signaling. We postulate that cytokinin participates in orchestrating signaling events that promote rhizobial colonization of the root cortex and limit the extent of subsequent infection at the root epidermis, thus maintaining homeostasis of the symbiotic interaction. We further argue that cytokinin signaling must have been crucial during the evolution of plant cell predisposition for rhizobial colonization.
Collapse
Affiliation(s)
- Mandana Miri
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ONT, NV5 4T3, Canada; Department of Biology, University of Western Ontario, London, ONT, N6A 5BF, Canada
| | - Preetam Janakirama
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ONT, NV5 4T3, Canada
| | - Mark Held
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ONT, NV5 4T3, Canada; Current address: Intrexon Corporation, 329 Oyster Pt. Blvd., South San Francisco, CA 94080, USA
| | - Loretta Ross
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ONT, NV5 4T3, Canada
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ONT, NV5 4T3, Canada; Department of Biology, University of Western Ontario, London, ONT, N6A 5BF, Canada.
| |
Collapse
|
63
|
Reid DE, Heckmann AB, Novák O, Kelly S, Stougaard J. CYTOKININ OXIDASE/DEHYDROGENASE3 Maintains Cytokinin Homeostasis during Root and Nodule Development in Lotus japonicus. PLANT PHYSIOLOGY 2016; 170:1060-74. [PMID: 26644503 PMCID: PMC4734552 DOI: 10.1104/pp.15.00650] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 12/04/2015] [Indexed: 05/23/2023]
Abstract
Cytokinins are required for symbiotic nodule development in legumes, and cytokinin signaling responses occur locally in nodule primordia and in developing nodules. Here, we show that the Lotus japonicus Ckx3 cytokinin oxidase/dehydrogenase gene is induced by Nod factor during the early phase of nodule initiation. At the cellular level, pCkx3::YFP reporter-gene studies revealed that the Ckx3 promoter is active during the first cortical cell divisions of the nodule primordium and in growing nodules. Cytokinin measurements in ckx3 mutants confirmed that CKX3 activity negatively regulates root cytokinin levels. Particularly, tZ and DHZ type cytokinins in both inoculated and uninoculated roots were elevated in ckx3 mutants, suggesting that these are targets for degradation by the CKX3 cytokinin oxidase/dehydrogenase. The effect of CKX3 on the positive and negative roles of cytokinin in nodule development, infection and regulation was further clarified using ckx3 insertion mutants. Phenotypic analysis indicated that ckx3 mutants have reduced nodulation, infection thread formation and root growth. We also identify a role for cytokinin in regulating nodulation and nitrogen fixation in response to nitrate as ckx3 phenotypes are exaggerated at increased nitrate levels. Together, these findings show that cytokinin accumulation is tightly regulated during nodulation in order to balance the requirement for cell divisions with negative regulatory effects of cytokinin on infection events and root development.
Collapse
Affiliation(s)
- Dugald E Reid
- Centre for Carbohydrate Recognition and Signalling (CARB), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark (D.E.R., A.B.H., S.K., J.S.); and Laboratory of Growth Regulators and Department of Chemical Biology and Genetics, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371, Olomouc, Czech Republic (O.N.)
| | - Anne B Heckmann
- Centre for Carbohydrate Recognition and Signalling (CARB), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark (D.E.R., A.B.H., S.K., J.S.); and Laboratory of Growth Regulators and Department of Chemical Biology and Genetics, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371, Olomouc, Czech Republic (O.N.)
| | - Ondřej Novák
- Centre for Carbohydrate Recognition and Signalling (CARB), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark (D.E.R., A.B.H., S.K., J.S.); and Laboratory of Growth Regulators and Department of Chemical Biology and Genetics, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371, Olomouc, Czech Republic (O.N.)
| | - Simon Kelly
- Centre for Carbohydrate Recognition and Signalling (CARB), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark (D.E.R., A.B.H., S.K., J.S.); and Laboratory of Growth Regulators and Department of Chemical Biology and Genetics, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371, Olomouc, Czech Republic (O.N.)
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signalling (CARB), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark (D.E.R., A.B.H., S.K., J.S.); and Laboratory of Growth Regulators and Department of Chemical Biology and Genetics, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371, Olomouc, Czech Republic (O.N.)
