51
|
Lux PE, Freiling M, Stuetz W, von Tucher S, Carle R, Steingass CB, Frank J. (Poly)phenols, Carotenoids, and Tocochromanols in Corn ( Zea mays L.) Kernels As Affected by Phosphate Fertilization and Sowing Time. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:612-622. [PMID: 31903750 DOI: 10.1021/acs.jafc.9b07009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Corn (Zea mays L.) growth and development is often limited by the availability of phosphate. We thus hypothesized that phosphate fertilization may increase the contents of (poly)phenols, carotenoids, and tocochromanols (vitamin E) in corn grains. Corn plants cultivated on a soil fertilized with 44 kg phosphorus/ha were compared to plants grown on soil with low plant-available phosphate (1.6 mg CAL-P/100 g of soil), each sown early (April) and late (May) in a randomized field experiment. HPLC-DAD-(HR)-ESI-MSn revealed 19 soluble and 10 insoluble (poly)phenols, comprising phenolic acids, phenolic amines, diferulic, and triferulic acids in corn grains. Contents of individual (poly)phenols, carotenoids, and tocochromanols in whole grains were significantly (p < 0.05) increased by sowing time, but not by phosphate fertilization. In conclusion, low phosphate availability did not impair the biosynthesis of (poly)phenols, carotenoids, and tocochromanols in corn grains.
Collapse
Affiliation(s)
- Peter E Lux
- Institute of Nutritional Sciences, Chair of Food Biofunctionality , University of Hohenheim , Garbenstrasse 28 , 70599 Stuttgart , Germany
| | - Markus Freiling
- Department of Plant Sciences, Chair of Plant Nutrition , Technical University of Munich , Emil-Ramann-Strasse 2 , 85354 Freising , Germany
| | - Wolfgang Stuetz
- Institute of Nutritional Sciences, Chair of Food Biofunctionality , University of Hohenheim , Garbenstrasse 28 , 70599 Stuttgart , Germany
| | - Sabine von Tucher
- Department of Plant Sciences, Chair of Plant Nutrition , Technical University of Munich , Emil-Ramann-Strasse 2 , 85354 Freising , Germany
| | - Reinhold Carle
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis , University of Hohenheim , Garbenstrasse 25 , 70599 Stuttgart , Germany
- Biological Science Department, Faculty of Science , King Abdulaziz University , P.O. Box 80257, Jeddah 21589 , Saudi Arabia
| | - Christof B Steingass
- Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology and Analysis , University of Hohenheim , Garbenstrasse 25 , 70599 Stuttgart , Germany
- Department of Beverage Research, Chair Analysis & Technology of Plant-Based Foods , Geisenheim University , Von-Lade-Strasse 1 , 65366 Geisenheim , Germany
| | - Jan Frank
- Institute of Nutritional Sciences, Chair of Food Biofunctionality , University of Hohenheim , Garbenstrasse 28 , 70599 Stuttgart , Germany
| |
Collapse
|
52
|
Luo T, Xia W, Gong S, Mason AS, Li Z, Liu R, Dou Y, Tang W, Fan H, Zhang C, Xiao Y. Identifying Vitamin E Biosynthesis Genes in Elaeis guineensis by Genome-Wide Association Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:678-685. [PMID: 31858793 DOI: 10.1021/acs.jafc.9b03832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Elaeis guineensis is a tropical oil crop and has the highest oil yield per unit area. Palm oil has high palmitic acid content and is also rich in vitamins, including vitamin E. We conducted genome-wide association studies in a diversity panel of 161 E. guineensis accessions to identify single-nucleotide polymorphisms (SNPs) linked with vitamin E and validated candidate genes in these marker-associated intervals. Based on the SNPs reported in our previous research, 47 SNP markers were detected to be significantly associated with the variation of tocopherol and tocotrienol content at a cutoff P value of 6.3 × 10-7. A total of 656 candidate genes in the flanking regions of the 47 SNPs were identified, followed by pathway enrichment analysis. Of these candidate genes, EgHGGT (homogentisate geranylgeranyl transferase) involved in the biosynthesis of tocotrienols had a higher expression level in the mesocarp compared to other tissues. Expression of the EgHGGT gene was positively correlated with the variation in α-tocotrienol content. Induced overexpression of the gene in Arabidopsis caused a significant increase in vitamin E content and production of α-tocotrienols compared to wild Arabidopsis.
