51
|
Ojangu EL, Ilau B, Tanner K, Talts K, Ihoma E, Dolja VV, Paves H, Truve E. Class XI Myosins Contribute to Auxin Response and Senescence-Induced Cell Death in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:1570. [PMID: 30538710 PMCID: PMC6277483 DOI: 10.3389/fpls.2018.01570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/08/2018] [Indexed: 05/24/2023]
Abstract
The integrity and dynamics of actin cytoskeleton is necessary not only for plant cell architecture but also for membrane trafficking-mediated processes such as polar auxin transport, senescence, and cell death. In Arabidopsis, the inactivation of actin-based molecular motors, class XI myosins, affects the membrane trafficking and integrity of actin cytoskeleton, and thus causes defective plant growth and morphology, altered lifespan and reduced fertility. To evaluate the potential contribution of class XI myosins to the auxin response, senescence and cell death, we followed the flower and leaf development in the triple gene knockout mutant xi1 xi2 xik (3KO) and in rescued line stably expressing myosin XI-K:YFP (3KOR). Assessing the development of primary inflorescence shoots we found that the 3KO plants produced more axillary branches. Exploiting the auxin-dependent reporters DR5::GUS and IAA2::GUS, a significant reduction in auxin responsiveness was found throughout the development of the 3KO plants. Examination of the flower development of the plants stably expressing the auxin transporter PIN1::PIN1-GFP revealed partial loss of PIN1 polarization in developing 3KO pistils. Surprisingly, the stable expression of PIN1::PIN1-GFP significantly enhanced the semi-sterile phenotype of the 3KO plants. Further we investigated the localization of myosin XI-K:YFP in the 3KOR floral organs and revealed its expression pattern in floral primordia, developing pistils, and anther filaments. Interestingly, the XI-K:YFP and PIN1::PIN1-GFP shared partially overlapping but distinct expression patterns throughout floral development. Assessing the foliar development of the 3KO plants revealed increased rosette leaf production with signs of premature yellowing. Symptoms of the premature senescence correlated with massive loss of chlorophyll, increased cell death, early plasmolysis of epidermal cells, and strong up-regulation of the stress-inducible senescence-associated gene SAG13 in 3KO plants. Simultaneously, the reduced auxin responsiveness and premature leaf senescence were accompanied by significant anthocyanin accumulation in 3KO tissues. Collectively, our results provide genetic evidences that Arabidopsis class XI myosins arrange the flower morphogenesis and leaf longevity via contributing to auxin responses, leaf senescence, and cell death.
Collapse
Affiliation(s)
- Eve-Ly Ojangu
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Birger Ilau
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Krista Tanner
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kristiina Talts
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Eliis Ihoma
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Valerian V. Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Heiti Paves
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Erkki Truve
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
52
|
A transportome-scale amiRNA-based screen identifies redundant roles of Arabidopsis ABCB6 and ABCB20 in auxin transport. Nat Commun 2018; 9:4204. [PMID: 30310073 PMCID: PMC6182007 DOI: 10.1038/s41467-018-06410-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 08/29/2018] [Indexed: 12/28/2022] Open
Abstract
Transport of signaling molecules is of major importance for regulating plant growth, development, and responses to the environment. A prime example is the spatial-distribution of auxin, which is regulated via transporters to govern developmental patterning. A critical limitation in our ability to identify transporters by forward genetic screens is their potential functional redundancy. Here, we overcome part of this functional redundancy via a transportome, multi-targeted forward-genetic screen using artificial-microRNAs (amiRNAs). We generate a library of 3000 plant lines expressing 1777 amiRNAs, designed to target closely homologous genes within subclades of transporter families and identify, genotype and quantitatively phenotype, 80 lines showing reproducible shoot growth phenotypes. Within this population, we discover and characterize a strong redundant role for the unstudied ABCB6 and ABCB20 genes in auxin transport and response. The unique multi-targeted lines generated in this study could serve as a genetic resource that is expected to reveal additional transporters. Characterizing plant membrane transporters via genetic methods is complicated by functional redundancy among multi-gene transporter families. Here Zhang et al. use an artificial microRNA-based screen to overcome this issue and show that ABCB6 and ABCB20 act redundantly to regulate auxin transport.