| |
Collapse
|
64
|
Gavrilovic S, Yan Z, Jurkiewicz AM, Stougaard J, Markmann K. Inoculation insensitive promoters for cell type enriched gene expression in legume roots and nodules. PLANT METHODS 2016; 12:4. [PMID: 26807140 PMCID: PMC4724153 DOI: 10.1186/s13007-016-0105-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/05/2016] [Indexed: 05/13/2023]
Abstract
BACKGROUND Establishment and maintenance of mutualistic plant-microbial interactions in the rhizosphere and within plant roots involve several root cell types. The processes of host-microbe recognition and infection require complex signal exchange and activation of downstream responses. These molecular events coordinate host responses across root cell layers during microbe invasion, ultimately triggering changes of root cell fates. The progression of legume root interactions with rhizobial bacteria has been addressed in numerous studies. However, tools to globally resolve the succession of molecular events in the host root at the cell type level have been lacking. To this end, we aimed to identify promoters exhibiting cell type enriched expression in roots of the model legume Lotus japonicus, as no comprehensive set of such promoters usable in legume roots is available to date. RESULTS Here, we use promoter:GUS fusions to characterize promoters stemming from Arabidopsis, tomato (Lycopersicon esculentum) or L. japonicus with respect to their expression in major cell types of the L. japonicus root differentiation zone, which shows molecular and morphological responses to symbiotic bacteria and fungi. Out of 24 tested promoters, 11 showed cell type enriched activity in L. japonicus roots. Covered cell types or cell type combinations are epidermis (1), epidermis and cortex (2), cortex (1), endodermis and pericycle (2), pericycle and phloem (4), or xylem (1). Activity of these promoters in the respective cell types was stable during early stages of infection of transgenic roots with the rhizobial symbiont of L. japonicus, Mesorhizobium loti. For a subset of five promoters, expression stability was further demonstrated in whole plant transgenics as well as in active nodules. CONCLUSIONS 11 promoters from Arabidopsis (10) or tomato (1) with enriched activity in major L. japonicus root and nodule cell types have been identified. Root expression patterns are independent of infection with rhizobial bacteria, providing a stable read-out in the root section responsive to symbiotic bacteria. Promoters are available as cloning vectors. We expect these tools to help provide a new dimension to our understanding of signaling circuits and transcript dynamics in symbiotic interactions of legumes with microbial symbionts.
Collapse
Affiliation(s)
- Srdjan Gavrilovic
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Zhe Yan
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Anna M. Jurkiewicz
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Katharina Markmann
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| |
Collapse
|
65
|
Guinel FC. Ethylene, a Hormone at the Center-Stage of Nodulation. FRONTIERS IN PLANT SCIENCE 2015; 6:1121. [PMID: 26834752 PMCID: PMC4714629 DOI: 10.3389/fpls.2015.01121] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/26/2015] [Indexed: 05/19/2023]
Abstract
Nodulation is the result of a beneficial interaction between legumes and rhizobia. It is a sophisticated process leading to nutrient exchange between the two types of symbionts. In this association, within a nodule, the rhizobia, using energy provided as photosynthates, fix atmospheric nitrogen and convert it to ammonium which is available to the plant. Nodulation is recognized as an essential process in nitrogen cycling and legume crops are known to enrich agricultural soils in nitrogenous compounds. Furthermore, as they are rich in nitrogen, legumes are considered important as staple foods for humans and fodder for animals. To tightly control this association and keep it mutualistic, the plant uses several means, including hormones. The hormone ethylene has been known as a negative regulator of nodulation for almost four decades. Since then, much progress has been made in the understanding of both the ethylene signaling pathway and the nodulation process. Here I have taken a large view, using recently obtained knowledge, to describe in some detail the major stages of the process. I have not only reviewed the steps most commonly covered (the common signaling transduction pathway, and the epidermal and cortical programs), but I have also looked into steps less understood (the pre-infection step with the plant defense response, the bacterial release and the formation of the symbiosome, and nodule functioning and senescence). After a succinct review of the ethylene signaling pathway, I have used the knowledge obtained from nodulation- and ethylene-related mutants to paint a more complete picture of the role played by the hormone in nodule organogenesis, functioning, and senescence. It transpires that ethylene is at the center of this effective symbiosis. It has not only been involved in most of the steps leading to a mature nodule, but it has also been implicated in host immunity and nodule senescence. It is likely responsible for the activation of other hormonal signaling pathways. I have completed the review by citing three studies which makes one wonder whether knowledge gained on nodulation in the last decades is ready to be transferred to agricultural fields.
Collapse
|
66
|
Azarakhsh M, Kirienko AN, Zhukov VA, Lebedeva MA, Dolgikh EA, Lutova LA. KNOTTED1-LIKE HOMEOBOX 3: a new regulator of symbiotic nodule development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7181-95. [PMID: 26351356 PMCID: PMC4765789 DOI: 10.1093/jxb/erv414] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
KNOX transcription factors (TFs) regulate different aspects of plant development essentially through their effects on phytohormone metabolism. In particular, KNOX TF SHOOTMERISTEMLESS activates the cytokinin biosynthesis ISOPENTENYL TRANSFERASE (IPT) genes in the shoot apical meristem. However, the role of KNOX TFs in symbiotic nodule development and their possible effects on phytohormone metabolism during nodulation have not been studied to date. Cytokinin is a well-known regulator of nodule development, playing the key role in the regulation of cell division during nodule primordium formation. Recently, the activation of IPT genes was shown to take place during nodulation. Therefore, it was hypothesized that KNOX TFs may regulate nodule development and activate cytokinin biosynthesis upon nodulation. This study analysed the expression of different KNOX genes in Medicago truncatula Gaertn. and Pisum sativum L. Among them, the KNOX3 gene was upregulated in response to rhizobial inoculation in both species. pKNOX3::GUS activity was observed in developing nodule primordium. KNOX3 ectopic expression caused the formation of nodule-like structures on transgenic root without bacterial inoculation, a phenotype similar to one described previously for legumes with constitutive activation of the cytokinin receptor. Furthermore, in transgenic roots with MtKNOX3 knockdown, downregulation of A-type cytokinin response genes was found, as well as the MtIPT3 and LONELYGUY2 (MtLOG2) gene being involved in cytokinin activation. Taken together, these findings suggest that KNOX3 gene is involved in symbiotic nodule development and may regulate cytokinin biosynthesis/activation upon nodule development in legume plants.
