51
|
Wang P, Shen L, Guo J, Jing W, Qu Y, Li W, Bi R, Xuan W, Zhang Q, Zhang W. Phosphatidic Acid Directly Regulates PINOID-Dependent Phosphorylation and Activation of the PIN-FORMED2 Auxin Efflux Transporter in Response to Salt Stress. THE PLANT CELL 2019; 31:250-271. [PMID: 30464035 PMCID: PMC6391703 DOI: 10.1105/tpc.18.00528] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/22/2018] [Accepted: 11/15/2018] [Indexed: 05/05/2023]
Abstract
Remodeling of auxin distribution during the integration of plant growth responses with the environment requires the precise control of auxin influx and efflux transporters. The plasma membrane-localized PIN-FORMED (PIN) proteins facilitate auxin efflux from cells, and their activity is regulated by reversible phosphorylation. How PIN modulates plant cellular responses to external stresses and whether its activity is coordinated by phospholipids remain unclear. Here, we reveal that, in Arabidopsis (Arabidopsis thaliana), the phosphatidic acid (PA)-regulated PINOID (PID) kinase is a crucial modulator of PIN2 activity and auxin redistribution in response to salt stress. Under salt stress, loss of phospholipase D function impaired auxin redistribution and resulted in markedly reduced primary root growth; these effects were reversed by exogenous PA. The phospholipase D-derived PA interacted with PID and increased PID-dependent phosphorylation of PIN2, which activated auxin efflux and altered auxin accumulation, promoting root growth when exposed to salt stress. Ablation of the PA binding motif not only diminished PID accumulation at the plasma membrane but also abolished PA-promoted PID phosphorylation of PIN2 and its function in coping with salt stress; however, this ablation did not affect inflorescence and cotyledon development or PIN2-dependent gravitropic and halotropic responses. Our data indicate a role for PA in coupling extracellular salt signaling to PID-directed PIN2 phosphorylation and polar auxin transport, highlighting the importance of lipid-protein interactions in the spatiotemporal regulation of auxin signaling.
Collapse
Affiliation(s)
- Peipei Wang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Like Shen
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinhe Guo
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Jing
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yana Qu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory Centre of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyu Li
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongrong Bi
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
52
|
Bian S, Li R, Xia S, Liu Y, Jin D, Xie X, Dhaubhadel S, Zhai L, Wang J, Li X. Soybean CCA1-like MYB transcription factor GmMYB133 modulates isoflavonoid biosynthesis. Biochem Biophys Res Commun 2018; 507:324-329. [PMID: 30448057 DOI: 10.1016/j.bbrc.2018.11.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 01/08/2023]
Abstract
MYB transcription factors play important roles in the regulation of phenylpropanoid biosynthesis. However, the knowledge regarding the roles of CCA1-like MYBs in phenylpropanoid pathway is limited in plants. Previously, we identified 54 CCA1-like proteins in soybean. In the study, a CCA1-like MYB (GmMYB133) was functionally characterized as a positive regulator in isoflavonoid synthesis. GmMYB133 encodes a 330 aa protein featured with one CCA1 conserved motif. Further analysis indicated that the expression pattern of GmMYB133 was near-perfectly correlated with isoflavonoid accumulation as soybean embryos develop. GmMYB133 over-expression promoted the expression of two key isoflavonoid biosynthetic genes (GmCHS8 and GmIFS2) and increased total isoflavonoid content in hairy roots. Protein-protein interaction assays indicated that GmMYB133 might form hetero- and homodimers with an isoflavonoid regulator GmMYB176 and itself, respectively, while the subcellular localization of GmMYB133 can be altered by its interaction with 14-3-3 protein. These findings provided new insights into the functional roles of CCA1-like MYB proteins in the regulation of phenylpropanoid pathway, and will contribute to the future genetic engineering in the improvement of soybean seed quality.
Collapse
Affiliation(s)
- Shaomin Bian
- College of Plant Science, Jilin University, Changchun, 130062, Jilin, China
| | - Ruihua Li
- College of Plant Science, Jilin University, Changchun, 130062, Jilin, China
| | - Siqi Xia
- College of Plant Science, Jilin University, Changchun, 130062, Jilin, China
| | - Yajing Liu
- College of Plant Science, Jilin University, Changchun, 130062, Jilin, China
| | - Donghao Jin
- College of Plant Science, Jilin University, Changchun, 130062, Jilin, China
| | - Xin Xie
- College of Plant Science, Jilin University, Changchun, 130062, Jilin, China
| | - Sangeeta Dhaubhadel
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3, Canada; Department of Biology, Western University, London, ON N6A 3K7, Canada
| | - Lulu Zhai
- College of Plant Science, Jilin University, Changchun, 130062, Jilin, China
| | - Jingying Wang
- College of Plant Science, Jilin University, Changchun, 130062, Jilin, China
| | - Xuyan Li
- College of Plant Science, Jilin University, Changchun, 130062, Jilin, China.
| |
Collapse
|
53
|
Yao HY, Xue HW. Phosphatidic acid plays key roles regulating plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:851-863. [PMID: 29660254 DOI: 10.1111/jipb.12655] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/11/2018] [Indexed: 05/28/2023]
Abstract
Phospholipids, including phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylserine (PS) and phosphoinositides, have emerged as an important class of cellular messenger molecules in various cellular and physiological processes, of which PA attracts much attention of researchers. In addition to its effect on stimulating vesicle trafficking, many studies have demonstrated that PA plays a crucial role in various signaling pathways by binding target proteins and regulating their activity and subcellular localization. Here, we summarize the functional mechanisms and target proteins underlying PA-mediated regulation of cellular signaling, development, hormonal responses, and stress responses in plants.
