51
|
Richter A, Schaff C, Zhang Z, Lipka AE, Tian F, Köllner TG, Schnee C, Preiß S, Irmisch S, Jander G, Boland W, Gershenzon J, Buckler ES, Degenhardt J. Characterization of Biosynthetic Pathways for the Production of the Volatile Homoterpenes DMNT and TMTT in Zea mays. THE PLANT CELL 2016; 28:2651-2665. [PMID: 27662898 PMCID: PMC5134970 DOI: 10.1105/tpc.15.00919] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 08/05/2016] [Accepted: 09/23/2016] [Indexed: 05/20/2023]
Abstract
Plant volatiles not only have multiple defense functions against herbivores, fungi, and bacteria, but also have been implicated in signaling within the plant and toward other organisms. Elucidating the function of individual plant volatiles will require more knowledge of their biosynthesis and regulation in response to external stimuli. By exploiting the variation of herbivore-induced volatiles among 26 maize (Zea mays) inbred lines, we conducted a nested association mapping and genome-wide association study (GWAS) to identify a set of quantitative trait loci (QTLs) for investigating the pathways of volatile terpene production. The most significant identified QTL affects the emission of (E)-nerolidol, linalool, and the two homoterpenes (E)-3,8-dimethyl-1,4,7-nonatriene (DMNT) and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT). GWAS associated a single nucleotide polymorphism in the promoter of the gene encoding the terpene synthase TPS2 with this QTL Biochemical characterization of TPS2 verified that this plastid-localized enzyme forms linalool, (E)-nerolidol, and (E,E)-geranyllinalool. The subsequent conversion of (E)-nerolidol into DMNT maps to a P450 monooxygenase, CYP92C5, which is capable of converting nerolidol into DMNT by oxidative degradation. A QTL influencing TMTT accumulation corresponds to a similar monooxygenase, CYP92C6, which is specific for the conversion of (E,E)-geranyllinalool to TMTT The DMNT biosynthetic pathway and both monooxygenases are distinct from those previously characterized for DMNT and TMTT synthesis in Arabidopsis thaliana, suggesting independent evolution of these enzymatic activities.
Collapse
Affiliation(s)
- Annett Richter
- Institute for Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany
| | - Claudia Schaff
- Institute for Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany
| | - Zhiwu Zhang
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
| | - Alexander E Lipka
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
| | - Feng Tian
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
| | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | | | - Susanne Preiß
- Institute for Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany
| | - Sandra Irmisch
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Willhelm Boland
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | | | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
- U.S. Department of Agriculture-Agricultural Research Service, Ithaca, New York 14853
| | - Jörg Degenhardt
- Institute for Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle, Germany
| |
Collapse
|
52
|
Sun P, Schuurink RC, Caissard JC, Hugueney P, Baudino S. My Way: Noncanonical Biosynthesis Pathways for Plant Volatiles. TRENDS IN PLANT SCIENCE 2016; 21:884-894. [PMID: 27475252 DOI: 10.1016/j.tplants.2016.07.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 05/24/2023]
Abstract
Plant volatiles are crucial for various interactions with other organisms and their surrounding environment. A large number of these volatiles belong to the terpenoid and benzenoid/phenylpropanoid classes, which have long been considered to be exclusively synthesized from a few canonical pathways. However, several alternative pathways producing these plant volatiles have been discovered recently. This review summarizes the current knowledge about new pathways for these two major groups of plant volatiles, which open new perspectives for applications in metabolic engineering.
Collapse
Affiliation(s)
- Pulu Sun
- Université de Lyon, UJM-Saint-Étienne, CNRS, BVpam FRE 3727, F-42023 Saint-Étienne, France; Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jean-Claude Caissard
- Université de Lyon, UJM-Saint-Étienne, CNRS, BVpam FRE 3727, F-42023 Saint-Étienne, France
| | | | - Sylvie Baudino
- Université de Lyon, UJM-Saint-Étienne, CNRS, BVpam FRE 3727, F-42023 Saint-Étienne, France.