Collapse
Affiliation(s)
- Tingting Luo
- National Research Center of Rapeseed Engineering and Technology, College of Plant Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Wei Xia
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops , Hainan University , Haikou 570228 , P.R China
| | - Shufang Gong
- Coconut Research Institute , Chinese Academy of Tropical Agricultural Sciences , Wenchang 571339 , P.R. China
| | - Annaliese S Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition , Justus Liebig University Giessen , Heinrich-Buff-Ring 26-32 , Giessen 35392i , Germany
| | - Zhiying Li
- Coconut Research Institute , Chinese Academy of Tropical Agricultural Sciences , Wenchang 571339 , P.R. China
- Hainan Key Laboratory for Biosafe Monitoring and Molecular Breeding in Off-Season Reproduction Region , Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences , Haikou 571101 , China
| | - Rui Liu
- Coconut Research Institute , Chinese Academy of Tropical Agricultural Sciences , Wenchang 571339 , P.R. China
| | - Yajing Dou
- Coconut Research Institute , Chinese Academy of Tropical Agricultural Sciences , Wenchang 571339 , P.R. China
| | - Wenqi Tang
- Coconut Research Institute , Chinese Academy of Tropical Agricultural Sciences , Wenchang 571339 , P.R. China
| | - Haikuo Fan
- Coconut Research Institute , Chinese Academy of Tropical Agricultural Sciences , Wenchang 571339 , P.R. China
| | - Chunyu Zhang
- National Research Center of Rapeseed Engineering and Technology, College of Plant Science and Technology , Huazhong Agricultural University , Wuhan 430070 , China
| | - Yong Xiao
- Coconut Research Institute , Chinese Academy of Tropical Agricultural Sciences , Wenchang 571339 , P.R. China
- Hainan Key Laboratory for Biosafe Monitoring and Molecular Breeding in Off-Season Reproduction Region , Institute of Tropical Bioscience and Biotechnology Chinese Academy of Tropical Agricultural Sciences , Haikou 571101 , China
| |
Collapse
|
53
|
Bao Y, Magallenes-Lundback M, Deason N, DellaPenna D. High throughput profiling of tocochromanols in leaves and seeds of Arabidopsis and Maize. PLANT METHODS 2020; 16:126. [PMID: 32968427 PMCID: PMC7500555 DOI: 10.1186/s13007-020-00671-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/12/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Tocochromanols are a group of lipid-soluble antioxidants produced by all plants and include the tocopherols, which are ubiquitous in the plant kingdom, and the biosynthetically-related compounds tocotrienols, which along with tocopherols commonly occur in seed of monocots. Most tocochromanols have some level of vitamin E activity, with α-tocopherol being the highest, and as such are essential nutrients in the human diet. Tocochromanols are particularly abundant in seeds and are critical for maintaining seed longevity and proper germination and as seed oils are a major component of the human diet, they are an important source of dietary vitamin E. In vegetative tissues, tocochromanols are important components in plant responses to stressful environments and can accumulate to high levels in response to various stresses including high light, heat, and dark. RESULTS We report a robust, high throughput extraction and HPLC analysis method to quantify the levels of tocopherols and tocotrienols in leaves and seeds of plants, using Arabidopsis and maize tissues as examples. CONCLUSION The described method provides a rapid, high-throughput, cost-effective approach to quantifying the composition and content of tocopherols, and if needed simultaneously tocotrienols, in vegetative tissues and seeds. Optimized extraction methods are described for the two tissue types and have been used to study tocochromanol (vitamin E) natural variation in seed of large Arabidopsis and maize diversity panels, to assess gene function in T-DNA and Mu-tagged populations of Arabidopsis and maize, respectfully, and study the impact of environmental stresses, including high light stress, heat stress, and dark on tocopherols content and composition of vegetative tissue.
Collapse
Affiliation(s)
- Yan Bao
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 28824 USA
| | - Maria Magallenes-Lundback
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 28824 USA
| | - Nicholas Deason
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 28824 USA
| | - Dean DellaPenna
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 28824 USA
| |
Collapse
|
54
|
Park C, Dwiyanti MS, Nagano AJ, Liu B, Yamada T, Abe J. Identification of quantitative trait loci for increased α-tocopherol biosynthesis in wild soybean using a high-density genetic map. BMC PLANT BIOLOGY 2019; 19:510. [PMID: 31752696 PMCID: PMC6873731 DOI: 10.1186/s12870-019-2117-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/04/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Soybean is one of the most important crop sources of tocopherols (Toc). However, the content of α-Toc, an isoform with the highest vitamin E activity in humans, is low in most cultivars. With the aim of broadening genetic variability, we performed quantitative trait locus (QTL) analysis for a high seed α-Toc trait detected in a wild soybean and characterized the sequence polymorphisms and expression profiles of γ-tocopherol methyltransferase (γ-TMT) genes as potential candidates. RESULTS A recombinant inbred line population was developed from a cross between the low α-Toc breeding line TK780 and the high α-Toc wild accession B04009. The α-Toc content in seeds correlated strongly with the ratio of α-Toc to γ-Toc contents. QTL analysis using a high-density map constructed with 7710 single nucleotide polymorphisms (SNPs) generated by restriction site-associated DNA sequencing detected six QTLs involved in α-Toc biosynthesis. Of these, three in chromosomes (Chr) 9, 11, and 12 produced consistent effects during a 2-year trial. B04009 allele at QTLs in Chr9 and Chr12 and TK780 allele at the QTL in Chr11 each promoted the conversion of γ-Toc to α-Toc, which elevated the seed α-Toc content. SNPs and indels were detected between the parents in three γ-TMT genes (γ-TMT1, γ-TMT2, and γ-TMT3) co-located in the QTLs in Chr9 and Chr12, of which some existed in the cis-regulatory elements associated with seed development and functions. In immature cotyledons, γ-TMT3 was expressed at higher levels in B04009 than TK780, irrespective of two thermal conditions tested, whereas the expression of γ-TMT2 was markedly upregulated under higher temperatures, particularly in B04009. CONCLUSIONS We identified QTLs consistently controlling α-Toc biosynthesis in wild soybean seeds in 2-year trials. The QTL on Chr9 had been previously identified in soybean, whereas the QTLs on Chr11 and Chr12 were novel. Further molecular dissections and characterization of the QTLs may facilitate the use of high α-Toc alleles from wild soybean in soybean breeding and an understanding of the molecular mechanisms underlying α-Toc biosynthesis in soybean seeds.
Collapse
Affiliation(s)
- Cheolwoo Park
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | | | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, 520-2194, Japan
| | - Baohui Liu
- School of Life Science, Guangzhou University, Guangzhou, 510000, China
| | - Tetsuya Yamada
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Jun Abe
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| |
Collapse
|
55
|
Muñoz P, Munné-Bosch S. Vitamin E in Plants: Biosynthesis, Transport, and Function. TRENDS IN PLANT SCIENCE 2019; 24:1040-1051. [PMID: 31606282 DOI: 10.1016/j.tplants.2019.08.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 05/21/2023]
Abstract
Vitamin E, which includes both tocopherols and tocotrienols, comprises lipid-soluble antioxidants that modulate lipid peroxidation. Recently, significant advances have been made in our understanding of vitamin E biosynthesis, transport, and function. The phytyl moiety from chlorophyll degradation is used for tocopherol biosynthesis. An α-tocopherol-binding protein (TBP) has been identified in tomato (SlTBP) serving in intraorganellar vitamin E transport in plants. Moreover, α-tocopherol not only scavenges free radicals through flip-flop movements in the lipid bilayer, but may also contribute to fine-tuning the transmission of specific signals outside chloroplasts. Vitamin E, and α-tocopherol in particular, appear to be essential for plant development and help to provide the most suitable response to a number of environmental stresses.
