51
|
Nicholl ID, Matsui T, Weiss TM, Stanley CB, Heller WT, Martel A, Farago B, Callaway DJE, Bu Z. α-Catenin Structure and Nanoscale Dynamics in Solution and in Complex with F-Actin. Biophys J 2018; 115:642-654. [PMID: 30037495 DOI: 10.1016/j.bpj.2018.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/17/2018] [Accepted: 07/05/2018] [Indexed: 12/26/2022] Open
Abstract
As a core component of the adherens junction, α-catenin stabilizes the cadherin/catenin complexes to the actin cytoskeleton for the mechanical coupling of cell-cell adhesion. α-catenin also modulates actin dynamics, cell polarity, and cell-migration functions that are independent of the adherens junction. We have determined the solution structures of the α-catenin monomer and dimer using in-line size-exclusion chromatography small-angle X-ray scattering, as well as the structure of α-catenin dimer in complex to F-actin filament using selective deuteration and contrast-matching small angle neutron scattering. We further present the first observation, to our knowledge, of the nanoscale dynamics of α-catenin by neutron spin-echo spectroscopy, which explicitly reveals the mobile regions of α-catenin that are crucial for binding to F-actin. In solution, the α-catenin monomer is more expanded than either protomer shown in the crystal structure dimer, with the vinculin-binding M fragment and the actin-binding domain being able to adopt different configurations. The α-catenin dimer in solution is also significantly more expanded than the dimer crystal structure, with fewer interdomain and intersubunit contacts than the crystal structure. When in complex to F-actin, the α-catenin dimer has an even more open and extended conformation than in solution, with the actin-binding domain further separated from the main body of the dimer. The α-catenin-assembled F-actin bundle develops into an ordered filament packing arrangement at increasing α-catenin/F-actin molar ratios. Together, the structural and dynamic studies reveal that α-catenin possesses dynamic molecular conformations that prime this protein to function as a mechanosensor protein.
Collapse
Affiliation(s)
- Iain D Nicholl
- Department of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Light Source, Menlo Park, California
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Light Source, Menlo Park, California
| | | | - William T Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | | | | | - David J E Callaway
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, New York.
| | - Zimei Bu
- Department of Chemistry and Biochemistry, City College of New York, City University of New York, New York, New York.
| |
Collapse
|
52
|
Recent developments in small-angle X-ray scattering and hybrid method approaches for biomacromolecular solutions. Emerg Top Life Sci 2018; 2:69-79. [PMID: 33525782 DOI: 10.1042/etls20170138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 01/05/2023]
Abstract
Small-angle X-ray scattering (SAXS) has become a streamline method to characterize biological macromolecules, from small peptides to supramolecular complexes, in near-native solutions. Modern SAXS requires limited amounts of purified material, without the need for labelling, crystallization, or freezing. Dedicated beamlines at modern synchrotron sources yield high-quality data within or below several milliseconds of exposure time and are highly automated, allowing for rapid structural screening under different solutions and ambient conditions but also for time-resolved studies of biological processes. The advanced data analysis methods allow one to meaningfully interpret the scattering data from monodisperse systems, from transient complexes as well as flexible and heterogeneous systems in terms of structural models. Especially powerful are hybrid approaches utilizing SAXS with high-resolution structural techniques, but also with biochemical, biophysical, and computational methods. Here, we review the recent developments in the experimental SAXS practice and in analysis methods with a specific focus on the joint use of SAXS with complementary methods.