Collapse
|
53
|
Li J, Chen S, Wang X, Shi C, Liu H, Yang J, Shi W, Guo J, Jia H. Hydrogen Sulfide Disturbs Actin Polymerization via S-Sulfhydration Resulting in Stunted Root Hair Growth. PLANT PHYSIOLOGY 2018; 178:936-949. [PMID: 30166418 PMCID: PMC6181039 DOI: 10.1104/pp.18.00838] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/21/2018] [Indexed: 05/20/2023]
Abstract
Hydrogen sulfide (H2S) is an important signaling molecule in plants. Our previous report suggested that H2S signaling affects the actin cytoskeleton and root hair growth. However, the underlying mechanisms of its effects are not understood. S-Sulfhydration of proteins is regulated directly by H2S, which converts the thiol groups of cysteine (Cys) residues to persulfides and alters protein function. In this work, we studied the effects of S-sulfhydration on actin dynamics in Arabidopsis (Arabidopsis thaliana). We generated transgenic plants overexpressing the H2S biosynthesis-related genes l-CYSTEINE DESULFHYDRASE (LCD) and d-CYSTEINE DESULFHYDRASE in the O-acetylserine(thiol)lyase isoform a1 (oasa1) mutant and Columbia-0 backgrounds. The H2S content increased significantly in overexpressing LCD/oasa1 plants. The density of filamentous actin (F-actin) bundles and the F-actin/globular actin ratio decreased in overexpressing LCD/oasa1 plants. S-Sulfhydration also was enhanced in overexpressing LCD/oasa1 plants. An analysis of actin dynamics suggested that S-sulfhydration inhibited actin polymerization. We also found that ACTIN2 (ACT2) was S-sulfhydrated at Cys-287. Cys-287 is adjacent to the D-loop, which acts as a central region for hydrophobic and electrostatic interactions and stabilizes F-actin filaments. Overaccumulation of H2S caused the depolymerization of F-actin bundles and inhibited root hair growth. Introduction of ACT2 carrying a Cys-287-to-Ser mutation into an act2-1 mutant partially suppressed H2S-dependent inhibition of root hair growth. We conclude that H2S regulates actin dynamics and affects root hair growth.
Collapse
Affiliation(s)
- Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Biomass Energy Center for Arid and Semi-arid Lands, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sisi Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaofeng Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Shi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huaxin Liu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Jun Yang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Wei Shi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
54
|
Urquiza-Carvalho GA, Rocha GB, López R. Efficient algorithm for expanding theoretical electron densities in canterakis-zernike functions. J Comput Chem 2018; 39:2022-2032. [PMID: 30315586 DOI: 10.1002/jcc.25376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022]
Abstract
An algorithm for the efficient computation of Canterakis-Zernike moments of theoretically computed molecular electron densities and rotationally invariant Fingerprint indices derived from them is reported. The algorithm is suitable for any density expressed in terms of Gaussian- or Slater-type functions within the Linear Combination of Atomic Orbitals framework at any level of computation. Electron density is expressed as a one-center expansion of real regular spherical harmonics times radial factors by means of translation techniques, which facilitates the efficient computation of the moments in terms of a single one-dimension numerical integration. The performance of the algorithm is analyzed showing that the computation of radial factors in the quadrature points is responsible for almost all computational time. The procedure is applicable to any density obtained with standard packages for molecular structure calculations. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Gerd B Rocha
- Departamento de Química, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Rafael López
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
55
|
Ding X, Zhang S, Liu J, Liu S, Su H. Arabidopsis FIM4 and FIM5 regulates the growth of root hairs in an auxin-insensitive way. PLANT SIGNALING & BEHAVIOR 2018; 13:e1473667. [PMID: 30148414 PMCID: PMC6204792 DOI: 10.1080/15592324.2018.1473667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Tip-growing cells provide a useful model system for studying the underlying mechanisms of plant cell growth. The apical growth of root hairs is dependent on the microfilament skeleton, and auxin is an important regulator of root hair development. We functionally characterized actin bundling proteins AtFIM4 and AtFIM5, which were preferentially expressed in tip-growing cells such as pollen tubes and root hairs. The morphology and length of root hairs in atfim4/atfim5 double mutant line had obvious defects. In addition, we found the growth of root hairs of atfim4/atfim5 double mutant was insensitive to exogenous IAA (indole-3-acetic acid) treatment. So we consider that AtFIM4 and AtFIM5 act together to regulate the growth of root hair in an auxin-insensitive way.