Collapse
Affiliation(s)
- M Azarakhsh
- Department of Genetics and Biotechnology, St Petersburg State University, 199034, St Petersburg, Russia
| | - A N Kirienko
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St Petersburg, Russia
| | - V A Zhukov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St Petersburg, Russia
| | - M A Lebedeva
- Department of Genetics and Biotechnology, St Petersburg State University, 199034, St Petersburg, Russia
| | - E A Dolgikh
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St Petersburg, Russia
| | - L A Lutova
- Department of Genetics and Biotechnology, St Petersburg State University, 199034, St Petersburg, Russia
| |
Collapse
|
67
|
Vernié T, Kim J, Frances L, Ding Y, Sun J, Guan D, Niebel A, Gifford ML, de Carvalho-Niebel F, Oldroyd GED. The NIN Transcription Factor Coordinates Diverse Nodulation Programs in Different Tissues of the Medicago truncatula Root. THE PLANT CELL 2015; 27:3410-24. [PMID: 26672071 PMCID: PMC4707452 DOI: 10.1105/tpc.15.00461] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 11/10/2015] [Accepted: 11/20/2015] [Indexed: 05/18/2023]
Abstract
Biological nitrogen fixation in legumes occurs in nodules that are initiated in the root cortex following Nod factor recognition at the root surface, and this requires coordination of diverse developmental programs in these different tissues. We show that while early Nod factor signaling associated with calcium oscillations is limited to the root surface, the resultant activation of Nodule Inception (NIN) in the root epidermis is sufficient to promote cytokinin signaling and nodule organogenesis in the inner root cortex. NIN or a product of its action must be associated with the transmission of a signal between the root surface and the cortical cells where nodule organogenesis is initiated. NIN appears to have distinct functions in the root epidermis and the root cortex. In the epidermis, NIN restricts the extent of Early Nodulin 11 (ENOD11) expression and does so through competitive inhibition of ERF Required for Nodulation (ERN1). In contrast, NIN is sufficient to promote the expression of the cytokinin receptor Cytokinin Response 1 (CRE1), which is restricted to the root cortex. Our work in Medicago truncatula highlights the complexity of NIN action and places NIN as a central player in the coordination of the symbiotic developmental programs occurring in differing tissues of the root that combined are necessary for a nitrogen-fixing symbiosis.
Collapse
Affiliation(s)
- Tatiana Vernié
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Jiyoung Kim
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Lisa Frances
- Laboratoire des Interactions Plantes Microorganismes, CNRS-INRA 2594/441, F-31320 Castanet Tolosan, France
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Jongho Sun
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Dian Guan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Andreas Niebel
- Laboratoire des Interactions Plantes Microorganismes, CNRS-INRA 2594/441, F-31320 Castanet Tolosan, France
| | - Miriam L Gifford
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | - Giles E D Oldroyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
68
|
Nizampatnam NR, Schreier SJ, Damodaran S, Adhikari S, Subramanian S. microRNA160 dictates stage-specific auxin and cytokinin sensitivities and directs soybean nodule development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:140-53. [PMID: 26287653 DOI: 10.1111/tpj.12965] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/31/2015] [Accepted: 08/13/2015] [Indexed: 05/20/2023]
Abstract
Legume nodules result from coordinated interactions between the plant and nitrogen-fixing rhizobia. The phytohormone cytokinin promotes nodule formation, and recent findings suggest that the phytohormone auxin inhibits nodule formation. Here we show that microRNA160 (miR160) is a key signaling element that determines the auxin/cytokinin balance during nodule development in soybean (Glycine max). miR160 appears to promote auxin activity by suppressing the levels of the ARF10/16/17 family of repressor ARF transcription factors. Using quantitative PCR assays and a fluorescence miRNA sensor, we show that miR160 levels are relatively low early during nodule formation and high in mature nodules. We had previously shown that ectopic expression of miR160 in soybean roots led to a severe reduction in nodule formation, coupled with enhanced sensitivity to auxin and reduced sensitivity to cytokinin. Here we show that exogenous cytokinin restores nodule formation in miR160 over-expressing roots. Therefore, low miR160 levels early during nodule development favor cytokinin activity required for nodule formation. Suppression of miR160 levels using a short tandem target mimic (STTM160) resulted in reduced sensitivity to auxin and enhanced sensitivity to cytokinin. In contrast to miR160 over-expressing roots, STTM160 roots had increased nodule formation, but nodule maturation was significantly delayed. Exogenous auxin partially restored proper nodule formation and maturation in STTM160 roots, suggesting that high miR160 activity later during nodule development favors auxin activity and promotes nodule maturation. Therefore, miR160 dictates developmental stage-specific sensitivities to auxin and cytokinin to direct proper nodule formation and maturation in soybean.