Collapse
Affiliation(s)
- Paula Muñoz
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028 Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028 Barcelona, Spain.
| |
Collapse
|
56
|
Zhang L, Luo Y, Liu B, Zhang L, Zhang W, Chen R, Wang L. Overexpression of the maize γ-tocopherol methyltransferase gene (ZmTMT) increases α-tocopherol content in transgenic Arabidopsis and maize seeds. Transgenic Res 2019; 29:95-104. [PMID: 31673914 DOI: 10.1007/s11248-019-00180-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/22/2019] [Indexed: 11/25/2022]
Abstract
The vitamin E family includes tocopherols and tocotrienols, which are essential lipid-soluble antioxidants necessary for human and livestock health. The seeds of many plant species, including maize, have high gamma (γ)-tocopherol but low alpha (α)-tocopherol contents; however, α-tocopherol is the most effective antioxidant. Therefore, it is necessary to optimize the tocopherol composition in plants. α-Tocopherol is synthesized from γ-tocopherol by γ-tocopherol methyltransferase (γ-TMT, VTE4) in the final step of the tocopherol biosynthetic pathway. In the present study, the full-length coding sequence (CDS) of γ-TMT was isolated from Zea mays, named ZmTMT. The ZmTMT CDS was 1059 bp in size, encoding 352 amino acids. Recombinant ZmTMT was expressed in Escherichia coli and the purified protein effectively converted γ-tocopherol into α-tocopherol in vitro. A comparison of enzyme activities showed that the activity of ZmTMT was higher than that of GmTMT2a (Glycine max) and AtTMT (Arabidopsis thaliana). Overexpression of ZmTMT increased the α-tocopherol content 4-5-fold in transgenic Arabidopsis and around 6.5-fold in transgenic maize kernels, and increased the α-/γ-tocopherol ratio to approximately 15 and 17, respectively. These results show that it is feasible to overexpress ZmTMT to optimize the tocopherol composition in maize; such a corn product might be useful in the feed industry in the near future.
Collapse
Affiliation(s)
- Lan Zhang
- National Key Facility of Crop Gene Resources and Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanzhong Luo
- National Key Facility of Crop Gene Resources and Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bin Liu
- National Key Facility of Crop Gene Resources and Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liang Zhang
- National Key Facility of Crop Gene Resources and Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Zhang
- National Key Facility of Crop Gene Resources and Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rumei Chen
- National Key Facility of Crop Gene Resources and Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lei Wang
- National Key Facility of Crop Gene Resources and Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
57
|
Zhan W, Liu J, Pan Q, Wang H, Yan S, Li K, Deng M, Li W, Liu N, Kong Q, Fernie AR, Yan J. An allele of ZmPORB2 encoding a protochlorophyllide oxidoreductase promotes tocopherol accumulation in both leaves and kernels of maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:114-127. [PMID: 31169939 DOI: 10.1111/tpj.14432] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 05/27/2023]
Abstract
Phytol is one of the key precursors for tocopherol synthesis in plants, however, the underlying mechanisms concerning the accumulation of tocopherol remain poorly understood. In this study, qVE5, a major QTL affecting tocopherol accumulation in maize kernels was identified via a positional cloning approach. qVE5 encodes a protochlorophyllide oxidoreductase (ZmPORB2), which localizes to the chloroplast. Overexpression of ZmPORB2 increased tocopherol content in both leaves and kernels. Candidate gene association analysis identified a 5/8-bp insertion/deletion (InDel058) in the 5' untranslated region (UTR) as the causal polymorphism in affecting ZmPORB2 expression and being highly associated with tocopherol content. We showed that higher expression of ZmPORB2 correlated with more chlorophyll metabolites in the leaf following pollination. RNA-sequencing and metabolic analysis in near isogenic lines (NILs) support that ZmPORB2 participates in chlorophyll metabolism enabling the production of phytol, an important precursor of tocopherol. We also found that the tocopherol content in the kernel is mainly determined by the maternal genotype, a fact that was further confirmed by in vitro culture experiments. Finally, a PCR-based marker based on Indel058 was developed in order to facilitate the high tocopherol (vitamin E) maize breeding.
Collapse
Affiliation(s)
- Wei Zhan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingchun Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Crop Germplasm Resources of Northern China (Ministry of Education), Hebei Sub-center of National Maize Improvement Center of China, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Shijuan Yan
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Kun Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nannan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Kong
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
58
|
Characterization of natural genetic variation identifies multiple genes involved in salt tolerance in maize. Funct Integr Genomics 2019; 20:261-275. [PMID: 31522293 DOI: 10.1007/s10142-019-00707-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 01/03/2023]
Abstract
Progressive decline in irrigation water is forcing farmers to use brackish water which increases soil salinity and exposes the crop plants to salinity. Maize, one of the most important crops, is sensitive to salinity. Salt tolerance is a complex trait controlled by a number of physiological and biochemical processes. Scant information is available on the genetic architecture of salt tolerance in maize. We evaluated 399 inbred lines for six early vigor shoot and root traits upon exposure of 18-day seedlings to salinity (ECiw = 16 dS m-1) stress. Contrasting response of shoot and root growth to salinity indicated a meticulous reprogramming of resource partitioning by the plants to cope with the stress. The genomic analysis identified 57 single nucleotide polymorphisms (SNP) associated with early vigor traits. Candidate genes systematically associated with each SNP include both previously known and novel genes. Important candidates include a late embryogenesis protein, a divalent ion symporter, a proton extrusion protein, an RNA-binding protein, a casein kinase 1, and an AP2/EREBP transcription factor. The late embryogenesis protein is associated with both shoot and root length, indicating a coordinated change in resource allocation upon salt stress. Identification of a casein kinase 1 indicates an important role for Ser/Thr kinases in salt tolerance. Validation of eight candidates based on expression in a salt-tolerant and a salt-sensitive inbred line supported their role in salt tolerance. The candidate genes identified in this investigation provide a foundation for dissecting genetic and molecular regulation of salt tolerance in maize and related grasses.