| |
Collapse
|
53
|
Nützmann HW, Huang A, Osbourn A. Plant metabolic clusters - from genetics to genomics. THE NEW PHYTOLOGIST 2016; 211:771-89. [PMID: 27112429 PMCID: PMC5449196 DOI: 10.1111/nph.13981] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/22/2016] [Indexed: 05/18/2023]
Abstract
Contents 771 I. 771 II. 772 III. 780 IV. 781 V. 786 786 References 786 SUMMARY: Plant natural products are of great value for agriculture, medicine and a wide range of other industrial applications. The discovery of new plant natural product pathways is currently being revolutionized by two key developments. First, breakthroughs in sequencing technology and reduced cost of sequencing are accelerating the ability to find enzymes and pathways for the biosynthesis of new natural products by identifying the underlying genes. Second, there are now multiple examples in which the genes encoding certain natural product pathways have been found to be grouped together in biosynthetic gene clusters within plant genomes. These advances are now making it possible to develop strategies for systematically mining multiple plant genomes for the discovery of new enzymes, pathways and chemistries. Increased knowledge of the features of plant metabolic gene clusters - architecture, regulation and assembly - will be instrumental in expediting natural product discovery. This review summarizes progress in this area.
Collapse
Affiliation(s)
- Hans-Wilhelm Nützmann
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ancheng Huang
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
54
|
Miyamoto K, Fujita M, Shenton MR, Akashi S, Sugawara C, Sakai A, Horie K, Hasegawa M, Kawaide H, Mitsuhashi W, Nojiri H, Yamane H, Kurata N, Okada K, Toyomasu T. Evolutionary trajectory of phytoalexin biosynthetic gene clusters in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:293-304. [PMID: 27133567 DOI: 10.1111/tpj.13200] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 05/03/2023]
Abstract
Plants frequently possess operon-like gene clusters for specialized metabolism. Cultivated rice, Oryza sativa, produces antimicrobial diterpene phytoalexins represented by phytocassanes and momilactones, and the majority of their biosynthetic genes are clustered on chromosomes 2 and 4, respectively. These labdane-related diterpene phytoalexins are biosynthesized from geranylgeranyl diphosphate via ent-copalyl diphosphate or syn-copalyl diphosphate. The two gene clusters consist of genes encoding diterpene synthases and chemical-modification enzymes including P450s. In contrast, genes for the biosynthesis of gibberellins, which are labdane-related phytohormones, are scattered throughout the rice genome similar to other plant genomes. The mechanism of operon-like gene cluster formation remains undefined despite previous studies in other plant species. Here we show an evolutionary insight into the rice gene clusters by a comparison with wild Oryza species. Comparative genomics and biochemical studies using wild rice species from the AA genome lineage, including Oryza barthii, Oryza glumaepatula, Oryza meridionalis and the progenitor of Asian cultivated rice Oryza rufipogon indicate that gene clustering for biosynthesis of momilactones and phytocassanes had already been accomplished before the domestication of rice. Similar studies using the species Oryza punctata from the BB genome lineage, the distant FF genome lineage species Oryza brachyantha and an outgroup species Leersia perrieri suggest that the phytocassane biosynthetic gene cluster was present in the common ancestor of the Oryza species despite the different locations, directions and numbers of their member genes. However, the momilactone biosynthetic gene cluster evolved within Oryza before the divergence of the BB genome via assembly of ancestral genes.
Collapse
Affiliation(s)
- Koji Miyamoto
- Department of Biosciences, Teikyo University, Toyosatodai 1-1, Utsunomiya, Tochigi, 320-8551, Japan
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masahiro Fujita
- Plant Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Matthew R Shenton
- Plant Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Shota Akashi
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Chizu Sugawara
- Faculty of Agriculture, Yamagata University, Wakaba-cho 1-23, Tsuruoka, Yamagata, 997-8555, Japan
| | - Arisa Sakai
- Faculty of Agriculture, Yamagata University, Wakaba-cho 1-23, Tsuruoka, Yamagata, 997-8555, Japan
| | - Kiyotaka Horie
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Morifumi Hasegawa
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
- College of Agriculture, Ibaraki University, Ami-machi Chuo 3-21-1, Ibaraki, 300-0393, Japan
| | - Hiroshi Kawaide
- Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu, Tokyo, 183-8509, Japan
| | - Wataru Mitsuhashi
- Faculty of Agriculture, Yamagata University, Wakaba-cho 1-23, Tsuruoka, Yamagata, 997-8555, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hisakazu Yamane
- Department of Biosciences, Teikyo University, Toyosatodai 1-1, Utsunomiya, Tochigi, 320-8551, Japan
| | - Nori Kurata
- Plant Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Tomonobu Toyomasu
- Faculty of Agriculture, Yamagata University, Wakaba-cho 1-23, Tsuruoka, Yamagata, 997-8555, Japan.