Collapse
|
53
|
Castellanos MM, Howell SC, Gallagher DT, Curtis JE. Characterization of the NISTmAb Reference Material using small-angle scattering and molecular simulation. Anal Bioanal Chem 2018; 410:2141-2159. [DOI: 10.1007/s00216-018-0868-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/11/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
|
54
|
Characterization of the NISTmAb Reference Material using small-angle scattering and molecular simulation. Anal Bioanal Chem 2018; 410:2161-2171. [DOI: 10.1007/s00216-018-0869-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/11/2017] [Accepted: 01/10/2018] [Indexed: 12/15/2022]
|
55
|
Somody JC, MacKinnon SS, Windemuth A. Structural coverage of the proteome for pharmaceutical applications. Drug Discov Today 2017; 22:1792-1799. [DOI: 10.1016/j.drudis.2017.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 01/09/2023]
|
56
|
Leloup N, Lössl P, Meijer DH, Brennich M, Heck AJR, Thies-Weesie DME, Janssen BJC. Low pH-induced conformational change and dimerization of sortilin triggers endocytosed ligand release. Nat Commun 2017; 8:1708. [PMID: 29167428 PMCID: PMC5700061 DOI: 10.1038/s41467-017-01485-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 09/19/2017] [Indexed: 11/24/2022] Open
Abstract
Low pH-induced ligand release and receptor recycling are important steps for endocytosis. The transmembrane protein sortilin, a β-propeller containing endocytosis receptor, internalizes a diverse set of ligands with roles in cell differentiation and homeostasis. The molecular mechanisms of pH-mediated ligand release and sortilin recycling are unresolved. Here we present crystal structures that show the sortilin luminal segment (s-sortilin) undergoes a conformational change and dimerizes at low pH. The conformational change, within all three sortilin luminal domains, provides an altered surface and the dimers sterically shield a large interface while bringing the two s-sortilin C-termini into close proximity. Biophysical and cell-based assays show that members of two different ligand families, (pro)neurotrophins and neurotensin, preferentially bind the sortilin monomer. This indicates that sortilin dimerization and conformational change discharges ligands and triggers recycling. More generally, this work may reveal a double mechanism for low pH-induced ligand release by endocytosis receptors. Sortilin is an endocytosis receptor with a luminal β-propeller domain. Here the authors present the structures of the β-propeller domain at neutral and acidic pH, which reveal that sortilin dimerises and undergoes conformational changes at low pH and further propose a model for low pH-induced ligand release by endocytosis receptors.
Collapse
Affiliation(s)
- Nadia Leloup
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Philip Lössl
- Biomolecular Mass Spectrometry & Proteomics and Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Dimphna H Meijer
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Martha Brennich
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble, 38000, France
| | - Albert J R Heck
- Biomolecular Mass Spectrometry & Proteomics and Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Dominique M E Thies-Weesie
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Bert J C Janssen
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
57
|
Hopkins JB, Gillilan RE, Skou S. BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J Appl Crystallogr 2017; 50:1545-1553. [PMID: 29021737 PMCID: PMC5627684 DOI: 10.1107/s1600576717011438] [Citation(s) in RCA: 465] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/02/2017] [Indexed: 01/19/2023] Open
Abstract
BioXTAS RAW is a graphical-user-interface-based free open-source Python program for reduction and analysis of small-angle X-ray solution scattering (SAXS) data. The software is designed for biological SAXS data and enables creation and plotting of one-dimensional scattering profiles from two-dimensional detector images, standard data operations such as averaging and subtraction and analysis of radius of gyration and molecular weight, and advanced analysis such as calculation of inverse Fourier transforms and envelopes. It also allows easy processing of inline size-exclusion chromatography coupled SAXS data and data deconvolution using the evolving factor analysis method. It provides an alternative to closed-source programs such as Primus and ScÅtter for primary data analysis. Because it can calibrate, mask and integrate images it also provides an alternative to synchrotron beamline pipelines that scientists can install on their own computers and use both at home and at the beamline.