Collapse
|
59
|
Transcriptome-Wide Association Supplements Genome-Wide Association in Zea mays. G3-GENES GENOMES GENETICS 2019; 9:3023-3033. [PMID: 31337639 PMCID: PMC6723120 DOI: 10.1534/g3.119.400549] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modern improvement of complex traits in agricultural species relies on successful associations of heritable molecular variation with observable phenotypes. Historically, this pursuit has primarily been based on easily measurable genetic markers. The recent advent of new technologies allows assaying and quantifying biological intermediates (hereafter endophenotypes) which are now readily measurable at a large scale across diverse individuals. The usefulness of endophenotypes for delineating the regulatory landscape of the genome and genetic dissection of complex trait variation remains underexplored in plants. The work presented here illustrated the utility of a large-scale (299-genotype and seven-tissue) gene expression resource to dissect traits across multiple levels of biological organization. Using single-tissue- and multi-tissue-based transcriptome-wide association studies (TWAS), we revealed that about half of the functional variation acts through altered transcript abundance for maize kernel traits, including 30 grain carotenoid abundance traits, 20 grain tocochromanol abundance traits, and 22 field-measured agronomic traits. Comparing the efficacy of TWAS with genome-wide association studies (GWAS) and an ensemble approach that combines both GWAS and TWAS, we demonstrated that results of TWAS in combination with GWAS increase the power to detect known genes and aid in prioritizing likely causal genes. Using a variance partitioning approach in the largely independent maize Nested Association Mapping (NAM) population, we also showed that the most strongly associated genes identified by combining GWAS and TWAS explain more heritable variance for a majority of traits than the heritability captured by the random genes and the genes identified by GWAS or TWAS alone. This not only improves the ability to link genes to phenotypes, but also highlights the phenotypic consequences of regulatory variation in plants.
Collapse
|
60
|
Sekhon RS, Saski C, Kumar R, Flinn BS, Luo F, Beissinger TM, Ackerman AJ, Breitzman MW, Bridges WC, de Leon N, Kaeppler SM. Integrated Genome-Scale Analysis Identifies Novel Genes and Networks Underlying Senescence in Maize. THE PLANT CELL 2019; 31:1968-1989. [PMID: 31239390 PMCID: PMC6751112 DOI: 10.1105/tpc.18.00930] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/22/2019] [Accepted: 06/19/2019] [Indexed: 05/18/2023]
Abstract
Premature senescence in annual crops reduces yield, while delayed senescence, termed stay-green, imposes positive and negative impacts on yield and nutrition quality. Despite its importance, scant information is available on the genetic architecture of senescence in maize (Zea mays) and other cereals. We combined a systematic characterization of natural diversity for senescence in maize and coexpression networks derived from transcriptome analysis of normally senescing and stay-green lines. Sixty-four candidate genes were identified by genome-wide association study (GWAS), and 14 of these genes are supported by additional evidence for involvement in senescence-related processes including proteolysis, sugar transport and signaling, and sink activity. Eight of the GWAS candidates, independently supported by a coexpression network underlying stay-green, include a trehalose-6-phosphate synthase, a NAC transcription factor, and two xylan biosynthetic enzymes. Source-sink communication and the activity of cell walls as a secondary sink emerge as key determinants of stay-green. Mutant analysis supports the role of a candidate encoding Cys protease in stay-green in Arabidopsis (Arabidopsis thaliana), and analysis of natural alleles suggests a similar role in maize. This study provides a foundation for enhanced understanding and manipulation of senescence for increasing carbon yield, nutritional quality, and stress tolerance of maize and other cereals.
Collapse
Affiliation(s)
- Rajandeep S Sekhon
- Department of Genetics and Biochemistry, Clemson University, 314 Biosystems Research Complex, 105 Collings Street, Clemson, South Carolina 29634
| | - Christopher Saski
- Department of Plant and Environmental Sciences, Clemson University, 306B Biosystems Research Complex, 105 Collings Street, Clemson, South Carolina 29634
| | - Rohit Kumar
- Department of Genetics and Biochemistry, Clemson University, 314 Biosystems Research Complex, 105 Collings Street, Clemson, South Carolina 29634
| | - Barry S Flinn
- Department of Plant and Environmental Sciences, Clemson University, 306B Biosystems Research Complex, 105 Collings Street, Clemson, South Carolina 29634
| | - Feng Luo
- School of Computing, Clemson University, 210 McAdams Hall, Clemson, South Carolina 29634
| | - Timothy M Beissinger
- Center for Integrated Breeding Research, University of Göttingen, D-37075 Göttingen, Germany
| | - Arlyn J Ackerman
- Department of Genetics and Biochemistry, Clemson University, 314 Biosystems Research Complex, 105 Collings Street, Clemson, South Carolina 29634
| | - Matthew W Breitzman
- Department of Agronomy, University of Wisconsin, 1575 Linden Drive, Madison, Wisconsin 53706
| | - William C Bridges
- Department of Mathematical Sciences, Clemson University, O-117 Martin Hall, Clemson, South Carolina 29634
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin, 1575 Linden Drive, Madison, Wisconsin 53706
| | - Shawn M Kaeppler
- Department of Agronomy, University of Wisconsin, 1575 Linden Drive, Madison, Wisconsin 53706
| |
Collapse
|
61
|
Schuy C, Groth J, Ammon A, Eydam J, Baier S, Schweizer G, Hanemann A, Herz M, Voll LM, Sonnewald U. Deciphering the genetic basis for vitamin E accumulation in leaves and grains of different barley accessions. Sci Rep 2019; 9:9470. [PMID: 31263124 PMCID: PMC6602966 DOI: 10.1038/s41598-019-45572-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 06/04/2019] [Indexed: 01/22/2023] Open
Abstract
Tocopherols and tocotrienols, commonly referred to as vitamin E, are essential compounds in food and feed. Due to their lipophilic nature they protect biomembranes by preventing the propagation of lipid-peroxidation especially during oxidative stress. Since their synthesis is restricted to photosynthetic organisms, plant-derived products are the major source of natural vitamin E. In the present study the genetic basis for high vitamin E accumulation in leaves and grains of different barley (Hordeum vulgare L.) accessions was uncovered. A genome wide association study (GWAS) allowed the identification of two genes located on chromosome 7H, homogentisate phytyltransferase (HPT-7H) and homogentisate geranylgeranyltransferase (HGGT) that code for key enzymes controlling the accumulation of tocopherols in leaves and tocotrienols in grains, respectively. Transcript profiling showed a correlation between HPT-7H expression and vitamin E content in leaves. Allele sequencing allowed to decipher the allelic variation of HPT-7H and HGGT genes corresponding to high and low vitamin E contents in the respective tissues. Using the obtained sequence information molecular markers have been developed which can be used to assist smart breeding of high vitamin E barley varieties. This will facilitate the selection of genotypes more tolerant to oxidative stress and producing high-quality grains.