Collapse
Affiliation(s)
| | - Spencer John Schreier
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Suresh Damodaran
- Department of Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Sajag Adhikari
- Department of Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Senthil Subramanian
- Department of Plant Science, South Dakota State University, Brookings, SD, 57007, USA
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| |
Collapse
|
69
|
Auxins and Cytokinines Synthesis by Bradyrhizobium japonicum Under Flavonoids Influence. ACTA ACUST UNITED AC 2015. [DOI: 10.15407/microbiolj77.05.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
70
|
Bensmihen S. Hormonal Control of Lateral Root and Nodule Development in Legumes. PLANTS (BASEL, SWITZERLAND) 2015; 4:523-47. [PMID: 27135340 PMCID: PMC4844399 DOI: 10.3390/plants4030523] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 11/23/2022]
Abstract
Many plants can establish symbioses with nitrogen-fixing bacteria, some of which lead to nodulation, including legumes. Indeed, in the rhizobium/legume symbiosis, new root organs, called nodules, are formed by the plant in order to host the rhizobia in protective conditions, optimized for nitrogen fixation. In this way, these plants can benefit from the reduction of atmospheric dinitrogen into ammonia by the hosted bacteria, and in exchange the plant provides the rhizobia with a carbon source. Since this symbiosis is costly for the plant it is highly regulated. Both legume nodule and lateral root organogenesis involve divisions of the root inner tissues, and both developmental programs are tightly controlled by plant hormones. In fact, most of the major plant hormones, such as auxin, cytokinins, abscisic acid, and strigolactones, control both lateral root formation and nodule organogenesis, but often in an opposite manner. This suggests that the sensitivity of legume plants to some phytohormones could be linked to the antagonism that exists between the processes of nodulation and lateral root formation. Here, we will review the implication of some major phytohormones in lateral root formation in legumes, compare them with their roles in nodulation, and discuss specificities and divergences from non-legume eudicot plants such as Arabidopsis thaliana.
Collapse
Affiliation(s)
- Sandra Bensmihen
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France.
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326 Castanet-Tolosan, France.
| |
Collapse
|
71
|
Ng JLP, Hassan S, Truong TT, Hocart CH, Laffont C, Frugier F, Mathesius U. Flavonoids and Auxin Transport Inhibitors Rescue Symbiotic Nodulation in the Medicago truncatula Cytokinin Perception Mutant cre1. THE PLANT CELL 2015; 27:2210-26. [PMID: 26253705 PMCID: PMC4568502 DOI: 10.1105/tpc.15.00231] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/18/2015] [Accepted: 07/08/2015] [Indexed: 05/18/2023]
Abstract
Initiation of symbiotic nodules in legumes requires cytokinin signaling, but its mechanism of action is largely unknown. Here, we tested whether the failure to initiate nodules in the Medicago truncatula cytokinin perception mutant cre1 (cytokinin response1) is due to its altered ability to regulate auxin transport, auxin accumulation, and induction of flavonoids. We found that in the cre1 mutant, symbiotic rhizobia cannot locally alter acro- and basipetal auxin transport during nodule initiation and that these mutants show reduced auxin (indole-3-acetic acid) accumulation and auxin responses compared with the wild type. Quantification of flavonoids, which can act as endogenous auxin transport inhibitors, showed a deficiency in the induction of free naringenin, isoliquiritigenin, quercetin, and hesperetin in cre1 roots compared with wild-type roots 24 h after inoculation with rhizobia. Coinoculation of roots with rhizobia and the flavonoids naringenin, isoliquiritigenin, and kaempferol, or with the synthetic auxin transport inhibitor 2,3,5,-triiodobenzoic acid, rescued nodulation efficiency in cre1 mutants and allowed auxin transport control in response to rhizobia. Our results suggest that CRE1-dependent cytokinin signaling leads to nodule initiation through the regulation of flavonoid accumulation required for local alteration of polar auxin transport and subsequent auxin accumulation in cortical cells during the early stages of nodulation.