Collapse
Affiliation(s)
- X. Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - S. Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - J. Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - S. Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - H. Su
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
56
|
Fukui K, Hayashi KI. Manipulation and Sensing of Auxin Metabolism, Transport and Signaling. PLANT & CELL PHYSIOLOGY 2018; 59:1500-1510. [PMID: 29668988 DOI: 10.1093/pcp/pcy076] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/09/2018] [Indexed: 05/26/2023]
Abstract
The plant hormone auxin is involved in virtually every aspect of plant growth and development. A chemical genetic approach has greatly contributed to the identification of important genes in auxin biosynthesis, transport and signaling. Molecular genetic technologies and structural information for auxin regulatory components have accelerated the identification and characterization of many novel small molecule modulators in auxin biology. These modulators have been widely utilized to dissect auxin responses. Here we provide an overview of the structure, primary target, in planta activity and application of small molecule modulators in auxin biology.
Collapse
Affiliation(s)
- Kosuke Fukui
- Department of Biochemistry, Okayama University of Science, Okayama City, Japan
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama City, Japan
| |
Collapse
|
57
|
Li X, Li Y, Mai J, Tao L, Qu M, Liu J, Shen R, Xu G, Feng Y, Xiao H, Wu L, Shi L, Guo S, Liang J, Zhu Y, He Y, Baluška F, Shabala S, Yu M. Boron Alleviates Aluminum Toxicity by Promoting Root Alkalization in Transition Zone via Polar Auxin Transport. PLANT PHYSIOLOGY 2018; 177:1254-1266. [PMID: 29784768 PMCID: PMC6053005 DOI: 10.1104/pp.18.00188] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/10/2018] [Indexed: 05/11/2023]
Abstract
Boron (B) alleviates aluminum (Al) toxicity in higher plants; however, the underlying mechanisms behind this phenomenon remain unknown. Here, we used bromocresol green pH indicator, noninvasive microtest, and microelectrode ion flux estimation techniques to demonstrate that B promotes root surface pH gradients in pea (Pisum sativum) roots, leading to alkalization in the root transition zone and acidification in the elongation zone, while Al inhibits these pH gradients. B significantly decreased Al accumulation in the transition zone (∼1.0-2.5 mm from the apex) of lateral roots, thereby alleviating Al-induced inhibition of root elongation. Net indole acetic acid (IAA) efflux detected by an IAA-sensitive platinum microelectrode showed that polar auxin transport, which peaked in the root transition zone, was inhibited by Al toxicity, while it was partially recovered by B. Electrophysiological experiments using the Arabidopsis (Arabidopsis thaliana) auxin transporter mutants (auxin resistant1-7; pin-formed2 [pin2]) and the specific polar auxin transporter inhibitor1-naphthylphthalamic acid showed that PIN2-based polar auxin transport is involved in root surface alkalization in the transition zone. Our results suggest that B promotes polar auxin transport driven by the auxin efflux transporter PIN2 and leads to the downstream regulation of the plasma membrane-H+-ATPase, resulting in elevated root surface pH, which is essential to decrease Al accumulation in this Al-targeted apical root zone. These findings provide a mechanistic explanation for the role of exogenous B in alleviation of Al accumulation and toxicity in plants.