| |
Collapse
|
55
|
Ponzio C, Weldegergis BT, Dicke M, Gols R. Compatible and incompatible pathogen–plant interactions differentially affect plant volatile emissions and the attraction of parasitoid wasps. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12689] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Camille Ponzio
- Laboratory of Entomology Wageningen University Radix Building, Droevendaalsesteeg 1 6708PB Wageningen The Netherlands
| | - Berhane T. Weldegergis
- Laboratory of Entomology Wageningen University Radix Building, Droevendaalsesteeg 1 6708PB Wageningen The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology Wageningen University Radix Building, Droevendaalsesteeg 1 6708PB Wageningen The Netherlands
| | - Rieta Gols
- Laboratory of Entomology Wageningen University Radix Building, Droevendaalsesteeg 1 6708PB Wageningen The Netherlands
| |
Collapse
|
56
|
Yu N, Nützmann HW, MacDonald JT, Moore B, Field B, Berriri S, Trick M, Rosser SJ, Kumar SV, Freemont PS, Osbourn A. Delineation of metabolic gene clusters in plant genomes by chromatin signatures. Nucleic Acids Res 2016; 44:2255-65. [PMID: 26895889 PMCID: PMC4797310 DOI: 10.1093/nar/gkw100] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/20/2016] [Accepted: 02/09/2016] [Indexed: 12/26/2022] Open
Abstract
Plants are a tremendous source of diverse chemicals, including many natural product-derived drugs. It has recently become apparent that the genes for the biosynthesis of numerous different types of plant natural products are organized as metabolic gene clusters, thereby unveiling a highly unusual form of plant genome architecture and offering novel avenues for discovery and exploitation of plant specialized metabolism. Here we show that these clustered pathways are characterized by distinct chromatin signatures of histone 3 lysine trimethylation (H3K27me3) and histone 2 variant H2A.Z, associated with cluster repression and activation, respectively, and represent discrete windows of co-regulation in the genome. We further demonstrate that knowledge of these chromatin signatures along with chromatin mutants can be used to mine genomes for cluster discovery. The roles of H3K27me3 and H2A.Z in repression and activation of single genes in plants are well known. However, our discovery of highly localized operon-like co-regulated regions of chromatin modification is unprecedented in plants. Our findings raise intriguing parallels with groups of physically linked multi-gene complexes in animals and with clustered pathways for specialized metabolism in filamentous fungi.
Collapse
Affiliation(s)
- Nan Yu
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - James T MacDonald
- Centre for Synthetic Biology and Innovation, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| | - Ben Moore
- Centre for Synthetic Biology and Innovation, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| | - Ben Field
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Souha Berriri
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Martin Trick
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Susan J Rosser
- School of Biological Sciences, University of Edinburgh, King's Building, Edinburgh, EH9 3JR, UK
| | - S Vinod Kumar
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Paul S Freemont
- Centre for Synthetic Biology and Innovation, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| | - Anne Osbourn
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
57
|
Keeling CI, Li M, Sandhu HK, Henderson H, Yuen MMS, Bohlmann J. Quantitative metabolome, proteome and transcriptome analysis of midgut and fat body tissues in the mountain pine beetle, Dendroctonus ponderosae Hopkins, and insights into pheromone biosynthesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:170-183. [PMID: 26792242 DOI: 10.1016/j.ibmb.2016.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/30/2015] [Accepted: 01/05/2016] [Indexed: 06/05/2023]
Abstract
Bark beetles (Coleoptera: Scolytinae) are pests of many forests around the world. The mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, is a significant pest of western North American pine forests. The MPB is able to overcome the defences of pine trees through pheromone-assisted aggregation that results in a mass attack of host trees. These pheromones, both male and female produced, are believed to be biosynthesized in the midgut and/or fat bodies of these insects. We used metabolite analysis, quantitative proteomics (iTRAQ) and transcriptomics (RNA-seq) to identify proteins and transcripts differentially expressed between sexes and between tissues when treated with juvenile hormone III. Juvenile hormone III induced frontalin biosynthesis in males and trans-verbenol biosynthesis in females, as well as affected the expression of many proteins and transcripts in sex- and tissue-specific ways. Based on these analyses, we identified candidate genes involved in the biosynthesis of frontalin, exo-brevicomin, and trans-verbenol pheromones.
