51
|
Gupta C, Pereira A. Recent advances in gene function prediction using context-specific coexpression networks in plants. F1000Res 2019; 8:F1000 Faculty Rev-153. [PMID: 30800290 PMCID: PMC6364378 DOI: 10.12688/f1000research.17207.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
Predicting gene functions from genome sequence alone has been difficult, and the functions of a large fraction of plant genes remain unknown. However, leveraging the vast amount of currently available gene expression data has the potential to facilitate our understanding of plant gene functions, especially in determining complex traits. Gene coexpression networks-created by integrating multiple expression datasets-connect genes with similar patterns of expression across multiple conditions. Dense gene communities in such networks, commonly referred to as modules, often indicate that the member genes are functionally related. As such, these modules serve as tools for generating new testable hypotheses, including the prediction of gene function and importance. Recently, we have seen a paradigm shift from the traditional "global" to more defined, context-specific coexpression networks. Such coexpression networks imply genetic correlations in specific biological contexts such as during development or in response to a stress. In this short review, we highlight a few recent studies that attempt to fill the large gaps in our knowledge about cellular functions of plant genes using context-specific coexpression networks.
Collapse
Affiliation(s)
- Chirag Gupta
- Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Andy Pereira
- Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
52
|
Sun H, Xu F, Guo X, Wu D, Zhang X, Lou M, Luo F, Zhao Q, Xu G, Zhang Y. A Strigolactone Signal Inhibits Secondary Lateral Root Development in Rice. FRONTIERS IN PLANT SCIENCE 2019; 10:1527. [PMID: 31824543 PMCID: PMC6882917 DOI: 10.3389/fpls.2019.01527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/01/2019] [Indexed: 05/21/2023]
Abstract
Strigolactones (SLs) and their derivatives are plant hormones that have recently been identified as regulators of primary lateral root (LR) development. However, whether SLs mediate secondary LR production in rice (Oryza sativa L.), and how SLs and auxin interact in this process, remain unclear. In this study, the SL-deficient (dwarf10) and SL-insensitive (dwarf3) rice mutants and lines overexpressing OsPIN2 (OE) were used to investigate secondary LR development. The effects of exogenous GR24 (a synthetic SL analogue), 1-naphthylacetic acid (NAA; an exogenous auxin), 1-naphthylphthalamic acid (NPA; a polar auxin transport inhibitor), and abamine (a synthetic SL inhibitor) on rice secondary LR development were investigated. Rice d mutants with impaired SL biosynthesis and signaling exhibited increased secondary LR production compared with wild-type (WT) plants. Application of GR24 decreased the numbers of secondary LRs in dwarf10 (d10) plants but not in dwarf3 (d3), plants. These results indicate that SLs negatively regulate rice secondary LR production. Higher expression of DR5::GUS and more secondary LR primordia were found in the d mutants than in the WT plants. Exogenous NAA application increased expression of DR5::GUS in the WT, but had no effect on secondary LR formation. No secondary LRs were recorded in the OE lines, although DR5::GUS levels were higher than in the WT plants. However, on application of NPA, the numbers of secondary LRs were reduced in d10 and d3 mutants. Application of NAA increased the number of secondary LRs in the d mutants. GR24 eliminated the effect of NAA on secondary LR development in the d10, but not in the d3, mutants. These results demonstrate the importance of auxin in secondary LR formation, and that this process is inhibited by SLs via the D3 response pathway, but the interaction between auxin and SLs is complex.
Collapse
Affiliation(s)
- Huwei Sun
- Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Huwei Sun, ; Yali Zhang,
| | - Fugui Xu
- Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaoli Guo
- Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Daxia Wu
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xuhong Zhang
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Manman Lou
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Feifei Luo
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Quanzhi Zhao
- Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Guohua Xu
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yali Zhang
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Huwei Sun, ; Yali Zhang,
| |
Collapse
|
53
|
Orosa-Puente B, Leftley N, von Wangenheim D, Banda J, Srivastava AK, Hill K, Truskina J, Bhosale R, Morris E, Srivastava M, Kümpers B, Goh T, Fukaki H, Vermeer JEM, Vernoux T, Dinneny JR, French AP, Bishopp A, Sadanandom A, Bennett MJ. Root branching toward water involves posttranslational modification of transcription factor ARF7. Science 2018; 362:1407-1410. [PMID: 30573626 DOI: 10.1126/science.aau3956] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/06/2018] [Indexed: 01/01/2023]
Abstract
Plants adapt to heterogeneous soil conditions by altering their root architecture. For example, roots branch when in contact with water by using the hydropatterning response. We report that hydropatterning is dependent on auxin response factor ARF7. This transcription factor induces asymmetric expression of its target gene LBD16 in lateral root founder cells. This differential expression pattern is regulated by posttranslational modification of ARF7 with the small ubiquitin-like modifier (SUMO) protein. SUMOylation negatively regulates ARF7 DNA binding activity. ARF7 SUMOylation is required to recruit the Aux/IAA (indole-3-acetic acid) repressor protein IAA3. Blocking ARF7 SUMOylation disrupts IAA3 recruitment and hydropatterning. We conclude that SUMO-dependent regulation of auxin response controls root branching pattern in response to water availability.
Collapse
Affiliation(s)
| | - Nicola Leftley
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Daniel von Wangenheim
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Jason Banda
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | | | - Kristine Hill
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Jekaterina Truskina
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, F-69342, Lyon, France
| | - Rahul Bhosale
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Emily Morris
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | | | - Britta Kümpers
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Tatsuaki Goh
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Joop E M Vermeer
- Department of Plant and Microbial Biology, University of Zurich, CH-8008 Zurich, Switzerland
- Developmental Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, F-69342, Lyon, France
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Andrew P French
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
- School of Computer Science, Jubilee Campus, University of Nottingham, Nottingham NG8 1BB, UK
| | - Anthony Bishopp
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Ari Sadanandom
- Department of Biosciences, University of Durham, Durham DH1 3LE, UK.
| | - Malcolm J Bennett
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK.