Collapse
Affiliation(s)
- Hong-Yan Yao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
54
|
Hong Y, Yuan S, Sun L, Wang X, Hong Y. Cytidinediphosphate-diacylglycerol synthase 5 is required for phospholipid homeostasis and is negatively involved in hyperosmotic stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:1038-1050. [PMID: 29604140 DOI: 10.1111/tpj.13916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 03/12/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
Cytidinediphosphate diacylglycerol synthase (CDS) uses phosphatidic acid (PA) and cytidinetriphosphate to produce cytidinediphosphate-diacylglycerol, an intermediate for phosphatidylglycerol (PG) and phosphatidylinositol (PI) synthesis. This study shows that CDS5, one of the five CDSs of the Oryza sativa (rice) genome, has multifaceted effects on plant growth and stress responses. The loss of CDS5 resulted in a decrease in PG and PI levels, defective thylakoid membranes, pale leaves in seedlings and growth retardation. In addition, the loss of CDS5 led to an elevated PA level and enhanced hyperosmotic tolerance. The inhibition of phospholipase D (PLD)-derived PA formation in cds5 restored the hyperosmotic stress tolerance of the mutant phenotype to that of the wild type, suggesting that CDS5 functions as a suppressor in PLD-derived PA signaling and negatively affects hyperosmotic stress tolerance.
Collapse
Affiliation(s)
- Yue Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shu Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Linxiao Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
55
|
Long W, Wang Y, Zhu S, Jing W, Wang Y, Ren Y, Tian Y, Liu S, Liu X, Chen L, Wang D, Zhong M, Zhang Y, Hu T, Zhu J, Hao Y, Zhu X, Zhang W, Wang C, Zhang W, Wan J. FLOURY SHRUNKEN ENDOSPERM1 Connects Phospholipid Metabolism and Amyloplast Development in Rice. PLANT PHYSIOLOGY 2018; 177:698-712. [PMID: 29717019 PMCID: PMC6001332 DOI: 10.1104/pp.17.01826] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/11/2018] [Indexed: 05/03/2023]
Abstract
Starch synthesized and stored in amyloplasts serves as the major energy storage molecule in cereal endosperm. To elucidate the molecular mechanisms underlying amyloplast development and starch synthesis, we isolated a series of floury endosperm mutants in rice (Oryza sativa). We identified the rice mutant floury shrunken endosperm1 (fse1), which exhibited obvious defects in the development of compound starch grains, decreased starch content, and altered starch physicochemical features. Map-based cloning showed that FSE1 encodes a phospholipase-like protein homologous to phosphatidic acid-preferring phospholipase A1FSE1 was expressed ubiquitously with abundant levels observed in developing seeds and roots. FSE1 was localized to both the cytosol and intracellular membranes. Lipid profiling indicated that total extra-plastidic lipids and phosphatidic acid were increased in fse1 plants, suggesting that FSE1 may exhibit in vivo phospholipase A1 activity on phosphatidylcholine, phosphatidylinositol, phosphatidyl-Ser, phosphatidylethanolamine, and, in particular, phosphatidic acid. Additionally, the total galactolipid content in developing fse1 endosperm was significantly reduced, which may cause abnormal amyloplast development. Our results identify FSE1 as a phospholipase-like protein that controls the synthesis of galactolipids in rice endosperm and provide a novel connection between lipid metabolism and starch synthesis in rice grains during endosperm development.
Collapse
Affiliation(s)
- Wuhua Long
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Guizhou Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, P.R. China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Susong Zhu
- Guizhou Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, P.R. China
| | - Wen Jing
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yulong Ren
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Yunlu Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Liangming Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Di Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Mingsheng Zhong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yuanyan Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Tingting Hu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jianping Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yuanyuan Hao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiaopin Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Wenwei Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, P.R. China
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
56
|
Pokotylo I, Kravets V, Martinec J, Ruelland E. The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants. Prog Lipid Res 2018; 71:43-53. [PMID: 29842906 DOI: 10.1016/j.plipres.2018.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/29/2022]
Abstract
Phosphatidic acid (PA) is a simple phospholipid observed in most organisms. PA acts as a key metabolic intermediate and a second messenger that regulates many cell activities. In plants, PA is involved in numerous cell responses induced by hormones, stress inputs and developmental processes. Interestingly, PA production can be triggered by opposite stressors, such as cold and heat, or by hormones that are considered to be antagonistic, such as abscisic acid and salicylic acid. This property questions the specificity of the responses controlled by PA. Are there generic responses to PA, meaning that cell regulation triggered by PA would be always the same, even in opposite physiological situations? Alternatively, do the responses to PA differ according to the physiological context within the cells? If so, the mechanisms that regulate the divergence of PA-controlled reactions are poorly defined. This review summarizes the latest opinions on how PA signalling is directed in plant cells and examines the intrinsic properties of PA that enable its regulatory diversity. We propose a concept whereby PA regulatory messages are perceived as complex "signatures" that take into account their production site, the availability of target proteins and the relevant cellular environments.