Collapse
Affiliation(s)
- Jason Liang Pin Ng
- Division of Plant Science, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | - Samira Hassan
- Division of Plant Science, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | - Thy T Truong
- Mass Spectrometry Facility, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | - Charles H Hocart
- Mass Spectrometry Facility, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | - Carole Laffont
- Institute of Plant Sciences-Paris Saclay University (IPS2), UMR 9213/UMR 1403, CNRS/INRA/Université Paris-Sud/Université Paris-Diderot/Université d'Evry, 91405 Orsay, France
| | - Florian Frugier
- Institute of Plant Sciences-Paris Saclay University (IPS2), UMR 9213/UMR 1403, CNRS/INRA/Université Paris-Sud/Université Paris-Diderot/Université d'Evry, 91405 Orsay, France
| | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
72
|
van Zeijl A, Op den Camp RHM, Deinum EE, Charnikhova T, Franssen H, Op den Camp HJM, Bouwmeester H, Kohlen W, Bisseling T, Geurts R. Rhizobium Lipo-chitooligosaccharide Signaling Triggers Accumulation of Cytokinins in Medicago truncatula Roots. MOLECULAR PLANT 2015; 8:1213-26. [PMID: 25804975 DOI: 10.1016/j.molp.2015.03.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/12/2015] [Accepted: 03/15/2015] [Indexed: 05/20/2023]
Abstract
Legume rhizobium symbiosis is initiated upon perception of bacterial secreted lipo-chitooligosaccharides (LCOs). Perception of these signals by the plant initiates a signaling cascade that leads to nodule formation. Several studies have implicated a function for cytokinin in this process. However, whether cytokinin accumulation and subsequent signaling are an integral part of rhizobium LCO signaling remains elusive. Here, we show that cytokinin signaling is required for the majority of transcriptional changes induced by rhizobium LCOs. In addition, we demonstrate that several cytokinins accumulate in the root susceptible zone 3 h after rhizobium LCO application, including the biologically most active cytokinins, trans-zeatin and isopentenyl adenine. These responses are dependent on calcium- and calmodulin-dependent protein kinase (CCaMK), a key protein in rhizobial LCO-induced signaling. Analysis of the ethylene-insensitive Mtein2/Mtsickle mutant showed that LCO-induced cytokinin accumulation is negatively regulated by ethylene. Together with transcriptional induction of ethylene biosynthesis genes, it suggests a feedback loop negatively regulating LCO signaling and subsequent cytokinin accumulation. We argue that cytokinin accumulation is a key step in the pathway leading to nodule organogenesis and that this is tightly controlled by feedback loops.
Collapse
Affiliation(s)
- Arjan van Zeijl
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Rik H M Op den Camp
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Eva E Deinum
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Department of Systems Biophysics, FOM institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Tatsiana Charnikhova
- Department of Plant Sciences, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Henk Franssen
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Harro Bouwmeester
- Department of Plant Sciences, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Wouter Kohlen
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ton Bisseling
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; College of Science, King Saud University, Post Office Box 2455, Riyadh 11451, Saudi Arabia
| | - René Geurts
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
73
|
Jones JMC, Clairmont L, Macdonald ES, Weiner CA, Emery RJN, Guinel FC. E151 (sym15), a pleiotropic mutant of pea (Pisum sativum L.), displays low nodule number, enhanced mycorrhizae, delayed lateral root emergence, and high root cytokinin levels. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4047-59. [PMID: 25948707 PMCID: PMC4473994 DOI: 10.1093/jxb/erv201] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In legumes, the formation of rhizobial and mycorrhizal root symbioses is a highly regulated process which requires close communication between plant and microorganism. Plant mutants that have difficulties establishing symbioses are valuable tools for unravelling the mechanisms by which these symbioses are formed and regulated. Here E151, a mutant of Pisum sativum cv. Sparkle, was examined to characterize its root growth and symbiotic defects. The symbioses in terms of colonization intensity, functionality of micro-symbionts, and organ dominance were compared between the mutant and wild type. The endogenous cytokinin (CK) and abscisic acid (ABA) levels and the effect of the exogenous application of these two hormones were determined. E151 was found to be a low and delayed nodulator, exhibiting defects in both the epidermal and cortical programmes though a few mature and functional nodules develop. Mycorrhizal colonization of E151 was intensified, although the fungal functionality was impaired. Furthermore, E151 displayed an altered lateral root (LR) phenotype compared with that of the wild type whereby LR emergence is initially delayed but eventually overcome. No differences in ABA levels were found between the mutant and the wild type, but non-inoculated E151 exhibited significantly high CK levels. It is hypothesized that CK plays an essential role in differentially mediating the entry of the two micro-symbionts into the cortex; whereas it would inhibit the entry of the rhizobia in that tissue, it would promote that of the fungus. E151 is a developmental mutant which may prove to be a useful tool in further understanding the role of hormones in the regulation of beneficial root symbioses.