| |
Collapse
|
54
|
Dash M, Yordanov YS, Georgieva T, Wei H, Busov V. Gene network analysis of poplar root transcriptome in response to drought stress identifies a PtaJAZ3PtaRAP2.6-centered hierarchical network. PLoS One 2018; 13:e0208560. [PMID: 30540849 PMCID: PMC6291141 DOI: 10.1371/journal.pone.0208560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/19/2018] [Indexed: 12/02/2022] Open
Abstract
Using time-series transcriptomic data from poplar roots undergoing polyethylene glycol (PEG)-induced drought stress, we built a genetic network model of the involved putative molecular responses. We found that the network resembled a hierarchical structure. The highest hierarchical level in this structure is occupied by 9 genes, which we called superhubs because they were primarily connected to 18 hub genes, which are then connected to 2,934 terminal genes. We were only able to regenerate transgenic plants overexpressing two of the superhubs, suggesting that the majority of the superhubs might interfere with the regeneration process and did not allow recovery of transgenic plants. The two superhubs encode proteins with closest homology to JAZ3 and RAP2.6 genes of Arabidopsis and were consequently named PtaJAZ3 and PtaRAP2.6. PtaJAZ3 and PtaRAP2.6 overexpressing transgenic lines showed a significant increase in both root elongation and lateral root proliferation and these responses were specific for the drought stress conditions and were highly correlated with the levels of overexpression of the transgenes. Several lines of evidence suggest of regulatory interactions between the two superhubs. Both superhubs were significantly induced by methyl jasmonate (MeJA). Because jasmonate signaling involves ubiquitin-mediated proteasome degradation, treatment with proteasome inhibitor abolished the MeJA induction for both genes. PtaRAP2.6 was upregulated in PtaJAZ3 transgenics but PtaJAZ3 expression was not affected in the PtaRAP2.6 overexpressors. The discovery of the two genes and further future insights into the associated mechanisms can lead to improved understanding and novel approaches to regulate root architecture in relation to drought stress.
Collapse
Affiliation(s)
- Madhumita Dash
- Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States of America
| | - Yordan S. Yordanov
- Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States of America
| | - Tatyana Georgieva
- Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States of America
| | - Hairong Wei
- Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States of America
| | - Victor Busov
- Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States of America
| |
Collapse
|
55
|
Lavarenne J, Guyomarc'h S, Sallaud C, Gantet P, Lucas M. The Spring of Systems Biology-Driven Breeding. TRENDS IN PLANT SCIENCE 2018; 23:706-720. [PMID: 29764727 DOI: 10.1016/j.tplants.2018.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 05/08/2023]
Abstract
Genetics and molecular biology have contributed to the development of rationalized plant breeding programs. Recent developments in both high-throughput experimental analyses of biological systems and in silico data processing offer the possibility to address the whole gene regulatory network (GRN) controlling a given trait. GRN models can be applied to identify topological features helping to shortlist potential candidate genes for breeding purposes. Time-series data sets can be used to support dynamic modelling of the network. This will enable a deeper comprehension of network behaviour and the identification of the few elements to be genetically rewired to push the system towards a modified phenotype of interest. This paves the way to design more efficient, systems biology-based breeding strategies.
Collapse
Affiliation(s)
- Jérémy Lavarenne
- UMR DIADE, Université de Montpellier, IRD, 911 Avenue Agropolis, 34394 Montpellier cedex 5, France; Biogemma, Centre de Recherches de Chappes, Route d'Ennezat, 63720 Chappes, France
| | - Soazig Guyomarc'h
- UMR DIADE, Université de Montpellier, IRD, 911 Avenue Agropolis, 34394 Montpellier cedex 5, France
| | - Christophe Sallaud
- Biogemma, Centre de Recherches de Chappes, Route d'Ennezat, 63720 Chappes, France
| | - Pascal Gantet
- UMR DIADE, Université de Montpellier, IRD, 911 Avenue Agropolis, 34394 Montpellier cedex 5, France.
| | - Mikaël Lucas
- UMR DIADE, Université de Montpellier, IRD, 911 Avenue Agropolis, 34394 Montpellier cedex 5, France
| |
Collapse
|
56
|
Ishimaru Y, Hayashi K, Suzuki T, Fukaki H, Prusinska J, Meester C, Quareshy M, Egoshi S, Matsuura H, Takahashi K, Kato N, Kombrink E, Napier RM, Hayashi KI, Ueda M. Jasmonic Acid Inhibits Auxin-Induced Lateral Rooting Independently of the CORONATINE INSENSITIVE1 Receptor. PLANT PHYSIOLOGY 2018; 177:1704-1716. [PMID: 29934297 PMCID: PMC6084677 DOI: 10.1104/pp.18.00357] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/13/2018] [Indexed: 05/23/2023]
Abstract
Plant root systems are indispensable for water uptake, nutrient acquisition, and anchoring plants in the soil. Previous studies using auxin inhibitors definitively established that auxin plays a central role regulating root growth and development. Most auxin inhibitors affect all auxin signaling at the same time, which obscures an understanding of individual events. Here, we report that jasmonic acid (JA) functions as a lateral root (LR)-preferential auxin inhibitor in Arabidopsis (Arabidopsis thaliana) in a manner that is independent of the JA receptor, CORONATINE INSENSITIVE1 (COI1). Treatment of wild-type Arabidopsis with either (-)-JA or (+)-JA reduced primary root length and LR number; the reduction of LR number was also observed in coi1 mutants. Treatment of seedlings with (-)-JA or (+)-JA suppressed auxin-inducible genes related to LR formation, diminished accumulation of the auxin reporter DR5::GUS, and inhibited auxin-dependent DII-VENUS degradation. A structural mimic of (-)-JA and (+)-coronafacic acid also inhibited LR formation and stabilized DII-VENUS protein. COI1-independent activity was retained in the double mutant of transport inhibitor response1 and auxin signaling f-box protein2 (tir1 afb2) but reduced in the afb5 single mutant. These results reveal JAs and (+)-coronafacic acid to be selective counter-auxins, a finding that could lead to new approaches for studying the mechanisms of LR formation.