Collapse
Affiliation(s)
- Igor Pokotylo
- Université Paris-Est, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Créteil, France; Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Volodymyr Kravets
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eric Ruelland
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine; CNRS, UMR7618, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Créteil, France.
| |
Collapse
|
57
|
Su Y, Li M, Guo L, Wang X. Different effects of phospholipase Dζ2 and non-specific phospholipase C4 on lipid remodeling and root hair growth in Arabidopsis response to phosphate deficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:315-326. [PMID: 29437261 DOI: 10.1111/tpj.13858] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 05/21/2023]
Abstract
Phosphate (Pi) deficiency in soils is a major limiting factor for plant growth. In response to Pi deprivation, one prominent metabolic adaptation in plants is the decrease in membrane phospholipids that consume approximately one-third cellular Pi. The level of two phospholipid-hydrolyzing enzymes, phospholipase Dζ2 (PLDζ2) and non-specific phospholipase C4 (NPC4), is highly induced in Pi-deprived Arabidopsis. To determine the role of PLDζ2 and NPC4 in plant growth under Pi limitation, Arabidopsis plants deficient in both PLDζ2 and NPC4 (npc4pldζ2) were generated and characterized. Lipid remodeling in leaves and roots was analyzed at three different durations of Pi deficiency. NPC4 affected lipid changes mainly in roots at an early stage of Pi deprivation, whereas PLDζ2 exhibited a more overt effect on lipid remodeling in leaves at a later stage of Pi deprivation. Pi deficiency-induced galactolipid increase and phospholipid decrease were impeded in pldζ2 and npc4pldζ2 plants. In addition, seedlings of npc4pldζ2 had the same root hair density as pldζ2 but shorter root hair length than pldζ2 in response to Pi deficiency. The loss of NPC4 decreased root hair length but had no effect on root hair density. These data suggest that PLDζ2 and NPC4 mediate the Pi deprivation-induced lipid remodeling in a tissue- and time-specific manner. PLDζ2 and NPC4 have distinctively different roles in root hair growth and development in response to Pi deprivation; PLDζ2 negatively modulates root hair density and length, whereas NPC4 promotes root hair elongation.
Collapse
Affiliation(s)
- Yuan Su
- Department of Biology, University of Missouri, St Louis, Missouri, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Maoyin Li
- Department of Biology, University of Missouri, St Louis, Missouri, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Liang Guo
- Department of Biology, University of Missouri, St Louis, Missouri, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St Louis, Missouri, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| |
Collapse
|
58
|
Lung SC, Liao P, Yeung EC, Hsiao AS, Xue Y, Chye ML. Arabidopsis ACYL-COA-BINDING PROTEIN1 interacts with STEROL C4-METHYL OXIDASE1-2 to modulate gene expression of homeodomain-leucine zipper IV transcription factors. THE NEW PHYTOLOGIST 2018; 218:183-200. [PMID: 29288621 DOI: 10.1111/nph.14965] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/20/2017] [Indexed: 05/18/2023]
Abstract
Fatty acids (FAs) and sterols constitute building blocks of eukaryotic membranes and lipid signals. Co-regulation of FA and sterol synthesis is mediated by sterol regulatory element-binding proteins in animals but remains elusive in plants. We reported recently that Arabidopsis ACYL-COA-BINDING PROTEIN1 (ACBP1) modulates sterol synthesis via protein-protein interaction with STEROL C4-METHYL OXIDASE1-1 (SMO1-1). Herein, ACBP1 was demonstrated to co-express and interact with SMO1-2 by yeast two-hybrid, co-localization, pull-down, co-immunoprecipitation and β-glucuronidase assays. SMO1-2 silenced in acbp1 was used in phenotyping, GC-MS and expression profiling. ACBP1 co-expressed with SMO1-2 in embryo sacs, pollen and trichomes, corroborating with cooperative tissue-specific functions unseen with SMO1-1. SMO1-2 silencing in acbp1 impaired seed development, male and female gamete transmission, and pollen function. Genes encoding homeodomain-leucine zipper IV transcription factors (HDG5, HDG10, HDG11 and GLABRA2), which potentially bind phospholipids/sterols, were transcribed aberrantly. GLABRA2 targets (MYB23, MUM4 and PLDα1) were misregulated, causing glabra2-resembling trichome, seed coat mucilage and oil-accumulating phenotypes. Together with altered sterol and FA compositions upon ACBP1 mutation and/or SMO1-2 silencing, ACBP1-SMO1 interaction appears to mediate homeostatic co-regulation of FAs and sterols, which serve as lipid modulators for gene expression of homeodomain-leucine zipper IV transcription factors.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Edward C Yeung
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - An-Shan Hsiao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yan Xue
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
59
|
Nakamura Y. Plant Phospholipid Diversity: Emerging Functions in Metabolism and Protein-Lipid Interactions. TRENDS IN PLANT SCIENCE 2017; 22:1027-1040. [PMID: 28993119 DOI: 10.1016/j.tplants.2017.09.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/26/2017] [Accepted: 09/07/2017] [Indexed: 05/22/2023]
Abstract
Phospholipids are essential components of biological membranes and signal transduction cascades in plants. In recent years, plant phospholipid research was greatly advanced by the characterization of numerous mutants affected in phospholipid biosynthesis and the discovery of a number of functionally important phospholipid-binding proteins. It is now accepted that most phospholipids to some extent have regulatory functions, including those that serve as constituents of biological membranes. Phospholipids are more than an inert end product of lipid biosynthesis. This review article summarizes recent advances on phospholipid biosynthesis with a particular focus on polar head group synthesis, followed by a short overview on protein-phospholipid interactions as an emerging regulatory mechanism of phospholipid function in arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taiwan 11529, Taiwan; http://ipmb.sinica.edu.tw/index.html/?q=node/972&language=en.