Collapse
Affiliation(s)
- Christian Schuy
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany.
| | - Jennifer Groth
- Institut für Pflanzenbau und Pflanzenzüchtung, Bavarian State Research Center for Agriculture, Am Gereuth 8, D-85354, Freising, Germany
| | - Alexandra Ammon
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | - Julia Eydam
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | - Steffen Baier
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
- Saatzucht Josef Breun GmbH & Co. KG, Amselweg 1, D-91074, Herzogenaurach, Germany
| | - Günther Schweizer
- Institut für Pflanzenbau und Pflanzenzüchtung, Bavarian State Research Center for Agriculture, Am Gereuth 8, D-85354, Freising, Germany
| | - Anja Hanemann
- Saatzucht Josef Breun GmbH & Co. KG, Amselweg 1, D-91074, Herzogenaurach, Germany
| | - Markus Herz
- Institut für Pflanzenbau und Pflanzenzüchtung, Bavarian State Research Center for Agriculture, Am Gereuth 8, D-85354, Freising, Germany
| | - Lars M Voll
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
- Division of Plant Physiology, Department Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043, Marburg, Germany
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| |
Collapse
|
62
|
Satarova TM, Semenova VV, Zhang J, Jin H, Dzubetskii BV, Cherchel VY. Differentiation of maize breeding samples by β-carotene content. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Plant carotenoids are important micronutrients in the diet of humans and animals, since they act as precursors for the synthesis of vitamin A in animal cells. The most effective precursor to the vitamin A biosynthesis is β-carotene. Increasing the β-carotene content in maize grain as an important feed and food crop is an urgent task for plant selection. The purpose of this work was to differentiate maize breeding samples from the Dnipro breeding program by the β-carotene content in mature grain. Maize grain of 18 inbreds harvested in 2015 and 5 inbreds harvested in 2016 was researched. Determination of β-carotene content in matured dry grain was carried out after petroleum ether extraction and ultra performance liquid chromatography (UPLC) in the mobile phase of methanol/acetonitrile. The β-carotene content in the grain of genotypes from the Dnipro breeding program was on average 1.020 mg/kg for inbreds grown in 2015, and 0.672 mg/kg for inbreds grown in 2016. These values correspond to the β-carotene content in the grain of the majority of genotypes from world breeding programs selected by methods of classical selection. The inbred DKV3262 with white grain had the smallest content of β-carotene (0.076 mg/kg), while the yellow-coloured line DKD9066 had the highest one (2.146 mg/kg). The variation in the grain β-carotene content in different years of maize cultivation was noted. Inbreds of flint and semident maize showed the general tendency to increase the β-carotene content in grain compared with dent ones. The distribution of the studied inbreds on germplasm types showed the significant variation of β-carotene content in grain and the incidence of relatively high values in all germplasms analyzed. Inbreds containing more than 1.5 mg of β-carotene per 1 kg of grain, DK239, DK206A, DK212, DKD9066 and DKE-1, are emphasized as promising for the selection to increase the content of valuable micronutrients.
Collapse
|
63
|
Baseggio M, Murray M, Magallanes-Lundback M, Kaczmar N, Chamness J, Buckler ES, Smith ME, DellaPenna D, Tracy WF, Gore MA. Genome-Wide Association and Genomic Prediction Models of Tocochromanols in Fresh Sweet Corn Kernels. THE PLANT GENOME 2019; 12:180038. [PMID: 30951088 DOI: 10.3835/plantgenome2018.06.0038] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Sweet corn ( L.), a highly consumed fresh vegetable in the United States, varies for tocochromanol (tocopherol and tocotrienol) levels but makes only a limited contribution to daily intake of vitamin E and antioxidants. We performed a genome-wide association study of six tocochromanol compounds and 14 derivative traits across a sweet corn inbred line association panel to identify genes associated with natural variation for tocochromanols and vitamin E in fresh kernels. Concordant with prior studies in mature maize kernels, an association was detected between γ-tocopherol methyltransferase (vte4) and α-tocopherol content, along with () and () for tocotrienol variation. Additionally, two kernel starch synthesis genes, () and (), were associated with tocotrienols, with the strongest evidence for in combination with fixed, strong and alleles, accounting for the greater amount of tocotrienols in and lines. In prediction models with genome-wide markers, predictive abilities were higher for tocotrienols than tocopherols, and these models were superior to those that used marker sets targeting a priori genes involved in the biosynthesis and/or genetic control of tocochromanols. Through this quantitative genetic analysis, we have established a key step for increasing tocochromanols in fresh kernels of sweet corn for human health and nutrition.