Collapse
Affiliation(s)
- Xuewen Li
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Yalin Li
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Jingwen Mai
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Lin Tao
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Mei Qu
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Jiayou Liu
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Guilian Xu
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Yingming Feng
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Hongdong Xiao
- School of Food Science and Engineering, Foshan University, Foshan 528000, China
| | - Lishu Wu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Lei Shi
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Shaoxue Guo
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Jian Liang
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| | - Yiyong Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongming He
- School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Sergey Shabala
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7001, Australia
| | - Min Yu
- Department of Horticulture, Foshan University, Foshan 528000, P.R. China
| |
Collapse
|
58
|
Nakamura M, Grebe M. Outer, inner and planar polarity in the Arabidopsis root. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:46-53. [PMID: 28869926 DOI: 10.1016/j.pbi.2017.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 05/13/2023]
Abstract
Plant roots control uptake of water and nutrients and cope with environmental challenges. The root epidermis provides the first selective interface for nutrient absorption, while the endodermis produces the main apoplastic diffusion barrier in the form of a structure called the Casparian strip. The positioning of root hairs on epidermal cells, and of the Casparian strip around endodermal cells, requires asymmetries along cellular axes (cell polarity). Cell polarity is termed planar polarity, when coordinated within the plane of a given tissue layer. Here, we review recent molecular advances towards understanding both the polar positioning of the proteo-lipid membrane domain instructing root hair initiation, and the cytoskeletal, trafficking and polar tethering requirements of proteins at outer or inner plasma membrane domains. Finally, we highlight progress towards understanding mechanisms of Casparian strip formation and underlying endodermal cell polarity.
Collapse
Affiliation(s)
- Moritaka Nakamura
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, DE-14476 Potsdam-Golm, Germany
| | - Markus Grebe
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, DE-14476 Potsdam-Golm, Germany; Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden.
| |
Collapse
|
59
|
Teale W, Palme K. Naphthylphthalamic acid and the mechanism of polar auxin transport. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:303-312. [PMID: 28992080 DOI: 10.1093/jxb/erx323] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Our current understanding of how plants move auxin through their tissues is largely built on the use of polar auxin transporter inhibitors. Although the most important proteins that mediate auxin transport and its regulation have probably all been identified and the mapping of their interactions is well underway, mechanistically we are still surprisingly far away from understanding how auxin is transported. Such an understanding will only emerge after new data are placed in the context of the wealth of physiological data on which they are founded. This review will look back over the use of a key inhibitor called naphthylphthalamic acid (NPA) and outline its contribution to our understanding of the molecular mechanisms of polar auxin transport, before proceeding to speculate on how its use is likely still to be informative.
Collapse
Affiliation(s)
- William Teale
- Institute of Biology II, Albert-Ludwigs-Universität of Freiburg, Germany
| | - Klaus Palme
- Institute of Biology II, Albert-Ludwigs-Universität of Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, Germany
- Freiburg Institute of Advanced Sciences (FRIAS), Albert-Ludwigs-Universität Freiburg, Germany
| |
Collapse
|
60
|
Paez-Garcia A, Sparks JA, de Bang L, Blancaflor EB. Plant Actin Cytoskeleton: New Functions from Old Scaffold. PLANT CELL MONOGRAPHS 2018. [DOI: 10.1007/978-3-319-69944-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
61
|
Baluška F, Mancuso S. Plant Cognition and Behavior: From Environmental Awareness to Synaptic Circuits Navigating Root Apices. MEMORY AND LEARNING IN PLANTS 2018. [DOI: 10.1007/978-3-319-75596-0_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
62
|
Geisler M, Aryal B, di Donato M, Hao P. A Critical View on ABC Transporters and Their Interacting Partners in Auxin Transport. PLANT & CELL PHYSIOLOGY 2017; 58:1601-1614. [PMID: 29016918 DOI: 10.1093/pcp/pcx104] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/18/2017] [Indexed: 05/24/2023]
Abstract
Different subclasses of ATP-binding cassette (ABC) transporters have been implicated in the transport of native variants of the phytohormone auxin. Here, the putative, individual roles of key members belonging to the ABCB, ABCD and ABCG families, respectively, are highlighted and the knowledge of their assumed expression and transport routes is reviewed and compared with their mutant phenotypes. Protein-protein interactions between ABC transporters and regulatory components during auxin transport are summarized and their importance is critically discussed. There is a focus on the functional interaction between members of the ABCB family and the FKBP42, TWISTED DWARF1, acting as a chaperone during plasma membrane trafficking of ABCBs. Further, the mode and relevance of functional ABCB-PIN interactions is diagnostically re-evaluated. A new nomenclature describing precisely the most likely ABCB-PIN interaction scenarios is suggested. Finally, available tools for the detection and prediction of ABC transporter interactomes are summarized and the potential of future ABC transporter interactome maps is highlighted.