| |
Collapse
|
60
|
Ufer G, Gertzmann A, Gasulla F, Röhrig H, Bartels D. Identification and characterization of the phosphatidic acid-binding A. thaliana phosphoprotein PLDrp1 that is regulated by PLDα1 in a stress-dependent manner. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:276-290. [PMID: 28755507 DOI: 10.1111/tpj.13651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 05/08/2023]
Abstract
Phospholipase D (PLD) and its cleavage product phosphatidic acid (PA) are crucial in plant stress-signalling. Although some targets of PLD and PA have been identified, the signalling pathway is still enigmatic. This study demonstrates that the phosphoprotein At5g39570, now called PLD-regulated protein1 (PLDrp1), from Arabidopsis thaliana is directly regulated by PLDα1. The protein PLDrp1 can be divided into two regions with distinct properties. The conserved N-terminal region specifically binds PA, while the repeat-rich C-terminal domain suggests interactions with RNAs. The expression of PLDrp1 depends on PLDα1 and the plant water status. Water stress triggers a pldα1-like phenotype in PLDrp1 mutants and induces the expression of PLDrp1 in pldα1 mutants. The regulation of PLDrp1 by PLDα1 and environmental stressors contributes to the understanding of the complex PLD regulatory network and presents a new member of the PA-signalling chain in plants.
Collapse
Affiliation(s)
- Guido Ufer
- Institute of Molecular Physiology and Biotechnology of Planta (IMBIO), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Anke Gertzmann
- Institute of Molecular Physiology and Biotechnology of Planta (IMBIO), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Francisco Gasulla
- Institute of Molecular Physiology and Biotechnology of Planta (IMBIO), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Horst Röhrig
- Institute of Molecular Physiology and Biotechnology of Planta (IMBIO), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Planta (IMBIO), University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| |
Collapse
|
61
|
Bian S, Jin D, Li R, Xie X, Gao G, Sun W, Li Y, Zhai L, Li X. Genome-Wide Analysis of CCA1-Like Proteins in Soybean and Functional Characterization of GmMYB138a. Int J Mol Sci 2017; 18:E2040. [PMID: 28937654 PMCID: PMC5666722 DOI: 10.3390/ijms18102040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/10/2017] [Accepted: 09/20/2017] [Indexed: 12/31/2022] Open
Abstract
Plant CIRCADIAN CLOCK ASSOCIATED1 (CCA1)-like proteins are a class of single-repeat MYELOBLASTOSIS ONCOGENE (MYB) transcription factors generally featured by a highly conserved motif SHAQK(Y/F)F, which play important roles in multiple biological processes. Soybean is an important grain legume for seed protein and edible vegetable oil. However, essential understandings regarding CCA1-like proteins are very limited in soybean. In this study, 54 CCA1-like proteins were identified by data mining of soybean genome. Phylogenetic analysis indicated that soybean CCA1-like subfamily showed evolutionary conservation and diversification. These CCA1-like genes displayed tissue-specific expression patterns, and analysis of genomic organization and evolution revealed 23 duplicated gene pairs. Among them, GmMYB138a was chosen for further investigation. Our protein-protein interaction studies revealed that GmMYB138a, but not its alternatively spliced isoform, interacts with a 14-3-3 protein (GmSGF14l). Although GmMYB138a was predominately localized in nucleus, the resulting complex of GmMYB138a and GmSGF14l was almost evenly distributed in nucleus and cytoplasm, supporting that 14-3-3s interact with their clients to alter their subcellular localization. Additionally, qPCR analysis suggested that GmMYB138a and GmSGF14l synergistically or antagonistically respond to drought, cold and salt stresses. Our findings will contribute to future research in regard to functions of soybean CCA1-like subfamily, especially regulatory mechanisms of GmMYB138a in response to abiotic stresses.
Collapse
Affiliation(s)
| | - Donghao Jin
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Ruihua Li
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Xin Xie
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Guoli Gao
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Weikang Sun
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Yuejia Li
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Lulu Zhai
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Xuyan Li
- College of Plant Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
62
|
Wang YS, Yao HY, Xue HW. Lipidomic profiling analysis reveals the dynamics of phospholipid molecules in Arabidopsis thaliana seedling growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:890-902. [PMID: 27015894 DOI: 10.1111/jipb.12481] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
High-throughput lipidomic profiling provides a sensitive approach for discovering minor lipid species. By using an advance in electrospray ionization tandem mass spectrometry, a large set of phospholipid molecular species (126 species) with high resolution were identified from Arabidopsis seedling; of them 31 species are newly identified (16 are unique in plants), including 13 species of phosphatidic acid (PA), nine phosphatidylcholine, six phosphatidylinositol and three phosphatidylserine. Further analysis of the lipidomic profile reveals dynamics of phospholipids and distinct species alterations during seedling development. PA molecules are found at the lowest levels in imbibition and follow an increasing trend during seedling growth, while phosphatidylethanolamine (PE) molecules show the opposite pattern with highest levels at imbibition and a general decreasing trend at later stages. Of PA molecular species, 34:2-, 34:3-, 36:4-, 36:5-, 38:3- and 38:4-PA increase during radicle emergence, and 34:2- and 34:3-PA reach highest levels during hypocotyl and cotyledon emergence from the seed coat. Conversely, molecular species of PE show higher levels in imbibition and decrease in later stages. These results suggest the crucial roles of specific molecular species and homeostasis of phospholipid molecules in seedling growth and provide insights into the mechanisms of how phospholipid molecules are involved in regulating plant development.