Collapse
Affiliation(s)
- Yasuhiro Ishimaru
- Department of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Kengo Hayashi
- Department of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Takeshi Suzuki
- Department of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Hidehiro Fukaki
- Department of Biology, Kobe University, Kobe 657-8501, Japan
| | - Justyna Prusinska
- School of Life Sciences, University of Warwick, Warwickshire CV4 7AS, United Kingdom
| | - Christian Meester
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, Warwickshire CV4 7AS, United Kingdom
| | - Syusuke Egoshi
- Department of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Hideyuki Matsuura
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Kosaku Takahashi
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Nobuki Kato
- Department of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Erich Kombrink
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Richard M Napier
- School of Life Sciences, University of Warwick, Warwickshire CV4 7AS, United Kingdom
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan
| | - Minoru Ueda
- Department of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
57
|
Pandey SK, Lee HW, Kim MJ, Cho C, Oh E, Kim J. LBD18 uses a dual mode of a positive feedback loop to regulate ARF expression and transcriptional activity in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:233-251. [PMID: 29681137 DOI: 10.1111/tpj.13945] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 05/10/2023]
Abstract
A hierarchy of transcriptional regulators controlling lateral root formation in Arabidopsis thaliana has been identified, including the AUXIN RESPONSE FACTOR 7 (ARF7)/ARF19-LATERAL ORGAN BOUNDARIES DOMAIN 16 (LBD16)/LBD18 transcriptional network; however, their feedback regulation mechanisms are not known. Here we show that LBD18 controls ARF activity using the dual mode of a positive feedback loop. We showed that ARF7 and ARF19 directly bind AuxRE in the LBD18 promoter. A variety of molecular and biochemical experiments demonstrated that LBD18 binds a specific DNA motif in the ARF19 promoter to regulate its expression in vivo as well as in vitro. LBD18 interacts with ARFs including ARF7 and ARF19 via the Phox and Bem1 domain of ARF to enhance the transcriptional activity of ARF7 on AuxRE, and competes with auxin/indole-3-acetic acid (IAA) repressors for ARF binding, overriding the negative feedback loop exerted by Aux/IAA repressors. Taken together, these results show that LBD18 and ARFs form a double positive feedback loop, and that LBD18 uses the dual mode of a positive feedback loop by binding directly to the ARF19 promoter and through the protein-protein interactions with ARF7 and ARF19. This novel mechanism of feedback loops may constitute a robust feedback mechanism that ensures continued lateral root growth in response to auxin in Arabidopsis.
Collapse
Affiliation(s)
- Shashank K Pandey
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Han Woo Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Min-Jung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Chuloh Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Eunkyoo Oh
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
- Kumho Life Science Laboratory, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| |
Collapse
|
58
|
Tyagi S, Mulla SI, Lee KJ, Chae JC, Shukla P. VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes. Crit Rev Biotechnol 2018; 38:1277-1296. [PMID: 29862848 DOI: 10.1080/07388551.2018.1472551] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the natural environment, plants communicate with various microorganisms (pathogenic or beneficial) and exhibit differential responses. In recent years, research on microbial volatile compounds (MVCs) has revealed them to be simple, effective and efficient groups of compounds that modulate plant growth and developmental processes. They also interfere with the signaling process. Different MVCs have been shown to promote plant growth via improved photosynthesis rates, increased plant resistance to pathogens, activated phytohormone signaling pathways, or, in some cases, inhibit plant growth, leading to death. Regardless of these exhibited roles, the molecules responsible, the underlying mechanisms, and induced specific metabolic/molecular changes are not fully understood. Here, we review current knowledge on the effects of MVCs on plants, with particular emphasis on their modulation of the salicylic acid, jasmonic acid/ethylene, and auxin signaling pathways. Additionally, opportunities for further research and potential practical applications presented.
Collapse
Affiliation(s)
- Swati Tyagi
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Sikandar I Mulla
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Kui-Jae Lee
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Jong-Chan Chae
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Pratyoosh Shukla
- b Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology , Maharshi Dayanand University , Rohtak , India
| |
Collapse
|
59
|
Liu J, Hu X, Qin P, Prasad K, Hu Y, Xu L. The WOX11-LBD16 Pathway Promotes Pluripotency Acquisition in Callus Cells During De Novo Shoot Regeneration in Tissue Culture. PLANT & CELL PHYSIOLOGY 2018; 59:734-743. [PMID: 29361138 DOI: 10.1093/pcp/pcy010] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/08/2018] [Indexed: 05/04/2023]
Abstract
De novo shoot regeneration in tissue culture undergoes at least two phases. Explants are first cultured on auxin-rich callus-inducing medium (CIM) to produce a group of pluripotent cells termed callus; the callus is then transferred to cytokinin rich shoot-inducing medium (SIM) to promote the formation of shoot progenitor cells, from which adventitious shoots may differentiate. Here, we show that the Arabidopsis thaliana transcription factor gene LATERAL ORGAN BOUNDARIES DOMAIN16 (LBD16) is involved in pluripotency acquisition in callus cells. LBD16, which is activated by WUSCHEL RELATED HOMEOBOX11 (WOX11), is specifically expressed in the newly formed callus on CIM and its expression decreases quickly when callus is moved to SIM. Blocking the WOX11-LBD16 pathway results in the loss of pluripotency in callus cultured on CIM, leading to shooting defects on SIM. Further analysis showed that LBD16 may function in the establishment of the root primordium-like identity in the newly formed callus, indicating that the root primordium-like identity is the cellular nature of pluripotency in callus cells. Additionally, LBD16 promotes cell division during callus initiation. Our study clarified that the WOX11-LBD16 pathway promotes pluripotency acquisition in callus cells.
Collapse
Affiliation(s)
- Jie Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Xiaomei Hu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Peng Qin
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kalika Prasad
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695016, India
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
60
|
Ichihashi Y, Kusano M, Kobayashi M, Suetsugu K, Yoshida S, Wakatake T, Kumaishi K, Shibata A, Saito K, Shirasu K. Transcriptomic and Metabolomic Reprogramming from Roots to Haustoria in the Parasitic Plant, Thesium chinense. PLANT & CELL PHYSIOLOGY 2018; 59:724-733. [PMID: 29281058 PMCID: PMC6018956 DOI: 10.1093/pcp/pcx200] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/07/2017] [Indexed: 05/22/2023]
Abstract
Most plants show remarkable developmental plasticity in the generation of diverse types of new organs upon external stimuli, allowing them to adapt to their environment. Haustorial formation in parasitic plants is an example of such developmental reprogramming, but its molecular mechanism is largely unknown. In this study, we performed field-omics using transcriptomics and metabolomics to profile the molecular switch occurring in haustorial formation of the root parasitic plant, Thesium chinense, collected from its natural habitat. RNA-sequencing with de novo assembly revealed that the transcripts of very long chain fatty acid (VLCFA) biosynthesis genes, auxin biosynthesis/signaling-related genes and lateral root developmental genes are highly abundant in the haustoria. Gene co-expression network analysis identified a network module linking VLCFAs and the auxin-responsive lateral root development pathway. GC-TOF-MS analysis consistently revealed a unique metabolome profile with many types of fatty acids in the T. chinense root system, including the accumulation of a 25-carbon long chain saturated fatty acid in the haustoria. Our field-omics data provide evidence supporting the hypothesis that the molecular developmental machinery used for lateral root formation in non-parasitic plants has been co-opted into the developmental reprogramming of haustorial formation in the linage of parasitic plants.