Collapse
Affiliation(s)
- James M C Jones
- Biology Department, 75 University Avenue W, Wilfrid Laurier University, Waterloo, ON, Canada, N2L 3C5
| | - Lindsey Clairmont
- Biology Department, 75 University Avenue W, Wilfrid Laurier University, Waterloo, ON, Canada, N2L 3C5
| | - Emily S Macdonald
- Biology Department, 75 University Avenue W, Wilfrid Laurier University, Waterloo, ON, Canada, N2L 3C5
| | - Catherine A Weiner
- Biology Department, 75 University Avenue W, Wilfrid Laurier University, Waterloo, ON, Canada, N2L 3C5
| | - R J Neil Emery
- Biology Department, 1600 West Bank Drive, Trent University, Peterborough, ON, Canada, K9J 7B8
| | - Frédérique C Guinel
- Biology Department, 75 University Avenue W, Wilfrid Laurier University, Waterloo, ON, Canada, N2L 3C5
| |
Collapse
|
74
|
Wang Y, Li K, Chen L, Zou Y, Liu H, Tian Y, Li D, Wang R, Zhao F, Ferguson BJ, Gresshoff PM, Li X. MicroRNA167-Directed Regulation of the Auxin Response Factors GmARF8a and GmARF8b Is Required for Soybean Nodulation and Lateral Root Development. PLANT PHYSIOLOGY 2015; 168:984-99. [PMID: 25941314 PMCID: PMC4741323 DOI: 10.1104/pp.15.00265] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/01/2015] [Indexed: 05/12/2023]
Abstract
Legume root nodules convert atmospheric nitrogen gas into ammonium through symbiosis with a prokaryotic microsymbiont broadly called rhizobia. Auxin signaling is required for determinant nodule development; however, the molecular mechanism of auxin-mediated nodule formation remains largely unknown. Here, we show in soybean (Glycine max) that the microRNA miR167 acts as a positive regulator of lateral root organs, namely nodules and lateral roots. miR167c expression was up-regulated in the vasculature, pericycle, and cortex of soybean roots following inoculation with Bradyrhizobium japonicum strain USDA110 (the microsymbiont). It was found to positively regulate nodule numbers directly by repressing the target genes GmARF8a and GmARF8b (homologous genes of Arabidopsis [Arabidopsis thaliana] AtARF8 that encode auxin response factors). Moreover, the expression of miR167 and its targets was up- and down-regulated by auxin, respectively. The miR167-GmARF8 module also positively regulated nodulation efficiency under low microsymbiont density, a condition often associated with environmental stress. The regulatory role of miR167 on nodule initiation was dependent on the Nod factor receptor GmNFR1α, and it acts upstream of the nodulation-associated genes nodule inception, nodulation signaling pathway1, early nodulin40-1, NF-YA1 (previously known as HAEM activator protein2-1), and NF-YA2. miR167 also promoted lateral root numbers. Collectively, our findings establish a key role for the miR167-GmARF8 module in auxin-mediated nodule and lateral root formation in soybean.
Collapse
Affiliation(s)
- Youning Wang
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China (Y.W., K.L., L.C., Y.Z., H.L., Y.T., D.L., R.W., F.Z., X.L.); andCentre for Integrative Legume Research, University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (B.J.F., P.M.G.)
| | - Kexue Li
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China (Y.W., K.L., L.C., Y.Z., H.L., Y.T., D.L., R.W., F.Z., X.L.); andCentre for Integrative Legume Research, University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (B.J.F., P.M.G.)
| | - Liang Chen
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China (Y.W., K.L., L.C., Y.Z., H.L., Y.T., D.L., R.W., F.Z., X.L.); andCentre for Integrative Legume Research, University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (B.J.F., P.M.G.)
| | - Yanmin Zou
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China (Y.W., K.L., L.C., Y.Z., H.L., Y.T., D.L., R.W., F.Z., X.L.); andCentre for Integrative Legume Research, University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (B.J.F., P.M.G.)
| | - Haipei Liu
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China (Y.W., K.L., L.C., Y.Z., H.L., Y.T., D.L., R.W., F.Z., X.L.); andCentre for Integrative Legume Research, University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (B.J.F., P.M.G.)
| | - Yinping Tian
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China (Y.W., K.L., L.C., Y.Z., H.L., Y.T., D.L., R.W., F.Z., X.L.); andCentre for Integrative Legume Research, University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (B.J.F., P.M.G.)
| | - Dongxiao Li
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China (Y.W., K.L., L.C., Y.Z., H.L., Y.T., D.L., R.W., F.Z., X.L.); andCentre for Integrative Legume Research, University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (B.J.F., P.M.G.)
| | - Rui Wang
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China (Y.W., K.L., L.C., Y.Z., H.L., Y.T., D.L., R.W., F.Z., X.L.); andCentre for Integrative Legume Research, University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (B.J.F., P.M.G.)
| | - Fang Zhao
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China (Y.W., K.L., L.C., Y.Z., H.L., Y.T., D.L., R.W., F.Z., X.L.); andCentre for Integrative Legume Research, University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (B.J.F., P.M.G.)
| | - Brett J Ferguson
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China (Y.W., K.L., L.C., Y.Z., H.L., Y.T., D.L., R.W., F.Z., X.L.); andCentre for Integrative Legume Research, University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (B.J.F., P.M.G.)