Collapse
|
58
|
Khaira G, Doxastakis M, Bowen A, Ren J, Suh HS, Segal-Peretz T, Chen X, Zhou C, Hannon AF, Ferrier NJ, Vishwanath V, Sunday DF, Gronheid R, Kline RJ, de Pablo JJ, Nealey PF. Derivation of Multiple Covarying Material and Process Parameters Using Physics-Based Modeling of X-ray Data. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00691] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Gurdaman Khaira
- Mentor: A Siemens Business, Wilsonville, Oregon 97070, United States
| | - Manolis Doxastakis
- Department
of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Alec Bowen
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jiaxing Ren
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Hyo Seon Suh
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Tamar Segal-Peretz
- Department
of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Xuanxuan Chen
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chun Zhou
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Adam F. Hannon
- Material
Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | | | | - Daniel F. Sunday
- Material
Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | | - R. Joseph Kline
- Material
Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Juan J. de Pablo
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Paul F. Nealey
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
59
|
Trewhella J, Duff AP, Durand D, Gabel F, Guss JM, Hendrickson WA, Hura GL, Jacques DA, Kirby NM, Kwan AH, Pérez J, Pollack L, Ryan TM, Sali A, Schneidman-Duhovny D, Schwede T, Svergun DI, Sugiyama M, Tainer JA, Vachette P, Westbrook J, Whitten AE. 2017 publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution: an update. Acta Crystallogr D Struct Biol 2017; 73:710-728. [PMID: 28876235 PMCID: PMC5586245 DOI: 10.1107/s2059798317011597] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/07/2017] [Indexed: 12/02/2022] Open
Abstract
In 2012, preliminary guidelines were published addressing sample quality, data acquisition and reduction, presentation of scattering data and validation, and modelling for biomolecular small-angle scattering (SAS) experiments. Biomolecular SAS has since continued to grow and authors have increasingly adopted the preliminary guidelines. In parallel, integrative/hybrid determination of biomolecular structures is a rapidly growing field that is expanding the scope of structural biology. For SAS to contribute maximally to this field, it is essential to ensure open access to the information required for evaluation of the quality of SAS samples and data, as well as the validity of SAS-based structural models. To this end, the preliminary guidelines for data presentation in a publication are reviewed and updated, and the deposition of data and associated models in a public archive is recommended. These guidelines and recommendations have been prepared in consultation with the members of the International Union of Crystallography (IUCr) Small-Angle Scattering and Journals Commissions, the Worldwide Protein Data Bank (wwPDB) Small-Angle Scattering Validation Task Force and additional experts in the field.
Collapse
Affiliation(s)
- Jill Trewhella
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Anthony P. Duff
- ANSTO, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Dominique Durand
- Institut de Biologie Intégrative de la Cellule, UMR 9198, Bâtiment 430, Université Paris-Sud, 91405 Orsay CEDEX, France
| | - Frank Gabel
- Université Grenoble Alpes, Commissariat à l’Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale (IBS), and Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - J. Mitchell Guss
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Wayne A. Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Greg L. Hura
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David A. Jacques
- University of Technology Sydney, ithree Institute, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Nigel M. Kirby
- Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Ann H. Kwan
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Javier Pérez
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin BP48, 91192 Gif-sur-Yvette CEDEX, France
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853-2501, USA
| | - Timothy M. Ryan
- Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California San Francisco, San Francisco, California, USA
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Torsten Schwede
- Biozentrum, University of Basel and SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg, c/o DESY, Nokestrasse 85, 22607 Hamburg, Germany
| | - Masaaki Sugiyama
- Research Reactor Institute, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - John A. Tainer
- Basic Science Research Division, Molecular and Cellular Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Patrice Vachette
- Institut de Biologie Intégrative de la Cellule, UMR 9198, Bâtiment 430, Université Paris-Sud, 91405 Orsay CEDEX, France
| | - John Westbrook
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 07102, USA
| | | |
Collapse
|
60
|
Tuukkanen AT, Spilotros A, Svergun DI. Progress in small-angle scattering from biological solutions at high-brilliance synchrotrons. IUCRJ 2017; 4:518-528. [PMID: 28989709 PMCID: PMC5619845 DOI: 10.1107/s2052252517008740] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/12/2017] [Indexed: 05/26/2023]
Abstract
Small-angle X-ray scattering (SAXS) is an established technique that provides low-resolution structural information on macromolecular solutions. Recent decades have witnessed significant progress in both experimental facilities and in novel data-analysis approaches, making SAXS a mainstream method for structural biology. The technique is routinely applied to directly reconstruct low-resolution shapes of proteins and to generate atomistic models of macromolecular assemblies using hybrid approaches. Very importantly, SAXS is capable of yielding structural information on systems with size and conformational polydispersity, including highly flexible objects. In addition, utilizing high-flux synchrotron facilities, time-resolved SAXS allows analysis of kinetic processes over time ranges from microseconds to hours. Dedicated bioSAXS beamlines now offer fully automated data-collection and analysis pipelines, where analysis and modelling is conducted on the fly. This enables SAXS to be employed as a high-throughput method to rapidly screen various sample conditions and additives. The growing SAXS user community is supported by developments in data and model archiving and quality criteria. This review illustrates the latest developments in SAXS, in particular highlighting time-resolved applications aimed at flexible and evolving systems.