Collapse
Affiliation(s)
- Yi-Sheng Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hong-Yan Yao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
63
|
Salazar-Henao JE, Vélez-Bermúdez IC, Schmidt W. The regulation and plasticity of root hair patterning and morphogenesis. Development 2016; 143:1848-58. [DOI: 10.1242/dev.132845] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Root hairs are highly specialized cells found in the epidermis of plant roots that play a key role in providing the plant with water and mineral nutrients. Root hairs have been used as a model system for understanding both cell fate determination and the morphogenetic plasticity of cell differentiation. Indeed, many studies have shown that the fate of root epidermal cells, which differentiate into either root hair or non-hair cells, is determined by a complex interplay of intrinsic and extrinsic cues that results in a predictable but highly plastic pattern of epidermal cells that can vary in shape, size and function. Here, we review these studies and discuss recent evidence suggesting that environmental information can be integrated at multiple points in the root hair morphogenetic pathway and affects multifaceted processes at the chromatin, transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
| | | | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
64
|
Cao H, Zhuo L, Su Y, Sun L, Wang X. Non-specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:308-21. [PMID: 26991499 DOI: 10.1111/tpj.13165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 05/25/2023]
Abstract
Silicon, the second abundant element in the crust, is beneficial for plant growth, mechanical strength, and stress responses. Here we show that manipulation of the non-specific phospholipase C1, NPC1, alters silicon content in nodes and husks of rice (Oryza sativa). Silicon content in NPC1-overexpressing (OE) plants was decreased in nodes but increased in husks compared to wild-type, whereas RNAi suppression of NPC1 resulted in the opposite changes to those of NPC1-OE plants. NPC1 from rice hydrolyzed phospholipids and galactolipids to generate diacylglycerol that can be phosphorylated to phosphatidic acid. Phosphatidic acid interacts with Lsi6, a silicon transporter that is expressed at the highest level in nodes. In addition, the node cells of NPC1-OE plants have lower contents of cellulose and hemicellulose, and thinner sclerenchyma and vascular bundle fibre cells than wild-type plants; whereas NPC1-RNAi plants displayed the opposite changes. These data indicate that NPC1 modulates silicon distribution and secondary cell wall deposition in nodes and grains, affecting mechanical strength and seed shattering.
Collapse
Affiliation(s)
- Huasheng Cao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Zhuo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuan Su
- Department of Biology, University of Missouri, St. Louis, Missouri, 63121, USA
| | - Linxiao Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, Missouri, 63121, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| |
Collapse
|
65
|
Hou Q, Ufer G, Bartels D. Lipid signalling in plant responses to abiotic stress. PLANT, CELL & ENVIRONMENT 2016; 39:1029-48. [PMID: 26510494 DOI: 10.1111/pce.12666] [Citation(s) in RCA: 351] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 05/18/2023]
Abstract
Lipids are one of the major components of biological membranes including the plasma membrane, which is the interface between the cell and the environment. It has become clear that membrane lipids also serve as substrates for the generation of numerous signalling lipids such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, N-acylethanolamines, free fatty acids and others. The enzymatic production and metabolism of these signalling molecules are tightly regulated and can rapidly be activated upon abiotic stress signals. Abiotic stress like water deficit and temperature stress triggers lipid-dependent signalling cascades, which control the expression of gene clusters and activate plant adaptation processes. Signalling lipids are able to recruit protein targets transiently to the membrane and thus affect conformation and activity of intracellular proteins and metabolites. In plants, knowledge is still scarce of lipid signalling targets and their physiological consequences. This review focuses on the generation of signalling lipids and their involvement in response to abiotic stress. We describe lipid-binding proteins in the context of changing environmental conditions and compare different approaches to determine lipid-protein interactions, crucial for deciphering the signalling cascades.
Collapse
Affiliation(s)
- Quancan Hou
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| | - Guido Ufer
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| | - Dorothea Bartels
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| |
Collapse
|
66
|
Barbaglia AM, Tamot B, Greve V, Hoffmann-Benning S. Phloem Proteomics Reveals New Lipid-Binding Proteins with a Putative Role in Lipid-Mediated Signaling. FRONTIERS IN PLANT SCIENCE 2016; 7:563. [PMID: 27200036 PMCID: PMC4849433 DOI: 10.3389/fpls.2016.00563] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/11/2016] [Indexed: 05/13/2023]
Abstract
Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho-) lipids could act as long-distance developmental signals in response to abiotic stress, and that they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012). Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I) a putative GDSL-motif lipase (II) a PIG-P-like protein, with a possible receptor-like function; (III) and PLAFP (phloem lipid-associated family protein), a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH), which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while all three proteins are indeed lipid-binding and act in the vasculature possibly in a function related to long-distance signaling, the three proteins do not act in the same but rather in distinct pathways. It also points toward PLAFP as a prime candidate to investigate long-distance lipid signaling in the plant drought response.