Collapse
Affiliation(s)
- Markus Geisler
- University of Fribourg, Department of Biology, CH-1700 Fribourg, Switzerland
| | - Bibek Aryal
- University of Fribourg, Department of Biology, CH-1700 Fribourg, Switzerland
| | - Martin di Donato
- University of Fribourg, Department of Biology, CH-1700 Fribourg, Switzerland
| | - Pengchao Hao
- University of Fribourg, Department of Biology, CH-1700 Fribourg, Switzerland
| |
Collapse
|
63
|
Eysholdt-Derzsó E, Sauter M. Root Bending Is Antagonistically Affected by Hypoxia and ERF-Mediated Transcription via Auxin Signaling. PLANT PHYSIOLOGY 2017; 175:412-423. [PMID: 28698356 PMCID: PMC5580755 DOI: 10.1104/pp.17.00555] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/07/2017] [Indexed: 05/02/2023]
Abstract
When plants encounter soil water logging or flooding, roots are the first organs to be confronted with reduced gas diffusion resulting in limited oxygen supply. Since roots do not generate photosynthetic oxygen, they are rapidly faced with oxygen shortage rendering roots particularly prone to damage. While metabolic adaptations to low oxygen conditions, which ensure basic energy supply, have been well characterized, adaptation of root growth and development have received less attention. In this study, we show that hypoxic conditions cause the primary root to grow sidewise in a low oxygen environment, possibly to escape soil patches with reduced oxygen availability. This growth behavior is reversible in that gravitropic growth resumes when seedlings are returned to normoxic conditions. Hypoxic root bending is inhibited by the group VII ethylene response factor (ERFVII) RAP2.12, as rap2.12-1 seedlings show exaggerated primary root bending. Furthermore, overexpression of the ERFVII member HRE2 inhibits root bending, suggesting that primary root growth direction at hypoxic conditions is antagonistically regulated by hypoxia and hypoxia-activated ERFVIIs. Root bending is preceded by the establishment of an auxin gradient across the root tip as quantified with DII-VENUS and is synergistically enhanced by hypoxia and the auxin transport inhibitor naphthylphthalamic acid. The protein abundance of the auxin efflux carrier PIN2 is reduced at hypoxic conditions, a response that is suppressed by RAP2.12 overexpression, suggesting antagonistic control of auxin flux by hypoxia and ERFVII. Taken together, we show that hypoxia triggers an escape response of the primary root that is controlled by ERFVII activity and mediated by auxin signaling in the root tip.
Collapse
Affiliation(s)
- Emese Eysholdt-Derzsó
- Plant Developmental Biology and Plant Physiology, University of Kiel, 24118 Kiel, Germany
| | - Margret Sauter
- Plant Developmental Biology and Plant Physiology, University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
64
|
Lehman TA, Smertenko A, Sanguinet KA. Auxin, microtubules, and vesicle trafficking: conspirators behind the cell wall. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3321-3329. [PMID: 28666373 DOI: 10.1093/jxb/erx205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant morphogenesis depends on the synchronized anisotropic expansion of individual cells in response to developmental and environmental cues. The magnitude of cell expansion depends on the biomechanical properties of the cell wall, which in turn depends on both its biosynthesis and extensibility. Although the control of cell expansion by the phytohormone auxin is well established, its regulation of cell wall composition, trafficking of H+-ATPases, and K+ influx that drives growth is still being elucidated. Furthermore, the maintenance of auxin fluxes via the interaction between the cytoskeleton and PIN protein recycling on the plasma membrane remains under investigation. This review proposes a model that describes how the cell wall, auxin, microtubule binding-protein CLASP and Kin7/separase complexes, and vesicle trafficking are co-ordinated on a cellular level to mediate cell wall loosening during cell expansion.