Collapse
Affiliation(s)
- Anne T. Tuukkanen
- European Molecular Biology Laboratory, EMBL Hamburg c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Alessandro Spilotros
- European Molecular Biology Laboratory, EMBL Hamburg c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, EMBL Hamburg c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
61
|
Non-linearity of the collagen triple helix in solution and implications for collagen function. Biochem J 2017; 474:2203-2217. [PMID: 28533266 PMCID: PMC5632799 DOI: 10.1042/bcj20170217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 12/29/2022]
Abstract
Collagen adopts a characteristic supercoiled triple helical conformation which requires a repeating (Xaa-Yaa-Gly)n sequence. Despite the abundance of collagen, a combined experimental and atomistic modelling approach has not so far quantitated the degree of flexibility seen experimentally in the solution structures of collagen triple helices. To address this question, we report an experimental study on the flexibility of varying lengths of collagen triple helical peptides, composed of six, eight, ten and twelve repeats of the most stable Pro-Hyp-Gly (POG) units. In addition, one unblocked peptide, (POG)10unblocked, was compared with the blocked (POG)10 as a control for the significance of end effects. Complementary analytical ultracentrifugation and synchrotron small angle X-ray scattering data showed that the conformations of the longer triple helical peptides were not well explained by a linear structure derived from crystallography. To interpret these data, molecular dynamics simulations were used to generate 50 000 physically realistic collagen structures for each of the helices. These structures were fitted against their respective scattering data to reveal the best fitting structures from this large ensemble of possible helix structures. This curve fitting confirmed a small degree of non-linearity to exist in these best fit triple helices, with the degree of bending approximated as 4–17° from linearity. Our results open the way for further studies of other collagen triple helices with different sequences and stabilities in order to clarify the role of molecular rigidity and flexibility in collagen extracellular and immune function and disease.
Collapse
|
62
|
Bowerman S, Rana ASJB, Rice A, Pham GH, Strieter ER, Wereszczynski J. Determining Atomistic SAXS Models of Tri-Ubiquitin Chains from Bayesian Analysis of Accelerated Molecular Dynamics Simulations. J Chem Theory Comput 2017; 13:2418-2429. [PMID: 28482663 DOI: 10.1021/acs.jctc.7b00059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Small-angle X-ray scattering (SAXS) has become an increasingly popular technique for characterizing the solution ensemble of flexible biomolecules. However, data resulting from SAXS is typically low-dimensional and is therefore difficult to interpret without additional structural knowledge. In theory, molecular dynamics (MD) trajectories can provide this information, but conventional simulations rarely sample the complete ensemble. Here, we demonstrate that accelerated MD simulations can be used to produce higher quality models in shorter time scales than standard simulations, and we present an iterative Bayesian Monte Carlo method that is able to identify multistate ensembles without overfitting. This methodology is applied to several ubiquitin trimers to demonstrate the effect of linkage type on the solution states of the signaling protein. We observe that the linkage site directly affects the solution flexibility of the trimer and theorize that this difference in plasticity contributes to their disparate roles in vivo.
Collapse
Affiliation(s)
- Samuel Bowerman
- Department of Physics and Center for the Molecular Study of Condensed Soft Matter, Illinois Institute of Technology , Chicago, Illinois 60616, United States
| | - Ambar S J B Rana
- Department of Chemistry, University of Massachusetts-Amherst , Amherst, Massachusetts 01003, United States.,Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Amy Rice
- Department of Physics and Center for the Molecular Study of Condensed Soft Matter, Illinois Institute of Technology , Chicago, Illinois 60616, United States
| | - Grace H Pham
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts-Amherst , Amherst, Massachusetts 01003, United States.,Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst , Amherst, Massachusetts 01003, United States
| | - Jeff Wereszczynski
- Department of Physics and Center for the Molecular Study of Condensed Soft Matter, Illinois Institute of Technology , Chicago, Illinois 60616, United States
| |
Collapse
|
63
|
Nan R, Furze CM, Wright DW, Gor J, Wallis R, Perkins SJ. Flexibility in Mannan-Binding Lectin-Associated Serine Proteases-1 and -2 Provides Insight on Lectin Pathway Activation. Structure 2017; 25:364-375. [PMID: 28111019 PMCID: PMC5300068 DOI: 10.1016/j.str.2016.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/08/2016] [Accepted: 12/21/2016] [Indexed: 01/19/2023]
Abstract
The lectin pathway of complement is activated by complexes comprising a recognition component (mannose-binding lectin, serum ficolins, collectin-LK or collectin-K1) and a serine protease (MASP-1 or MASP-2). MASP-1 activates MASP-2, and MASP-2 cleaves C4 and C4b-bound C2. To clarify activation, new crystal structures of Ca2+-bound MASP dimers were determined, together with their solution structures from X-ray scattering, analytical ultracentrifugation, and atomistic modeling. Solution structures of the CUB1-EGF-CUB2 dimer of each MASP indicate that the two CUB2 domains were tilted by as much as 90° compared with the crystal structures, indicating considerable flexibility at the EGF-CUB2 junction. Solution structures of the full-length MASP dimers in their zymogen and activated forms revealed similar structures that were much more bent than anticipated from crystal structures. We conclude that MASP-1 and MASP-2 are flexible at multiple sites and that this flexibility may permit both intra- and inter-complex activation.