Collapse
Affiliation(s)
| | | | | | - Susanne Hoffmann-Benning
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| |
Collapse
|
67
|
Hong Y, Zhao J, Guo L, Kim SC, Deng X, Wang G, Zhang G, Li M, Wang X. Plant phospholipases D and C and their diverse functions in stress responses. Prog Lipid Res 2016; 62:55-74. [DOI: 10.1016/j.plipres.2016.01.002] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 12/23/2015] [Accepted: 01/01/2016] [Indexed: 12/25/2022]
|
68
|
Yu W, Ye C, Greenberg ML. Inositol Hexakisphosphate Kinase 1 (IP6K1) Regulates Inositol Synthesis in Mammalian Cells. J Biol Chem 2016; 291:10437-44. [PMID: 26953345 DOI: 10.1074/jbc.m116.714816] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 01/12/2023] Open
Abstract
myo-Inositol, the precursor of all inositol compounds, has pivotal roles in cell metabolism and signaling pathways. Although physiological studies indicate a strong correlation between abnormal intracellular inositol levels and neurological disorders, very little is known about the regulation of inositol synthesis in mammalian cells. In this study, we report that IP6K1, an inositol hexakisphosphate kinase that catalyzes the synthesis of inositol pyrophosphate, regulates inositol synthesis in mammalian cells. Ip6k1 ablation led to profound changes in DNA methylation and expression of Isyna1 (designated mIno1), which encodes the rate-limiting enzyme inositol-3-phosphate synthase. Interestingly, IP6K1 preferentially bound to the phospholipid phosphatidic acid, and this binding was required for IP6K1 nuclear localization and the regulation of mIno1 transcription. This is the first demonstration of IP6K1 as a novel negative regulator of inositol synthesis in mammalian cells.
Collapse
Affiliation(s)
- Wenxi Yu
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Cunqi Ye
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| | - Miriam L Greenberg
- From the Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202
| |
Collapse
|
69
|
Abstract
Lipids are important signaling compounds in plants. They can range from small lipophilic molecules like the dicarboxylic acid Azelaic acid to complex phosphoglycerolipids and regulate plant development as well as the response to biotic and abiotic stress. While their intracellular function is well described, several lipophilic signals are known to be found in the plant phloem and can, thus, also play a role in long-distance signaling. Mostly, they play a role in the pathogen response and systemic acquired resistance. This is particularly true for oxylipins, dehydroabietinal, and azelaic acid. However, several phospholipids have now been described in phloem exudates. Their intracellular function as well as implications and a model for long-distance signaling are discussed in this chapter.
Collapse
|
70
|
Analysis of the DNA-Binding Activities of the Arabidopsis R2R3-MYB Transcription Factor Family by One-Hybrid Experiments in Yeast. PLoS One 2015; 10:e0141044. [PMID: 26484765 PMCID: PMC4613820 DOI: 10.1371/journal.pone.0141044] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/02/2015] [Indexed: 12/20/2022] Open
Abstract
The control of growth and development of all living organisms is a complex and dynamic process that requires the harmonious expression of numerous genes. Gene expression is mainly controlled by the activity of sequence-specific DNA binding proteins called transcription factors (TFs). Amongst the various classes of eukaryotic TFs, the MYB superfamily is one of the largest and most diverse, and it has considerably expanded in the plant kingdom. R2R3-MYBs have been extensively studied over the last 15 years. However, DNA-binding specificity has been characterized for only a small subset of these proteins. Therefore, one of the remaining challenges is the exhaustive characterization of the DNA-binding specificity of all R2R3-MYB proteins. In this study, we have developed a library of Arabidopsis thaliana R2R3-MYB open reading frames, whose DNA-binding activities were assayed in vivo (yeast one-hybrid experiments) with a pool of selected cis-regulatory elements. Altogether 1904 interactions were assayed leading to the discovery of specific patterns of interactions between the various R2R3-MYB subgroups and their DNA target sequences and to the identification of key features that govern these interactions. The present work provides a comprehensive in vivo analysis of R2R3-MYB binding activities that should help in predicting new DNA motifs and identifying new putative target genes for each member of this very large family of TFs. In a broader perspective, the generated data will help to better understand how TF interact with their target DNA sequences.
Collapse
|
71
|
Nakamura Y. Function of polar glycerolipids in flower development in Arabidopsis thaliana. Prog Lipid Res 2015; 60:17-29. [DOI: 10.1016/j.plipres.2015.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 11/28/2022]
|
72
|
Chen CY, Schmidt W. The paralogous R3 MYB proteins CAPRICE, TRIPTYCHON and ENHANCER OF TRY AND CPC1 play pleiotropic and partly non-redundant roles in the phosphate starvation response of Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4821-34. [PMID: 26022254 PMCID: PMC4507782 DOI: 10.1093/jxb/erv259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Phosphate (Pi) deficiency alters root hair length and frequency as a means of increasing the absorptive surface area of roots. Three partly redundant single R3 MYB proteins, CAPRICE (CPC), ENHANCER OF TRY AND CPC1 (ETC1) and TRIPTYCHON (TRY), positively regulate the root hair cell fate by participating in a lateral inhibition mechanism. To identify putative targets and processes that are controlled by these three transcription factors (TFs), we conducted transcriptional profiling of roots from Arabidopsis thaliana wild-type plants, and cpc, etc1 and try mutants grown under Pi-replete and Pi-deficient conditions using RNA-seq. The data show that in an intricate interplay between the three MYBs regulate several developmental, physiological and metabolic processes that are putatively located in different tissues. When grown on media with a low Pi concentration, all three TFs acquire additional functions that are related to the Pi starvation response, including transition metal transport, membrane lipid remodelling, and the acquisition, uptake and storage of Pi. Control of gene activity is partly mediated through the regulation of potential antisense transcripts. The current dataset extends the known functions of R3 MYB proteins, provides a suite of novel candidates with critical function in root hair development under both control and Pi-deficient conditions, and challenges the definition of genetic redundancy by demonstrating that environmental perturbations may confer specific functions to orthologous proteins that could have similar roles under control conditions.