Collapse
Affiliation(s)
- Yasunori Ichihashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- JST, PRESTO, Kawaguchi, Saitama, 332-0012 Japan
- Corresponding authors: Y. Ichihashi, E-mail, ; K. Shirasu, E-mail,
| | - Miyako Kusano
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572 Japan
| | - Makoto Kobayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Satoko Yoshida
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192 Japan
| | - Takanori Wakatake
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Kie Kumaishi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Arisa Shibata
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675 Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033 Japan
- Corresponding authors: Y. Ichihashi, E-mail, ; K. Shirasu, E-mail,
| |
Collapse
|
61
|
Schoenaers S, Balcerowicz D, Breen G, Hill K, Zdanio M, Mouille G, Holman TJ, Oh J, Wilson MH, Nikonorova N, Vu LD, De Smet I, Swarup R, De Vos WH, Pintelon I, Adriaensen D, Grierson C, Bennett MJ, Vissenberg K. The Auxin-Regulated CrRLK1L Kinase ERULUS Controls Cell Wall Composition during Root Hair Tip Growth. Curr Biol 2018; 28:722-732.e6. [PMID: 29478854 DOI: 10.1016/j.cub.2018.01.050] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/10/2017] [Accepted: 01/18/2018] [Indexed: 01/07/2023]
Abstract
Root hairs facilitate a plant's ability to acquire soil anchorage and nutrients. Root hair growth is regulated by the plant hormone auxin and dependent on localized synthesis, secretion, and modification of the root hair tip cell wall. However, the exact cell wall regulators in root hairs controlled by auxin have yet to be determined. In this study, we describe the characterization of ERULUS (ERU), an auxin-induced Arabidopsis receptor-like kinase, whose expression is directly regulated by ARF7 and ARF19 transcription factors. ERU belongs to the Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE (CrRLK1L) subfamily of putative cell wall sensor proteins. Imaging of a fluorescent fusion protein revealed that ERU is localized to the apical root hair plasma membrane. ERU regulates cell wall composition in root hairs and modulates pectin dynamics through negative control of pectin methylesterase (PME) activity. Mutant eru (-/-) root hairs accumulate de-esterified homogalacturonan and exhibit aberrant pectin Ca2+-binding site oscillations and increased PME activity. Up to 80% of the eru root hair phenotype is rescued by pharmacological supplementation with a PME-inhibiting catechin extract. ERU transcription is altered in specific cell wall-related root hair mutants, suggesting that it is a target for feedback regulation. Loss of ERU alters the phosphorylation status of FERONIA and H+-ATPases 1/2, regulators of apoplastic pH. Furthermore, H+-ATPases 1/2 and ERU are differentially phosphorylated in response to auxin. We conclude that ERULUS is a key auxin-controlled regulator of cell wall composition and pectin dynamics during root hair tip growth.
Collapse
Affiliation(s)
- Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Daria Balcerowicz
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Gordon Breen
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | - Kristine Hill
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Malgorzata Zdanio
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, UMR1318 INRA/AgroParisTech, ERL3559 CNRS, Saclay Plant Sciences, Route de St Cyr, 78026 Versailles, France
| | - Tara J Holman
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Jaesung Oh
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Michael H Wilson
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Natalia Nikonorova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ranjan Swarup
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Cell Systems Group, Department of Molecular Biotechnology, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Claire Grierson
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, UK
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Plant Biochemistry & Biotechnology Lab, Department of Agriculture, Technological Educational Institute of Crete, Stavromenos PC 71410, Heraklion, Crete, Greece.
| |
Collapse
|
62
|
Stoeckle D, Thellmann M, Vermeer JE. Breakout-lateral root emergence in Arabidopsis thaliana. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:67-72. [PMID: 28968512 DOI: 10.1016/j.pbi.2017.09.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 05/24/2023]
Abstract
Lateral roots are determinants of plant root system architecture. Besides providing anchorage, they are a plant's means to explore the soil environment for water and nutrients. Lateral roots form post-embryonically and initiate deep within the root. On its way to the surface, the newly formed organ needs to grow through three overlying cell layers; the endodermis, cortex and epidermis. A picture is emerging that a tight integration of chemical and mechanical signalling between the lateral root and the surrounding tissue is essential for proper organogenesis. Here we review the latest progress made towards our understanding of the fascinating biology underlying lateral root emergence in Arabidopsis.
Collapse
Affiliation(s)
- Dorothee Stoeckle
- Department of Plant and Microbial Biology, University of Zurich, Switzerland
| | - Martha Thellmann
- Department of Plant and Microbial Biology, University of Zurich, Switzerland
| | - Joop Em Vermeer
- Department of Plant and Microbial Biology, University of Zurich, Switzerland; Cell Biology and Developmental Biology, Wageningen University, The Netherlands.
| |
Collapse
|
63
|
Du Y, Scheres B. Lateral root formation and the multiple roles of auxin. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:155-167. [PMID: 28992266 DOI: 10.1093/jxb/erx223] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Root systems can display variable architectures that contribute to survival strategies of plants. The model plant Arabidopsis thaliana possesses a tap root system, in which the primary root and lateral roots (LRs) are major architectural determinants. The phytohormone auxin fulfils multiple roles throughout LR development. In this review, we summarize recent advances in our understanding of four aspects of LR formation: (i) LR positioning, which determines the spatial distribution of lateral root primordia (LRP) and LRs along primary roots; (ii) LR initiation, encompassing the activation of nuclear migration in specified lateral root founder cells (LRFCs) up to the first asymmetric cell division; (iii) LR outgrowth, the 'primordium-intrinsic' patterning of de novo organ tissues and a meristem; and (iv) LR emergence, an interaction between LRP and overlaying tissues to allow passage through cell layers. We discuss how auxin signaling, embedded in a changing developmental context, plays important roles in all four phases. In addition, we discuss how rapid progress in gene network identification and analysis, modeling, and four-dimensional imaging techniques have led to an increasingly detailed understanding of the dynamic regulatory networks that control LR development.