Collapse
|
64
|
Das AK, Muthusamy V, Zunjare RU, Chauhan HS, Sharma PK, Bhat JS, Guleria SK, Saha S, Hossain F. Genetic variability-, genotype × environment interactions- and combining ability-analyses of kernel tocopherols among maize genotypes possessing novel allele of γ-tocopherol methyl transferase (ZmVTE4). J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2018.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
65
|
Hoopes GM, Hamilton JP, Wood JC, Esteban E, Pasha A, Vaillancourt B, Provart NJ, Buell CR. An updated gene atlas for maize reveals organ-specific and stress-induced genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:1154-1167. [PMID: 30537259 PMCID: PMC6850026 DOI: 10.1111/tpj.14184] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 05/09/2023]
Abstract
Maize (Zea mays L.), a model species for genetic studies, is one of the two most important crop species worldwide. The genome sequence of the reference genotype, B73, representative of the stiff stalk heterotic group was recently updated (AGPv4) using long-read sequencing and optical mapping technology. To facilitate the use of AGPv4 and to enable functional genomic studies and association of genotype with phenotype, we determined expression abundances for replicated mRNA-sequencing datasets from 79 tissues and five abiotic/biotic stress treatments revealing 36 207 expressed genes. Characterization of the B73 transcriptome across six organs revealed 4154 organ-specific and 7704 differentially expressed (DE) genes following stress treatment. Gene co-expression network analyses revealed 12 modules associated with distinct biological processes containing 13 590 genes providing a resource for further association of gene function based on co-expression patterns. Presence-absence variants (PAVs) previously identified using whole genome resequencing data from 61 additional inbred lines were enriched in organ-specific and stress-induced DE genes suggesting that PAVs may function in phenological variation and adaptation to environment. Relative to core genes conserved across the 62 profiled inbreds, PAVs have lower expression abundances which are correlated with their frequency of dispersion across inbreds and on average have significantly fewer co-expression network connections suggesting that a subset of PAVs may be on an evolutionary path to pseudogenization. To facilitate use by the community, we developed the Maize Genomics Resource website (maize.plantbiology.msu.edu) for viewing and data-mining these resources and deployed two new views on the maize electronic Fluorescent Pictograph Browser (bar.utoronto.ca/efp_maize).
Collapse
Affiliation(s)
| | - John P. Hamilton
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
- Department of Energy Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMI48824USA
| | - Joshua C. Wood
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
- Department of Energy Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMI48824USA
| | - Eddi Esteban
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoOntarioM5S 3B2Canada
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoOntarioM5S 3B2Canada
| | - Brieanne Vaillancourt
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
- Department of Energy Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMI48824USA
| | - Nicholas J. Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoOntarioM5S 3B2Canada
| | - C. Robin Buell
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
- Department of Energy Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMI48824USA
- Plant Resilience InstituteMichigan State UniversityEast LansingMI48824USA
- Michigan State University AgBioResearchEast LansingMI48824USA
| |
Collapse
|
66
|
Abstract
Phytol, the prenyl side chain of chlorophyll, is derived from geranylgeraniol by reduction of three double bonds. Recent results demonstrated that the conversion of geranylgeraniol to phytol is linked to chlorophyll synthesis, which is catalyzed by protein complexes associated with the thylakoid membranes. One of these complexes contains light harvesting chlorophyll binding like proteins (LIL3), enzymes of chlorophyll synthesis (protoporphyrinogen oxidoreductase, POR; chlorophyll synthase, CHLG) and geranylgeranyl reductase (GGR). Phytol is not only employed for the synthesis of chlorophyll, but also for tocopherol (vitamin E), phylloquinol (vitamin K) and fatty acid phytyl ester production. Previously, it was believed that phytol is derived from reduction of geranylgeranyl-diphosphate originating from the 4-methylerythritol-5-phosphate (MEP) pathway. The identification and characterization of two kinases, VTE5 and VTE6, involved in phytol and phytyl-phosphate phosphorylation, respectively, indicated that most phytol employed for tocopherol synthesis is derived from reduction of geranylgeranylated chlorophyll to (phytol-) chlorophyll. After hydrolysis from chlorophyll, free phytol is phosphorylated by the two kinases, and phytyl-diphosphate employed for the synthesis of tocopherol and phylloquinol. The reason why some chloroplast lipids, i.e. chlorophyll, tocopherol and phylloquinol, are derived from phytol, while others, i.e. carotenoids and tocotrienols (in some plant species) are synthesized from geranylgeraniol, remains unclear.
Collapse
|
67
|
Zaidem ML, Groen SC, Purugganan MD. Evolutionary and ecological functional genomics, from lab to the wild. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:40-55. [PMID: 30444573 DOI: 10.1111/tpj.14167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 05/12/2023]
Abstract
Plant phenotypes are the result of both genetic and environmental forces that act to modulate trait expression. Over the last few years, numerous approaches in functional genomics and systems biology have led to a greater understanding of plant phenotypic variation and plant responses to the environment. These approaches, and the questions that they can address, have been loosely termed evolutionary and ecological functional genomics (EEFG), and have been providing key insights on how plants adapt and evolve. In particular, by bringing these studies from the laboratory to the field, EEFG studies allow us to gain greater knowledge of how plants function in their natural contexts.