Collapse
Affiliation(s)
- Chun-Ying Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, and National Chung-Hsing University, Taichung, Taiwan Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, and National Chung-Hsing University, Taichung, Taiwan Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
73
|
Ruelland E, Kravets V, Derevyanchuk M, Martinec J, Zachowski A, Pokotylo I. Role of phospholipid signalling in plant environmental responses. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2015; 114:129-143. [PMID: 0 DOI: 10.1016/j.envexpbot.2014.08.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
74
|
Zhao J. Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1721-36. [PMID: 25680793 PMCID: PMC4669553 DOI: 10.1093/jxb/eru540] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/08/2014] [Accepted: 12/15/2014] [Indexed: 05/05/2023]
Abstract
Phospholipase Ds (PLDs) and PLD-derived phosphatidic acids (PAs) play vital roles in plant hormonal and environmental responses and various cellular dynamics. Recent studies have further expanded the functions of PLDs and PAs into plant-microbe interaction. The molecular diversities and redundant functions make PLD-PA an important signalling complex regulating lipid metabolism, cytoskeleton dynamics, vesicle trafficking, and hormonal signalling in plant defence through protein-protein and protein-lipid interactions or hormone signalling. Different PLD-PA signalling complexes and their targets have emerged as fast-growing research topics for understanding their numerous but not yet established roles in modifying pathogen perception, signal transduction, and downstream defence responses. Meanwhile, advanced lipidomics tools have allowed researchers to reveal further the mechanisms of PLD-PA signalling complexes in regulating lipid metabolism and signalling, and their impacts on jasmonic acid/oxylipins, salicylic acid, and other hormone signalling pathways that essentially mediate plant defence responses. This review attempts to summarize the progress made in spatial and temporal PLD/PA signalling as well as PLD/PA-mediated modification of plant defence. It presents an in-depth discussion on the functions and potential mechanisms of PLD-PA complexes in regulating actin filament/microtubule cytoskeleton, vesicle trafficking, and hormonal signalling, and in influencing lipid metabolism-derived metabolites as critical signalling components in plant defence responses. The discussion puts PLD-PA in a broader context in order to guide future research.
Collapse
Affiliation(s)
- Jian Zhao
- National Key Laboratory for Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
75
|
Xie LJ, Chen QF, Chen MX, Yu LJ, Huang L, Chen L, Wang FZ, Xia FN, Zhu TR, Wu JX, Yin J, Liao B, Shi J, Zhang JH, Aharoni A, Yao N, Shu W, Xiao S. Unsaturation of very-long-chain ceramides protects plant from hypoxia-induced damages by modulating ethylene signaling in Arabidopsis. PLoS Genet 2015; 11:e1005143. [PMID: 25822663 PMCID: PMC4379176 DOI: 10.1371/journal.pgen.1005143] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/12/2015] [Indexed: 01/16/2023] Open
Abstract
Lipid remodeling is crucial for hypoxic tolerance in animals, whilst little is known about the hypoxia-induced lipid dynamics in plants. Here we performed a mass spectrometry-based analysis to survey the lipid profiles of Arabidopsis rosettes under various hypoxic conditions. We observed that hypoxia caused a significant increase in total amounts of phosphatidylserine, phosphatidic acid and oxidized lipids, but a decrease in phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Particularly, significant gains in the polyunsaturated species of PC, PE and phosphatidylinositol, and losses in their saturated and mono-unsaturated species were evident during hypoxia. Moreover, hypoxia led to a remarkable elevation of ceramides and hydroxyceramides. Disruption of ceramide synthases LOH1, LOH2 and LOH3 enhanced plant sensitivity to dark submergence, but displayed more resistance to submergence under light than wild type. Consistently, levels of unsaturated very-long-chain (VLC) ceramide species (22:1, 24:1 and 26:1) predominantly declined in the loh1, loh2 and loh3 mutants under dark submergence. In contrast, significant reduction of VLC ceramides in the loh1-1 loh3-1 knockdown double mutant and lacking of VLC unsaturated ceramides in the ads2 mutants impaired plant tolerance to both dark and light submergences. Evidence that C24:1-ceramide interacted with recombinant CTR1 protein and inhibited its kinase activity in vitro, enhanced ER-to-nucleus translocation of EIN2-GFP and stabilization of EIN3-GFP in vivo, suggests a role of ceramides in modulating CTR1-mediated ethylene signaling. The dark submergence-sensitive phenotypes of loh mutants were rescued by a ctr1-1 mutation. Thus, our findings demonstrate that unsaturation of VLC ceramides is a protective strategy for hypoxic tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Li-Juan Xie
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mo-Xian Chen
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lu-Jun Yu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Liang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Feng-Zhu Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fan-Nv Xia
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tian-Ren Zhu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Xin Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Yin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bin Liao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianxin Shi
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Hua Zhang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nan Yao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wensheng Shu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
76
|
Lee SB, Suh MC. Cuticular wax biosynthesis is up-regulated by the MYB94 transcription factor in Arabidopsis. PLANT & CELL PHYSIOLOGY 2015; 56:48-60. [PMID: 25305760 DOI: 10.1093/pcp/pcu142] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The aerial parts of all land plants are covered with hydrophobic cuticular wax layers that act as the first barrier against the environment. The MYB94 transcription factor gene is expressed in abundance in aerial organs and shows a higher expression in the stem epidermis than within the stem. When seedlings were subjected to various treatments, the expression of the MYB94 transcription factor gene was observed to increase approximately 9-fold under drought, 8-fold for ABA treatment and 4-fold for separate NaCl and mannitol treatments. MYB94 harbors the transcriptional activation domain at its C-terminus, and fluorescent signals from MYB94:enhanced yellow fluorescent protein (eYFP) were observed in the nucleus of tobacco epidermis and in transgenic Arabidopsis roots. The total wax loads increased by approximately 2-fold in the leaves of the MYB94-overexpressing (MYB94 OX) lines, as compared with those of the wild type (WT). MYB94 activates the expression of WSD1, KCS2/DAISY, CER2, FAR3 and ECR genes by binding directly to their gene promoters. An increase in the accumulation of cuticular wax was observed to reduce the rate of cuticular transpiration in the leaves of MYB94 OX lines, under drought stress conditions. Taken together, a R2R3-type MYB94 transcription factor activates Arabidopsis cuticular wax biosynthesis and might be important in plant response to environmental stress, including drought.