Collapse
Affiliation(s)
- Yujuan Du
- Plant Developmental Biology Group, Wageningen University Research, the Netherlands
| | - Ben Scheres
- Plant Developmental Biology Group, Wageningen University Research, the Netherlands
| |
Collapse
|
64
|
Ötvös K, Benková E. Spatiotemporal mechanisms of root branching. Curr Opin Genet Dev 2017; 45:82-89. [DOI: 10.1016/j.gde.2017.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
|
65
|
Yang J, Yuan Z, Meng Q, Huang G, Périn C, Bureau C, Meunier AC, Ingouff M, Bennett MJ, Liang W, Zhang D. Dynamic Regulation of Auxin Response during Rice Development Revealed by Newly Established Hormone Biosensor Markers. FRONTIERS IN PLANT SCIENCE 2017; 8:256. [PMID: 28326089 PMCID: PMC5339295 DOI: 10.3389/fpls.2017.00256] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/10/2017] [Indexed: 05/18/2023]
Abstract
The hormone auxin is critical for many plant developmental processes. Unlike the model eudicot plant Arabidopsis (Arabidopsis thaliana), auxin distribution and signaling in rice tissues has not been systematically investigated due to the absence of suitable auxin response reporters. In this study we observed the conservation of auxin signaling components between Arabidopsis and model monocot crop rice (Oryza sativa), and generated complementary types of auxin biosensor constructs, one derived from the Aux/IAA-based biosensor DII-VENUS but constitutively driven by maize ubiquitin-1 promoter, and the other termed DR5-VENUS in which a synthetic auxin-responsive promoter (DR5rev ) was used to drive expression of the yellow fluorescent protein (YFP). Using the obtained transgenic lines, we observed that during the vegetative development, accumulation of DR5-VENUS signal was at young and mature leaves, tiller buds and stem base. Notably, abundant DR5-VENUS signals were observed in the cytoplasm of cortex cells surrounding lateral root primordia (LRP) in rice. In addition, auxin maxima and dynamic re-localization were seen at the initiation sites of inflorescence and spikelet primordia including branch meristems (BMs), female and male organs. The comparison of these observations among Arabidopsis, rice and maize suggests the unique role of auxin in regulating rice lateral root emergence and reproduction. Moreover, protein localization of auxin transporters PIN1 homologs and GFP tagged OsAUX1 overlapped with DR5-VENUS during spikelet development, helping validate these auxin response reporters are reliable markers in rice. This work firstly reveals the direct correspondence between auxin distribution and rice reproductive and root development at tissue and cellular level, and provides high-resolution auxin tools to probe fundamental developmental processes in rice and to establish links between auxin, development and agronomical traits like yield or root architecture.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong UniversityShanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| | - Zheng Yuan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| | - Qingcai Meng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| | | | | | | | | | - Malcolm J. Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
- School of Agriculture, Food and Wine, University of AdelaideUrrbrae, SA, Australia
| |
Collapse
|
66
|
Laskowski M, Ten Tusscher KH. Periodic Lateral Root Priming: What Makes It Tick? THE PLANT CELL 2017; 29:432-444. [PMID: 28223442 PMCID: PMC5385950 DOI: 10.1105/tpc.16.00638] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 05/02/2023]
Abstract
Conditioning small groups of root pericycle cells for future lateral root formation has a major impact on overall plant root architecture. This priming of lateral roots occurs rhythmically, involving temporal oscillations in auxin response in the root tip. During growth, this process generates a spatial pattern of prebranch sites, an early stage in lateral root formation characterized by a stably maintained high auxin response. To date, the molecular mechanism behind this rhythmicity has remained elusive. Some data implicate a cell-autonomous oscillation in gene expression, while others strongly support the importance of tissue-level modulations in auxin fluxes. Here, we summarize the experimental data on periodic lateral root priming. We present a theoretical framework that distinguishes between a priming signal and its subsequent memorization and show how major roles for auxin fluxes and gene expression naturally emerge from this framework. We then discuss three mechanisms that could potentially induce oscillations of auxin response: cell-autonomous oscillations, Turing-type patterning, and tissue-level oscillations in auxin fluxes, along with specific properties of lateral root priming that may be used to discern which type of mechanism is most likely to drive lateral root patterning. We conclude with suggestions for future experiments and modeling studies.
Collapse
Affiliation(s)
| | - Kirsten H Ten Tusscher
- Theoretical Biology Group, Faculty of Science, Utrecht University, 3584CH Utrecht, The Netherlands
| |
Collapse
|
67
|
Oles V, Panchenko A, Smertenko A. Modeling hormonal control of cambium proliferation. PLoS One 2017; 12:e0171927. [PMID: 28187161 PMCID: PMC5302410 DOI: 10.1371/journal.pone.0171927] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/29/2017] [Indexed: 12/14/2022] Open
Abstract
Rise of atmospheric CO2 is one of the main causes of global warming. Catastrophic climate change can be avoided by reducing emissions and increasing sequestration of CO2. Trees are known to sequester CO2 during photosynthesis, and then store it as wood biomass. Thus, breeding of trees with higher wood yield would mitigate global warming as well as augment production of renewable construction materials, energy, and industrial feedstock. Wood is made of cellulose-rich xylem cells produced through proliferation of a specialized stem cell niche called cambium. Importance of cambium in xylem cells production makes it an ideal target for the tree breeding programs; however our knowledge about control of cambium proliferation remains limited. The morphology and regulation of cambium are different from those of stem cell niches that control axial growth. For this reason, translating the knowledge about axial growth to radial growth has limited use. Furthermore, genetic approaches cannot be easily applied because overlaying tissues conceal cambium from direct observation and complicate identification of mutants. To overcome the paucity of experimental tools in cambium biology, we constructed a Boolean network CARENET (CAmbium REgulation gene NETwork) for modelling cambium activity, which includes the key transcription factors WOX4 and HD-ZIP III as well as their potential regulators. Our simulations predict that: (1) auxin, cytokinin, gibberellin, and brassinosteroids act cooperatively in promoting transcription of WOX4 and HD-ZIP III; (2) auxin and cytokinin pathways negatively regulate each other; (3) hormonal pathways act redundantly in sustaining cambium activity; (4) individual cambium cells can have diverse molecular identities. CARENET can be extended to include components of other signalling pathways and be integrated with models of xylem and phloem differentiation. Such extended models would facilitate breeding trees with higher wood yield.
Collapse
Affiliation(s)
- Vladyslav Oles
- Department of Mathematics, Washington State University, Pullman, Washington, United States of America
| | - Alexander Panchenko
- Department of Mathematics, Washington State University, Pullman, Washington, United States of America
- * E-mail: (AP); (AS)
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, United States of America
- * E-mail: (AP); (AS)
| |
Collapse
|
68
|
Möller BK, Xuan W, Beeckman T. Dynamic control of lateral root positioning. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:1-7. [PMID: 27649449 DOI: 10.1016/j.pbi.2016.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 05/25/2023]
Abstract
In dicot root systems, lateral roots are in general regularly spaced along the longitudinal axis of the primary root to facilitate water and nutrient uptake. Recently, recurrent programmed cell death in the root cap of the growing root has been implicated in lateral root spacing. The root cap contains an auxin source that modulates lateral root patterning. Periodic release of auxin by dying root cap cells seems to trigger lateral root specification at regular intervals. However, it is currently unclear through which molecular mechanisms auxin restricts lateral root specification to specific cells along the longitudinal and radial axes of the root, or how environmental signals impact this process.