Collapse
Affiliation(s)
- Christopher I Keeling
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, Canada V6T 1A4.
| | - Maria Li
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, Canada V6T 1A4
| | - Harpreet K Sandhu
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, Canada V6T 1A4
| | - Hannah Henderson
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, Canada V6T 1A4
| | - Macaire Man Saint Yuen
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, Canada V6T 1A4
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, Canada V6T 1A4
| |
Collapse
|
58
|
Wang Q, Jia M, Huh JH, Muchlinski A, Peters RJ, Tholl D. Identification of a Dolabellane Type Diterpene Synthase and other Root-Expressed Diterpene Synthases in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:1761. [PMID: 27933080 PMCID: PMC5122590 DOI: 10.3389/fpls.2016.01761] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/08/2016] [Indexed: 05/20/2023]
Abstract
Arabidopsis thaliana maintains a complex metabolism for the production of secondary or specialized metabolites. Such metabolites include volatile and semivolatile terpenes, which have been associated with direct and indirect defensive activities in flowers and leaves. In comparison, the structural diversity and function of terpenes in Arabidopsis roots has remained largely unexplored despite a substantial number of root-expressed genes in the Arabidopsis terpene synthase (TPS) gene family. We show that five root-expressed TPSs of an expanded subfamily-a type clade in the Arabidopsis TPS family function as class I diterpene synthases that predominantly convert geranylgeranyl diphosphate (GGPP) to different semi-volatile diterpene products, which are in part detectable at low levels in the ecotypes Columbia (Col) and Cape Verde Island (Cvi). The enzyme TPS20 produces a macrocyclic dolabellane diterpene alcohol and a dolabellane-related diterpene olefin named dolathaliatriene with a so far unknown C6-C11 bicyclic scaffold besides several minor olefin products. The TPS20 compounds occur in all tissues of Cvi but are absent in the Col ecotype because of deletion and substitution mutations in the Col TPS20 sequence. The primary TPS20 diterpene products retard the growth of the root rot pathogen Pythium irregulare but only at concentrations exceeding those in planta. Together, our results demonstrate that divergence and pseudogenization in the Arabidopsis TPS gene family allow for structural plasticity in diterpene profiles of above- and belowground tissues.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Biological Sciences, Virginia Tech, BlacksburgVA, USA
| | - Meirong Jia
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, AmesIA, USA
| | - Jung-Hyun Huh
- Department of Biological Sciences, Virginia Tech, BlacksburgVA, USA
| | | | - Reuben J. Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, AmesIA, USA
| | - Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, BlacksburgVA, USA
- *Correspondence: Dorothea Tholl,
| |
Collapse
|
59
|
Chen HY, Huh JH, Yu YC, Ho LH, Chen LQ, Tholl D, Frommer WB, Guo WJ. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:1046-58. [PMID: 26234706 DOI: 10.1111/tpj.12948] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 05/04/2023]
Abstract
Plant roots secrete a significant portion of their assimilated carbon into the rhizosphere. The putative sugar transporter SWEET2 is highly expressed in Arabidopsis roots. Expression patterns of SWEET2-β-glucuronidase fusions confirmed that SWEET2 accumulates highly in root cells and thus may contribute to sugar secretion, specifically from epidermal cells of the root apex. SWEET2-green fluorescent protein fusions localized to the tonoplast, which engulfs the major sugar storage compartment. Functional analysis of SWEET2 activity in yeast showed low uptake activity for the glucose analog 2-deoxyglucose, consistent with a role in the transport of glucose across the tonoplast. Loss-of-function sweet2 mutants showed reduced tolerance to excess glucose, lower glucose accumulation in leaves, and 15-25% higher glucose-derived carbon efflux from roots, suggesting that SWEET2 has a role in preventing the loss of sugar from root tissue. SWEET2 root expression was induced more than 10-fold during Pythium infection. Importantly, sweet2 mutants were more susceptible to the oomycete, showing impaired growth after infection. We propose that root-expressed vacuolar SWEET2 modulates sugar secretion, possibly by reducing the availability of glucose sequestered in the vacuole, thereby limiting carbon loss to the rhizosphere. Moreover, the reduced availability of sugar in the rhizosphere due to SWEET2 activity contributes to resistance to Pythium.
Collapse
Affiliation(s)
- Hsin-Yi Chen
- Institute of Tropical Plant Science, National Cheng Kung University, Tainan City, 7013, Taiwan
| | - Jung-Hyun Huh
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ya-Chi Yu
- Institute of Tropical Plant Science, National Cheng Kung University, Tainan City, 7013, Taiwan
| | - Li-Hsuan Ho
- Institute of Tropical Plant Science, National Cheng Kung University, Tainan City, 7013, Taiwan
| | - Li-Qing Chen
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Dorothea Tholl
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Woei-Jiun Guo
- Institute of Tropical Plant Science, National Cheng Kung University, Tainan City, 7013, Taiwan
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| |
Collapse
|
60
|
Affiliation(s)
- Dorothea Tholl
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|