| | - Peter M Gresshoff
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China (Y.W., K.L., L.C., Y.Z., H.L., Y.T., D.L., R.W., F.Z., X.L.); andCentre for Integrative Legume Research, University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (B.J.F., P.M.G.)
| | - Xia Li
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China (Y.W., K.L., L.C., Y.Z., H.L., Y.T., D.L., R.W., F.Z., X.L.); andCentre for Integrative Legume Research, University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia (B.J.F., P.M.G.)
| |
Collapse
|
75
|
Indrasumunar A, Wilde J, Hayashi S, Li D, Gresshoff PM. Functional analysis of duplicated Symbiosis Receptor Kinase (SymRK) genes during nodulation and mycorrhizal infection in soybean (Glycine max). JOURNAL OF PLANT PHYSIOLOGY 2015; 176:157-68. [PMID: 25617765 DOI: 10.1016/j.jplph.2015.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/23/2014] [Accepted: 01/02/2015] [Indexed: 06/04/2023]
Abstract
Association between legumes and rhizobia results in the formation of root nodules, where symbiotic nitrogen fixation occurs. The early stages of this association involve a complex of signalling events between the host and microsymbiont. Several genes dealing with early signal transduction have been cloned, and one of them encodes the leucine-rich repeat (LRR) receptor kinase (SymRK; also termed NORK). The Symbiosis Receptor Kinase gene is required by legumes to establish a root endosymbiosis with Rhizobium bacteria as well as mycorrhizal fungi. Using degenerate primer and BAC sequencing, we cloned duplicated SymRK homeologues in soybean called GmSymRKα and GmSymRKβ. These duplicated genes have high similarity of nucleotide (96%) and amino acid sequence (95%). Sequence analysis predicted a malectin-like domain within the extracellular domain of both genes. Several putative cis-acting elements were found in promoter regions of GmSymRKα and GmSymRKβ, suggesting a participation in lateral root development, cell division and peribacteroid membrane formation. The mutant of SymRK genes is not available in soybean; therefore, to know the functions of these genes, RNA interference (RNAi) of these duplicated genes was performed. For this purpose, RNAi construct of each gene was generated and introduced into the soybean genome by Agrobacterium rhizogenes-mediated hairy root transformation. RNAi of GmSymRKβ gene resulted in an increased reduction of nodulation and mycorrhizal infection than RNAi of GmSymRKα, suggesting it has the major activity of the duplicated gene pair. The results from the important crop legume soybean confirm the joint phenotypic action of GmSymRK genes in both mycorrhizal and rhizobial infection seen in model legumes.
Collapse
Affiliation(s)
- Arief Indrasumunar
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia
| | - Julia Wilde
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia
| | - Satomi Hayashi
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia
| | - Dongxue Li
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia
| | - Peter M Gresshoff
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane 4072, QLD, Australia.
| |
Collapse
|
76
|
Suzaki T, Yoro E, Kawaguchi M. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:111-58. [PMID: 25805123 DOI: 10.1016/bs.ircmb.2015.01.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Legumes and a few other plant species can establish a symbiotic relationship with nitrogen-fixing rhizobia, which enables them to survive in a nitrogen-deficient environment. During the course of nodulation, infection with rhizobia induces the dedifferentiation of host cells to form primordia of a symbiotic organ, the nodule, which prepares plants to accommodate rhizobia in host cells. While these nodulation processes are known to be genetically controlled by both plants and rhizobia, recent advances in studies on two model legumes, Lotus japonicus and Medicago truncatula, have provided great insight into the underlying plant-side molecular mechanism. In this chapter, we review such knowledge, with particular emphasis on two key processes of nodulation, nodule development and rhizobial invasion.
Collapse
Affiliation(s)
- Takuya Suzaki
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Emiko Yoro
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| |
Collapse
|
77
|
Liu CW, Breakspear A, Roy S, Murray JD. Cytokinin responses counterpoint auxin signaling during rhizobial infection. PLANT SIGNALING & BEHAVIOR 2015; 10:e1019982. [PMID: 26176899 PMCID: PMC4623047 DOI: 10.1080/15592324.2015.1019982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The transcriptomics approach to study gene expression in root hairs from M. truncatula has shed light on the developmental events during rhizobial infection and the underlying hormone responses. This approach revealed the induction of several cyclins and an aurora kinase which suggests that the cell-division machinery plays a role in rhizobial infection. Changes in the cell cycle in plants are governed by hormones, in particular auxin and cytokinin. Through gene expression and genetic analyses, we have shown auxin plays a role during rhizobial infection. Here we provide further analysis of the data showing the induction of a set of cytokinin signaling components. These include genes encoding 2 cytokinin-activating enzymes, the cytokinin receptor CRE1, and 5 type-A cytokinin response regulators. We discuss the possible interactions between auxin and cytokinin signaling during the infection process. We also consider a potential role for cytokinin signaling in rhizobial attachment.