Collapse
Affiliation(s)
- Barbara K Möller
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, PR China
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| |
Collapse
|
69
|
Ristova D, Carré C, Pervent M, Medici A, Kim GJ, Scalia D, Ruffel S, Birnbaum KD, Lacombe B, Busch W, Coruzzi GM, Krouk G. Combinatorial interaction network of transcriptomic and phenotypic responses to nitrogen and hormones in the Arabidopsis thaliana root. Sci Signal 2016; 9:rs13. [PMID: 27811143 DOI: 10.1126/scisignal.aaf2768] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plants form the basis of the food webs that sustain animal life. Exogenous factors, such as nutrients and sunlight, and endogenous factors, such as hormones, cooperate to control both the growth and the development of plants. We assessed how Arabidopsis thaliana integrated nutrient and hormone signaling pathways to control root growth and development by investigating the effects of combinatorial treatment with the nutrients nitrate and ammonium; the hormones auxin, cytokinin, and abscisic acid; and all binary combinations of these factors. We monitored and integrated short-term genome-wide changes in gene expression over hours and long-term effects on root development and architecture over several days. Our analysis revealed trends in nutrient and hormonal signal crosstalk and feedback, including responses that exhibited logic gate behavior, which means that they were triggered only when specific combinations of signals were present. From the data, we developed a multivariate network model comprising the signaling molecules, the early gene expression modulation, and the subsequent changes in root phenotypes. This multivariate network model pinpoints several genes that play key roles in the control of root development and may help understand how eukaryotes manage multifactorial signaling inputs.
Collapse
Affiliation(s)
- Daniela Ristova
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA.,Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, A-1030 Vienna, Austria
| | - Clément Carré
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes "Claude Grignon," Place Viala, 34060 Montpellier Cedex, France.,Institut Montpelliérain Alexander Grothendieck, Place Eugene Bataillon, 34090 Montpellier, France
| | - Marjorie Pervent
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes "Claude Grignon," Place Viala, 34060 Montpellier Cedex, France
| | - Anna Medici
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes "Claude Grignon," Place Viala, 34060 Montpellier Cedex, France
| | - Grace Jaeyoon Kim
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Domenica Scalia
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Sandrine Ruffel
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes "Claude Grignon," Place Viala, 34060 Montpellier Cedex, France
| | - Kenneth D Birnbaum
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Benoît Lacombe
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes "Claude Grignon," Place Viala, 34060 Montpellier Cedex, France
| | - Wolfgang Busch
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, A-1030 Vienna, Austria
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Gabriel Krouk
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes "Claude Grignon," Place Viala, 34060 Montpellier Cedex, France.
| |
Collapse
|
70
|
Porco S, Larrieu A, Du Y, Gaudinier A, Goh T, Swarup K, Swarup R, Kuempers B, Bishopp A, Lavenus J, Casimiro I, Hill K, Benkova E, Fukaki H, Brady SM, Scheres B, Péret B, Bennett MJ. Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3. Development 2016; 143:3340-9. [PMID: 27578783 DOI: 10.1242/dev.136283] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
Lateral root primordia (LRP) originate from pericycle stem cells located deep within parental root tissues. LRP emerge through overlying root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells. The auxin-inducible auxin influx carrier LAX3 plays a key role concentrating this signal in cells overlying LRP. Delimiting LAX3 expression to two adjacent cell files overlying new LRP is crucial to ensure that auxin-regulated cell separation occurs solely along their shared walls. Multiscale modeling has predicted that this highly focused pattern of expression requires auxin to sequentially induce auxin efflux and influx carriers PIN3 and LAX3, respectively. Consistent with model predictions, we report that auxin-inducible LAX3 expression is regulated indirectly by AUXIN RESPONSE FACTOR 7 (ARF7). Yeast one-hybrid screens revealed that the LAX3 promoter is bound by the transcription factor LBD29, which is a direct target for regulation by ARF7. Disrupting auxin-inducible LBD29 expression or expressing an LBD29-SRDX transcriptional repressor phenocopied the lax3 mutant, resulting in delayed lateral root emergence. We conclude that sequential LBD29 and LAX3 induction by auxin is required to coordinate cell separation and organ emergence.
Collapse
Affiliation(s)
- Silvana Porco
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Antoine Larrieu
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK Laboratoire Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Yujuan Du
- Molecular Genetics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Allison Gaudinier
- Department of Plant Biology and Genome Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Tatsuaki Goh
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Kamal Swarup
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Ranjan Swarup
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Britta Kuempers
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Anthony Bishopp
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Julien Lavenus
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK Institute of Plant Sciences, 21 Altenbergrain, Bern 3006, Switzerland
| | - Ilda Casimiro
- Departamento Anatomia, Biologia Celular Y Zoologia, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06006, Spain
| | - Kristine Hill
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Eva Benkova
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ben Scheres
- Molecular Genetics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Benjamin Péret
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK Centre National de la Recherche Scientifique, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro, 2 Place Pierre Viala, Montpellier 34060, France
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| |
Collapse
|
71
|
Goh T, Toyokura K, Wells DM, Swarup K, Yamamoto M, Mimura T, Weijers D, Fukaki H, Laplaze L, Bennett MJ, Guyomarc'h S. Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor. Development 2016; 143:3363-71. [PMID: 27510971 DOI: 10.1242/dev.135319] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/26/2016] [Indexed: 01/24/2023]
Abstract
Lateral root formation is an important determinant of root system architecture. In Arabidopsis, lateral roots originate from pericycle cells, which undergo a program of morphogenesis to generate a new lateral root meristem. Despite its importance for root meristem organization, the onset of quiescent center (QC) formation during lateral root morphogenesis remains unclear. Here, we used live 3D confocal imaging to monitor cell organization and identity acquisition during lateral root development. Our dynamic observations revealed an early morphogenesis phase and a late meristem formation phase as proposed in the bi-phasic growth model. Establishment of lateral root QCs coincided with this developmental phase transition. QC precursor cells originated from the outer layer of stage II lateral root primordia, within which the SCARECROW (SCR) transcription factor was specifically expressed. Disrupting SCR function abolished periclinal divisions in this lateral root primordia cell layer and perturbed the formation of QC precursor cells. We conclude that de novo QC establishment in lateral root primordia operates via SCR-mediated formative cell division and coincides with the developmental phase transition.