Collapse
Affiliation(s)
- Thiel A Lehman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
65
|
Han EH, Petrella DP, Blakeslee JJ. 'Bending' models of halotropism: incorporating protein phosphatase 2A, ABCB transporters, and auxin metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3071-3089. [PMID: 28899081 DOI: 10.1093/jxb/erx127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Salt stress causes worldwide reductions in agricultural yields, a problem that is exacerbated by the depletion of global freshwater reserves and the use of contaminated or recycled water (i.e. effluent water). Additionally, salt stress can occur as cultivated areas are subjected to frequent rounds of irrigation followed by periods of moderate to severe evapotranspiration, which can result in the heterogeneous aggregation of salts in agricultural soils. Our understanding of the later stages of salt stress and the mechanisms by which salt is transported out of cells and roots has greatly improved over the last decade. The precise mechanisms by which plant roots perceive salt stress and translate this perception into adaptive, directional growth away from increased salt concentrations (i.e. halotropism), however, are not well understood. Here, we provide a review of the current knowledge surrounding the early responses to salt stress and the initiation of halotropism, including lipid signaling, protein phosphorylation cascades, and changes in auxin metabolism and/or transport. Current models of halotropism have focused on the role of PIN2- and PIN1-mediated auxin efflux in initiating and controlling halotropism. Recent studies, however, suggest that additional factors such as ABCB transporters, protein phosphatase 2A activity, and auxin metabolism should be included in the model of halotropic growth.
Collapse
Affiliation(s)
- Eun Hyang Han
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
| | - Dominic P Petrella
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
| | - Joshua J Blakeslee
- Department of Horticulture and Crop Science, OARDC Metabolite Analysis Cluster (OMAC), The Ohio State University/OARDC, Wooster, OH, USA
| |
Collapse
|
66
|
Mao H, Nakamura M, Viotti C, Grebe M. A Framework for Lateral Membrane Trafficking and Polar Tethering of the PEN3 ATP-Binding Cassette Transporter. PLANT PHYSIOLOGY 2016; 172:2245-2260. [PMID: 27803190 PMCID: PMC5129716 DOI: 10.1104/pp.16.01252] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/31/2016] [Indexed: 05/18/2023]
Abstract
The outermost cell layer of plants, the epidermis, and its outer (lateral) membrane domain facing the environment are continuously challenged by biotic and abiotic stresses. Therefore, the epidermis and the outer membrane domain provide important selective and protective barriers. However, only a small number of specifically outer membrane-localized proteins are known. Similarly, molecular mechanisms underlying the trafficking and the polar placement of outer membrane domain proteins require further exploration. Here, we demonstrate that ACTIN7 (ACT7) mediates trafficking of the PENETRATION3 (PEN3) outer membrane protein from the trans-Golgi network (TGN) to the plasma membrane in the root epidermis of Arabidopsis (Arabidopsis thaliana) and that actin function contributes to PEN3 endocytic recycling. In contrast to such generic ACT7-dependent trafficking from the TGN, the EXOCYST84b (EXO84b) tethering factor mediates PEN3 outer-membrane polarity. Moreover, precise EXO84b placement at the outer membrane domain itself requires ACT7 function. Hence, our results uncover spatially and mechanistically distinct requirements for ACT7 function during outer lateral membrane cargo trafficking and polarity establishment. They further identify an exocyst tethering complex mediator of outer lateral membrane cargo polarity.
Collapse
Affiliation(s)
- Hailiang Mao
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden (H.M., M.G.); and
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, 14476 Potsdam-Golm, Germany (M.N., C.V., M.G.)
| | - Moritaka Nakamura
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden (H.M., M.G.); and
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, 14476 Potsdam-Golm, Germany (M.N., C.V., M.G.)
| | - Corrado Viotti
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden (H.M., M.G.); and
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, 14476 Potsdam-Golm, Germany (M.N., C.V., M.G.)
| | - Markus Grebe
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden (H.M., M.G.); and
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, 14476 Potsdam-Golm, Germany (M.N., C.V., M.G.)
| |
Collapse
|
67
|
Affiliation(s)
- Markus Geisler
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|