Collapse
Affiliation(s)
- Saet Buyl Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, Korea
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, Korea
| |
Collapse
|
77
|
Janda M, Šašek V, Chmelařová H, Andrejch J, Nováková M, Hajšlová J, Burketová L, Valentová O. Phospholipase D affects translocation of NPR1 to the nucleus in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:59. [PMID: 25741350 PMCID: PMC4332306 DOI: 10.3389/fpls.2015.00059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/22/2015] [Indexed: 05/05/2023]
Abstract
Phytohormone salicylic acid (SA) is a crucial component of plant-induced defense against biotrophic pathogens. Although the key players of the SA pathway are known, there are still gaps in the understanding of the molecular mechanism and the regulation of particular steps. In our previous research, we showed in Arabidopsis suspension cells that n-butanol, which specifically modulates phospholipase D activity, significantly suppresses the transcription of the pathogenesis related (PR-1) gene, which is generally accepted as the SA pathway marker. In the presented study, we have investigated the site of n-butanol action in the SA pathway. We were able to show in Arabidopsis plants treated with SA that n-butanol inhibits the transcription of defense genes (PR-1, WRKY38). Fluorescence microscopy of Arabidopsis thaliana mutants expressing 35S::NPR1-GFP (nonexpressor pathogenesis related 1) revealed significantly decreased nuclear localization of NPR1 in the presence of n-butanol. On the other hand, n-butanol did not decrease the nuclear localization of NPR1 in 35S::npr1C82A-GFP and 35S::npr1C216A-GFP mutants constitutively expressing NPR1 monomers. Mass spectrometric analysis of plant extracts showed that n-butanol significantly changes the metabolic fingerprinting while t-butanol had no effect. We found groups of the plant metabolites, influenced differently by SA and n-butanol treatment. Thus, we proposed several metabolites as markers for n-butanol action.
Collapse
Affiliation(s)
- Martin Janda
- Department of Biochemistry and Microbiology, University of Chemistry and Technology PraguePrague, Czech Republic
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany AS CRPrague, Czech Republic
| | - Vladimír Šašek
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany AS CRPrague, Czech Republic
| | - Hana Chmelařová
- Department of Food Analysis and Nutrition, University of Chemistry and Technology PraguePrague, Czech Republic
| | - Jan Andrejch
- Department of Biochemistry and Microbiology, University of Chemistry and Technology PraguePrague, Czech Republic
| | - Miroslava Nováková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology PraguePrague, Czech Republic
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany AS CRPrague, Czech Republic
| | - Jana Hajšlová
- Department of Food Analysis and Nutrition, University of Chemistry and Technology PraguePrague, Czech Republic
| | - Lenka Burketová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany AS CRPrague, Czech Republic
| | - Olga Valentová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology PraguePrague, Czech Republic
- *Correspondence: Olga Valentová, CSc., Laboratory of Plant Biochemistry, Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, Prague 6 – Dejvice, 16628, Czech Republic e-mail:
| |
Collapse
|
78
|
Grierson C, Nielsen E, Ketelaarc T, Schiefelbein J. Root hairs. THE ARABIDOPSIS BOOK 2014; 12:e0172. [PMID: 24982600 PMCID: PMC4075452 DOI: 10.1199/tab.0172] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology.
Collapse
Affiliation(s)
- Claire Grierson
- School of Biological Sciences, University of Bristol, Bristol, UK BS8 1UG
| | - Erik Nielsen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA 48109
| | - Tijs Ketelaarc
- Laboratory of Cell Biology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA 48109
| |
Collapse
|
79
|
Yao H, Wang G, Wang X. Nuclear translocation of proteins and the effect of phosphatidic acid. PLANT SIGNALING & BEHAVIOR 2014; 9:e977711. [PMID: 25482760 PMCID: PMC5155622 DOI: 10.4161/15592324.2014.977711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/04/2014] [Accepted: 09/11/2014] [Indexed: 05/22/2023]
Abstract
Transport of proteins containing a nuclear localization signal (NLS) into the nucleus is mediated by nuclear transport receptors called importins, typically dimmers of a cargo-binding α-subunit and a β-subunit that mediates translocation through the nuclear pore complexes (NPCs). However, how proteins without canonical NLS move into the nucleus is not well understood. Recent results indicate that phospholipids, such as phosphatidic acid, play important roles in the intracellular translocation of proteins between the nucleus and cytoplasm.
Collapse
Affiliation(s)
- Hongyan Yao
- National Key Laboratory of Plant Molecular
Genetics; Institute of Plant Physiology and Ecology; Chinese Academy of
Sciences; Shanghai, China
- Correspondence to: Hongyan Yao;
| | - Geliang Wang
- Department of Biology; University of Missouri;
St. Louis, MO USA; Donald Danforth Plant Science Center; St. Louis, MO
USA
| | - Xuemin Wang
- Department of Biology; University of Missouri;
St. Louis, MO USA; Donald Danforth Plant Science Center; St. Louis, MO
USA
| |
Collapse
|