Collapse
Affiliation(s)
- Tatsuaki Goh
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Koichi Toyokura
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Darren M Wells
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Kamal Swarup
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Mayuko Yamamoto
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Laurent Laplaze
- Institut de Recherche pour le Développement, Unité Mixte de Recherche (UMR) Diversité Adaptation et Développement des plantes (DIADE), Montpellier 34394 Cedex 5, France
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Soazig Guyomarc'h
- Université de Montpellier, Unité Mixte de Recherche (UMR) Diversité Adaptation et Développement des plantes (DIADE), Montpellier 34394 Cedex 5, France
| |
Collapse
|
72
|
Abstract
One of the central goals in biology is to understand how and how much of the phenotype of an organism is encoded in its genome. Although many genes that are crucial for organismal processes have been identified, much less is known about the genetic bases underlying quantitative phenotypic differences in natural populations. We discuss the fundamental gap between the large body of knowledge generated over the past decades by experimental genetics in the laboratory and what is needed to understand the genotype-to-phenotype problem on a broader scale. We argue that systems genetics, a combination of systems biology and the study of natural variation using quantitative genetics, will help to address this problem. We present major advances in these two mostly disconnected areas that have increased our understanding of the developmental processes of flowering time control and root growth. We conclude by illustrating and discussing the efforts that have been made toward systems genetics specifically in plants.
Collapse
Affiliation(s)
- Takehiko Ogura
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
73
|
Murphy E, Vu LD, Van den Broeck L, Lin Z, Ramakrishna P, van de Cotte B, Gaudinier A, Goh T, Slane D, Beeckman T, Inzé D, Brady SM, Fukaki H, De Smet I. RALFL34 regulates formative cell divisions in Arabidopsis pericycle during lateral root initiation. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4863-75. [PMID: 27521602 PMCID: PMC4983113 DOI: 10.1093/jxb/erw281] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, many signalling molecules, such as phytohormones, miRNAs, transcription factors, and small signalling peptides, drive growth and development. However, very few small signalling peptides have been shown to be necessary for lateral root development. Here, we describe the role of the peptide RALFL34 during early events in lateral root development, and demonstrate its specific importance in orchestrating formative cell divisions in the pericycle. Our results further suggest that this small signalling peptide acts on the transcriptional cascade leading to a new lateral root upstream of GATA23, an important player in lateral root formation. In addition, we describe a role for ETHYLENE RESPONSE FACTORs (ERFs) in regulating RALFL34 expression. Taken together, we put forward RALFL34 as a new, important player in lateral root initiation.
Collapse
Affiliation(s)
- Evan Murphy
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Lam Dai Vu
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Department of Medical Protein Research, VIB, 9000 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Lisa Van den Broeck
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Zhefeng Lin
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Priya Ramakrishna
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Brigitte van de Cotte
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Allison Gaudinier
- Department of Plant Biology and Genome Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Tatsuaki Goh
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Daniel Slane
- Department of Cell Biology, Max Planck Institute for Developmental Biology, D- 72076 Tübingen, Germany
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium Centre for Plant Integrative Biology, University of Nottingham, Loughborough LE12 5RD, UK
| |
Collapse
|
74
|
Muhammad D, Schmittling S, Williams C, Long TA. More than meets the eye: Emergent properties of transcription factors networks in Arabidopsis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:64-74. [PMID: 27485161 DOI: 10.1016/j.bbagrm.2016.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/10/2016] [Accepted: 07/27/2016] [Indexed: 11/30/2022]
Abstract
Uncovering and mathematically modeling Transcription Factor Networks (TFNs) are the first steps in engineering plants with traits that are better equipped to respond to changing environments. Although several plant TFNs are well known, the framework for systematically modeling complex characteristics such as switch-like behavior, oscillations, and homeostasis that emerge from them remain elusive. This review highlights literature that provides, in part, experimental and computational techniques for characterizing TFNs. This review also outlines methodologies that have been used to mathematically model the dynamic characteristics of TFNs. We present several examples of TFNs in plants that are involved in developmental and stress response. In several cases, advanced algorithms capture or quantify emergent properties that serve as the basis for robustness and adaptability in plant responses. Increasing the use of mathematical approaches will shed new light on these regulatory properties that control plant growth and development, leading to mathematical models that predict plant behavior. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
| | - Selene Schmittling
- Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
| | - Cranos Williams
- Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
| | - Terri A Long
- Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
75
|
Taylor-Teeples M, Lanctot A, Nemhauser JL. As above, so below: Auxin's role in lateral organ development. Dev Biol 2016; 419:156-164. [PMID: 26994944 DOI: 10.1016/j.ydbio.2016.03.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 02/02/2023]
Abstract
Organogenesis requires the coordination of many highly-regulated developmental processes, including cell fate determination, cell division and growth, and cell-cell communication. For tissue- and organ-scale coordination, a network of regulators enables molecular events in individual cells to translate into multicellular changes in structure and functional capacity. One recurrent theme in plant developmental networks is a central role for plant hormones, especially auxin. Here, we focus first on describing recent advances in understanding lateral root development, one of the best-studied examples of auxin-mediated organogenesis. We then use this framework to examine the parallel process of emergence of lateral organs in the shoot-a process called phyllotaxy. This comparison reveals a high degree of conservation, highlighting auxin's pivotal role determining overall plant architecture.
Collapse
Affiliation(s)
| | - Amy Lanctot
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
76
|
von Wangenheim D, Fangerau J, Schmitz A, Smith RS, Leitte H, Stelzer EHK, Maizel A. Rules and Self-Organizing Properties of Post-embryonic Plant Organ Cell Division Patterns. Curr Biol 2016; 26:439-49. [PMID: 26832441 DOI: 10.1016/j.cub.2015.12.047] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/18/2015] [Accepted: 12/09/2015] [Indexed: 11/18/2022]
Abstract
Plants form new organs with patterned tissue organization throughout their lifespan. It is unknown whether this robust post-embryonic organ formation results from stereotypic dynamic processes, in which the arrangement of cells follows rigid rules. Here, we combine modeling with empirical observations of whole-organ development to identify the principles governing lateral root formation in Arabidopsis. Lateral roots derive from a small pool of founder cells in which some take a dominant role as seen by lineage tracing. The first division of the founders is asymmetric, tightly regulated, and determines the formation of a layered structure. Whereas the pattern of subsequent cell divisions is not stereotypic between different samples, it is characterized by a regular switch in division plane orientation. This switch is also necessary for the appearance of patterned layers as a result of the apical growth of the primordium. Our data suggest that lateral root morphogenesis is based on a limited set of rules. They determine cell growth and division orientation. The organ-level coupling of the cell behavior ensures the emergence of the lateral root's characteristic features. We propose that self-organizing, non-deterministic modes of development account for the robustness of plant organ morphogenesis.