Collapse
Affiliation(s)
- Cheng-Wu Liu
- Cell & Developmental Biology; John Innes Center; Norwich Research Park; Norwich, UK
| | - Andrew Breakspear
- Cell & Developmental Biology; John Innes Center; Norwich Research Park; Norwich, UK
| | - Sonali Roy
- Cell & Developmental Biology; John Innes Center; Norwich Research Park; Norwich, UK
| | - Jeremy D Murray
- Cell & Developmental Biology; John Innes Center; Norwich Research Park; Norwich, UK
- Correspondence to: Jeremy D. Murray;
| |
Collapse
|
78
|
Suzaki T, Kawaguchi M. Root nodulation: a developmental program involving cell fate conversion triggered by symbiotic bacterial infection. CURRENT OPINION IN PLANT BIOLOGY 2014; 21:16-22. [PMID: 24996031 DOI: 10.1016/j.pbi.2014.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/29/2014] [Accepted: 06/05/2014] [Indexed: 05/11/2023]
Abstract
Root nodulation is a unique developmental process that predominantly occurs in leguminous plants. In this process, signaling initiated by symbiotic bacterial infection alters the fate of differentiated cortical cells and causes formation of new organs. Two qualitatively different regulatory events, namely bacterial infection and nodule organogenesis, need to be coordinated in the epidermis and cortical cells to establish proper nodule formation. Recent studies have determined the tissue-specific requirements of known symbiotic genes and also detailed a direct molecular link between the two regulatory pathways. Additionally, the detailed function of cytokinin signaling has been identified and the downstream genes have been isolated, providing greater understanding of the genetic mechanisms underlying nodule organogenesis.
Collapse
Affiliation(s)
- Takuya Suzaki
- National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; School of Life Science, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan.
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; School of Life Science, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
79
|
Shoot-derived cytokinins systemically regulate root nodulation. Nat Commun 2014; 5:4983. [PMID: 25236855 DOI: 10.1038/ncomms5983] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/13/2014] [Indexed: 12/21/2022] Open
Abstract
Legumes establish symbiotic associations with nitrogen-fixing bacteria (rhizobia) in root nodules to obtain nitrogen. Legumes control nodule number through long-distance communication between roots and shoots, maintaining the proper symbiotic balance. Rhizobial infection triggers the production of mobile CLE-RS1/2 peptides in Lotus japonicus roots; the perception of the signal by receptor kinase HAR1 in shoots presumably induces the production of an unidentified shoot-derived inhibitor (SDI) that translocates to roots and blocks further nodule development. Here we show that, CLE-RS1/2-HAR1 signalling activates the production of shoot-derived cytokinins, which have an SDI-like capacity to systemically suppress nodulation. In addition, we show that LjIPT3 is involved in nodulation-related cytokinin production in shoots. The expression of LjIPT3 is activated in an HAR1-dependent manner. We further demonstrate shoot-to-root long-distance transport of cytokinin in L. japonicus seedlings. These findings add essential components to our understanding of how legumes control nodulation to balance nutritional requirements and energy status.
Collapse
|
80
|
Ferguson BJ, Mathesius U. Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol 2014; 40:770-90. [PMID: 25052910 DOI: 10.1007/s10886-014-0472-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/16/2022]
Abstract
The symbiosis between legumes and nitrogen fixing bacteria called rhizobia leads to the formation of root nodules. Nodules are highly organized root organs that form in response to Nod factors produced by rhizobia, and they provide rhizobia with a specialized niche to optimize nutrient exchange and nitrogen fixation. Nodule development and invasion by rhizobia is locally controlled by feedback between rhizobia and the plant host. In addition, the total number of nodules on a root system is controlled by a systemic mechanism termed 'autoregulation of nodulation'. Both the local and the systemic control of nodulation are regulated by phytohormones. There are two mechanisms by which phytohormone signalling is altered during nodulation: through direct synthesis by rhizobia and through indirect manipulation of the phytohormone balance in the plant, triggered by bacterial Nod factors. Recent genetic and physiological evidence points to a crucial role of Nod factor-induced changes in the host phytohormone balance as a prerequisite for successful nodule formation. Phytohormones synthesized by rhizobia enhance symbiosis effectiveness but do not appear to be necessary for nodule formation. This review provides an overview of recent advances in our understanding of the roles and interactions of phytohormones and signalling peptides in the regulation of nodule infection, initiation, positioning, development, and autoregulation. Future challenges remain to unify hormone-related findings across different legumes and to test whether hormone perception, response, or transport differences among different legumes could explain the variety of nodules types and the predisposition for nodule formation in this plant family. In addition, the molecular studies carried out under controlled conditions will need to be extended into the field to test whether and how phytohormone contributions by host and rhizobial partners affect the long term fitness of the host and the survival and competition of rhizobia in the soil. It also will be interesting to explore the interaction of hormonal signalling pathways between rhizobia and plant pathogens.
Collapse
Affiliation(s)
- Brett J Ferguson
- Centre for Integrative Legume Research, School of Agricultural and Food Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | | |
Collapse
|