Collapse
Affiliation(s)
- Ruodan Nan
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Christopher M Furze
- Departments of Infection, Immunity and Inflammation and Molecular Cell Biology, University of Leicester, University Road, Leicester, LE1 9HN, UK
| | - David W Wright
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Jayesh Gor
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Russell Wallis
- Departments of Infection, Immunity and Inflammation and Molecular Cell Biology, University of Leicester, University Road, Leicester, LE1 9HN, UK
| | - Stephen J Perkins
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
64
|
Gradzielski M, Allen AJ. Introduction to the special issue on small-angle scattering. J Appl Crystallogr 2016; 49:1858-1860. [PMID: 27980505 PMCID: PMC5139987 DOI: 10.1107/s160057671601904x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This open-access collection of 11 selected articles covers a small but quite diverse and interesting part of the much wider range of scientific topics presented at the 16th International Conference on Small-Angle Scattering (SAS2015) in Berlin. The topics contained here describe the particular directions in which small-angle scattering is developing at the current moment and which will become increasingly important in the future. The virtual special issue is available at http://journals.iucr.org/special_issues/2016/sas2015/.
Collapse
Affiliation(s)
- Michael Gradzielski
- Stranski Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin , Strasse des 17 Juni 124, 10623 Berlin, Germany
| | - Andrew J Allen
- Materials Measurement Science Division, National Institute of Standards and Technology (NIST) , 100 Bureau Drive, Gaithersburg, MD 20899, USA
| |
Collapse
|
65
|
Domain structure of human complement C4b extends with increasing NaCl concentration: implications for its regulatory mechanism. Biochem J 2016; 473:4473-4491. [PMID: 27738201 DOI: 10.1042/bcj20160744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 01/06/2023]
Abstract
During the activation of complement C4 to C4b, the exposure of its thioester domain (TED) is crucial for the attachment of C4b to activator surfaces. In the C4b crystal structure, TED forms an Arg104-Glu1032 salt bridge to tether its neighbouring macroglobulin (MG1) domain. Here, we examined the C4b domain structure to test whether this salt bridge affects its conformation. Dual polarisation interferometry of C4b immobilised at a sensor surface showed that the maximum thickness of C4b increased by 0.46 nm with an increase in NaCl concentration from 50 to 175 mM NaCl. Analytical ultracentrifugation showed that the sedimentation coefficient s20,w of monomeric C4b of 8.41 S in 50 mM NaCl buffer decreased to 7.98 S in 137 mM NaCl buffer, indicating that C4b became more extended. Small angle X-ray scattering reported similar RG values of 4.89-4.90 nm for C4b in 137-250 mM NaCl. Atomistic scattering modelling of the C4b conformation showed that TED and the MG1 domain were separated by 4.7 nm in 137-250 mM NaCl and this is greater than that of 4.0 nm in the C4b crystal structure. Our data reveal that in low NaCl concentrations, both at surfaces and in solution, C4b forms compact TED-MG1 structures. In solution, physiologically relevant NaCl concentrations lead to the separation of the TED and MG1 domain, making C4b less capable of binding to its complement regulators. These conformational changes are similar to those seen previously for complement C3b, confirming the importance of this salt bridge for regulating both C4b and C3b.
Collapse
|