Collapse
Affiliation(s)
- Maricris L Zaidem
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY, 10003, USA
| | - Simon C Groen
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY, 10003, USA
| | - Michael D Purugganan
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY, 10003, USA
- Center for Genomics and Systems Biology, NYU Abu Dhabi Research Institute, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
68
|
Strobbe S, De Lepeleire J, Van Der Straeten D. From in planta Function to Vitamin-Rich Food Crops: The ACE of Biofortification. FRONTIERS IN PLANT SCIENCE 2018; 9:1862. [PMID: 30619424 PMCID: PMC6305313 DOI: 10.3389/fpls.2018.01862] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/03/2018] [Indexed: 05/11/2023]
Abstract
Humans are highly dependent on plants to reach their dietary requirements, as plant products contribute both to energy and essential nutrients. For many decades, plant breeders have been able to gradually increase yields of several staple crops, thereby alleviating nutritional needs with varying degrees of success. However, many staple crops such as rice, wheat and corn, although delivering sufficient calories, fail to satisfy micronutrient demands, causing the so called 'hidden hunger.' Biofortification, the process of augmenting nutritional quality of food through the use of agricultural methodologies, is a pivotal asset in the fight against micronutrient malnutrition, mainly due to vitamin and mineral deficiencies. Several technical advances have led to recent breakthroughs. Nutritional genomics has come to fruition based on marker-assisted breeding enabling rapid identification of micronutrient related quantitative trait loci (QTL) in the germplasm of interest. As a complement to these breeding techniques, metabolic engineering approaches, relying on a continuously growing fundamental knowledge of plant metabolism, are able to overcome some of the inevitable pitfalls of breeding. Alteration of micronutrient levels does also require fundamental knowledge about their role and influence on plant growth and development. This review focuses on our knowledge about provitamin A (beta-carotene), vitamin C (ascorbate) and the vitamin E group (tocochromanols). We begin by providing an overview of the functions of these vitamins in planta, followed by highlighting some of the achievements in the nutritional enhancement of food crops via conventional breeding and genetic modification, concluding with an evaluation of the need for such biofortification interventions. The review further elaborates on the vast potential of creating nutritionally enhanced crops through multi-pathway engineering and the synergistic potential of conventional breeding in combination with genetic engineering, including the impact of novel genome editing technologies.
Collapse
|
69
|
Shenstone E, Cooper J, Rice B, Bohn M, Jamann TM, Lipka AE. An assessment of the performance of the logistic mixed model for analyzing binary traits in maize and sorghum diversity panels. PLoS One 2018; 13:e0207752. [PMID: 30462727 PMCID: PMC6248992 DOI: 10.1371/journal.pone.0207752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/06/2018] [Indexed: 11/18/2022] Open
Abstract
The logistic mixed model (LMM) is well-suited for the genome-wide association study (GWAS) of binary agronomic traits because it can include fixed and random effects that account for spurious associations. The recent implementation of a computationally efficient model fitting and testing approach now makes it practical to use the LMM to search for markers associated with such binary traits on a genome-wide scale. Therefore, the purpose of this work was to assess the applicability of the LMM for GWAS in crop diversity panels. We dichotomized three publicly available quantitative traits in a maize diversity panel and two quantitative traits in a sorghum diversity panel, and them performed a GWAS using both the LMM and the unified mixed linear model (MLM) on these dichotomized traits. Our results suggest that the LMM is capable of identifying statistically significant marker-trait associations in the same genomic regions highlighted in previous studies, and this ability is consistent across both diversity panels. We also show how subpopulation structure in the maize diversity panel can underscore the LMM’s superior control for spurious associations compared to the unified MLM. These results suggest that the LMM is a viable model to use for the GWAS of binary traits in crop diversity panels and we therefore encourage its broader implementation in the agronomic research community.
Collapse
Affiliation(s)
- Esperanza Shenstone
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Julian Cooper
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Brian Rice
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Martin Bohn
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Tiffany M. Jamann
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Alexander E. Lipka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
70
|
Alseekh S, Bermudez L, de Haro LA, Fernie AR, Carrari F. Crop metabolomics: from diagnostics to assisted breeding. Metabolomics 2018; 14:148. [PMID: 30830402 DOI: 10.1007/s11306-018-1446-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/26/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Until recently, plant metabolomics have provided a deep understanding on the metabolic regulation in individual plants as experimental units. The application of these techniques to agricultural systems subjected to more complex interactions is a step towards the implementation of translational metabolomics in crop breeding. AIM OF REVIEW We present here a review paper discussing advances in the knowledge reached in the last years derived from the application of metabolomic techniques that evolved from biomarker discovery to improve crop yield and quality. KEY SCIENTIFIC CONCEPTS OF REVIEW Translational metabolomics applied to crop breeding programs.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Luisa Bermudez
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1686WAA, Castelar, Argentina
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luis Alejandro de Haro
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1686WAA, Castelar, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (IB-INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1686WAA, Castelar, Argentina.
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil.
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
71
|
Ben Abdallah H, Mai HJ, Slatni T, Fink-Straube C, Abdelly C, Bauer P. Natural Variation in Physiological Responses of Tunisian Hedysarum carnosum Under Iron Deficiency. FRONTIERS IN PLANT SCIENCE 2018; 9:1383. [PMID: 30333841 PMCID: PMC6176081 DOI: 10.3389/fpls.2018.01383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 08/30/2018] [Indexed: 05/31/2023]
Abstract
Iron (Fe) is an essential element for plant growth and development. The cultivation of leguminous plants has generated strong interest because of their growth even on poor soils. Calcareous and saline soils with poor mineral availability are wide-spread in Tunisia. In an attempt to select better forage crops adapted to Tunisian soils, we characterized Fe deficiency responses of three different isolates of Hedysarum carnosum, an endemic Tunisian extremophile species growing in native stands in salt and calcareous soil conditions. H. carnosum is a non-model crop. The three isolates, named according to their habitats Karkar, Thelja, and Douiret, differed in the expression of Fe deficiency symptoms like morphology, leaf chlorosis with compromised leaf chlorophyll content and photosynthetic capacity and leaf metal contents. Across these parameters Thelja was found to be tolerant, while Karkar and Douiret were susceptible to Fe deficiency stress. The three physiological and molecular indicators of the iron deficiency response in roots, Fe reductase activity, growth medium acidification and induction of the IRON-REGULATED TRANSPORTER1 homolog, indicated that all lines responded to -Fe, however, varied in the strength of the different responses. We conclude that the individual lines have distinct adaptation capacities to react to iron deficiency, presumably involving mechanisms of whole-plant iron homeostasis and internal metal distribution. The Fe deficiency tolerance of Thelja might be linked with adaptation to its natural habitat on calcareous soil.