Collapse
Affiliation(s)
- Daniel von Wangenheim
- Buchmann Institute for Molecular Life Sciences, Goethe Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Jens Fangerau
- Center for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, Germany
| | - Alexander Schmitz
- Buchmann Institute for Molecular Life Sciences, Goethe Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute of Plant Breeding Research, 50829 Cologne, Germany
| | - Heike Leitte
- Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, Germany
| | - Ernst H K Stelzer
- Buchmann Institute for Molecular Life Sciences, Goethe Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany.
| | - Alexis Maizel
- Center for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
77
|
Slovak R, Ogura T, Satbhai SB, Ristova D, Busch W. Genetic control of root growth: from genes to networks. ANNALS OF BOTANY 2016; 117:9-24. [PMID: 26558398 PMCID: PMC4701154 DOI: 10.1093/aob/mcv160] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 08/28/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Roots are essential organs for higher plants. They provide the plant with nutrients and water, anchor the plant in the soil, and can serve as energy storage organs. One remarkable feature of roots is that they are able to adjust their growth to changing environments. This adjustment is possible through mechanisms that modulate a diverse set of root traits such as growth rate, diameter, growth direction and lateral root formation. The basis of these traits and their modulation are at the cellular level, where a multitude of genes and gene networks precisely regulate development in time and space and tune it to environmental conditions. SCOPE This review first describes the root system and then presents fundamental work that has shed light on the basic regulatory principles of root growth and development. It then considers emerging complexities and how they have been addressed using systems-biology approaches, and then describes and argues for a systems-genetics approach. For reasons of simplicity and conciseness, this review is mostly limited to work from the model plant Arabidopsis thaliana, in which much of the research in root growth regulation at the molecular level has been conducted. CONCLUSIONS While forward genetic approaches have identified key regulators and genetic pathways, systems-biology approaches have been successful in shedding light on complex biological processes, for instance molecular mechanisms involving the quantitative interaction of several molecular components, or the interaction of large numbers of genes. However, there are significant limitations in many of these methods for capturing dynamic processes, as well as relating these processes to genotypic and phenotypic variation. The emerging field of systems genetics promises to overcome some of these limitations by linking genotypes to complex phenotypic and molecular data using approaches from different fields, such as genetics, genomics, systems biology and phenomics.
Collapse
Affiliation(s)
- Radka Slovak
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Takehiko Ogura
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Santosh B Satbhai
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Daniela Ristova
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
78
|
Serin EAR, Nijveen H, Hilhorst HWM, Ligterink W. Learning from Co-expression Networks: Possibilities and Challenges. FRONTIERS IN PLANT SCIENCE 2016; 7:444. [PMID: 27092161 PMCID: PMC4825623 DOI: 10.3389/fpls.2016.00444] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/21/2016] [Indexed: 05/18/2023]
Abstract
Plants are fascinating and complex organisms. A comprehensive understanding of the organization, function and evolution of plant genes is essential to disentangle important biological processes and to advance crop engineering and breeding strategies. The ultimate aim in deciphering complex biological processes is the discovery of causal genes and regulatory mechanisms controlling these processes. The recent surge of omics data has opened the door to a system-wide understanding of the flow of biological information underlying complex traits. However, dealing with the corresponding large data sets represents a challenging endeavor that calls for the development of powerful bioinformatics methods. A popular approach is the construction and analysis of gene networks. Such networks are often used for genome-wide representation of the complex functional organization of biological systems. Network based on similarity in gene expression are called (gene) co-expression networks. One of the major application of gene co-expression networks is the functional annotation of unknown genes. Constructing co-expression networks is generally straightforward. In contrast, the resulting network of connected genes can become very complex, which limits its biological interpretation. Several strategies can be employed to enhance the interpretation of the networks. A strategy in coherence with the biological question addressed needs to be established to infer reliable networks. Additional benefits can be gained from network-based strategies using prior knowledge and data integration to further enhance the elucidation of gene regulatory relationships. As a result, biological networks provide many more applications beyond the simple visualization of co-expressed genes. In this study we review the different approaches for co-expression network inference in plants. We analyse integrative genomics strategies used in recent studies that successfully identified candidate genes taking advantage of gene co-expression networks. Additionally, we discuss promising bioinformatics approaches that predict networks for specific purposes.
Collapse
Affiliation(s)
- Elise A. R. Serin
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen UniversityWageningen, Netherlands
| | - Harm Nijveen
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen UniversityWageningen, Netherlands
- Laboratory of Bioinformatics, Wageningen UniversityWageningen, Netherlands
| | - Henk W. M. Hilhorst
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen UniversityWageningen, Netherlands
| | - Wilco Ligterink
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen UniversityWageningen, Netherlands
- *Correspondence: Wilco Ligterink
| |
Collapse
|
79
|
A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nat Commun 2015; 6:8821. [PMID: 26578065 PMCID: PMC4673502 DOI: 10.1038/ncomms9821] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 10/07/2015] [Indexed: 11/24/2022] Open
Abstract
Multiple plant developmental processes, such as lateral root development, depend on auxin distribution patterns that are in part generated by the PIN-formed family of auxin-efflux transporters. Here we propose that AUXIN RESPONSE FACTOR7 (ARF7) and the ARF7-regulated FOUR LIPS/MYB124 (FLP) transcription factors jointly form a coherent feed-forward motif that mediates the auxin-responsive PIN3 transcription in planta to steer the early steps of lateral root formation. This regulatory mechanism might endow the PIN3 circuitry with a temporal ‘memory' of auxin stimuli, potentially maintaining and enhancing the robustness of the auxin flux directionality during lateral root development. The cooperative action between canonical auxin signalling and other transcription factors might constitute a general mechanism by which transcriptional auxin-sensitivity can be regulated at a tissue-specific level. Lateral root development is dependent on precise control of the distribution of the plant hormone auxin. Here Chen et al. propose the transcription factors ARF7 and FLP participate in a feed forward motif to mediate expression of the auxin transporter PIN3 and consequently regulate lateral root development.
Collapse
|
80
|
The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana. Nat Commun 2015; 6:7641. [PMID: 26144255 DOI: 10.1038/ncomms8641] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/27/2015] [Indexed: 01/05/2023] Open
Abstract
The endogenous circadian clock enables organisms to adapt their growth and development to environmental changes. Here we describe how the circadian clock is employed to coordinate responses to the key signal auxin during lateral root (LR) emergence. In the model plant, Arabidopsis thaliana, LRs originate from a group of stem cells deep within the root, necessitating that new organs emerge through overlying root tissues. We report that the circadian clock is rephased during LR development. Metabolite and transcript profiling revealed that the circadian clock controls the levels of auxin and auxin-related genes including the auxin response repressor IAA14 and auxin oxidase AtDAO2. Plants lacking or overexpressing core clock components exhibit LR emergence defects. We conclude that the circadian clock acts to gate auxin signalling during LR development to facilitate organ emergence.
Collapse
|