Collapse
Affiliation(s)
| | - Hans Jörg Mai
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tarek Slatni
- Laboratory of Extremophile Plant, Center of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | | | - Chedly Abdelly
- Laboratory of Extremophile Plant, Center of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
72
|
Wang H, Xu S, Fan Y, Liu N, Zhan W, Liu H, Xiao Y, Li K, Pan Q, Li W, Deng M, Liu J, Jin M, Yang X, Li J, Li Q, Yan J. Beyond pathways: genetic dissection of tocopherol content in maize kernels by combining linkage and association analyses. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1464-1475. [PMID: 29356296 PMCID: PMC6041443 DOI: 10.1111/pbi.12889] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/02/2018] [Accepted: 01/10/2018] [Indexed: 05/03/2023]
Abstract
Although tocopherols play an important role in plants and animals, the genetic architecture of tocopherol content in maize kernels has remained largely unknown. In this study, linkage and association analyses were conducted to examine the genetic architecture of tocopherol content in maize kernels. Forty-one unique quantitative trait loci (QTLs) were identified by linkage mapping in six populations of recombinant inbred lines (RILs). In addition, 32 significant loci were detected via genome-wide association study (GWAS), 18 of which colocalized with the QTLs identified by linkage mapping. Fine mapping of a major QTL validated the accuracy of GWAS and QTL mapping results and suggested a role for nontocopherol pathway genes in the modulation of natural tocopherol variation. We provided genome-wide evidence that genes involved in fatty acid metabolism, chlorophyll metabolism and chloroplast function may affect natural variation in tocopherols. These findings were confirmed through mutant analysis of a particular gene from the fatty acid pathway. In addition, the favourable alleles for many of the significant SNPs/QTLs represented rare alleles in natural populations. Together, our results revealed many novel genes that are potentially involved in the variation of tocopherol content in maize kernels. Pyramiding of the favourable alleles of the newly elucidated genes and the well-known tocopherol pathway genes would greatly improve tocopherol content in maize.
Collapse
Affiliation(s)
- Hong Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Shutu Xu
- National Maize Improvement Center of ChinaMOA Key Lab of Maize BiologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Yaming Fan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Nannan Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Wei Zhan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Haijun Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Kun Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Qingchun Pan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Min Deng
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Jie Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Min Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xiaohong Yang
- National Maize Improvement Center of ChinaMOA Key Lab of Maize BiologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Jiansheng Li
- National Maize Improvement Center of ChinaMOA Key Lab of Maize BiologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Qing Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
73
|
|
74
|
Mène-Saffrané L. Vitamin E Biosynthesis and Its Regulation in Plants. Antioxidants (Basel) 2017; 7:E2. [PMID: 29295607 PMCID: PMC5789312 DOI: 10.3390/antiox7010002] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022] Open
Abstract
Vitamin E is one of the 13 vitamins that are essential to animals that do not produce them. To date, six natural organic compounds belonging to the chemical family of tocochromanols-four tocopherols and two tocotrienols-have been demonstrated as exhibiting vitamin E activity in animals. Edible plant-derived products, notably seed oils, are the main sources of vitamin E in the human diet. Although this vitamin is readily available, independent nutritional surveys have shown that human populations do not consume enough vitamin E, and suffer from mild to severe deficiency. Tocochromanols are mostly produced by plants, algae, and some cyanobacteria. Tocochromanol metabolism has been mainly studied in higher plants that produce tocopherols, tocotrienols, plastochromanol-8, and tocomonoenols. In contrast to the tocochromanol biosynthetic pathways that are well characterized, our understanding of the physiological and molecular mechanisms regulating tocochromanol biosynthesis is in its infancy. Although it is known that tocochromanol biosynthesis is strongly conditioned by the availability in homogentisate and polyprenyl pyrophosphate, its polar and lipophilic biosynthetic precursors, respectively, the mechanisms regulating their biosyntheses are barely known. This review summarizes our current knowledge of tocochromanol biosynthesis in plants, and highlights future challenges regarding the understanding of its regulation.
Collapse
Affiliation(s)
- Laurent Mène-Saffrané
- Department of Biology, University of Fribourg, Chemin du Musée, 10, 1700 Fribourg, Switzerland.
| |
Collapse
|
75
|
Fritsche S, Wang X, Jung C. Recent Advances in our Understanding of Tocopherol Biosynthesis in Plants: An Overview of Key Genes, Functions, and Breeding of Vitamin E Improved Crops. Antioxidants (Basel) 2017; 6:E99. [PMID: 29194404 PMCID: PMC5745509 DOI: 10.3390/antiox6040099] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 12/17/2022] Open
Abstract
Tocopherols, together with tocotrienols and plastochromanols belong to a group of lipophilic compounds also called tocochromanols or vitamin E. Considered to be one of the most powerful antioxidants, tocochromanols are solely synthesized by photosynthetic organisms including plants, algae, and cyanobacteria and, therefore, are an essential component in the human diet. Tocochromanols potent antioxidative properties are due to their ability to interact with polyunsaturated acyl groups and scavenge lipid peroxyl radicals and quench reactive oxygen species (ROS), thus protecting fatty acids from lipid peroxidation. In the plant model species Arabidopsis thaliana, the required genes for tocopherol biosynthesis and functional roles of tocopherols were elucidated in mutant and transgenic plants. Recent research efforts have led to new outcomes for the vitamin E biosynthetic and related pathways, and new possible alternatives for the biofortification of important crops have been suggested. Here, we review 30 years of research on tocopherols in model and crop species, with emphasis on the improvement of vitamin E content using transgenic approaches and classical breeding. We will discuss future prospects to further improve the nutritional value of our food.
Collapse
Affiliation(s)
- Steffi Fritsche
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany.
| | - Xingxing Wang
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany.
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany.
| |
Collapse
|